x := [[a,b],[c,d]]
a b
X :=
c d
y := [[u],[v]]
u
Y :=
v
det(x)
DET (X)
a d - b c
z := x^(-1) . y
-1
Z := X Y
d u - b v
-----------
a d - b c
a v - c u
-----------
a d - b c
1/x^2
1
----
2
X
2
b c + d b (a + d)
--------------------------- - ---------------------------
2 2 2 2 2 2 2 2
a d - 2 a b c d + b c a d - 2 a b c d + b c
2
c (a + d) a + b c
- --------------------------- ---------------------------
2 2 2 2 2 2 2 2
a d - 2 a b c d + b c a d - 2 a b c d + b c
eigenvalues([[2,-1,1],[0,1,1],[-1,1,1]])
2 -1 1
EIGENVALUES 0 1 1 , e
-1 1 1
[e = 1, e = 2]