Mathematica Notebook On Matrix Elements of Coulomb Interaction between Electrons


This is an unevaluated Mathematica notebook. If you do not have a copy of Mathematica handy, you may want to also view the evaluated version


  
  


  
                                Prepared by   L. Kocbach
                                  based on work of 
      James M. Feagin, Ladislav  Kocbach, Richard Liska  and  Alonso Nunez
                                    (1994-95)
                          Package for Clebsch Gordans
                          6-j package
                          Evaluation  of Matrix elements between hydrogenic orbitals
                          Examples  :Helium and helium like ions
                                            Matrix Element of  Particle-Electron Interaction 
                                            as function of  Particle  distance
  Functions Defined  
  Clebsch[ {A , a }, {B , b }, {C , c } ]   Clebsch-Gordan Coefficients
  Threej[ {A ,a },{B ,b },{C ,c } ]         Three-J  Coefficients
  Sixj[{A ,B , C },{a ,b ,c }]              Six-J  Coefficients
  Redmat[A ,K ,B ]                   Reduced M.E. of 3 Spherical Harmonics
  
  RadHyd[n  ,  l  ,  r  , Z   ]   Radial Functions of Hydrogen-like ion with Z   
  
  MatEl[ Z , n1  ,  l1  , n2  ,  l2  , LL  , rr   ] 
                  Matrix Element (Radial part) of a particle - electron interaction
  
  DoubMatEl[Z ,n1 ,l1 ,n2 ,l2 ,n3 ,l3 ,n4 ,l4 ,L ] Redu
                  Matrix Element (Radial part) of  electron - electron  repulsion 
  Corremat[Z ,na ,la ,nb ,lb ,nc ,lc ,nd ,ld ,L ] Redu
                  Matrix Element (Total)  of a electron - electron  repulsion
  
  Example 1 
  Helium and helium like ions, using variational method
  
  Ekin[zvar ,n ]:=1/2 zvar^2/n^2  ; Epot[Zatom,zvar,n ]:=-zvar Zatom/n^2
  Etot[Zatom ,zvar  ,n  ] -> 2 Ekin[zvar ,n ] + 2 Epot[Zatom,zvar ,n ] +         
           Corremat[zvar, n, 0, n, 0,n, 0,n, 0,0]
  Solve[D[Etot[Znuc,z,1],z] == 0, z]     Finds the effective Z by variational method
  
  Example 2:
  Matrix Element of Projectile-electron Interaction 
  as function of  Particle-Nucleus  distance
  fff=MatEl[2,3,2,3,1,1,x];
  Plot[fff,{x,0,20}]                         *)


  (*   This is a Package of Clebsch Gordans : Origin James M. Feagin *)
  (**** Uses Racah s formula to compute Clebsch-Gordan coefficient 
        and its related 3j symbol. Definitions of CG coefficient and 
        3j symbol are as in 
  	  BRINK & SATCHLER, ÒAngular Momentum,Ó 2nd ed., p.34, eq. 2.34,
  		and App. I, p.136.   
  ****)
  
  (**** Entered 1/26/91 constraints:
  		C < Abs[A-B] || C > A+B.
  		Abs[a] > A || Abs[b] > B || Abs[c] > C.  
  ****)
  
  BeginPackage["Quantum`Clebsch`"]
  
  Clebsch::usage =
  	"Clebsch[{A,a},{B,b},{C,c}] gives the Clebsch-Gordan coefficient 
  	for the addition of angular momenta C = A + B using RacahÕs formula 
  	(see Brink&Satchler, ÒAngular Momentum,Ó 2nd ed.(Oxford), p.34)."
  
  Threej::usage =	
  	"Threej[{A,a},{B,b},{C,c}] gives the 3-j symbol for 
  	combining angular momenta, which is proportional to the CG coefficient."
  
  Begin["`private`"]
  
  (* see Brink&Satchler, p.140 *)
  Clebsch[{A_,a_},{A_,b_},{0,0}] := (-1)^(A-a)/Sqrt[2A+1] /; b == -a 
  Clebsch[{A_,a_},{B_,b_},{0,0}] := 0 
  
  f1[C_,A_,B_,a_,b_] := 
  	Sum[ (-1)^k (k! (A+B-C-k)! (A-a-k)! (B+b-k)! (C-B+a+k)! 
  	     (C-A-b+k)!)^-1, 
  		{ k, Max[0,B-C-a,A-C+b], Min[A+B-C,A-a,B+b] } ]  
  		(* These Max and Min prevent the arguments of 
  	      Factorial (!) from becoming negative when the sum over k is 
  	      performed. *)
  	      
  f2[C_,A_,B_] := (-C+A+B)! (C-A+B)! (C+A-B)! /(1+C+A+B)!
  
  f3[C_,A_,B_,c_,a_,b_] := (1+2C) (C-c)! (C+c)! (A-a)! (A+a)! (B-b)! (B+b)!
  
  (* see Brink&Satchler, p.34, eq. 2.34 *)
  Clebsch[ {A_, a_}, {B_, b_}, {C_, c_} ] :=
  		If[ c!=a+b || C < Abs[A-B] || C > A+B || 
  			Abs[a] > A || Abs[b] > B || Abs[c] > C, 0 , 
  			Block[ {}, f1[C,A,B,a,b] Sqrt[ f2[C,A,B] 
  			f3[C,A,B,c,a,b] ]
  		   ]
  		]
  
  (* see Brink&Satchler, App. I, p.136 *)
  Threej[ {A_,a_},{B_,b_},{C_,c_} ] :=
  	(-1)^(B-A+c)/Sqrt[2C+1] Clebsch[{A,a},{B,b},{C,-c}]
  	
  End[ ]
  EndPackage[]	


  (*This is a modification of the matrix elements evaluation to include  Z- dependence     :  
   Origin    L. Kocbach and  R. Liska;  Modified by Alonso Nunez *)
  
  Rad[n_ ,  l_ ,  r_ , Z_  ]:=
  LaguerreL[n-l -1 , 2 l+1,2 Z r/n] Exp[- Z r/ n] ( Z r )^l
  
  RadHyd[n_ ,  l_ ,  r_ , Z_  ] :=  
      Rad[n ,  l  ,  r  , Z ] / Sqrt[Norm2 [ n , l , Z    ] ]
  
  MatEl[ Z_, n1_ ,  l1_ , n2_ ,  l2_ , LL_ , rr_  ] :=
  Block[
   { fun1, fun2, v, res1, res2, int1, int2 , res},
    fun1=(RadHyd[n1,l1, v , Z]/. E->enat);
     fun2=(RadHyd[n2,l2, v, Z ]/. E->enat); 
     res2=Integrate[Expand[v^2 fun1 fun2 / v^(LL+1)],v];
     res1=Integrate[Expand[v^2 v^LL   fun1  fun2],v];
     int1=( res1/. v->rr) ;
      int1=  int1   -  ( res1/.v->0);
     int2=  -  res2/. v->rr  ;
     res = (   (  int1/rr^(LL+1)  +  rr^(LL)  int2   )/. Log[enat]->1);  
     res/. enat->E 
   ]
  
  Norm2[n1_ ,  l1_ , Z_   ] := 
  Block[
   { fun,  v, res,  int },
   fun=(Rad[n1,l1, v, Z]/. E->enat);
     res=Integrate[Expand[v^2 fun fun],v];
     int =  -  res/. v->0  ;
     res =  int /. Log[enat]->1 ;  
     res/. enat->E  ]
  


  DoubMatEl[Z_,n1_,l1_,n2_,l2_,n3_,l3_,n4_,l4_,L_] :=
  Block[
    {fun1,fun2,  v, res,  int },
    fun1=(RadHyd[n1,l1, v ,Z]/. E->enat);
     fun2=(RadHyd[n4,l4, v ,Z]/. E->enat);
     fun3=(MatEl[Z,n2,l2,n3,l3,L,v]/. E->enat); 
     res=Integrate[Simplify[Expand[v^2 fun1 fun2 fun3 ]],v];
     int =  -  res/. v->0  ;
     res =  int /. Log[enat]->1 ;  
     res/. enat->E 
   ]


  (* Example *)  DoubMatEl[1,1,0,1,0,1,0,2,0,0]


  DoubMatEl[1,2,0,1,0,4,0,3,0,0]//N


  (* 
  First version of 6-j package :Using Cowan, page 147   
  Origin:  Alonso Nunez 
  (* Special value for one J zero *)
  Clebshing1[C_,A_,B_,a_,b_,0] := (-1)^(A+B+C)/Sqrt[(2A+1)(2B+1)]
  


  (* Used in general expression *)
  ClebDelta2[C_,A_,B_] := (-C+A+B)! (C-A+B)! (C+A-B)! /(1+C+A+B)!
  (* Used in general expression, Big Sum *)
  ClebSum3[C_,A_,B_,c_,a_,b_] := 
  Sum[ (-1)^k (k+1)! ((A+B+a+b-k)! (B+C+b+c-k)! (C+A+c+a-k)! 
  (k-A-B-C)! (k-A-b-c)! (k-a-B-c)! (k-a-b-C)!)^-1, 
  		{ k, Max[0,A+B+C,A+b+c,a+B+c,a+b+C], 
  		Min[A+B+b+a,A+B+b+c,C+A+c+a] } ]
  


  		
  Sixj[{A_,B_, C_},{a_,b_,c_}] := 
  
  If[ C < Abs[A-B] || C > A+B , 0  (* if not satisfied *),
  	Block[  (* if satisfied *)
  		{},
  		If [ c==0, Clebshing1[C,A,B,a,b,0] , 
  			 Sqrt[ ClebDelta2[C,A,B]ClebDelta2[c,b,A]
  			       ClebDelta2[c,a,B]  ClebDelta2[C,a,b]] 
               ClebSum3[C,A,B,c,a,b] ]
         	] (* end block *)
    ] (* end if *)
  		
  


  Redmat[A_,K_,B_] := 
  (-1)^A Sqrt[(2A+1)(2B+1)] Threej[{A,0},{K,0},{B,0}]
  
  Smrk[la_,lb_,lc_,ld_,L_,K_] :=
   (-1)^(lc+lb+L) Sixj[{la,lb,L},{ld,lc,K}] Redmat[la,K,lc]  Redmat[lb,K,ld]
                          
  Corremat[Z_,na_,la_,nb_,lb_,nc_,lc_,nd_,ld_,L_] :=
             Sum[ Smrk[la,lb,lc,ld,L,K]
            DoubMatEl[Z,na,la,nb,lb,nc,lc,nd,ld,K]
           ,{K, Max[0,Abs[la-lc],Abs[lb-ld]],
                Min[la+lc,lb+ld] } ]


  (* Example *)
  Corremat[1,3,2,3,2,4,0,4,0,0]/Corremat[64,3,2,3,2,4,0,4,0,0]


  
  
  (*        z      n1 l1    n2 l2     n3 l3    n4 l4    L   *) (* Output Form *)


  Corremat[ 2,     1,0,      1,0,      1,0,     1,0,     0] 


  Corremat[ 2,     2,0,      1,0,       2,0,    1,0,     0] 


  (*  Example: 
  Helium and helium like ions, using variational method *)
  Ekin[zvar_ ,n_ ] := 1/2 zvar^2/n^2
  
  Epot[Zatom_,zvar_ ,n_ ]:= - zvar Zatom/n^2
  
  Etot[Zatom_,zvar_ ,n_ ]:= 
  2 Ekin[zvar ,n ] + 2 Epot[Zatom,zvar ,n ] +
  Corremat[zvar, n, 0, n, 0,n, 0,n, 0,0]


  Etot[2,2,1]


  TRIAL=Etot[2,z,1]


  
  Plot[TRIAL, {z, 1, 2.5}]


  D[Etot[2,z,1],z]


  Solve[D[Etot[6,z,1],z] == 0, z]
  %//N


  Zat=1; {Zat, Solve[D[Etot[Zat,z,1],z] == 0, z]//N }
  Zat=2; {Zat, Solve[D[Etot[Zat,z,1],z] == 0, z]//N }
  Zat=3; {Zat, Solve[D[Etot[Zat,z,1],z] == 0, z]//N }
  Zat=4; {Zat, Solve[D[Etot[Zat,z,1],z] == 0, z]//N }
  Zat=6; {Zat, Solve[D[Etot[Zat,z,1],z] == 0, z]//N }


  Solve[D[Etot[anyZ,z,1],z] == 0, z]


  First[Normal[Solve[D[Etot[anyZ,z,1],z] == 0, z]  ]]


  (* Example 2:
  Matrix Element of Interaction as function of
  Internuclear distance  *) 


  fff=MatEl[2,3,2,3,1,1,x];
  Plot[fff,{x,0,20}]