
Introduction to MATLAB
for Engineers, Third Edition

William J. Palm III

Chapter 3

Functions and
Files

PowerPoint to accompany

Copyright © 2010. The McGraw-Hill Companies, Inc.

Getting Help for Functions

You can use the lookfor command to find functions that
are relevant to your application.

For example, type lookfor imaginary to get a list of the
functions that deal with imaginary numbers. You will see
listed:

imag Complex imaginary part
i Imaginary unit
j Imaginary unit

3-23-2

More? See pages 113-114.

Exponential
exp(x)

sqrt(x)

Logarithmic
log(x)

log10(x)

Exponential; e x

Square root; √x

Natural logarithm; ln x

Common (base 10) logarithm;
log x = log10 x

(continued…)

Common mathematical functions: Table 3.1–1, page 114

3-33-3

Some common mathematical functions (continued)

Complex
abs(x)
angle(x)
conj(x)
imag(x)
real(x)

Absolute value.
Angle of a complex number.
Complex conjugate.
Imaginary part of a complex number.
Real part of a complex number.

(continued…)

3-4

Some common mathematical functions
(continued)

Numeric

ceil(x)

fix(x)

floor(x)

round(x)

sign(x)

Round to nearest integer toward ∞.

Round to nearest integer toward zero.

Round to nearest integer toward -∞.

Round toward nearest integer.

Signum function:

+1 if x > 0; 0 if x = 0; -1 if x < 0.

3-5

The rectangular
and polar
representations
of the complex
number a + ib.

3-63-6

Operations with Complex Numbers

>>x = -3 + 4i;
>>y = 6 - 8i;
>>mag_x = abs(x)
mag_x =
 5.0000
>>mag_y = abs(y)
mag_y =
10.0000

>>mag_product = abs(x*y)
50.0000

3-73-7

(continued …)

Operations with Complex Numbers (continued)

>>angle_x = angle(x)
angle_x =
 2.2143
>>angle_y = angle(y)
angle_y =
 -0.9273
>>sum_angles = angle_x + angle_y
sum_angles =
 1.2870
>>angle_product = angle(x*y)
angle_product =
 1.2870

3-83-8

Operations on Arrays

MATLAB will treat a variable as an array automatically.
For example, to compute the square roots of 5, 7, and
15, type

>>x = [5,7,15];
>>y = sqrt(x)
y =
 2.2361 2.6358 3.8730

3-93-9

Expressing Function Arguments

We can write sin 2 in text, but MATLAB requires
parentheses surrounding the 2 (which is called the
function argument or parameter).

Thus to evaluate sin 2 in MATLAB, we type sin(2). The
MATLAB function name must be followed by a pair of
parentheses that surround the argument.

To express in text the sine of the second element of the
array x, we would type sin[x(2)]. However, in
MATLAB you cannot use square brackets or braces in
this way, and you must type sin(x(2)).

3-103-10
(continued …)

Expressing Function Arguments (continued)

To evaluate sin(x 2 + 5), you type sin(x.^2 + 5).

To evaluate sin(√x+1), you type sin(sqrt(x)+1).

Using a function as an argument of another function is
called function composition. Be sure to check the order of
precedence and the number and placement of
parentheses when typing such expressions.

Every left-facing parenthesis requires a right-facing mate.
However, this condition does not guarantee that the
expression is correct!

3-113-11

Expressing Function Arguments (continued)

Another common mistake involves expressions like
sin2 x, which means (sin x)2.

In MATLAB we write this expression as
(sin(x))^2, not as sin^2(x), sin^2x,
sin(x^2), or sin(x)^2!

3-123-12

Expressing Function Arguments (continued)

The MATLAB trigonometric functions operate in radian
mode. Thus sin(5) computes the sine of 5 rad, not the
sine of 5°.

To convert between degrees and radians, use the relation
qradians = (p /180)qdegrees.

3-133-13

cos(x)

cot(x)

csc(x)

sec(x)

sin(x)

tan(x)

Cosine; cos x.

Cotangent; cot x.

Cosecant; csc x.

Secant; sec x.

Sine; sin x.

Tangent; tan x.

Trigonometric functions: Table 3.1–2, page 116

3-143-14

Inverse Trigonometric functions: Table 3.1–2

acos(x)

acot(x)

acsc(x)

asec(x)

asin(x)

atan(x)
atan2(y,x)

Inverse cosine; arccos x.

Inverse cotangent; arccot x.

Inverse cosecant; arccsc x.

Inverse secant; arcsec x.

Inverse sine; arcsin x .

Inverse tangent; arctan x .

Four-quadrant inverse
tangent.

3-15

Hyperbolic cosine

Hyperbolic cotangent.

Hyperbolic cosecant

Hyperbolic secant

Hyperbolic sine

Hyperbolic tangent

cosh(x)

coth(x)

csch(x)

sech(x)

sinh(x)

tanh(x)

Hyperbolic functions: Table 3.1–3, page 119

3-163-16

Inverse Hyperbolic functions: Table 3.1–3

acosh(x)

acoth(x)

acsch(x)

asech(x)

asinh(x)

atanh(x)

Inverse hyperbolic cosine

Inverse hyperbolic cotangent

Inverse hyperbolic cosecant

Inverse hyperbolic secant

Inverse hyperbolic sine

Inverse hyperbolic tangent;

3-17

User-Defined Functions

The first line in a function file must begin with a function
definition line that has a list of inputs and outputs. This line
distinguishes a function M-file from a script M-file. Its syntax is
as follows:

function [output variables] = name(input variables)

Note that the output variables are enclosed in square
brackets, while the input variables must be enclosed with
parentheses. The function name (here, name) should be the
same as the file name in which it is saved (with the .m
extension).

3-183-18

More? See pages 119-123.

User-Defined Functions: Example

function z = fun(x,y)
u = 3*x;
z = u + 6*y.^2;

Note the use of a semicolon at the end of the lines. This
prevents the values of u and z from being displayed.

Note also the use of the array exponentiation operator
(.^). This enables the function to accept y as an array.

3-193-19 (continued …)

User-Defined Functions: Example (continued)

Call this function with its output argument:

>>z = fun(3,7)
z =
 303

The function uses x = 3 and y = 7 to compute z.

3-203-20

(continued …)

User-Defined Functions: Example (continued)

Call this function without its output argument and try to
access its value. You will see an error message.

>>fun(3,7)
ans =
 303
>>z
??? Undefined function or variable ’z’.

3-213-21

(continued …)

User-Defined Functions: Example (continued)

Assign the output argument to another variable:

>>q = fun(3,7)
q =
 303

You can suppress the output by putting a semicolon after
the function call.

For example, if you type q = fun(3,7); the value of q
will be computed but not displayed (because of the
semicolon).

3-223-22

Local Variables: The variables x and y are local to the
function fun, so unless you pass their values by naming
them x and y, their values will not be available in the
workspace outside the function. The variable u is also
local to the function. For example,
>>x = 3;y = 7;
>>q = fun(x,y);
>>x
x =
3

>>y
y =
7

>>u
??? Undefined function or variable ’u’.

3-233-23

Only the order of the arguments is important, not the
names of the arguments:

>>x = 7;y = 3;
>>z = fun(y,x)
z =
 303

The second line is equivalent to z = fun(3,7).

3-243-24

You can use arrays as input arguments:

>>r = fun(2:4,7:9)
r =
 300 393 498

3-253-25

A function may have more than one output. These are
enclosed in square brackets.

For example, the function circle computes the area A
and circumference C of a circle, given its radius as an
input argument.

function [A, C] = circle(r)
A = pi*r.^2;
C = 2*pi*r;

3-263-26

The function is called as follows, if the radius is 4.

>>[A, C] = circle(4)
A =
50.2655

C =
25.1327

3-27

A function may have no input arguments and no output
list.

For example, the function show_date clears all
variables, clears the screen, computes and stores the
date in the variable today, and then displays the value of
today.

function show_date
clear
clc
today = date

3-28

1. One input, one output:

function [area_square] = square(side)

2. Brackets are optional for one input, one output:

function area_square = square(side)

3. Two inputs, one output:

function [volume_box] = box(height,width,length)

4. One input, two outputs:

function [area_circle,circumf] = circle(radius)

5. No named output: function sqplot(side)

Examples of Function Definition Lines

3-293-29

Function Example

function [dist,vel] = drop(g,vO,t);
% Computes the distance travelled and the
% velocity of a dropped object,
% as functions of g,
% the initial velocity vO, and
% the time t.
vel = g*t + vO;
dist = 0.5*g*t.^2 + vO*t;

3-30
(continued …)

Function Example (continued)

1. The variable names used in the function definition may,
but need not, be used when the function is called:

>>a = 32.2;
>>initial_speed = 10;
>>time = 5;
>>[feet_dropped,speed] = . . .

drop(a,initial_speed,time)

3-31
(continued …)

Function Example (continued)

2. The input variables need not be assigned values
outside the function prior to the function call:

[feet_dropped,speed] = drop(32.2,10,5)

3. The inputs and outputs may be arrays:

[feet_dropped,speed]=drop(32.2,10,0:1:5)

This function call produces the arrays feet_dropped
and speed, each with six values corresponding to the six
values of time in the array time.

3-32

Local Variables

The names of the input variables given in the function
definition line are local to that function.

This means that other variable names can be used when
you call the function.

All variables inside a function are erased after the function
finishes executing, except when the same variable names
appear in the output variable list used in the function call.

3-33

Global Variables

The global command declares certain variables global,
and therefore their values are available to the basic
workspace and to other functions that declare these
variables global.

The syntax to declare the variables a, x, and q is

 global a x q

Any assignment to those variables, in any function or in
the base workspace, is available to all the other functions
declaring them global.

3-34

More? See pages 124.

Function Handles

You can create a function handle to any function by using
the at sign, @, before the function name. You can then
use the handle to reference the function. To create a
handle to the function y = x + 2e−x −3, define the following
function file:

function y = f1(x)
y = x + 2*exp(-x) - 3;

You can pass the function as an argument to another
function. For example, we can plot the function over 0 ≤ x
≤ 6 as follows:

>>plot(0:0.01:6,@f1)

3-353-35

Finding Zeros of a Function

You can use the fzero function to find the zero of a
function of a single variable, which is denoted by x. One
form of its syntax is

fzero(@function, x0)

where @function is the function handle for the function
function, and x0 is a user-supplied guess for the zero.

The fzero function returns a value of x that is near x0.
It identifies only points where the function crosses the x-
axis, not points where the function just touches the axis.
For example, fzero(@cos,2) returns the value 1.5708.

3-36

Using fzero with User-Defined Functions

To use the fzero function to find the zeros of more
complicated functions, it is more convenient to define the
function in a function file.

For example, if y = x + 2e−x −3, define the following function
file:

function y = f1(x)
y = x + 2*exp(-x) - 3;

3-37
(continued …)

Plot of the function y = x + 2e−x − 3. Figure 3.2–1,
page 125

3-38

There is a
zero near x =
-0.5 and one
near x = 3.

(continued …)

Example (continued)

To find a more precise value of the zero
near x = -0.5, type

>>x = fzero(@f1,-0.5)

The answer is x = -0.5881.

3-39
More? See pages 125-126.

Finding the Minimum of a Function

The fminbnd function finds the minimum of a function
of a single variable, which is denoted by x. One form of
its syntax is

fminbnd(@function, x1, x2)

where @function is the function handle for the
function. The fminbnd function returns a value of x that
minimizes the function in the interval x1 ≤ x ≤ x2.

For example, fminbnd(@cos,0,4) returns the value
3.1416.

3-40

When using fminbnd it is more convenient to define the
function in a function file. For example, if y = 1 − xe −x ,
define the following function file:

function y = f2(x)
y = 1-x.*exp(-x);

To find the value of x that gives a minimum of y for 0 ≤ x
≤ 5, type

>>x = fminbnd(@f2,0,5)

The answer is x = 1. To find the minimum value of y,
type y = f2(x). The result is y = 0.6321.

3-41

A function can have one or more local minima
and a global minimum.

If the specified range of the independent variable
does not enclose the global minimum, fminbnd
will not find the global minimum.

fminbnd will find a minimum that occurs on a
boundary.

3-42

Plot of the function y = 0.025x 5 − 0.0625x 4 − 0.333x 3 + x 2.

Figure 3.2–2

3-43

This function
has one local
and one
global
minimum.
On the
interval [1, 4]
the minimum
is at the
boundary, x
= 1.

To find the minimum of a function of more than one
variable, use the fminsearch function. One form of its
syntax is

fminsearch(@function, x0)

where @function is the function handle of the function in
question. The vector x0 is a guess that must be supplied by
the user.

3-44

To minimize the function f = xe−x2 − y2 , we first define it in
an M-file, using the vector x whose elements are x(1) =
x and x(2) = y.

function f = f4(x)
f = x(1).*exp(-x(1).^2-x(2).^2);

Suppose we guess that the minimum is near x = y = 0.
The session is

>>fminsearch(@f4,[0,0])
ans =
 -0.7071 0.000

Thus the minimum occurs at x = −0.7071, y = 0.

3-45

Methods for Calling Functions

There are four ways to invoke, or “call,” a function into
action. These are:

1. As a character string identifying the appropriate
function M-file,

2. As a function handle,
3. As an “inline” function object, or
4. As a string expression.

Examples of these ways follow for the fzero function
used with the user-defined function fun1, which
computes y = x2 − 4.

3-46 (continued …)

Methods for Calling Functions (continued)

1. As a character string identifying the appropriate
function M-file, which is

function y = fun1(x)
y = x.^2−4;

The function may be called as follows, to compute the
zero over the range 0 ≤ x ≤ 3:

>>[x, value] = fzero(’fun1’,[0, 3])

3-47
(continued …)

Methods for Calling Functions (continued)

2. As a function handle to an existing function M-file:

>>[x, value] = fzero(@fun1,[0, 3])

3. As an “inline” function object:

>>fun1 = ’x.^2−4’;
>>fun_inline = inline(fun1);
>>[x, value] = fzero(fun_inline,[0, 3])

3-48

(continued …)

Methods for Calling Functions (continued)

4. As a string expression:

>>fun1 = ’x.^2-4’;
>>[x, value] = fzero(fun1,[0, 3])

or as

>>[x, value] = fzero(’x.^2-4’,[0, 3])

3-49
(continued …)

Methods for Calling Functions (continued)

The function handle method (method 2) is the fastest
method, followed by method 1.

In addition to speed improvement, another advantage
of using a function handle is that it provides access to
subfunctions, which are normally not visible outside of
their defining M-file.

3-50

More? See pages 130-131.

Types of User-Defined Functions

The following types of user-defined functions can be
created in MATLAB.

• The primary function is the first function in an M-file
and typically contains the main program. Following the
primary function in the same file can be any number of
subfunctions, which can serve as subroutines to the
primary function.

3-51

(continued …)

Types of User-Defined Functions (continued)

Usually the primary function is the only function in
an M-file that you can call from the MATLAB
command line or from another M-file function.

You invoke this function using the name of the M-
file in which it is defined.

We normally use the same name for the function
and its file, but if the function name differs from the
file name, you must use the file name to invoke the
function.

(continued …)

3-52

Types of User-Defined Functions (continued)

• Anonymous functions enable you to create a simple
function without needing to create an M-file for it.
You can construct an anonymous function either at
the MATLAB command line or from within another
function or script. Thus, anonymous functions
provide a quick way of making a function from any
MATLAB expression without the need to create,
name, and save a file.

3-53

(continued …)

Types of User-Defined Functions (continued)

• Subfunctions are placed in the primary function and
are called by the primary function. You can use
multiple functions within a single primary function M-
file.

3-54

(continued …)

Types of User-Defined Functions (continued)

• Nested functions are functions defined within
another function. They can help to improve the
readability of your program and also give you more
flexible access to variables in the M-file.

The difference between nested functions and
subfunctions is that subfunctions normally cannot be
accessed outside of their primary function file.

3-55
(continued …)

Types of User-Defined Functions (continued)

• Overloaded functions are functions that respond
differently to different types of input arguments. They
are similar to overloaded functions in any object-
oriented language.

For example, an overloaded function can be created to
treat integer inputs differently than inputs of class
double.

3-56
(continued …)

Types of User-Defined Functions (continued)

• Private functions enable you to restrict access to a
function. They can be called only from an M-file
function in the parent directory.

3-57

More? See pages 131-138.

The term function function is not a separate
function type but refers to any function that accepts
another function as an input argument, such as the
function fzero.

You can pass a function to another function using
a function handle.

3-58

Anonymous Functions

Anonymous functions enable you to create a simple
function without needing to create an M-file for it. You
can construct an anonymous function either at the
MATLAB command line or from within another function
or script. The syntax for creating an anonymous
function from an expression is

fhandle = @(arglist) expr

where arglist is a comma-separated list of input
arguments to be passed to the function, and expr is
any single, valid MATLAB expression.

3-59
(continued …)

Anonymous Functions (continued)

To create a simple function called sq to calculate the
square of a number, type

>>sq = @(x) x.^2;

To improve readability, you may enclose the expression in
parentheses, as sq = @(x) (x.^2);. To execute the
function, type the name of the function handle, followed by
any input arguments enclosed in parentheses. For example,

>>sq([5,7])
ans =

25 49

3-60 (continued …)

Anonymous Functions (continued)

You might think that this particular anonymous
function will not save you any work because typing
sq([5,7]) requires nine keystrokes, one more than
is required to type [5,7].^2.

Here, however, the anonymous function protects you
from forgetting to type the period (.) required for array
exponentiation.

Anonymous functions are useful, however, for more
complicated functions involving numerous
keystrokes.

3-61
(continued …)

Anonymous Functions (continued)

You can pass the handle of an anonymous function to
other functions. For example, to find the minimum of the
polynomial 4x2 − 50x + 5 over the interval [−10, 10], you
type

>>poly1 = @(x) 4*x.^2 - 50*x + 5;
>>fminbnd(poly1, -10, 10)
ans =

6.2500
If you are not going to use that polynomial again, you can
omit the handle definition line and type instead

>>fminbnd(@(x) 4*x.^2 - 50*x + 5, -10, 10)

3-62

Multiple Input Arguments

You can create anonymous functions having more
than one input. For example, to define the function
 √(x 2 + y 2), type

>>sqrtsum = @(x,y) sqrt(x.^2 + y.^2);

Then type

>>sqrtsum(3, 4)
ans =

5

3-63

As another example, consider the function defining a
plane, z = Ax + By. The scalar variables A and B
must be assigned values before you create the
function handle. For example,

>>A = 6; B = 4:
>>plane = @(x,y) A*x + B*y;
>>z = plane(2,8)
z =
44

3-64

Calling One Function within Another

One anonymous function can call another to implement
function composition. Consider the function 5 sin(x 3). It is
composed of the functions g(y) = 5 sin(y) and f (x) = x 3.
In the following session the function whose handle is h
calls the functions whose handles are f and g.

>>f = @(x) x.^3;
>>g = @(x) 5*sin(x);
>>h = @(x) g(f(x));
>>h(2)
ans =

4.9468

3-65

Variables and Anonymous Functions

Variables can appear in anonymous functions in two
ways:
• As variables specified in the argument list, as for
example f = @(x) x.^3;, and

3-66

(continued …)

Variables and Anonymous Functions (continued)

• As variables specified in the body of the expression,
as for example with the variables A and B in plane
= @(x,y) A*x + B*y.

When the function is created MATLAB captures the
values of these variables and retains those values for
the lifetime of the function handle. If the values of A
or B are changed after the handle is created, their
values associated with the handle do not change.

This feature has both advantages and
disadvantages, so you must keep it in mind.

3-67
More? See pages 132-134.

Subfunctions

A function M-file may contain more than one user-defined
function. The first defined function in the file is called the
primary function, whose name is the same as the M-file
name. All other functions in the file are called subfunctions.

Subfunctions are normally “visible” only to the primary
function and other subfunctions in the same file; that is, they
normally cannot be called by programs or functions outside
the file. However, this limitation can be removed with the
use of function handles.

3-68
(continued …)

Subfunctions (continued)

Create the primary function first with a function
definition line and its defining code, and name the
file with this function name as usual.

Then create each subfunction with its own function
definition line and defining code.

The order of the subfunctions does not matter, but
function names must be unique within the M-file.

3-69 More? See pages 168-170.

Precedence When Calling Functions

The order in which MATLAB checks for functions is
very important. When a function is called from within
an M-file, MATLAB first checks to see if the function is
a built-in function such as sin.

If not, it checks to see if it is a subfunction in the file,
then checks to see if it is a private function (which is a
function M-file residing in the private subdirectory of
the calling function).

Then MATLAB checks for a standard M-file on your
search path.

3-70
(continued …)

Precedence When Calling Functions (continued)

Thus, because MATLAB checks for a subfunction
before checking for private and standard M-file
functions, you may use subfunctions with the same
name as another existing M-file.

This feature allows you to name subfunctions without
being concerned about whether another function exists
with the same name, so you need not choose long
function names to avoid conflict.

This feature also protects you from using another
function unintentionally.

3-71

The following example shows how the MATLAB M-
function mean can be superceded by our own
definition of the mean, one which gives the root-mean
square value.

The function mean is a subfunction.

The function subfun_demo is the primary function.

function y = subfun_demo(a)
y = a - mean(a);
%
function w = mean(x)
w = sqrt(sum(x.^2))/length(x);

3-72 (continued …)

Example (continued)

A sample session follows.

>>y = subfn_demo([4, -4])
y =
1.1716 -6.8284

If we had used the MATLAB M-function mean, we
would have obtained a different answer; that is,

>>a=[4,-4];
>>b = a - mean(a)
b =
4 -4

3-73

Thus the use of subfunctions enables you to reduce
the number of files that define your functions.

For example, if it were not for the subfunction mean in
the previous example, we would have had to define a
separate M-file for our mean function and give it a
different name so as not to confuse it with the MATLAB
function of the same name.

Subfunctions are normally visible only to the primary
function and other subfunctions in the same file.

However, we can use a function handle to allow
access to the subfunction from outside the M-file.

3-74 More? See pages 169-170.

Nested Functions

With MATLAB 7 you can now place the definitions of
one or more functions within another function.
Functions so defined are said to be nested within the
main function. You can also nest functions within
other nested functions.

3-75

(continued …)

Nested Functions (continued)

Like any M-file function, a nested function contains
the usual components of an M-file function.

You must, however, always terminate a nested
function with an end statement.

In fact, if an M-file contains at least one nested
function, you must terminate all functions, including
subfunctions, in the file with an end statement,
whether or not they contain nested functions.

3-76
(continued …)

Example

The following example constructs a function handle for a
nested function and then passes the handle to the
MATLAB function fminbnd to find the minimum point on
a parabola. The parabola function constructs and
returns a function handle f for the nested function p.
This handle gets passed to fminbnd.

function f = parabola(a, b, c)
f = @p;
function y = p(x)

y = a*x^2 + b*x + c;
end

end

3-77
(continued …)

Example (continued)

In the Command window type

>>f = parabola(4, -50, 5);
>>fminbnd(f, -10, 10)
ans =
6.2500

Note than the function p(x) can see the variables a,
b, and c in the calling function’s workspace.

3-78

Nested functions might seem to be the same as
subfunctions, but they are not. Nested functions
have two unique properties:

1. A nested function can access the workspaces of all
functions inside of which it is nested. So for
example, a variable that has a value assigned to it
by the primary function can be read or overwritten
by a function nested at any level within the main
function.

A variable assigned in a nested function
can be read or overwritten by any of the functions
containing that function.

3-79

(continued …)

2. If you construct a function handle for a nested
function, the handle not only stores the information
needed to access the nested function; it also stores the
values of all variables shared between the nested
function and those functions that contain it.

This means that these variables persist in memory
between calls made by means of the function handle.

3-80

More? See pages 135-137 .

Private Functions

Private functions reside in subdirectories with the
special name private, and they are visible only to
functions in the parent directory.

Assume the directory rsmith is on the MATLAB
search path. A subdirectory of rsmith called
private may contain functions that only the
functions in rsmith can call. Because private
functions are invisible outside the parent directory
rsmith, they can use the same names as functions
in other directories.

3-81

(continued …)

Private Functions (continued)

Primary functions and subfunctions can be
implemented as private functions.

Create a private directory by creating a subdirectory
called private using the standard procedure for
creating a directory or a folder on your computer, but
do not place the private directory on your path.

3-82

Importing Spreadsheet Files

Some spreadsheet programs store data in the
.wk1 format. You can use the command
M = wk1read(’filename’) to import this data
into MATLAB and store it in the matrix M.

The command A = xlsread(’filename’)
imports the Microsoft Excel workbook file
filename.xls into the array A. The command
[A, B] = xlsread(’filename’) imports all
numeric data into the array A and all text data into
the cell array B.

3-83
More? See page 138.

The Import Wizard

To import ASCII data, you must know how the data in
the file is formatted.

For example, many ASCII data files use a fixed (or
uniform) format of rows and columns.

3-84

(continued …)

The Import Wizard (continued)

For these files, you should know the following.

• How many data items are in each row?

• Are the data items numeric, text strings, or a mixture
of both types?

• Does each row or column have a descriptive text
header?

• What character is used as the delimiter, that is, the
character used to separate the data items in each
row? The delimiter is also called the column
separator.

(continued …)3-85

The Import Wizard (continued)

You can use the Import Wizard to import many types of
ASCII data formats, including data on the clipboard.
When you use the Import Wizard to create a variable in
the MATLAB workspace, it overwrites any existing
variable in the workspace with the same name without
issuing a warning.

The Import Wizard presents a series of dialog boxes in
which you:

1. Specify the name of the file you want to import,
2. Specify the delimiter used in the file, and
3. Select the variables that you want to import.

3-86

The first screen in the Import Wizard. Figure 3.4–1, page 139

3-87

More? See pages 173-177.

The following slides contain figures from
Chapter 3 and its homework problems.

3-88

Cross section of an irrigation channel.

Figure 3.2–3

3-89

Figure P12

3-90

Figure P13

3-91

	Slide 1
	3-2
	3-3
	Some common mathematical functions (continued)
	Slide 5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	Inverse Trigonometric functions: Table 3.1–2
	3-16
	Inverse Hyperbolic functions: Table 3.1–3
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	Slide 27
	Slide 28
	3-29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	3-35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

