Introduction to MATLAB (Basics)

Reference from: Azernikov Sergei mesergei@tx.technion.ac.il

MATLAB Basics

• Where to get help?

 In MATLAB's prompt type: help, lookfor,helpwin, helpdesk, demos.
 On the Web: http://www.mathworks.com/support

MATLAB's Workspace

- who, whos current variables in workspace
- **save** save workspace variables to *.mat file
- **load** load variables from *.mat file
- **clear all** clear workspace variables

Matrices in MATLAB

- Matrix is a main MATLAB's data type
- How to build a matrix?

A = [1 2 3; 4 5 6; 7 8 9];

Creates matrix A with size 3x3.

• Special matrices :

zeros(n,m), ones(n,m),eye (n,m)

Basic Operations on Matrices

- All the operators in MATLAB defined on matrices : +, -, *, /, ^, sqrt, sin, cos etc.
- Element wise operators defined with preceding dot : .*, ./, .^ .
- size(A) size vector
- sum(A) columns sums vector
- sum(sum(A)) all the elements sum

Logical Conditions

• **find('condition')** - Returns indexes of A's elements that satisfies the condition.

Logical Conditions(cont.)

• Example: >> *A* = [1 2; 3 4], *I* = *find*(*A*<4)

A = 1 2 3 4 I = 1 2

Flow Control

- MATLAB has five flow control constructs:
 - -if statements
 - -switch statements
 - -for loops
 - -while loops
 - -break statements

if

• **IF** statement condition. The general form of the **IF** statement is **IF** expression statements **ELSEIF** expression statements ELSE statements **END**

```
• Example:

if I == J

A(I,J) = 2;

elseif abs(I-J) == 1

A(I,J) = -1;

else

A(I,J) = 0;

end
```

switch

- **SWITCH** Switch among several cases based on expression.
- The general form of the SWITCH statement is: **SWITCH switch_expr**
 - CASE case_expr,
 - statement, ..., statement
 - CASE {case_expr1, case_expr2, case_expr3,...}
 - statement, ..., statement

```
...
OTHERWISE,
statement, ..., statement
END
```

switch (cont.)

•Note:

Only the statements between the matching CASE and the next CASE, OTHERWISE, or END are executed. <u>Unlike C</u>, the SWITCH statement does not fall through (so BREAKs are unnecessary).

for

• **FOR** Repeat statements a specific number of times.

• The general form of a FOR statement is: FOR variable = expr, statement, ..., END

```
Example:
FOR I = 1:N,
FOR J = 1:N,
A(I,J) = 1/(I+J-1);
END
END
```

while

- WHILE Repeat statements an indefinite number of times.
- The general form of a WHILE statement is: WHILE expression statements

END

while (cont.)

Example: E = 0*A; F = E + eye(size(E)); N = 1; while norm(E+F-E,1) > 0, E = E + F; F = A*F/N; N = N + 1;

end

Scripts and Functions

- There are two kinds of M-files:
 - -Scripts, which do not accept input arguments or return output arguments. They operate on data in the workspace.
 - Functions, which can accept input arguments and return output arguments.
 Internal variables are local to the function.

Functions in MATLAB

- **FUNCTION** Add new function.
- New functions may be added to MATLAB's vocabulary if they are expressed in terms of other existing functions.

Functions in MATLAB (cont.)

• Example :

The existence of a file

on disk called STAT.M with:

function [mean,stdev] = stat(x)

%STAT Interesting statistics.

n = length(x);

mean = sum(x) / n;

stdev = sqrt(sum((x - mean).^2)/n);

defines a new function called STAT that calculates the mean and standard deviation of a vector.

Visualization and Graphics

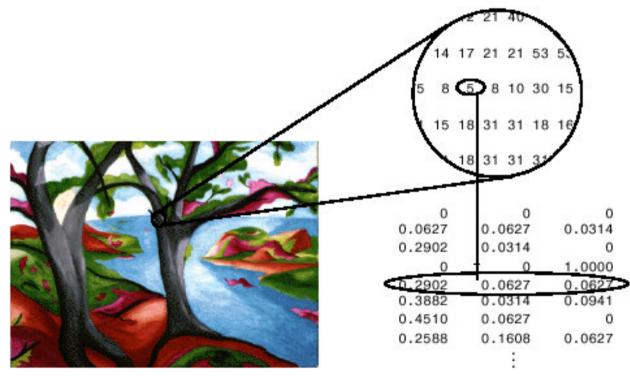
- **plot(x,y), plot(x,sin(x))** plot 1-D function
- figure, figure(k) open a new figure
- hold on, hold off refreshing
- mesh(x_ax,y_ax,z_mat) view surface
- **contour(z_mat)** view z as top. map
- **subplot(3,1,2)** locate several plots in figure
- **axis([xmin xmax ymin ymax])** change axes
- **title('figure title')** add title to figure

Image Proc. with MATLAB

(Please refer to Matlab Demo for more details of Image Processing Tool Box)

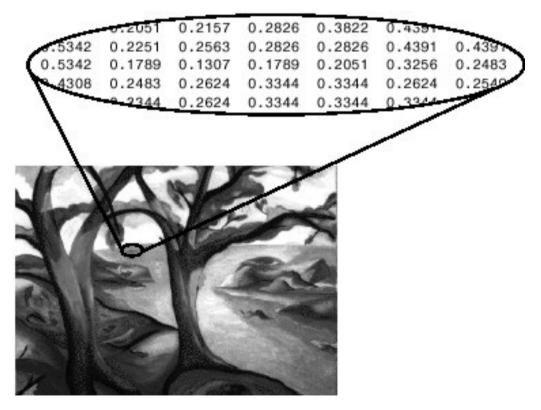
What Is the Image Processing Toolbox?

- The Image Processing Toolbox is a collection of functions that extend the capability of the MATLAB ® numeric computing environment. The toolbox supports a wide range of image processing operations, including:
 - Geometric operations
 - Neighborhood and block operations
 - Linear filtering and filter design
 - Transforms
 - Image analysis and enhancement
 - Binary image operations
 - Region of interest operations

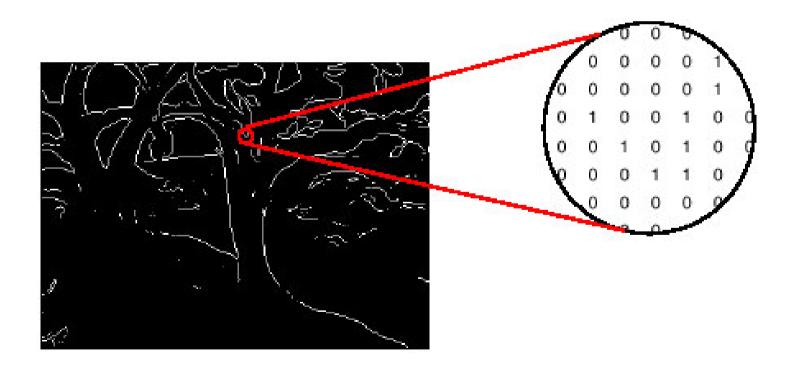

MATLAB Image Types

- Indexed images
- Intensity images
- Binary images
- RGB images

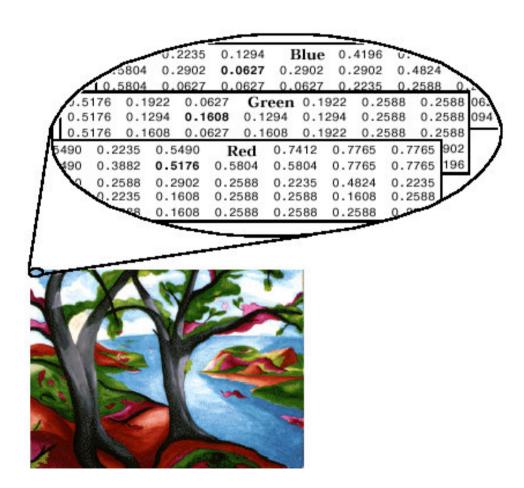
- : m-by-3 color map
- : [0,1] or uint8
- : {0,1}
- : m-by-n-by-3



- » [x,map] = imread('trees.tif');
- » imshow(x,map);


Intensity Images

- » image = ind2gray(x,map);
- » imshow(image);



Binary Images

» imshow(edge(image));

RGB Images

Image Display

- **image** create and display image object
- **imagesc** scale and display as image
- **imshow** display image
- **colorbar** display colorbar
- **getimage** get image data from axes
- **truesize** adjust display size of image
- **zoom** zoom in and zoom out of 2D plot

Some Points to Note

Pixel values are accessed as matrix elements.
2D Image with intensity values: I (row, col)
2D RGB images I (row, col, color)

- Color : Red = 1; Green = 2 ; Blue = 3

Displaying images

figure, imshow(I)

Displaying pixel position and intensity information pixval on

Points to Note

All arithmetic operations performed on matrices may be performed on images

After processing, an image matrix can be written to an output image file with the imwrite function

- imwrite(I,map,'filename','fmt')

Without the map argument, the image data is supposed to be grayscale or RGB.

The format 'fmt' needs to support the particular type of image

Image Conversion

- **gray2ind** intensity image to index image
- **im2bw** image to binary
- **im2double** image to double precision
- **im2uint8** image to 8-bit unsigned integers
- **im2uint16** image to 16-bit unsigned integers
- **ind2gray** indexed image to intensity image
- mat2gray matrix to intensity image
- **rgb2gray** RGB image to grayscale
- **rgb2ind** RGB image to indexed image

% Working with Images (example)

[I,map]=imread('trees.tif');	% read a TIFF image
figure, imshow(I,map)	% display it as indexed image
I2=ind2gray(I,map);	% convert it to grayscale
figure	
colormap('gray')	% use gray colormap
imagesc(I2,[0 1])	% scale data to use full colormap
	% for values between 0 and 1
axis('image')	% make displayed aspect ratio %proportional
	% to image dimensions
I=imread('moon.jpg'); % read a JPEG image into 3D	%array
figure	
imshow(I)	
rect=getrect;	% select rectangle
I2=imcrop(I,rect);	% crop
I2=rgb2gray(I2);	% convert cropped image to grayscale
imagesc(I2)	% scale data to use full colormap 32

% between min and max values in I2

colormap('gray')

colorbar	% turn on color bar
pixval	% display pixel values interactively
truesize	% display at resolution of one %screen pixel
	% per image pixel
truesize(2*size(I2))	% display at resolution of two %screen pixels
	% per image pixel
I3=imresize(I2,0.5,'bil');	% resize by 50% using bilinear
	% interpolation
I3=imrotate(I2,45,'bil');	% rotate 45 degrees and crop to
	% original size
I3=double(I2);	% convert from uint8 to double, to %allow
% math operations	
imagesc(I3.^2)	% display squared image (pixel-wise)
imagesc(log(I3))	% display log of image

MATLAB Resources on the Internet

http://www.mathworks.com/products/demos/#

http://www.math.siu.edu/MATLAB/tutorials.html

http://math.ucsd.edu/~driver/21d -s99/MATLAB-primer.html

http://www-cse.ucsd.edu/~sjb/classes/MATLAB/MATLAB.intro.html

http://www.mit.edu/~pwb/cssm/

http://www.mathworks.com

Interesting and very complete tutorials in: http://www.mathworks.com/academia/student_center/tutorials/la unchpad.html

http://www.mathworks.com/matlabcentral/fileexchange

Getting started with MATLAB

http://www.mathworks.com/access/helpdesk/help/techdoc/learn_matlab/learn_matlab.shtml

MATLAB tutorial

http://www.math.mtu.edu/~msgocken/intro/intro.html http://amath.colorado.edu/scico/tutorials/matlab/

MATLAB helpdesk

http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml

MATLAB Primer

ftp://ftp.eng.auburn.edu/pub/sjreeves/matlab_primer_40.pdf