
Introduction to MATLAB
for Engineers, Third Edition

William J. Palm III

Chapter 4
Programming with MATLAB

PowerPoint to accompany

Copyright © 2010. The McGraw-Hill Companies, Inc.

Algorithms and Control Structures

Algorithm: an ordered sequence of precisely defined
instructions that performs some task in a finite amount of
time. Ordered means that the instructions can be numbered,
but an algorithm must have the ability to alter the order of its
instructions using a control structure. There are three
categories of algorithmic operations:

Sequential operations: Instructions executed in order.

Conditional operations: Control structures that first ask a
question to be answered with a true/false answer and then
select the next instruction based on the answer.

Iterative operations (loops): Control structures that repeat
the execution of a block of instructions.4-24-2

Structured Programming

A technique for designing programs in which a hierarchy
of modules is used, each having a single entry and a
single exit point, and in which control is passed
downward through the structure without unconditional
branches to higher levels of the structure.

In MATLAB these modules can be built-in or user-
defined functions.

4-34-3

Advantages of structured programming

1. Structured programs are easier to write because the
programmer can study the overall problem first and
then deal with the details later.

2. Modules (functions) written for one application can be
used for other applications (this is called reusable
code).

3. Structured programs are easier to debug because each
module is designed to perform just one task and thus it
can be tested separately from the other modules.

4-4

Advantages of structured programming
(continued)

4. Structured programming is effective in a teamwork
environment because several people can work on a
common program, each person developing one or
more modules.

5. Structured programs are easier to understand and
modify, especially if meaningful names are chosen for
the modules and if the documentation clearly identifies
the module’s task.

4-5

Steps for developing a computer solution:
Table 4.1–1, page 149

1. State the problem concisely.

2. Specify the data to be used by the program. This is the
“input.”

3. Specify the information to be generated by the program.
This is the “output.”

4. Work through the solution steps by hand or with a
calculator; use a simpler set of data if necessary.

4-6

Steps for developing a computer solution (continued)

5. Write and run the program.

6. Check the output of the program with your hand solution.

7. Run the program with your input data and perform a
reality check on the output.

8. If you will use the program as a general tool in the
future, test it by running it for a range of reasonable
data values; perform a reality check on the results.

4-7

Effective documentation can be accomplished with
the use of

1. Proper selection of variable names to reflect the
quantities they represent.

2. Use of comments within the program.

3. Use of structure charts.

4. Use of flowcharts.

5. A verbal description of the program, often in
pseudocode.

4-84-8

Documenting with Charts

Two types of charts aid in developing structured
programs and in documenting them.

These are structure charts and flowcharts.

A structure chart is a graphical description showing how
the different parts of the program are connected
together.

4-94-9

Structure chart of a game program.

Figure 4.1–1, page 150

4-104-10

 Flowcharts are useful for developing and
documenting programs that contain conditional
statements, because they can display the various
paths (called “branches”) that a program can take,
depending on how the conditional statements are
executed.

4-114-11

Flowchart representation of
the if statement.

Figure 4.1–2, page 151

4-124-12

Documenting with Pseudocode

We can document with pseudocode, in which natural
language and mathematical expressions are used to
construct statements that look like computer
statements but without detailed syntax.

Each pseudocode instruction may be numbered, but
should be unambiguous and computable.

4-134-13

Finding Bugs

Debugging a program is the process of finding and
removing the “bugs,” or errors, in a program. Such
errors usually fall into one of the following categories.

1. Syntax errors such as omitting a parenthesis or
comma, or spelling a command name incorrectly.
MATLAB usually detects the more obvious errors and
displays a message describing the error and its
location.

2. Errors due to an incorrect mathematical procedure.
These are called runtime errors. They do not
necessarily occur every time the program is executed;
their occurrence often depends on the particular input
data. A common example is division by zero.

4-144-14

To locate a runtime error, try the following:

1. Always test your program with a simple version of the
problem, whose answers can be checked by hand
calculations.

2. Display any intermediate calculations by removing
semicolons at the end of statements.

4-154-15

3. To test user-defined functions, try commenting out
the function line and running the file as a script.

4. Use the debugging features of the
Editor/Debugger, which is discussed in Section 4.8.

4-164-16

Development of Large Programs

1. Writing and testing of individual modules (the unit-
testing phase).

2. Writing of the top-level program that uses the
modules (the build phase). Not all modules are
included in the initial testing. As the build proceeds,
more modules are included.

4-174-17

3. Testing of the first complete program (the alpha release
phase). This is usually done only in-house by technical
people closely involved with the program development.
There might be several alpha releases as bugs are
discovered and removed.

4. Testing of the final alpha release by in-house personnel
and by familiar and trusted outside users, who often
must sign a confidentiality agreement. This is the beta
release phase, and there might be several beta releases.

4-184-18

Relational operators

Table 4.2–1, page 155

Operator Meaning

< Less than.

<= Less than or equal to.

> Greater than.

>= Greater than or equal to.

== Equal to.

~= Not equal to.

4-194-19

For example, suppose that x = [6,3,9] and y =
[14,2,9]. The following MATLAB session shows
some examples.

>>z = (x < y)
z =
 1 0 0
>>z = (x ~= y)
z =
 1 1 0
>>z = (x > 8)
z =
 0 0 1

4-204-20

The relational operators can be used for array addressing.

For example, with x = [6,3,9] and y = [14,2,9],
typing

z = x(x<y)

finds all the elements in x that are less than the
corresponding elements in y. The result is z = 6.

4-214-21

The arithmetic operators +, -, *, /, and \ have precedence
over the relational operators. Thus the statement

z = 5 > 2 + 7

is equivalent to

 z = 5 >(2+7)

 and returns the result z = 0.

 We can use parentheses to change the order of
precedence; for example, z = (5 > 2) + 7 evaluates
to z = 8.

4-224-22

The logical Class

When the relational operators are used, such as

 x = (5 > 2)

 they create a logical variable, in this case, x.

Prior to MATLAB 6.5 logical was an attribute of any
numeric data type. Now logical is a first-class data
type and a MATLAB class, and so logical is now
equivalent to other first-class types such as
character and cell arrays.

Logical variables may have only the values 1 (true)
and 0 (false).

4-234-23

 Just because an array contains only 0s and 1s, however, it
is not necessarily a logical array. For example, in the
following session k and w appear the same, but k is a
logical array and w is a numeric array, and thus an error
message is issued.

>>x = -2:2; k = (abs(x)>1)
k =
 1 0 0 0 1
>>z = x(k)
z =
 -2 2
>>w = [1,0,0,0,1]; v = x(w)
??? Subscript indices must either be real
positive... integers or logicals.

4-244-24

Accessing Arrays Using Logical Arrays

When a logical array is used to address another
array, it extracts from that array the elements in the
locations where the logical array has 1s.

So typing A(B), where B is a logical array of the
same size as A, returns the values of A at the indices
where B is 1.

4-254-25

Specifying array subscripts with logical arrays extracts the
elements that correspond to the true (1) elements in the
logical array.

Given A =[5,6,7;8,9,10;11,12,13] and B =
logical(eye(3)), we can extract the diagonal elements
of A by typing C = A(B) to obtain C = [5;9;13].

4-264-26

Operator Name Definition

~ NOT ~A returns an array the same dimension as A; the new
array has ones where A is zero and zeros where A is
nonzero.

& AND A & B returns an array the same dimension as A and B;
the new array has ones where both A and B have
nonzero elements and zeros where either A or B is zero.

|	 OR A | B returns an array the same dimension as A and B; the new array
has ones where at least one element in A or B is nonzero and zeros where A and
B are both zero.

4-274-27

Logical operators

Table 4.3–1, page 158

Operator Name Definition

&& Short-Circuit AND Operator for scalar logical expressions. A && B returns
true if both A and B evaluate to true, and false if they do
not.

|| Short-Circuit OR Operator for scalar logical expressions. A || B returns
true if either A or B or both evaluate to true, and false if
they do not.

4-284-28

Table 4.3–1 (continued)

Precedence Operator type

First Parentheses; evaluated starting with the
innermost pair.

Second Arithmetic operators and logical NOT (~);
evaluated from left to right.

Third Relational operators; evaluated from left to
right.

Fourth Logical AND.

Fifth Logical OR.

4-294-29

Order of precedence for operator types. Table 4.3–2, page
158

Logical function Definition

all(x) Returns a scalar, which is 1 if all the elements in the vector
x

are nonzero and 0 otherwise.
all(A) Returns a row vector having the same number of columns as

the matrix A and containing ones and zeros, depending on
whether or not the corresponding column of A has all nonzero
elements.

any(x) Returns a scalar, which is 1 if any of the elements in the vector x
is nonzero and 0 otherwise.

any(A) Returns a row vector having the same number of columns as
A and containing ones and zeros, depending on whether or not
the corresponding column of the matrix A contains any nonzero
elements.

finite(A) Returns an array of the same dimension as A with ones
where

the elements of A are finite and zeros elsewhere.

4-304-30

Logical functions: Table 4.3–4, page 161

Logical function Definition

ischar(A) Returns a 1 if A is a character array
and 0 otherwise.

isempty(A) Returns a 1 if A is an empty matrix
and 0 otherwise.
isinf(A) Returns an array of the same

dimension as A, with ones where
A has ‘inf’ and zeros elsewhere.

isnan(A) Returns an array of the same
dimension as A with ones where
A has ‘NaN’ and zeros elsewhere.
(‘NaN’ stands for “not a
number,” which means an undefined
result.)

Table 4.3–4 (continued)

4-314-31

Table 4.3–4 (continued)

isnumeric(A) Returns a 1 if A is a numeric
array and 0 otherwise.

isreal(A) Returns a 1 if A has no
elements with imaginary parts
and 0 otherwise.

logical(A) Converts the elements of
the array A into logical values.

xor(A,B) Returns an array the same
dimension as A and B; the new
array has ones where either A
or B is nonzero, but not both,
and zeros where A and B are
either both nonzero or both
zero.

4-32

The The findfind Function Function

find(A)

[u,v,w] = find(A)

Computes an array
containing the indices of
the nonzero elements of
the array A.

Computes the arrays u and
v containing the row and
column indices of the
nonzero elements of the
array A and computes the
array w containing the
values of the nonzero
elements. The array w
may be omitted.

4-33

Logical Operators and the find Function

Consider the session

>>x = [5, -3, 0, 0, 8];y = [2, 4, 0, 5, 7];
>>z = find(x&y)
z =
 1 2 5

Note that the find function returns the indices, and not the
values.

4-344-34

Note that the find function returns the indices, and not the
values.

In the following session, note the difference between the
result obtained by y(x&y) and the result obtained by
find(x&y) in the previous slide.

>>x = [5, -3, 0, 0, 8];y = [2, 4, 0, 5, 7];
>>values = y(x&y)
values =
 2 4 7

>>how_many = length(values)
how_many =
 3

4-354-35

The if Statement

The if statement’s basic form is

if logical expression
 statements

end

Every if statement must have an accompanying end
statement. The end statement marks the end of the
statements that are to be executed if the logical
expression is true.

4-364-36

The else Statement

The basic structure for the use of the else statement is

if logical expression
statement group 1

else
statement group 2

end

4-374-37

Flowchart of the else
structure.

Figure 4.4–2, page 167

4-384-38

When the test, if logical expression, is performed,
where the logical expression may be an array,
the test returns a value of true only if all the
elements of the logical expression are true!

4-39

For example, if we fail to recognize how the test works, the
following statements do not perform the way we might
expect.

x = [4,-9,25];
if x < 0
 disp(’Some of the elements of x are

negative.’)
else
 y = sqrt(x)

end

When this program is run it gives the result

y =
2 0 + 3.000i 5

4-404-40

Instead, consider what happens if we test for x positive.

x = [4,-9,25];
if x >= 0
y = sqrt(x)

else
disp(’Some of the elements of x are

negative.’)
end

When executed, it produces the following message:

Some of the elements of x are negative.

The test if x < 0 is false, and the test if x >= 0 also
returns a false value because x >= 0 returns the vector
[1,0,1].4-414-41

The statements

if logical expression 1
 if logical expression 2

statements
end

end

can be replaced with the more concise program

if logical expression 1 & logical expression 2
statements

end

4-424-42

The elseif Statement

The general form of the if statement is

if logical expression 1
 statement group 1
elseif logical expression 2
 statement group 2
else
 statement group 3
end

The else and elseif statements may be omitted if not
required. However, if both are used, the else statement
must come after the elseif statement to take care of all
conditions that might be unaccounted for.

4-434-43

Flowchart for the
general if-
elseif-else
structure.

Figure 4.4–3, page
169

4-444-44

For example, suppose that y = log(x) for x > 10, y
=sqrt(x) for 0 <= x <= 10, and y = exp(x) - 1 for
x < 0. The following statements will compute y if x already
has a scalar value.

if x > 10
y = log(x)

elseif x >= 0
y = sqrt(x)

else
y = exp(x) - 1

end

4-454-45

Strings and Conditional Statements (Pages 170-112)

A string is a variable that contains characters. Strings are
useful for creating input prompts and messages and for
storing and operating on data such as names and
addresses.

To create a string variable, enclose the characters in single
quotes. For example, the string variable name is created as
follows:

>>name = ’Leslie Student’
name =

Leslie Student

4-464-46

The following string, number, is not the same as the
variable number created by typing number = 123.

>>number = ’123’
number =

123

4-474-47

The following prompt program uses the isempty(x)
function, which returns a 1 if the array x is empty and 0
otherwise.

It also uses the input function, whose syntax is

x = input(’prompt’, ’string’)

This function displays the string prompt on the screen, waits
for input from the keyboard, and returns the entered value in
the string variable x.

The function returns an empty matrix if you press the Enter
key without typing anything.

4-484-48

 The following prompt program is a script file that allows the
user to answer Yes by typing either Y or y or by pressing
the Enter key. Any other response is treated as a No
answer.

response = input(’Do you want to continue?
Y/N [Y]: ’,’s’);
if (isempty(response))|(response == ’Y’)|
(response == ’y’)
response = ’Y’

else
response = ’N’

end

4-494-49

for Loops

A simple example of a for loop is

for k = 5:10:35
x = k^2

end

The loop variable k is initially assigned the value 5, and x is
calculated from x = k^2. Each successive pass through
the loop increments k by 10 and calculates x until k exceeds
35. Thus k takes on the values 5, 15, 25, and 35, and x
takes on the values 25, 225, 625, and 1225. The program
then continues to execute any statements following the end
statement.

4-504-50

Flowchart of a
for Loop.

Figure 4.5–1,
page 172

4-514-51

Note the following rules when using for loops with the loop
variable expression k = m:s:n:

· The step value s may be negative.
Example: k = 10:-2:4 produces k = 10, 8, 6, 4.

· If s is omitted, the step value defaults to one.
· If s is positive, the loop will not be executed if m is greater

than n.
· If s is negative, the loop will not be executed if m is less

than n.
· If m equals n, the loop will be executed only once.
· If the step value s is not an integer, round-off errors can

cause the loop to execute a different number of
passes than intended.

4-524-52

For example, the following code uses a continue statement
to avoid computing the logarithm of a negative number.

x = [10,1000,-10,100];
y = NaN*x;
for k = 1:length(x)
if x(k) < 0
continue

end
y(k) = log10(x(k));

end
y

The result is y = 1, 3, NaN, 2.

4-534-53

We can often avoid the use of loops and branching and thus
create simpler and faster programs by using a logical array
as a mask that selects elements of another array. Any
elements not selected will remain unchanged.

The following session creates the logical array C from the
numeric array A given previously.

>>A = [0, -1, 4; 9, -14, 25; -34, 49, 64];
>>C = (A >= 0);

The result is

C =
1 0 1
1 0 1
0 1 1

4-544-54

 We can use this mask technique to compute the square
root of only those elements of A given in the previous
program that are no less than 0 and add 50 to those
elements that are negative. The program is

A = [0, -1, 4; 9, -14, 25; -34, 49, 64];
C = (A >= 0);
A(C) = sqrt(A(C))
A(~C) = A(~C) + 50

4-554-55

while Loops

The while loop is used when the looping process
terminates because a specified condition is satisfied, and
thus the number of passes is not known in advance. A
simple example of a while loop is

x = 5;
while x < 25
 disp(x)
 x = 2*x - 1;

end

The results displayed by the disp statement are 5, 9, and
17.

4-564-56

 The typical structure of a while loop follows.

while logical expression
 statements
end

For the while loop to function properly, the following two
conditions must occur:

1. The loop variable must have a value before the while
statement is executed.

2. The loop variable must be changed somehow by the
statements.

4-574-57

Flowchart of
the while
loop.

Figure 4.5–3,
page 184

4-584-58

The switch Structure

The switch structure provides an alternative to using the
if, elseif, and else commands.Anything programmed
using switch can also be programmed using if structures.

However, for some applications the switch structure is
more readable than code using the if structure.

4-594-59

Syntax of the switch structure

switch input expression (can be a scalar or string).
case value1

 statement group 1
case value2

 statement group 2
.
.
.
otherwise

 statement group n
end

4-60

The following switch block displays the point on the
compass that corresponds to that angle.

switch angle
case 45
 disp(’Northeast’)

case 135
 disp(’Southeast’)

case 225
 disp(’Southwest’)

case 315
 disp(’Northwest’)

otherwise
 disp(’Direction Unknown’)

end

4-614-61

The Editor/Debugger containing two programs to be
analyzed. Figure 4.8–1, page 191

4-624-62

The following slides contain figures from the chapter The following slides contain figures from the chapter
examples.examples.

4-63

Duration above 50,000 ft as a function of the burn time.

Figure 4.5–2

4-644-64

The state transition diagram for the college enrollment model.

Figure 4.9–1

4-654-65

Class enrollments versus time.

Figure 4.9–2

4-664-66

Figure P20

4-644-64

Figure P27

4-654-65

Figure P28

4-664-66

Figure P35

4-674-67

Figure P36

4-684-68

Figure P37

4-694-69

Figure P38

4-704-70

	Slide 1
	4-2
	4-3
	Advantages of structured programming
	Advantages of structured programming (continued)
	Steps for developing a computer solution: Table 4.1–1, page 149
	Steps for developing a computer solution (continued)
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Table 4.3–4 (continued)
	The find Function
	Slide 34
	Slide 35
	Slide 36
	4-37
	4-38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	4-44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	4-51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	4-58
	Slide 59
	Syntax of the switch structure
	Slide 61
	4-62
	The following slides contain figures from the chapter examples.
	4-64
	4-65
	4-66
	Slide 67
	Slide 68
	Slide 69
	4-67
	4-68
	4-69
	4-70

