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Breaking Strength of Thread

% Thread breaking strength data for 20 tests.
y = [92,94,93,96,93,94,95,96,91,93,...
95,95,95,92,93,94,91,94,92,93];
% The six possible outcomes are ... 
91,92,93,94,95,96.
x = [91:96];
hist(y,x),axis([90 97 0 6]),...
ylabel(’Absolute Frequency’),...
xlabel(’Thread Strength (N)’),...
title(’Absolute Frequency Histogram...
for 20 Tests’)

This creates the next figure.
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Histograms for 20 tests of thread strength.  Figure 7.1–1, page 
297
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Absolute frequency histogram for 100 thread tests.  
Figure 7.1–2.  This was created by the program on page 298.
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Use of the bar function for relative frequency histograms 
(page 299).

% Relative frequency histogram using ... 
the  bar function.
tests = 100;
y = [13,15,22,19,17,14]/tests;
x = [91:96];
bar(x,y),ylabel(’Relative Frequency’),...
xlabel(’Thread Strength (N)’),...
title(’Relative Frequency Histogram ...for 
100 Tests’)

This creates the next figure.
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Relative frequency histogram for 100 thread tests.  
Figure 7.1–3
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Use of the hist function for relative frequency 
histograms.

tests = 100;
y = 
[91*ones(1,13),92*ones(1,15),93*ones(1,22),...
94*ones(1,19),95*ones(1,17),96*ones(1,14)];
x = [91:96];
[z,x] = hist(y,x);bar(x,z/tests),...
ylabel(’Relative Frequency’),xlabel(’Thread 
Strength (N)’),...
title(’Relative Frequency Histogram for 100 
Tests’)

This also creates the previous figure.
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Command

bar(x,y)

hist(y)

hist(y,n)

hist(y,x)

[z,x] = hist(y)

[z,x] = hist(y,n) 

[z,x] = hist(y,x)

Description

Creates a bar chart of y versus x.

Aggregates the data in the vector y into 10 bins evenly 
spaced between the minimum and maximum values in y.

Aggregates the data in the vector y into n bins evenly 
spaced between the minimum and maximum values in y.

Aggregates the data in the vector y into bins whose center 
locations are specified by the vector x. The bin widths are 
the distances between the centers.

Same as hist(y) but returns two vectors z and x that 
contain the frequency count and the bin locations.

Same as hist(y,n) but returns two vectors z and x that 
contain the frequency count and the bin locations.

Same as hist(y,x) but returns two vectors z and x that 
contain the frequency count and the bin locations. The 
returned vector x is the same as the user-supplied
vector x.

Histogram functions  Table 7.1–1
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The Data Statistics tool.  Figure 7.1–4 on page 301

7-97-9 More? See page 300.



Scaled Frequency Histogram (pages 301-303)

% Absolute frequency data.
y_abs=[1,0,0,0,2,4,5,4,8,11,12,10,9,8,7,5,4,4,3,1,1,0,1];
binwidth = 0.5;
% Compute scaled frequency data.
area = binwidth*sum(y_abs);
y_scaled = y_abs/area;
% Define the bins.
bins = [64:binwidth:75];
% Plot the scaled histogram.
bar(bins,y_scaled),...
ylabel(’Scaled Frequency’),xlabel(’Height (in.)’)

This creates the next figure.
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Scaled histogram of height data.  Figure 7.2–1, page 302
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Scaled histogram of height data for very many  
measurements.
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The basic shape of the normal distribution curve.  
Figure 7.2–2, page 304

7-137-13
More? See pages 303-304.



The effect on the normal distribution curve of increasing σ. 
For this case μ = 10, and the three curves correspond to   
σ = 1, σ = 2, and σ = 3. 
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Probability interpretation of the μ  ± σ limits. 
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Probability interpretation of the μ  ± 2σ limits.  

7-167-16 More? See pages 431-432.



    The probability that the random variable x is no less 
than a and no greater than b is written as P(a ≤  x ≤  b).  
It can be computed as follows:

P(a ≤  x ≤  b) 
=

1

2

b − µ 
σ √2

erf − erf
a − µ 

σ √2 (7.2−3)
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See pages 305-306.



Sums and Differences of Random Variables (page 307)

It can be proved that the mean of the sum (or difference) of 
two independent normally distributed random variables 
equals the sum (or difference) of their means, but the 
variance is always the sum of the two variances. That is, if x 
and y are normally distributed with means µx and µy, and 
variances σ x and σ y, and if u =  x +  y and υ =  x − y, 
then

	 µu =  µx +  µy (7.2–4)

	 µυ =  µx − µy (7.2–5)

	σ u =  σ υ =  σ x +  σ y (7.2–6)

2

2

2 2 2

2
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Command

rand

rand(n)

rand(m,n)

s = rand(’twister’)

rand(’twister’,s)

rand(’twister’,0)

rand(’twister’,j)

rand(’twister’,sum(100*clock))

Description

Generates a single uniformly distributed random number 
between 0 and 1.

Generates an n ×  n matrix containing uniformly 
distributed random numbers between 0 and 1.

Generates an m ×  n matrix containing uniformly 
distributed random numbers between 0 and 1.

Returns a 35-element vector s containing the current 
state of the uniformly distributed generator.

Sets the state of the uniformly distributed generator to s.

Resets the uniformly distributed generator to its initial 
state.
Resets the uniformly distributed generator to state j, for 
integer j.
Resets the uniformly distributed generator to a different 
state each time it is executed.

Random number functions  Table 7.3–1
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randn

randn(n)

randn(m,n)

s = randn(’state’)

randn(’state’,s)

randn(’state’,0)

randn(’state’,j) 

randn(’state’,sum(100*clock))

randperm(n)

Generates a single normally distributed random number 
having a mean of 0 and a standard deviation of 1.

Generates an n ×  n matrix containing normally 
distributed random numbers having a mean of 0 and a 
standard deviation of 1.

Generates an m ×  n matrix containing normally 
distributed random numbers having a mean of 0 and a 
standard deviation of 1.
Like rand(’twister’) but for the normally distributed 
generator.
Like rand(’twister’,s) but for the normally 
distributed generator.
Like rand(’twister’,0) but for the normally 
distributed generator.
Like rand(’twister’,j) but for the normally 
distributed generator.
Like rand(’twister’,sum(100*clock)) but for the 
normally distributed generator.
Generates a random permutation of the integers from 1 
to n.

7-207-20

Table 7.3–1 (continued)



    The following session shows how to obtain the same 
sequence every time rand is called.

>>rand(’twister’,0)
>>rand
ans =
     0.5488
>>rand
ans =
     0.7152
>>rand(’twister’,0)
>>rand
ans =
     0.5488
>>rand
ans =
     0.71527-217-21



    You need not start with the initial state in order to 
generate the same sequence. To show this, continue 
the above session as follows.

>>s = rand(’twister’);
>>rand(’twister’,s)
>>rand
ans =
     0.6028
>>rand(’twister’,s)
>>rand
ans =
     0.6028
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The general formula for generating a uniformly distributed 
random number y in the interval [a, b] is

  y =  (b − a) x +  a   (7.3–1)

where x is a random number uniformly distributed in the 
interval [0, 1]. For example, to generate a vector y 
containing 1000 uniformly distributed random numbers in 
the interval [2, 10], you type y = 8*rand(1,1000) + 2.
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If x is a random number with a mean of 0 and a 
standard deviation of 1, use the following equation to 
generate a new random number y having a standard 
deviation of σ and a mean of µ.

y =  σ x +  µ	 	 	(7.3–2)

For example, to generate a vector y containing 2000 
random numbers normally distributed with a mean of 5 
and a standard deviation of 3, you type

y = 3*randn(1,2000) + 5.
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If y and x are linearly related, as

y =  bx +  c (7.3–3)

and if x is normally distributed with a mean µx and 
standard deviation σx, it can be shown that the mean and 
standard deviation of y are given by

	 µy =  bµx +  c (7.3–4)

	   σy =  | b| σx (7.3–5)

7-257-25
More? See pages 310-311.



Statistical analysis and manufacturing tolerances: Example 
7.3-1.  Dimensions of a triangular cut.  Figure 7.3–1 , page 
312
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Scaled histogram of the angle θ .  Figure 7.3–2, page 313
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Applications of interpolation:  A plot of temperature data 
versus time.  Figure 7.4–1, page 314
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Temperature measurements at four locations.  Figure 7.4–2, 
page 316

7-297-29

More? See 
pages 313-317.



Command

Y_int = 
interp1(x,y,x_int)

Description

Used to linearly interpolate 
a function of one variable: 
y =  f (x).  Returns a 
linearly interpolated vector 
y_int at the specified 
value x_int, using data 
stored in x and y.

Linear interpolation functions.  Table 7.4–1, page 317
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Z_int = interp2(x,y,z,x_int,y_int)

Used to linearly interpolate a function of two 
variables: y =  f (x, y). Returns a linearly interpolated 
vector z_int at the specified values x_int and 
y_int, using data stored in x, y, and z.

7-317-31

Table 7.4–1 Continued



Cubic-spline interpolation: The following session produces 
and plots a cubic-spline fit, using an increment of 0.01 in 
the x values (pages 317-319).

>>x = [7,9,11,12];
>>y = [49,57,71,75];
>>x_int = 7:0.01:12;
>>y_int = spline(x,y,x_int);
>>plot(x,y,’o’,x,y,’--’,x_int,y_int),...
 xlabel(’Time (hr)’),ylabel(’Temperature 
(deg F)’,...
 title(’Temperature Measurements at a 
Single Location’),...
 axis([7 12 45 80])

This produces the next figure.
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Linear and cubic-spline interpolation of temperature data.  
Figure 7.4–3, page 319
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Command

y_est = interp1(x,y,x_est,’spline’)

Description

Returns a column vector y_est that contains the
estimated values of y that correspond to the x
values specified in the vector x_est, using
cubic-spline interpolation.

Polynomial interpolation functions.  Table 7.4–2, page 320
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y_int = spline(x,y,x_int)

Computes a cubic-spline interpolation where x and y are 
vectors containing the data and x_int is a vector 
containing the values of the independent variable x at which 
we wish to estimate the dependent variable y. The result
Y_int is a vector the same size as x_int containing the 
interpolated values of y that correspond to x_int.

7-357-35

Table 7.4–2 Continued



Table 7.4–2 Continued

y_int = pchip(x,y,x_int)

Similar to spline but uses piecewise cubic Hermite 
polynomials for interpolation to preserve shape and 
respect monotonicity.
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[breaks, coeffs, m, n] = unmkpp(spline(x,y))

Computes the coefficients of the cubic-spline polynomials for 
the data in x and y. The vector breaks contains the x 
values, and the matrix coeffs is an m ×  n matrix 
containing the polynomial coefficients. The scalars m and n 
give the dimensions of the matrix coeffs; m is the number 
of polynomials, and n is the number of coefficients for each 
polynomial.

7-377-37

Table 7.4–2 Continued



The next slide illustrates interpolation using a cubic polynomial 
and an eighth order polynomial (top graph).  The cubic is not 
satisfactory in this case, and the eighth order polynomial is not 
suitable for interpolation over the interval 0 < x < 0.5.  

The cubic spline does a better job in this case (bottom graph).
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Figure 7.4-4 Top: Cubic and eighth order Figure 7.4-4 Top: Cubic and eighth order 
polynomial interpolation. Bottom: Cubic spline polynomial interpolation. Bottom: Cubic spline 

(page 321).(page 321).
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The next slide illustrates interpolation using a fifth order 
polynomial and a cubic spline (top graph).  The cubic spline is 
better because the fifth order polynomial displays wide variations 
between the data points. 

The pchip polynomial does a better job than the cubic spline in 
this case (bottom graph).
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Figure 7.4-5 Top: Fifth order polynomial and cubic 
spline interpolation. Bottom: pchip and cubic spline 
interpolation. (page 323)
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