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Vectors: To create a row vector, separate the 
elements by semicolons.  Use square brackets. 
For example,

>>p = [3,7,9]
p =
   3   7   9

You can create a column vector by using the 
transpose notation (').

>>p = [3,7,9]'
p =
   3
   7
   9
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You can also create a column vector by separating the 
elements by semicolons.  For example,

>>g = [3;7;9]
g =
   3
   7
   9
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2-42-4

You can create vectors by ''appending'' one vector to 
another.

For example, to create the row vector u whose first three 
columns contain the values of r = [2,4,20] and 
whose fourth, fifth, and sixth columns contain the values 
of w = [9,-6,3], you type u = [r,w]. The result is 
the vector u = [2,4,20,9,-6,3].



The colon operator (:) easily generates a large vector of 
regularly spaced elements. Parentheses are not needed 
but can be used for clarity.  Do not use square brackets.

Typing

>>x = m:q:n

or

>>x = (m:q:n)

creates a vector x of values with a spacing q. The first 
value is m. The last value is n if m - n is an integer 
multiple of q. If not, the last value is less than n.
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For example, typing x = 0:2:8 creates the 
vector  x = [0,2,4,6,8], whereas typing x = 
0:2:7 creates the vector x = [0,2,4,6].

To create a row vector z consisting of the values 
from 5 to 8 in steps of 0.1, type z = 5:0.1:8.

If the increment q is omitted, it is presumed to be 
1. Thus typing y = -3:2 produces the vector  y 
= [-3,-2,-1,0,1,2]. 
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The linspace command also creates a linearly 
spaced row vector, but instead you specify the number 
of values rather than the increment. 

The syntax is linspace(x1,x2,n), where x1 and x2 
are the lower and upper limits and n is the number of 
points.

For example, linspace(5,8,31) is equivalent to 
5:0.1:8.

If n is omitted, the spacing is 1.
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The logspace command creates an array of 
logarithmically spaced elements.

Its syntax is logspace(a,b,n), where n is 
the number of points between 10a and 10b.  

For example, x = logspace(-1,1,4) 
produces the vector x = [0.1000, 
0.4642, 2.1544, 10.000]. 

If n is omitted, the number of points defaults to 
50. 

2-8

More? See page 56.



Magnitude, Length, and Absolute Value of a Vector
 
Keep in mind the precise meaning of these terms when 
using MATLAB. 

The length command gives the number of elements in 
the vector. 

The magnitude of a vector x having elements x1, x2, …, 

xn is a scalar, given by √(x1
2  +  x2

2 + … + xn
2),  and is the 

same as the vector's geometric length.

The absolute value of a vector x is a vector whose 
elements are the absolute values of the elements of x. 
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For example, if x = [2,-4,5], 

• its length is 3; (computed from length(x))

• its magnitude is √[22  + (–4)2 + 52] = 6.7082; 
(computed from sqrt(x’*x))

• its absolute value is [2,4,5] (computed 
from abs(x)). 

2-10

More? See pages 61-62.



Matrices

A matrix has multiple rows and columns.  For 
example, the matrix

 

has four rows and three columns.

Vectors are special cases of matrices having 
one row or one column.

M =
  2     4    10 
16     3      7 
  8     4      9 
  3   12    15

2-11
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Creating Matrices
 
If the matrix is small you can type it row by row, separating 
the elements in a given row with spaces or commas and 
separating the rows with semicolons. For example, typing

>>A = [2,4,10;16,3,7];

creates the following matrix:

                          2    4  10
                          16  3   7

            
Remember, spaces or commas separate elements in 
different columns, whereas semicolons separate elements 
in different rows.

A =
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Creating Matrices from Vectors

Suppose a = [1,3,5] and b = [7,9,11] (row 
vectors).  Note the difference between the results given 
by [a b] and [a;b] in the following session:

>>c = [a b];
c =
   1  3  5  7  9  11
>>D = [a;b]
D =
   1  3  5
   7  9  11

2-132-13



You need not use symbols to create a new array. 
For example, you can type

>> D = [[1,3,5];[7,9,11]];

2-14

Array Addressing

The colon operator selects individual elements, rows,
columns, or ''subarrays'' of arrays. Here are some 
examples: 

■ v(:) represents all the row or column elements of 
the vector v.

■ v(2:5) represents the second through fifth elements; 
that is v(2), v(3), v(4), v(5). 



Array Addressing, continued

 A(:,3) denotes all the elements in the third column 
of the matrix A.

 A(:,2:5) denotes all the elements in the second 
through fifth columns of A.

 A(2:3,1:3) denotes all the elements in the second 
and third rows that are also in the first through 
third columns. 

 v = A(:) creates a vector v consisting of all the 
columns of A stacked from first to last.

 A(end,:) denotes the last row in A, and A(:,end) 
denotes the last column..
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You can use array indices to extract a smaller array from 
another array. For example, if you first create the array B

B =

2-162-16

C =
16   3   7
  8   4   9

  2     4    10    13
16     3      7    18 
  8     4      9    25
  3   12    15    17

then type C = B(2:3,1:3), you can produce the 
following array:

More? See pages 58-59.



Additional Array Functions  (Table 2.1–1 on page 60)

[u,v,w] = 
find(A)

length(A)

Computes the arrays u and v, 
containing the row and column 
indices of the nonzero elements 
of the matrix A, and the array w, 
containing the values of the 
nonzero elements. The array w 
may be omitted.

Computes either the number of 
elements of A if A is a vector or 
the largest value of m or n if A is 
an m × n  matrix.
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Additional Array Functions  (Table 2.1–1)

max(A) Returns the algebraically 
largest element in A if A 
is a vector.

Returns a row vector 
containing the largest 
elements in each column 
if A is a matrix.

If any of the elements are 
complex, max(A) returns 
the elements that have 
the largest magnitudes.
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Additional Array Functions  (Table 2.1–1)

[x,k] = 
max(A)

min(A)
and

[x,k] = 
min(A)  

Similar to max(A) but 
stores the maximum 
values in the row vector x 
and their indices in the 
row vector k.

Like max but returns 
minimum values.
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size(A) Returns a row vector [m n] 
containing the sizes of the
m x n array A.

sort(A) Sorts each column of the 
array A in ascending order 
and returns an array the 
same size as A.

sum(A) Sums the elements in each 
column of the array A and
returns a row vector 
containing the sums.

Additional Array Functions (Table 2.1–1)



The function size(A) returns a row vector [m n] 
containing the sizes of the m × n array A. The 
length(A) function computes either the number of 
elements of A if A is a vector or the largest value of m or 
n if A is an m × n matrix.

For example, if

then max(A) returns the vector [6,2]; min(A)returns 
the vector [-10, -5]; size(A) returns [3, 2]; and 
length(A) returns 3.

A =
    6        2    
–10      –5
    3        0

2-212-21 More? See pages 59-61.



The  Workspace Browser.  Figure 2.1–1

2-22

See page 62



The Variable Editor.  Figure 2.1–2

2-23
See page 63



Multidimensional ArraysMultidimensional Arrays

Consist of two-dimensional matrices “layered” to produce a Consist of two-dimensional matrices “layered” to produce a 
third dimension.  Each “layer” is called a third dimension.  Each “layer” is called a pagepage..

cat(n,A,B,C, ...) Creates a new array by 
concatenating the 
arrays A,B,C, and so 
on along the 
dimension n.

2-24

More? See pages 63-64.



Array Addition and Subtraction

  6    –2
10      3

+     9       8
–12     14

=   15       6
  –2     17

Array subtraction is performed in a similar way.
    The addition shown in equation 2.3–1 is performed in 
MATLAB as follows:

>>A = [6,-2;10,3];
>>B = [9,8;-12,14]
>>A+B
ans =
    15   6
    -2   17

For example:

2-252-25

(2.3-1)

More? See page 65.



Multiplication: Multiplying a matrix A by a scalar w 
produces a matrix whose elements are the elements of 
A multiplied by w. For example:

3
2       9
5     –7

=   6       27
15     –21

This multiplication is performed in MATLAB as follows:

>>A = [2, 9; 5,-7];
>>3*A
ans =
    6   27
   15  -21
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 Multiplication of an array by a scalar is easily defined 
and easily carried out.

However, multiplication of two arrays is not so 
straightforward. 

MATLAB uses two definitions of multiplication:

(1) array multiplication (also called element-by-element 
multiplication), and 

(2) matrix multiplication.  
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Division and exponentiation must also be 
carefully defined when you are dealing 
with operations between two arrays. 

MATLAB has two forms of arithmetic 
operations on arrays. Next we introduce 
one form, called array operations, which 
are also called element-by-element 
operations. Then we will introduce matrix 
operations. Each form has its own 
applications.

Division and exponentiation must also be 
carefully defined when you are dealing 
with operations between two arrays.
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Element-by-element operations:  Table 2.3–1 on page 66

Symbol

+

-

+

-

.*

./

.\

.^

Examples

[6,3]+2=[8,5]

[8,3]-5=[3,-2]

[6,5]+[4,8]=[10,13]

[6,5]-[4,8]=[2,-3]

[3,5].*[4,8]=[12,40]

[2,5]./[4,8]=[2/4,5/8]

[2,5].\[4,8]=[2\4,5\8]

[3,5].^2=[3^2,5^2]

2.^[3,5]=[2^3,2^5]

[3,5].^[2,4]=[3^2,5^4]

Operation

Scalar-array addition

Scalar-array subtraction

Array addition

Array subtraction

Array multiplication

Array right division

Array left division

Array exponentiation

Form

A + b

A – b

A + B

A – B

A.*B

A./B

A.\B

A.^B
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Array or Element-by-element multiplication is defined only 
for arrays having the same size. The definition of the 
product x.*y, where x and y each have n elements, is

x.*y = [x(1)y(1), x(2)y(2), ... , x(n)y(n)]

if x and y are row vectors. For example, if

x  =  [2, 4, – 5],  y  =  [– 7, 3, – 8]   (2.3–
4)

then z = x.*y gives
  
z = [2(– 7), 4 (3), –5(–8)]  =  [–14, 12, 40]
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If x and y are column vectors, the result of x.*y is a 
column vector. For example z = (x’).*(y’) gives

Note that x’ is a column vector with size 3 × 1 and thus 
does not have the same size as y, whose size is 1 × 3. 

Thus for the vectors x and y the operations x’.*y and 
y.*x’ are not defined in MATLAB and will generate an 
error message.

2(–7)
4(3)

–5(–8)

–14
12
40

=z  =
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The array operations are performed between the 
elements in corresponding locations in the arrays. For 
example, the array multiplication operation A.*B results 
in a matrix C that has the same size as A and B and has 
the elements ci j = ai j bi j .  For example, if

then C = A.*B gives this result:

A =  11    5
 –9    4

B = –7    8
  6    2

C = 11(–7)    5(8)
  –9(6)    4(2)

= –77    40
–54      8

2-322-32
More? See page 66.



 The built-in MATLAB functions such as sqrt(x) and 
exp(x) automatically operate on array arguments to 
produce an array result the same size as the array 
argument x.

Thus these functions are said to be vectorized functions. 

For example, in the following session the result y has 
the same size as the argument x.

>>x = [4, 16, 25];
>>y = sqrt(x)
y =
   2  4  5
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However, when multiplying or dividing these 
functions, or when raising them to a power, 
you must use element-by-element operations if 
the arguments are arrays.

For example, to compute z  = (ey sin x) cos2x, 
you must type

z = exp(y).*sin(x).*(cos(x)).^2. 

You will get an error message if the size of x is 
not the same as the size of y. The result z will 
have the same size as x and y.

2-34 More? See pages 67-69.



Array Division

The definition of array division is similar to the definition 
of array multiplication except that the elements of one 
array are divided by the elements of the other array. 
Both arrays must have the same size. The symbol for 
array right division is ./. For example, if

x = [8, 12, 15] y = [–2, 6, 5]

then z = x./y gives

z = [8/(–2), 12/6, 15/5] = [–4, 2, 3]
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A =  24 20
– 9   4

B = –4    5
  3    2

Also, if 

then C = A./B gives

C = 24/(–4)    20/5
     –9/3     4/2

= –6    4
–3    2

2-36

More? See pages 69-70.



Array Exponentiation

MATLAB enables us not only to raise arrays to powers 
but also to raise scalars and arrays to array powers.

To perform exponentiation on an element-by-element 
basis, we must use the .^ symbol.

For example, if x = [3, 5, 8], then typing x.^3 
produces the array [33, 53, 83] = [27, 125, 512].
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We can raise a scalar to an array power. For example, if 
p = [2, 4, 5], then typing 3.^p produces the array 
[32, 34, 35] = [9, 81, 243].

Remember that .^ is a single symbol.  The dot in 3.^p 
is not a decimal point associated with the number 3. The 
following operations, with the value of p given here, are 
equivalent and give the correct answer:

3.^p
3.0.^p
3..^p
(3).^p
3.^[2,4,5]

2-382-38 More? See pages 70-72.



Matrix-Matrix Multiplication

In the product of two matrices AB, the number of 
columns in A must equal the number of rows in B. The 
row-column multiplications form column vectors, and 
these column vectors form the matrix result. The 
product AB has the same number of rows as A and the 
same number of columns as B. For example,

    6      –2    
  10        3
    4        7

  9   8
–5    12

= 
(6)(9) + (– 2)(– 5)     (6)(8) + (– 2)(12)
 (10)(9) + (3)(– 5)      (10)(8) + (3)(12)
   (4)(9) + (7)(– 5)        (4)(8) + (7)(12)

64        24    
75      116
  1      116

= (2.4–4)
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Use the operator * to perform matrix multiplication in 
MATLAB. The following MATLAB session shows how to 
perform the matrix multiplication shown in (2.4–4).

>>A = [6,-2;10,3;4,7];
>>B = [9,8;-5,12];
>>A*B
ans =
     64   24
     75   116
     1    116
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Matrix multiplication does not have the commutative 
property; that is, in general, AB ≠  BA. A simple 
example will demonstrate this fact:

AB =   6    –2
10   3

    9     8
–12  14

= 78     20
54   122

BA =     9      8
–12   14

  6    –2
10      3

= 134     6
  68   66

whereas

Reversing the order of matrix multiplication is a 
common and easily made mistake.

2-412-41
More? See pages 74-82.



Special Matrices (Pages 82-83)

Two exceptions to the noncommutative property are 
the null or zero matrix, denoted by 0 and the identity, or 
unity, matrix, denoted by I.

The null matrix contains all zeros and is not the same 
as the empty matrix [ ], which has no elements. 

These matrices have the following properties:

0A = A0 = 0

IA = AI = A
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The identity matrix is a square matrix whose diagonal 
elements are all equal to one, with the remaining 
elements equal to zero.

For example, the 2 × 2 identity matrix is

I = 1      0
0      1

The functions eye(n) and eye(size(A)) create an 
n × n identity matrix and an identity matrix the same 
size as the matrix A. 
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Sometimes we want to initialize a matrix to have all zero 
elements.  The zeros command creates a matrix of all 
zeros.

Typing zeros(n) creates an n × n matrix of zeros, 
whereas typing zeros(m,n) creates an m × n matrix of 
zeros.

Typing zeros(size(A)) creates a matrix of all zeros 
having the same dimension as the matrix A. This type 
of matrix can be useful for applications in which we do 
not know the required dimension ahead of time.

The syntax of the ones command is the same, except 
that it creates arrays filled with ones.

2-442-44 More? See page 83.



Matrix Left Division and Linear Algebraic 
Equations  (Page 84)

6x + 12y + 4z = 70
7x – 2y + 3z = 5
2x + 8y – 9z = 64
 

>>A = [6,12,4;7,-2,3;2,8,-9];
>>B = [70;5;64];
>>Solution = A\B
Solution =
     3
     5
     -2
The solution is  x = 3, y = 5, and z = –2. 
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Polynomial CoefficientsPolynomial Coefficients

The functionThe function  poly(r)computes the coefficients of the 
polynomial whose roots are specified by the vector r. 
The result is a row vector that contains the polynomial’s 
coefficients arranged in descending order of power.

For example,

>>c = poly([-2, -5])

c = 

    1    7    10

2-46

More? See page 95.



Polynomial RootsPolynomial Roots

The functionThe function  roots(a)computes the roots of a polynomial 
specified by the coefficient array a. The result is a 
column vector that contains the polynomial’s roots.

For example,

>>r = roots([2, 14, 20])

r = 

   -2

   -5

2-47

More? See page 95.



Polynomial Multiplication and Division

The function conv(a,b)  computes the product of the two 
polynomials described by the coefficient arrays a and b. 
The two polynomials need not be the same degree. The 
result is the coefficient array of the product polynomial.

The function [q,r] = deconv(num,den) computes the 
result of dividing a numerator polynomial, whose 
coefficient array is num, by a denominator polynomial 
represented by the coefficient array den. The quotient 
polynomial is given by the coefficient array q, and the 
remainder polynomial is given by the coefficient array r.
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Polynomial Multiplication and Division: Examples

>>a = [9,-5,3,7];
>>b = [6,-1,2];
>>product = conv(a,b)
product =
   54   -39   41   29   -1   14
>>[quotient, remainder] = deconv(a,b)
quotient =
   1.5   -0.5833
remainder =
   0   0   -0.5833   8.1667

2-492-49
More? See pages 96-97.



Plotting Polynomials

The function polyval(a,x)evaluates a polynomial at 
specified values of its independent variable x, which can 
be a matrix or a vector. The polynomial’s coefficients of 
descending powers are stored in the array a. The result 
is the same size as x.
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Example of Plotting a Polynomial

To plot the polynomial f (x) = 9x3 – 5x2 + 3x + 7           
for -2 ≤ x ≤ 5, you type

>>a = [9,-5,3,7];
>>x = -2:0.01:5;
>>f = polyval(a,x);
>>plot(x,f),xlabel(’x’),ylabel(’f(x)’)

2-512-51

More? See page 97.



Function

C = cell(n)

C = cell(n,m)

celldisp(C)

cellplot(C)

Description

Creates an n × n cell array C of empty matrices.

Creates an n × m cell array C of empty matrices.

Displays the contents of cell array C.

Displays a graphical representation of the cell array C.

Cell array functions

2-522-52 More? See pages 90-92.



Arrangement of data in the structure array student.

Figure 2.7–1 on page 92.
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Function

names = fieldnames(S) 

isfield(S,’field’)

isstruct(S)

Description
Returns the field names 
associated with the 
structure array S as names, 
a cell array of strings.

Returns 1 if ’field’ is the 
name of a field in the 
structure array S, and 0 
otherwise.
Returns 1 if the array S is a
structure and 0 otherwise.

Structure functions  Table 2.7–1 on page 94
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Structure functions  Table 2.7–1 (continued)

S = 
rmfield(S,’field’)

 

S = struct(’f1’,’v1’,

’f2’,’v2’,...)

Removes the field ’field’ 
from the structure array 
S.

Creates a structure array 
with the fields ’f1’, 
’f2’, . . . having the 
values ’v1’, ’v2’, . . . .

2-55

More? See pages 92-96



The remaining slides are figures from 
the chapter and its homework problems.
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Aortic pressure response for Example 2.3–2.

Figure 2.3–1
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Plot for Example 2.3–4.

Figure 2.3–2
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Simple vibration model of a building subjected to ground motion.  Example 2.5-1

Figure 2.5–1
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Figure P20
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Figure P24
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Figure P33
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Figure 34
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Figure P41

2-642-64
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