The McGraw-Hill Companies

PowerPoint to accompany

Introduction to MATLAB for Engineers

Third Edition
William J. Palm III

Chapter 11 MuPAD

Mc
 Graw Hili

Copyright © 2010. The McGraw-Hill Companies, Inc.

What can you do with MuPAD?

- Create symbolic expressions and manipulate them algebraically.
- Obtain symbolic and numeric solutions to algebraic and transcendental equations.
- Perform symbolic linear algebra operations, including obtaining expressions for determinants, matrix inverses, eigenvectors, and eigenvalues.
- Perform symbolic differentiation and integration.
- Evaluate limits and series symbolically.
- Obtain symbolic solutions to ordinary differential equations.
- Obtain and apply Laplace transforms.
- Solve ordinary differential equations in terms of special functions or series.

To start MuPAD, first start MATLAB, then type mupadwelcome.

You will then see the Welcome Screen shown on the next slide.

If you just type mupad instead, you will immediately be presented with a blank notebook.

The MuPAD welcome screen. Figure 11.1-1 on page 467

If you then click on Getting Started, you will see what is on the next slide.

Or you can click on Notebook Interface to bring up the Notebook Interface Help screen shown on slide 11-7.

Or you can retrieve a previously created notebook by clicking on its name under Open Recent File.

The Getting Started screen. Figure 11.1-2 on page 467.

The Notebook Interface Help screen. Figure 11.1-3 on page 468.

The Notebook Interface shown on the next slide shows text, input, and output regions, with the code required to simplify an expression, to define a function, and to create a plot.

An example of the Notebook Interface.

This MuPAD notebook shows the three types of regions: text, input, and output regions.
This is a text region. Below is an input region, and below each input region is an output region.

```
expand \(\left((x-5)^{\wedge} 2+3^{\star} x\right)\)
\(x^{2}-7 x+25\)
```

The following input region shows that y is defined to be a function or mapping from the independent variable x to $\exp (3 x)$. The colon silently defines the function.
[$\mathrm{y}:=\mathrm{x}->\exp \left(3^{*} \mathrm{x}\right): \mathrm{y}(\mathrm{x})$
$\mathrm{e}^{3 x}$

The Standard toolbar. Figure 11.1-5 on page 469.

The Command bar. Figure 11.2-2 on page 474.

Command Biar \times		
$\frac{a}{a x} f \quad 1$	$\lim _{x \rightarrow a} f$	$\sum n f$.
$\int f \mathrm{~d} x . f$	$f \Rightarrow \hat{v_{*}}$	$\Pi_{n}{ }_{*}$
$\left\{x_{1} f=0\right\}$	$f \Rightarrow f$	$f_{1_{x=a}}$
$\pi \approx \ldots . \quad a$	$a=b$	$a:=b$
$a+b$.	$n!$	$x \rightarrow f(x)$
$\sin a$.	e^{a}	$\left\{x_{1}\right.$ if c_{1}
$\mathrm{e}^{. \infty} \times \infty$	$\alpha . . \Omega$	mks
(部) -	N/	,
- General Math		
* Flot Commands		

Entering Commands (page 470).

[$\cos (\mathrm{PI})$
[-1

The General Math Menu. Page 475.

The General Math Menu

Expand
Factor
Normalize
Evaluate

Simplify
Combine
Rewrite
Solve

Table 11.2-1 Items on the Command bar. Page 475.

The Simplify Menu. Page 476.

General
Logical
Radical
Relational
Exponential
Logarithm
Sine
Cosine

The Combine Menu. Page 477.

General
Arc Tangent
Exponential
Logarithm

Power
Sine/Cosine
Sine/Cosine Hyp
Square Root

The Rewrite Menu. Page 478.

Differential
Exponential
Factorial
Gamma

Heaviside
Logarithm
Sign
Sine/Cosine

The Solve Menu. Page 481.

Exact

Numeric
Linear System

Polynomial Diophantine Equation Recurrences
ODE

Table 11.8-1 Special function calls in MuPAD. Page 512.

Name and Symbol
Airy, $\operatorname{Ai}(x)$
Airy, Bi(x)
Chebyshev of first kind, $T(n, x)$ x)

Gamma, (x)
Hermite, Hn(x)
Bessel I, $\operatorname{In}(x)$
Bessel J, $J n(x)$
Bessel K, $K n(x)$
Bessel Y, Yn(x)
Laguerre, L(n, a, x)
Legendre, $\operatorname{Pn}(x)$

Function Call airy Ai(x)
airy Bi(x)
chebyshevi (n,
gamma(x)
hermite (n, x)
bessell(n, x) besselJ(n, x)
besselK (n, x)
bessely (n, x)
laguerreL(n, a, x)
legendre($\boldsymbol{n}, \mathrm{x}$)

Table 11.8-2 Evaluation of special functions in MuPAD

Result
Symbolic finite series Symbolic infinite series series
Numeric result
float

The following slides are figures from the examples and the homework problems.

Figure 11.3-1 for Example 11.3-1 on page 484. Intersection points of two circles.

Figure 11.3-2 for Example 11.3-2 on page 486. A robot arm having two joints and two links.

Figure 11.5-1 for Example 11.5-1 on pages 495-497. A baseball trajectory to clear the Green Monster.

Figure 11.7-1 on page 510. Two mechanical systems, one with and one without an input derivative.

Figure 11.7-2 on page 511.

Figure 11.7-2 The step response of the model $\dot{x}+2 \dot{x}+x=u+g \dot{u}$ for $g=0$ and $g=5$.

Figure P12 for Problem 12 on pages 516-517.

Figure P13 for Problem 13 on pages 517-518.

Figure P13 for Problem 13 on page 519.

Figure P28 for Problem 28 on page 520.

Figure P29 for Problem 29 on pages 520-521.

