
72
Linear Algebra

in Maple®

David. J. Jeffrey
The University of Western Ontario

Robert M. Corless
The University of Western Ontario

72.1 Introduction . 72-1
72.2 Vectors . 72-2
72.3 Matrices . 72-4
72.4 Arrays . 72-8
72.5 Equation Solving and Matrix Factoring 72-9
72.6 Eigenvalues and Eigenvectors . 72-11
72.7 Linear Algebra with Modular Arithmetic

in Maple . 72-12
72.8 Numerical Linear Algebra in Maple 72-13
72.9 Canonical Forms . 72-15
72.10 Structured Matrices . 72-16
72.11 Functions of Matrices . 72-19
72.12 Matrix Stability . 72-20
References . 72-21

72.1 Introduction

Maple® is a general purpose computational system that combines symbolic computation with exact
and approximate (floating-point)numerical computation and offers a comprehensive suite of scientific
graphics as well. The main library of functions is written in the Maple programming language, a rich
language designed to allow easy access to advanced mathematical algorithms. A special feature of Maple
is user access to the source code for the library, including the ability to trace Maple’s execution and see its
internal workings; only the parts of Maple that are compiled, for example, the kernel, cannot be traced.
Another feature is that users can link to LAPACK library routines transparently, and thereby benefit from
fast and reliable floating-point computation. The development of Maple started in the early 80s, and the
company Maplesoft was founded in 1988. A strategic partnership with NAG Inc. in 2000 brought highly
efficient numerical routines to Maple, including LAPACK.

There are two linear algebra packages in Maple:LinearAlgebra andlinalg. Thelinalgpackage
is older and considered obsolete; it was replaced by LinearAlgebra in MAPLE 6. Here we describe only
the LinearAlgebra package. The reader should be careful when reading other reference books, or
the Maple help pages, to check whether reference is made to vector, matrix, array (notice the
lower-case initial letter), which means that the older package is being discussed, or toVector, Matrix,
Array (with an upper-case initial letter), which means that the newer package is being discussed.

72-1

72-2 Handbook of Linear Algebra

Facts:

1. Maple commands are typed after a prompt symbol, which by default is “greater than” (>). In
examples below, keyboard input is simulated by prefixing the actual command typed with the
prompt symbol.

2. In the examples below, some of the commands are too long to fit on one line. In such cases, the
Maple continuation character backslash (\) is used to break the command across a line.

3. Maple commands are terminated by either semicolon (;) or colon (:). Before Maple 10, a
terminator was required, but in the Maple 10 GUI it can be replaced by a carriage return. The
semicolon terminator allows the output of a command to be displayed, while the colon suppresses
the display (but the command still executes).

4. To access the commands described below, load the LinearAlgebra package by typing the
command (after the prompt, as shown)
> with(LinearAlgebra);

If the package is not loaded, then either a typed command will not be recognized, or a different
command with the same name will be used.

5. The results of a command can be assigned to one or more variables. Thus,
> a := 1 ;
assigns the value 1 to the variable a , while
> (a,b,c) := 1,2,3 ;
assigns a the value 1, b the value 2 and c the value 3. Caution: The operator colon-equals (:=)
is assignment, while the operator equals (=) defines an equation with a left-hand side and a
right-hand side.

6. A sequence of expressions separated by commas is an expression sequence in Maple, and some
commands return expression sequences, which can be assigned as above.

7. Ranges in Maple are generally defined using a pair of periods (..). The rules for the ranges of
subscripts are given below.

72.2 Vectors

Facts:

1. In Maple, vectors are not just lists of elements. Maple separates the idea of the mathematical object
Vector from the data object Array (see section 72.4).

2. A Maple Vector can be converted to an Array, and an Array of appropriate shape can be
converted to a Vector, but they cannot be used interchangeably in commands. See the help file
for convert to find out about other conversions.

3. Maple distinguishes between column vectors, the default, and row vectors. The two types of vectors
behave differently, and are not merely presentational alternatives.

Commands:

1. Generation of vectors:� Vector([x1, x2, . . .]) Construct a column vector by listing its elements. The length of the
list specifies the dimension.� Vector[column]([x1, x2, . . .]) Explicitly declare the column attribute.� Vector[row]([x1, x2, . . .]) Construct a row vector by initializing its elements from a
list.� <v1, v2, . . .> Construct a column vector with elements v1, v2, etc. An element can be another
column vector.

Linear Algebra in Maple 72-3

� <v1|v2| . . . > Construct a row vector with elements v1, v2, etc. An element can be another row
vector. A useful mnemonic is that the vertical bars remind us of the column dividers in a table.� Vector(n, k−>f(k)). Construct an n-dimensional vector using a function f (k) to
define the elements. f (k) is evaluated sequentially for k from 1 to n. The notation k−>f(k) is
Maple syntax for a univariate function.� Vector(n, fill=v) An n-dimensional vector with every element v.� Vector(n, symbol=v) An n-dimensional vector containing symbolic components vk .� map(x−>f(x), V) Construct a new vector by applying function f (x) to each element of
the vector named V. Caution: the command is map not Map.

2. Operations and functions:� v[i] Element i of vector v. The result is a scalar. Caution: A symbolic reference v[i] is typeset
as vi on output in a Maple worksheet.� v[p..q]Vector consisting of elements vi , p ≤ i ≤ q . The result is aVector, even for the case
v[p..p]. Either p or q can be negative, meaning the location is found by counting backwards
from the end of the vector, with −1 being the last element.� u+v, u-v Add or subtract Vectors u, v.� a∗v Multiply vector v by scalar a . Notice the operator is ‘asterisk’ (∗).� u . v, DotProduct(u, v) The inner product of Vectors u and v. See examples for
complex conjugation rules. Notice the operator is “period” (.) not “asterisk” (∗) because inner
product is not commutative over the field of complex numbers.� Transpose(v), v∧%T Change a column vector into a row vector, or vice versa. Complex
elements are not conjugated.� HermitianTranspose(v), v∧%H Transpose with complex conjugation.� OuterProductMatrix(u, v) The outer product of Vectors u and v (ignoring the
row/column attribute).� CrossProduct(u, v), u &x vThe vector product, or cross product, of three-dimensional
vectors u, v.� Norm(v, 2) The 2-norm or Euclidean norm of vector v. Notice that the second argument,
i.e., 2, is necessary, because Norm(v) defaults to the infinity norm, which is different from
the default in many textbooks and software packages.� Norm(v, p) The p-norm of v, namely (

∑n
i = 1 |vi |p)(1/p) .

Examples:

In this section, the imaginary unit is the Maple default I . That is,
√−1 = I . In the matrix section, we

show how this can be changed. To save space, we shall mostly use row vectors in the examples.

1. Generate vectors. The same vector created different ways.
> Vector[row]([0,3,8]): <0|3|8>: Transpose(<0,3,8>): Vector[row]
(3,i->i∧2-1);

[0, 3, 8]

2. Selecting elements.
> V:=<a|b|c|d|e|f>: V1 := V[2 .. 4]; V2:=V[-4 .. -1];
V3:=V[-4 .. 4];

V1 := [b, c , d] , V2 := [c , d , e , f] , V3 := [c , d]

72-4 Handbook of Linear Algebra

3. A Gram–Schmidt exercise.
> u1 := <3|0|4>: u2 := <2|1|1>: w1n := u1/Norm(u1, 2);

w1n := [3/5, 0, 4/5]

> w2 := u2 - (u2 . w1n)∗w1n; w2n := w2/Norm(w2, 2);

w2n :=
[

2
√

2

5
,

√
2

2
, −3

√
2

10

]

4. Vectors with complex elements. Define column vectors uc,vc and row vectors ur,vr.
> uc := <1 + I,2>: ur := Transpose(uc): vc := <5,2 − 3*I>:
vr := Transpose(vc):

The inner product of column vectors conjugates the first vector in the product, and the inner
product of row vectors conjugates the second.
> inner1 := uc . vc; inner2 := ur . vr;

inner1 := 9-11 I , inner2 := 9+11 I
Maple computes the product of two similar vectors, i.e., both rows or both columns, as a true

mathematical inner product, since that is the definition possible; in contrast, if the user mixes row
and column vectors, then Maple does not conjugate:
> but := ur . vc;

but := 9 − I

Caution: The use of period (.) with complex row and column vectors together differs from the use of
period (.) with complex 1 × m and m × 1 matrices. In case of doubt, use matrices and conjugate explicitly
where desired.

72.3 Matrices

Facts:

1. One-column matrices and vectors are not interchangeable in Maple.
2. Matrices and two-dimensional arrays are not interchangeable in Maple.

Commands:

1. Generation of Matrices.

� Matrix([[a , b, . . .],[c , d , . . .],. . .])Construct a matrix row-by-row, using a list of lists.

� � a|b|. . .>,<c|d|. . .>,. . .> Construct a matrix row-by-row using vectors. Notice that
the rows are specified by row vectors, requiring the | notation.

� � a,b,. . .>|< c,d,. . .>|. . .> Construct a matrix column-by-column using vectors. No-
tice that each vector is a column, and the columns are joined using | , the column operator.

Caution: Both variants of the � . . . � constructor are meant for interactive use, not program-
matic use. They are slow, especially for large matrices.

Linear Algebra in Maple 72-5

� Matrix(n, m, (i,j)−>f(i,j))Construct a matrix n×m using a function f (i, j) to
define the elements. f (i, j) is evaluated sequentially for i from 1 to n and j from 1 to m. The nota-
tion (i,j)−>f(i,j) is Maple syntax for a bivariate function
f (i, j).� Matrix(n, m, fill=a) An n × m matrix with each element equal to a .� Matrix(n, m, symbol=a) An n × m matrix containing subscripted entries ai j .� map(x−>f(x), M) A matrix obtained by applying f (x) to each element of M.

[Caution: the command is map not Map.]� < < A | B>, < C | D> >Construct a partitioned or block matrix from matrices A, B , C , D.
Note that < A|B > will be formed by adjoining columns; the block < C|D > will be placed
below < A|B >. The Maple syntax is similar to a common textbook notation for partitioned
matrices.

2. Operations and functions

� M[i,j] Element i, j of matrix M. The result is a scalar.� M[1..−1,k] Column k of Matrix M. The result is a Vector.� M[k,1..−1] Row k of Matrix M. The result is a row Vector.� M[p..q,r..s] Matrix consisting of submatrix mi j , p ≤ i ≤ q , r ≤ j ≤ s . In HANDBOOK

notation, M[{p, . . . , q}, {r, . . . , s }].� Transpose(M), M∧%TTranspose matrix M, without taking the complex conjugate of the
elements.� HermitianTranspose(M), M∧%H Transpose matrix M, taking the complex conjugate
of elements.� A± B Add/subtract compatible matrices or vectors A, B .� A .B Product of compatible matrices or vectors A, B . The examples below detail the ways in
which Maple interprets products, since there are differences between Maple and other software
packages.� MatrixInverse(A), A∧(−1) Inverse of matrix A.� Determinant(A) Determinant of matrix A.� Norm(A, 2) The (subordinate) 2-norm of matrix A, namely max‖u‖2 = 1 ‖Au‖2 where the
norm in the definition is the vector 2-norm.

Cautions:

(a) Notice that the second argument, i.e., 2, is necessary because Norm(A) defaults to the
infinity norm, which is different from the default in many textbooks and software packages.

(b) Notice also that this is the largest singular value of A, and is usually different than the Frobe-
nius norm ‖A‖F , accessed by Norm(A, Frobenius), which is the
Euclidean norm of the vector of elements of the matrix A.

(c) Unless A has floating-point entries, this norm will not usually be computable explicitly, and
it may be expensive even to try.

� Norm(A, p) The (subordinate) matrix p-norm of A, for integers p >= 1 or p = the
symbol infinity.

72-6 Handbook of Linear Algebra

Examples:

1. A matrix product.
> A := �1|−2|3>,<0|1|1�; B := Matrix(3, 2, symbol=b); C := A . B;

A :=
[

1 −2 3

0 1 1

]
, B :=

⎡⎢⎣b11 b12

b21 b22

b31 b32

⎤⎥⎦,

C :=
[

b11 − 2b21 + 3b31 b12 − 2b22 + 3b32

b21 + b31 b22 + b32

]
.

2. A Gram–Schmidt calculation revisited.
If u1, u2 are m × 1 column matrices, then the Gram–Schmidt process is often written in textbooks
as

w2 = u2 − uT
2 u1

uT
1 u1

u1.

Notice, however, that uT
2 u1 and uT

1 u1 are strictly 1 × 1 matrices. Textbooks often skip over the
conversion of uT

2 u1 from a 1×1 matrix to a scalar. Maple, in contrast, does not convert automatically.
Transcribing the printed formula into Maple will cause an error. Here is the way to do it, reusing
the earlier numerical data.
> u1 := <<3,0,4>>; u2 := <<2,1,1>>; r := u2^%T . u1;
s := u1^%T . u1;

u1 :=

⎡⎢⎣3

0

4

⎤⎥⎦ , u2 :=

⎡⎢⎣2

1

1

⎤⎥⎦ , r := [10] , s := [25]

Notice the brackets in the values of r and s because they are matrices. Since r[1,1] and s[1,1]
are scalars, we write
> w2 := u2 - r[1,1]/s[1,1]*u1;
and reobtain the result from the vector subsection. Alternatively, u1 and u2 can be converted to
Vectors first and then used to form a proper scalar inner product.
> r := u2[1..−1,1] . u1[1..−1,1]; s := u1[1..−1,1] . u1[1..−1,1];
w2 := u2-r/s*u1;

r := 10 , s := 25 , w2 :=

⎡⎢⎣ 4/5

1

−3/5

⎤⎥⎦
3. Vector–Matrix and Matrix–Vector products.

Many textbooks equate a column vector and a one-column matrix, but this is not generally so in
Maple. Thus
> b := <1,2>; B := �1,2�; C := �4|5|6�;

b :=
[

1

2

]
B :=

[
1

2

]
C := [

4 5 6
]

Only the product B . C is defined, and the product b . C causes an error.
> B . C [

4 5 6

8 10 12

]

Linear Algebra in Maple 72-7

The rules for mixed products are

Vector[row](n) . Matrix(n, m) = Vector[row](m)
Matrix(n, m) . Vector[column](m) = Vector[column](n)

The combinations Vector(n) . Matrix(1, m) and Matrix(m, 1) . Vec-
tor[row](n) cause errors. If users do not want this level of rigor, then the easiest thing to do
is to use only the Matrix declaration.

4. Working with matrices containing complex elements.
First, notation: In linear algebra, I is commonly used for the identity matrix. This corresponds to
the eye function in MATLAB. However, by default, Maple uses I for the imaginary unit, as seen
in section 72.2. We can, however, use I for an identity matrix by changing the imaginary unit to
something else, say _i.
> interface(imaginaryunit=_i):
As the saying goes: An _i for an I and an I for an eye.
Now we can calculate eigenvalues using notation similar to introductory textbooks.
> A := �1,2>|<-2,1�; I := IdentityMatrix(2); p := Determinant
(x*I-A);

A :=
[

1 −2

2 1

]
, I :=

[
1 0

0 1

]
, p := x2 − 2 x + 5

Solving p = 0, we obtain eigenvalues 1 + 2i, 1 − 2i . With the above setting of imaginaryunit,
Maple will print these values as 1+2 _i, 1-2 _i, but we have translated back to standard
mathematical i , where i 2 = −1.

5. Moore–Penrose inverse. Consider > M := Matrix(3, 2, [[1,1],[a,a∧2],[a∧
2,a]]);, a 3 × 2 matrix containing a symbolic parameter a . We compute its Moore–Penrose
pseudoinverse and a proviso guaranteeing correctness by the command > (Mi, p) :=
MatrixInverse(M, method=pseudo, output=[inverse, proviso]);which
assigns the 2 × 3 pseudoinverse to Mi and an expression, which if nonzero guarantees that Mi is
the correct (unique) Moore–Penrose pseudoinverse of M. Here we have

Mi :=

⎡⎢⎣
(

2 + 2 a3 + a2 + a4
)−1 − a3 + a2 + 1

a (a5 + a4 − a3 − a2 + 2 a − 2)

a4 + a3 + 1

a (a5 + a4 − a3 − a2 + 2 a − 2)(
2 + 2 a3 + a2 + a4

)−1 a4 + a3 + 1

a (a5 + a4 − a3 − a2 + 2 a − 2)
− a3 + a2 + 1

a (a5 + a4 − a3 − a2 + 2 a − 2)

⎤⎥⎦
and p = a2 − a . Thus, if a �= 0 and a �= 1, the computed pseudoinverse is correct. By separate
computations we find that the pseudoinverse of M|a=0 is[

1/2 0 0

1/2 0 0

]

and that the pseudoinverse of M|a=1 is [
1/6 1/6 1/6

1/6 1/6 1/6

]

and moreover that these are not special cases of the generic answer returned previously. In a certain
sense this is obvious: the Moore–Penrose inverse is discontinuous, even for square matrices (consider
(A − λI)−1, for example, as λ → an eigenvalue of A).

72-8 Handbook of Linear Algebra

72.4 Arrays

Before describing Maple’s Array structure, it is useful to say why Maple distinguishes between an Array
and aVector orMatrix, when other books and software systems do not. In linear algebra, two different
types of operations are performed with vectors or matrices. The first type is described in sections 72.2 and
72.3, and comprises operations derived from the mathematical structure of vector spaces. The other type
comprises operations that treat vectors or matrices as data arrays; they manipulate the individual elements
directly. As an example, consider dividing the elements of Array [1, 3, 5] by the elements of [7, 11, 13] to
obtain [1/7, 3/11, 5/13].

The distinction between the operations can be made in two places: In the name of the operation or the
name of the object. In other words we can overload the data objects or overload the operators. Systems such
as MATLAB choose to leave the data object unchanged, and define separate operators. Thus, in MATLAB the
statements [1, 3, 5]/[7, 11, 13] and [1, 3, 5]./[7, 11, 13] are different because of the operators. In contrast,
Maple chooses to make the distinction in the data object, as will now be described.

Facts:

1. The Maple Array is a general data structure akin to arrays in other programming languages.
2. An array can have up to 63 indexes and each index can lie in any integer range.
3. The description here only addresses the overlap between Maple Array and Vector.

Cautions:

1. A Maple Array might look the same as a vector or matrix when printed.

Commands:

1. Generation of arrays.� Array([x1, x2, . . .]) Construct an array by listing its elements.� Array(m..n) Declare an empty 1-dimensional array indexed from m to n.� Array(v) Use an existing Vector to generate an array.� convert(v, Array) Convert a Vector v into an Array. Similarly, a Matrix
can be converted to an Array. See the help file for rtable-options for advanced methods
to convert efficiently, in-place.

2. Operations (memory/stack limitations may restrict operations).� a ∧ n Raise each element of a to power n.� a ∗ b, a + b, a − b Multiply (add, subtract) elements of b by (to, from) elements
of a .� a / b Divide elements of a by elements of b. Division by zero will produce unde-
fined or infinity (or exceptions can be caught by user-set traps, see the help file for
Numeric Events).

Examples:

1. Array arithmetic.
> simplify((Array([25,9,4])*Array(1..3,x->x∧2-1)/Array(<5,3,2>
))∧(1/2));

[0, 3, 4]

Linear Algebra in Maple 72-9

2. Getting Vectors and Arrays to do the same thing.
> Transpose(map(x->x∗x, <1,2,3>)) -convert(Array([1,2,3])∧2,
Vector);

[0, 0, 0]

72.5 Equation Solving and Matrix Factoring

Cautions:

1. If a matrix contains exact numerical entries, typically integers or rationals, then the material studied
in introductory textbooks transfers to a computer algebra system without special considerations.
However, if a matrix contains symbolic entries, then the fact that computations are completed
without the user seeing the intermediate steps can lead to unexpected results.

2. Some of the most popular matrix functions are discontinuous when applied to matrices containing
symbolic entries. Examples are given below.

3. Some algorithms taught to educate students about the concepts of linear algebra often turn out
to be ill-advised in practice: Computing the characteristic polynomial and then solving it to find
eigenvalues, for example; using Gaussian elimination without pivoting on a matrix containing
floating-point entries, for another.

Commands:

1. LinearSolve(A, B) The vector or matrix X satisfying AX = B .
2. BackwardSubstitute(A, B), ForwardSubstitute(A, B) The vector or ma-

trix X satisfying AX = B when A is upper or lower triangular (echelon) form respectively.
3. ReducedRowEchelonForm(A). The reduced row-echelon form (RREF) of the matrix A.

For matrices with symbolic entries, see the examples below for recommended usage.
4. Rank(A) The rank of the matrix A. Caution: If A has floating-point entries, see the section

below on Numerical Linear Algebra. On the other hand, if A contains symbolic entries, then the
rank may change discontinuously and the generic answer returned by Rank may be incorrect for
some specializations of the parameters.

5. NullSpace(A) The nullspace (kernel) of the matrix A. Caution: If A has floating-point
entries, see the section below on Numerical Linear Algebra. Again on the other hand, if A contains
symbolic entries, the nullspace may change discontinuously and the generic answer returned by
NullSpace may be incorrect for some specializations of the parameters.

6. (P, L, U, R) := LUDecomposition(A, method='RREF') The P LU R, or
Turing, factors of the matrix A. See examples for usage.

7. (P, L, U) := LUDecomposition(A) The P LU factors of a matrix A, when the
RREF R is not needed. This is usually the case for a Turing factoring where R is guaranteed (or
known a priori) to be I , the identity matrix, for all values of the parameters.

8. (Q, R) := QRDecomposition(A, fullspan) The Q R factors of the matrix A.
The option fullspan ensures that Q is square.

9. SingularValues(A) See section 72.8 Numerical Linear Algebra.
10. ConditionNumber(A) See section 72.8 Numerical Linear Algebra.

Examples:

1. Need for Turing factoring.
One of the strengths of Maple is computation with symbolic quantities. When standard linear
algebra methods are applied to matrices containing symbolic entries, the user must be aware of
new mathematical features that can arise. The main feature is the discontinuity of standard matrix

72-10 Handbook of Linear Algebra

functions, such as the reduced row-echelon form and the rank, both of which can be discontinuous.
For example, the matrix

B = A − λI =
[

7 − λ 4

6 2 − λ

]
has the reduced row-echelon form

ReducedRowEchelonForm(B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 0

0 1

]
λ �= −1, 10

[
1 −4/3

0 0

]
λ = 10,

[
1 1/2

0 0

]
λ = −1.

Notice that the function is discontinuous precisely at the interesting values of λ. Computer algebra
systems in general, and Maple in particular, return “generic” results. Thus, in Maple, we have
> B := << 7-x | 4 >, < 6 | 2-x >>;

B :=
[

7 − x 4

6 2 − x

]
> ReducedRowEchelonForm(B) [

1 0

0 1

]
This difficulty is discussed at length in [CJ92],[CJ97]. The recommended solution is to use Turing
factoring (generalized P LU decomposition) to obtain the reduced row-echelon form with provisos.
Thus, for example,
> A := \<<1|-2|3|sin(x)>,<1|4*cos(x)|3|3*sin(x)>,<-1|3|cos(x)-3|
cos(x)>>;

A :=

⎡⎢⎣ 1 −2 3 sin x

1 4 cos x 3 3 sin x

−1 3 cos x − 3 cos x

⎤⎥⎦
> (P, L, U, R) := LUDecomposition(A, method='RREF'):
The generic reduced row-echelon form is then given by

R =

⎡⎢⎣1 0 0 (2 sin x cos x − 3 sin x − 6 cos x − 3)/(2 cos x + 1)

0 1 0 sin x/(2 cos x + 1)

0 0 1 (2 cos x + 1 + 2 sin x)/(2 cos x + 1)

⎤⎥⎦
This shows a visible failure when 2 cos x + 1 = 0, but the other discontinuity is invisible, and
requires the U factor from the Turing (P LU R) factors,

U =

⎡⎢⎣1 −2 3

0 4 cos x + 2 0

0 0 cos x

⎤⎥⎦
to see that the case cos x = 0 also causes failure. In both cases (meaning the cases 2 cos x + 1 = 0
and cos x = 0), the RREF must be recomputed to obtain the singular cases correctly.

Linear Algebra in Maple 72-11

2. QR factoring.
Maple does not offer column pivoting, so in pathological cases the factoring may not be unique,
and will vary between software systems. For example,
> A := �0,0>|<5,12�: QRDecomposition(A, fullspan)[

5/13 12/13

12/13 −5/13

]
,

[
0 13

0 0

]

72.6 Eigenvalues and Eigenvectors

Facts:

1. In exact arithmetic, explicit expressions are not possible in general for the eigenvalues of a matrix
of dimension 5 or higher.

2. When it has to, Maple represents polynomial roots (and, hence, eigenvalues) implicitly by the
RootOf construct. Expressions containingRootOfs can be simplified and evaluated numerically.

Commands:

1. Eigenvalues(A) The eigenvalues of matrix A.
2. Eigenvectors(A) The eigenvalues and corresponding eigenvectors of A.
3. CharacteristicPolynomial(A, 'x') The characteristic polynomial of A expressed

using the variable x .
4. JordanForm(A) The Jordan form of the matrix A.

Examples:

1. Simple eigensystem computation.
> Eigenvectors(<<7,6>|<4,2>>);[

−1

10

]
,

[
−1/2 4/3

1 1

]

So the eigenvalues are −1 and 10 with the corresponding eigenvectors [−1/2, 1]T and [4/3, 1]T .
2. A defective matrix.

If the matrix is defective, then by convention the matrix of “eigenvectors” returned by Maple
contains one or more columns of zeros.
> Eigenvectors(<<1,0>|<1,1>>);[

1

1

]
,

[
1 0

0 0

]
3. Larger systems.

For larger matrices, the eigenvectors will use the Maple RootOf construction.

A :=

⎡⎢⎢⎢⎣
3 1 7 1

5 6 −3 5

3 −1 −1 0

−1 5 1 5

⎤⎥⎥⎥⎦
> (L, V) := Eigenvectors(A): The colon suppresses printing. The vector of
eigenvalues is returned as

72-12 Handbook of Linear Algebra

> L; ⎡⎢⎢⎢⎣
RootOf

(
Z4 − 13 Z3 − 4 Z2 + 319 Z − 386, index = 1

)
RootOf

(
Z4 − 13 Z3 − 4 Z2 + 319 Z − 386, index = 2

)
RootOf

(
Z4 − 13 Z3 − 4 Z2 + 319 Z − 386, index = 3

)
RootOf

(
Z4 − 13 Z3 − 4 Z2 + 319 Z − 386, index = 4

)
⎤⎥⎥⎥⎦

This, of course, simply reflects the characteristic polynomial:
> CharacteristicPolynomial(A, 'x');

x4 − 13x3 − 4x2 + 319x − 386

The Eigenvalues command solves a 4th degree characteristic polynomial explicitly in terms of
radicals unless the option implicit is used.

4. Jordan form. Caution: As with the reduced row-echelon form, the Jordan form of a matrix containing
symbolic elements can be discontinuous. For example, given

A =
[

1 t

0 1

]
,

> (J, Q) := JordanForm(A, output=['J','Q']);

J , Q :=
[

1 1
0 1

]
,

[
t 0
0 1

]
with A = Q J Q−1. Note that Q is invertible precisely when t �= 0. This gives a proviso on the
correctness of the result: J will be the Jordan form of A only for t �= 0, which we see is the generic
case returned by Maple.
Caution: Exact computation has its limitations, even without symbolic entries. If we ask for the
Jordan form of the matrix

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 4 −1 −14 20 −8

4 −5 −63 203 −217 78

−1 −63 403 −893 834 −280

−14 203 −893 1703 −1469 470

20 −217 834 −1469 1204 −372

−8 78 −280 470 −372 112

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

a relatively modest 6 × 6 matrix with a triple eigenvalue 0, then the transformation matrix Q as
produced by Maple has entries over 35,000 characters long. Some scheme of compression or large
expression management is thereby mandated.

72.7 Linear Algebra with Modular Arithmetic in Maple

There is a subpackage,LinearAlgebra[Modular], designed for programmatic use, that offers access
to modular arithmetic with matrices and vectors.

Facts:

1. The subpackage can be loaded by issuing the command with(LinearAlgebra[Modular]
); which gives access to the commands

[AddMultiple, Adjoint, BackwardSubstitute, Basis, Characteristic
Polynomial, ChineseRemainder, Copy, Create, Determinant, Fill,

Linear Algebra in Maple 72-13

ForwardSubstitute, Identity, Inverse, LUApply, LUDecomposition,
LinIntSolve, MatBasis, MatGcd, Mod, Multiply, Permute, Random,
Rank, RankProfile, RowEchelonTransform, RowReduce, Swap,
Transpose, ZigZag]

2. Arithmetic can be done modulo a prime p or, in some cases, a composite modulus m.
3. The relevant matrix and vector datatypes are integer[4], integer[8], integer[], and

float[8]. Use of the correct datatype can improve efficiency.

Examples:

> p := 13;
> A := Mod(p, Matrix([[1,2,3],[4,5,6],[7,8,-9]]), integer[4]);⎡⎢⎣1 2 3

4 5 6

7 8 4

⎤⎥⎦
> Mod(p, MatrixInverse(A), integer[4]);⎡⎢⎣12 8 5

0 11 3

5 3 5

⎤⎥⎦
Cautions:

1. This is not to be confused with themodutilities, which together with the inertInverse command,
can also be used to calculate inverses in a modular way.

2. One must always specify the datatype in Modular commands, or a cryptic error message will be
generated.

72.8 Numerical Linear Algebra in Maple

The above sections have covered the use of Maple for exact computations of the types met during a
standard first course on linear algebra. However, in addition to exact computation, Maple offers a variety
of floating-point numerical linear algebra support.

Facts:

1. Maple can compute with either “hardware floats” or “software floats,”
2. A hardware float is IEEE double precision, with a mantissa of (approximately) 15 decimal digits.
3. A software float has a mantissa whose length is set by the Maple variable Digits.

Cautions:

1. If an integer is typed with a decimal point, then Maple treats it as a software float.
2. Software floats are significantly slower that hardware floats, even for the same precision.

Commands:

1. Matrix(n, m, datatype=float[8]) An n × m matrix of hardware floats (initial-
ization data not shown). The elements must be real numbers. The 8 refers to the number of bytes
used to store the floating point real number.

2. Matrix(n, m, datatype=complex(float[8])) An n × m matrix of hardware
floats, including complex hardware floats. A complex hardware float takes two 8-byte storage
locations.

72-14 Handbook of Linear Algebra

3. Matrix(n, m, datatype=sfloat) An n × m matrix of software floats. The entries
must be real and the precision is determined by the value of Digits.

4. Matrix(n, m, datatype=complex(sfloat)) As before with complex software floats.
5. Matrix(n, m, shape=symmetric) A matrix declared to be symmetric. Maple can

take advantage of shape declarations such as this.

Examples:

1. A characteristic surprise.
When asked to compute the characteristic polynomial of a floating-point matrix, Maple first com-
putes eigenvalues (by a good numerical method) and then presents the characteristic polynomial
in factored form, with good approximate roots. Thus,
> CharacteristicPolynomial(Matrix(2, 2, [[666,667],[665,666]],\

datatype=float[8]), 'x');

(x − 1331.99924924882612 − 0.0 i) (x − 0.000750751173882235889 − 0.0 i)

Notice the signed zero in the imaginary part; though the roots in this case are real, approximate
computation of the eigenvalues of a nonsymmetric matrix takes place over the complex numbers.
(n.b.: The output above has been edited for clarity.)

2. Symmetric matrices.
If Maple knows that a matrix is symmetric, then it uses appropriate routines. Without the symmet-
ric declaration, the calculation is
> Eigenvalues(Matrix(2, 2, [[1,3],[3,4]], datatype=float[8]));[

−0.854101966249684707 + 0.0 i

5.85410196624968470 + 0.0 i

]
With the declaration, the computation is
> Eigenvalues(Matrix(2, 2, [[1,3],[3,4]], shape=symmetric,
datatype=float[8])); [

−0.854101966249684818

5.85410196624968470

]
Cautions: Use of theshape=symmetric declaration will force Maple to treat the matrix as being
symmetric, even if it is not.

3. Printing of hardware floats.
Maple prints hardware floating-point data as 18-digit numbers. This does not imply that all 18 digits
are correct; Maple prints the hardware floats this way so that a cycle of converting from binary to
decimal and back to binary will return to exactly the starting binary floating-point number. Notice
in the previous example that the last 3 digits differ between the two function calls. In fact neither
set of digits is correct, as a calculation in software floats with higher precision shows.
> Digits := 30: Eigenvalues(Matrix(2, 2, [[1,3],[3,4]], \

datatype=sfloat, shape=symmetric));[
−0.854101966249684544613760503093

5.85410196624968454461376050310

]
4. NullSpace. Consider

> B := Matrix(2, 2, [[666,667],[665,666]]): A := Transpose(B).B;

Linear Algebra in Maple 72-15

We make a floating-point version of A by
> Af := Matrix(A, datatype=float[8]);
and then take the NullSpace of both A and Af. The nullspace of A is correctly returned as the
empty set—A is not singular (in fact, its determinant is 1). The nullspace ofAf is correctly returned
as {[

−0.707637442412755612

0.706575721416702662

]}
The answers are different — quite different — even though the matrices differ only in datatype.
The surprising thing is that both answers are correct: Maple is doing the right thing in each case.
See [Cor93] for a detailed explanation, but note that Af times the vector in the reported nullspace
is about 3.17 · 10−13 times the 2-norm of Af.

5. Approximate Jordan form (not!)1

As noted previously, the Jordan form is discontinuous as a function of the entries of the matrix. This
means that rounding errors may cause the computed Jordan form of a matrix with floating-point
entries to be incorrect, and for this reason Maple refuses to compute the Jordan form of such a
matrix.

6. Conditioning of eigenvalues.
To explore Maple’s facilities for the conditioning of the unsymmetric matrix eigenproblem, consider
the matrix “gallery(3)” from MATLAB.
> A := Matrix([[-149,-50,-154], [537,180,546], [-27,-9,-25]]):
The Maple command EigenConditionNumbers computes estimates for the reciprocal con-
dition numbers of each eigenvalue, and estimates for the reciprocal condition numbers of the
computed eigenvectors as well. At this time, there are no built-in facilities for the computation of
the sensitivity of arbitrary invariant subspaces.

> E,V,rconds,rvecconds := EigenConditionNumbers(A, output=
['values',\ 'vectors','conditionvalues','conditionvectors']):
> seq(1/rconds[i], i=1..3);

417.6482708, 349.7497543,
117.2018824

A separate computation using the definition of the condition number of an eigentriplet (y∗, λ, x)
(see Chapter 15) as

Cλ = ‖y∗‖∞‖x‖∞
|y∗ · x|

gives exact condition numbers (in the infinity norm) for the eigenvalues 1, 2, 3 as 399, 252, and
147. We see that the estimates produced by EigenConditionNumbers are of the right order
of magnitude.

72.9 Canonical Forms

There are several canonical forms in Maple: Jordan form, Smith form, Hermite form, and Frobenius
form, to name a few. In this section, we talk only about the Smith form (defined in Chapter 6.5 and
Chapter 23.2).

1An out-of-date, humorous reference.

72-16 Handbook of Linear Algebra

Commands:

1. SmithForm(B, output=['S','U','V']) Smith form of B .

Examples:

The Smith form of

B =

⎡⎢⎢⎢⎢⎣
0 −4y2 4y −1

−4y2 4y −1 0

4y −1 4
(

2y2 − 2
)

y 4
(

y2 − 1
)2

y2 − 2 y2 + 2

−1 0 4
(

y2 − 1
)2

y2 − 2 y2 + 2 −4
(

y2 − 1
)2

y

⎤⎥⎥⎥⎥⎦
is

S =

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1/4
(

2y2 − 1
)2

0

0 0 0 (1/64)
(

2 y2 − 1
)6

⎤⎥⎥⎥⎥⎦
Maple also returns two unimodular (over the domain Q[y]) matrices u and v for which A = U.S.V .

72.10 Structured Matrices

Facts:

1. Computer algebra systems are particularly useful for computations with structured matrices.
2. User-defined structures may be programmed using index functions. See the help pages for details.
3. Examples of built-in structures include symmetric, skew-symmetric, Hermitian, Vandermonde, and

Circulant matrices.

Examples:

Generalized Companion Matrices. Maple can deal with several kinds of generalized companion matrices.
A generalized companion matrix2 pencil of a polynomial p(x) is a pair of matrices C0, C1 such that
det(xC1 − C0) = 0 precisely when p(x) = 0. Usually, in fact, det(xC1 − C0) = p(x), though in
some definitions proportionality is all that is needed. In the case C1 = I , the identity matrix, we have
C0 = C(p(x)) is the companion matrix of p(x). MATLAB’sroots function computes roots of polynomials
by first computing the eigenvalues of the companion matrix, a venerable procedure only recently proved
stable.

The generalizations allow direct use of alternative polynomial bases, such as the Chebyshev polynomials,
Lagrange polynomials, Bernstein (Bézier) polynomials, and many more. Further, the generalizations allow
the construction of generalized companion matrix pencils for matrix polynomials, allowing one to easily
solve nonlinear eigenvalue problems.

We give three examples below.
If p := 3 + 2x + x2, then CompanionMatrix(p, x) produces “the” (standard) companion

matrix (also called Frobenius form companion matrix):[
0 −3

1 −2

]

2Sometimes known as “colleague” or “comrade” matrices, an unfortunate terminology that inhibits keyword search.

Linear Algebra in Maple 72-17

and it is easy to see that det(t I − C) = p(t). If instead

p := B3
0 (x) + 2B3

1 (x) + 3B3
2 (x) + 4B3

3 (x)

where Bn
k (x) = (

n
k

)
(1 − x)n−k(x + 1)k is the kth Bernstein (Bézier) polynomial of degree n on the

interval −1 ≤ x ≤ 1, then CompanionMatrix(p, x) produces the pencil (note that this is not in
Frobenius form)

C0 =

⎡⎢⎢⎣
−3/2 0 −4

1/2 −1/2 −8

0 1/2 −52

3

⎤⎥⎥⎦

C1 =

⎡⎢⎢⎣
3/2 0 −4

1/2 1/2 −8

0 1/2 −20

3

⎤⎥⎥⎦
(from a formula by Jonsson & Vavasis [JV05] and independently by J. Winkler [Win04]), and we have

p(x) = det(xC1 − C0). Note that the program does not change the basis of the polynomial p(x) of
equation (72.9) to the monomial basis (it turns out that p(x) = 20 + 12x in the monomial basis, in this
case: note that C1 is singular). It is well-known that changing polynomial bases can be ill-conditioned,
and this is why the routine avoids making the change.

Next, if we choose nodes [−1, −1/3, 1/3, 1] and look at the degree 3 polynomial taking the values
[1, −1, 1, −1] on these four nodes, then CompanionMatrix(values, nodes) gives C0 and C1

where C1 is the 5 × 5 identity matrix with the (5, 5) entry replaced by 0, and

C0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −1

0 1/3 0 0 1

0 0 −1/3 0 −1

0 0 0 −1 1

− 9

16

27

16
−27

16

9

16
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

We have that det(tC1 − C0) is of degree 3 (in spite of these being 5 × 5 matrices), and that this polynomial
takes on the desired values ±1 at the nodes. Therefore, the finite eigenvalues of this pencil are the roots of
the given polynomial. See [CWO4],[Cor04] for example, for more information.

Finally, consider the nonlinear eigenvalue problem below: Find the values of x such that the matrix C
with Cij = T0(x)/(i + j + 1) + T1(x)/(i + j + 2) + T2(x)/(i + j + 3) is singular. Here Tk(x) means the
kth Chebyshev polynomial, Tk(x) = cos(k cos−1(x)). We issue the command
> (C0, C1) := CompanionMatrix(C, x);
from which we find

C0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −2/15 −1/12 − 2

35

0 0 0 −1/12 − 2

35
−1/24

0 0 0 − 2

35
−1/24 − 2

63
1 0 0 −1/4 −1/5 −1/6

0 1 0 −1/5 −1/6 −1/7

0 0 1 −1/6 −1/7 −1/8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

72-18 Handbook of Linear Algebra

and

C1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2/5 1/3 2/7

0 0 0 1/3 2/7 1/4

0 0 0 2/7 1/4 2/9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This uses a formula from [Goo61], extended to matrix polynomials. The six generalized eigenvalues of
this pencil include, for example, one near to −0.6854 + 1.909i . Substituting this eigenvalue in for x in C
yields a three by three matrix with ratio of smallest to largest singular values σ3/σ1 ≈ 1.7 · 10−15. This is
effectively singular and, thus, we have found the solutions to the nonlinear eigenvalue problem. Again note
that the generalized companion matrix is not in Frobenius standard form, and that this process works for
a variety of bases, including the Lagrange basis.

Circulant matrices and Vandermonde matrices
> A := Matrix(3, 3, shape=Circulant[a,b,c]);⎡⎢⎣a b c

c a b

b c a

⎤⎥⎦
> F3 := Matrix(3, 3, shape=Vandermonde[[1,exp(2*Pi*I/3),exp(4*Pi*I/3)]]
); ⎡⎢⎣1 1 1

1 −1/2 + 1/2 i
√

3
(−1/2 + 1/2 i

√
3
)2

1 −1/2 − 1/2 i
√

3
(−1/2 − 1/2 i

√
3
)2

⎤⎥⎦
It is easy to see that the F3 matrix diagonalizes the circulant matrix A.

Toeplitz and Hankel matrices These can be constructed by calling ToeplitzMatrix and Hankel-
Matrix, or by direct use of the shape option of the Matrix constructor.
> T := ToeplitzMatrix([a,b,c,d,e,f,g]);
> T := Matrix(4, 4, shape=Toeplitz[false,Vector(7,[a,b,c,d,e,f,g])]);
both yield a matrix that looks like ⎡⎢⎢⎢⎣

d c b a

e d c b

f e d c

g f e d

⎤⎥⎥⎥⎦ ,

though in the second case only 7 storage locations are used, whereas 16 are used in the first. This economy
may be useful for larger matrices. The shape constructor for Toeplitz also takes a Boolean argument, true
meaning symmetric.

Both Hankel and Toeplitz matrices may be specified with an indexed symbol for the entries:
> H := Matrix(4, 4, shape=Hankel[a]); yields⎡⎢⎢⎢⎣

a1 a2 a3 a4

a2 a3 a4 a5

a3 a4 a5 a6

a4 a5 a6 a7

⎤⎥⎥⎥⎦ .

Linear Algebra in Maple 72-19

72.11 Functions of Matrices

The exponential of the matrix A is computed in the MatrixExponential command of Maple by
polynomial interpolation (see Chapter 11.1) of the exponential at each of the eigenvalues of A, including
multiplicities. In an exact computation context, this method is not so “dubious” [George Labahn, personal Au: Add G.

Labahn to ref.
list.

communication]. This approach is also used by the general MatrixFunction command.

Examples:

> A := Matrix(3, 3, [[-7,-4,-3],[10,6,4],[6,3,3]]):
> MatrixExponential(A);

⎡⎢⎣ 6 − 7 e1 3 − 4 e1 2 − 3 e1

10 e1 − 6 −3 + 6 e1 −2 + 4 e1

6 e1 − 6 −3 + 3 e1 −2 + 3 e1

⎤⎥⎦ (72.1)

Now a square root: > MatrixFunction(A, sqrt(x), x):⎡⎢⎣−6 −7/2 −5/2

8 5 3

6 3 3

⎤⎥⎦ (72.2)

Another matrix square root example, for a matrix close to one that has no square root:
> A := Matrix(2, 2, [[epsilon∧2, 1], [0, delta∧2]]):
> S := MatrixFunction(A, sqrt(x), x):
> simplify(S) assuming positive;

⎡⎣ε
1

ε + δ

0 δ

⎤⎦ (72.3)

If ε and δ both approach zero, we see that the square root has an entry that approaches infinity. Calling
MatrixFunction on the above matrix with ε = δ = 0 yields an error message, Matrix function
x∧(1/2) is not defined for this Matrix, which is correct.
Now for the matrix logarithm. > Pascal := Matrix(4, 4, (i,j)->binomial(j-1,i-
1)); ⎡⎢⎢⎢⎣

1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1

⎤⎥⎥⎥⎦ (72.4)

> MatrixFunction(Pascal, log(x), x);⎡⎢⎢⎢⎣
0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0

⎤⎥⎥⎥⎦ (72.5)

Now a function not covered in Chapter 11, instead of redoing the sine and cosine examples: > A :=
Matrix(2, 2, [[-1/5, 1], [0, -1/5]]):

72-20 Handbook of Linear Algebra

> W := MatrixFunction(A, LambertW(-1,x), x);

W :=
⎡⎣LambertW(−1, −1/5) −5

LambertW (−1, −1/5)

1 + LambertW (−1, −1/5)

0 LambertW (−1, −1/5)

⎤⎦ (72.6)

> evalf(W); [−2.542641358 −8.241194055

0.0 −2.542641358

]
(72.7)

That matrix satisfies W exp(W) = A, and is a primary matrix function. (See [CGH+96] for more details
about the Lambert W function.)

Now the matrix sign function (cf. Chapter 11.6). Consider
> Pascal2 := Matrix(4, 4, (i,j)->(-1)∧(i-1)*binomial(j-1,i-1));⎡⎢⎢⎢⎣

1 1 1 1

0 −1 −2 −3

0 0 1 3

0 0 0 −1

⎤⎥⎥⎥⎦ . (72.8)

Then we compute the matrix sign function of this matrix by > S := MatrixFunction(Pascal2,
csgn(z), z): which just turns out to be the matrix we started with (Pascal2).

Note: The complex “sign” function we use here is not the usual complex sign function for scalars

signum(r eiθ) := eiθ ,

but rather (as desired for the definition of the matrix sign function)

csgn(z) =

⎧⎪⎨⎪⎩
1 if Re(z) > 0

−1 if Re(z) < 0

signum(Im(z)) if Re(z) = 0

This has the side effect of making the function defined even when the input matrix has purely imaginary
eigenvalues. The signum and csgn of 0 are both 0, by default, but can be specified differently if desired.
Caution:
Further, it is not thesign function in MAPLE, which is a different function entirely: That function (sign)
returns the sign of the leading coefficient of the polynomial input to sign.
Caution:
(In General) This general approach to computing matrix functions can be slow for large exact or symbolic
matrices (because manipulation of symbolic representations of the eigenvalues using RootOf, typically
encountered for n ≥ 5, can be expensive), and on the other hand can be unstable for floating-point
matrices, as is well-known, especially those with nearly multiple eigenvalues. However, for small or for
structured matrices this approach can be very useful and can give insight.

72.12 Matrix Stability

As defined in Chapter 19, a matrix is (negative) stable if all its eigenvalues are in the left half plane (in
this section, “stable” means “negative stable”). In Maple, one may test this by direct computation of the
eigenvalues (if the entries of the matrix are numeric) and this is likely faster and more accurate than any
purely rational operation based test such as the Hurwitz criterion. If, however, the matrix contains symbolic
entries, then one usually wishes to know for what values of the parameters the matrix is stable. We may
obtain conditions on these parameters by using the Hurwitz command of the PolynomialTools
package on the characteristic polynomial.

Linear Algebra in Maple 72-21

Examples:

Negative of gallery(3) from MATLAB.
> A := -Matrix([[-149,-50,-154], [537,180,546], [-27,-9,-25]]):
> E := Matrix([[130, -390, 0], [43, -129, 0], [133,-399,0]]):
> AtE := A - t*E; ⎡⎢⎣ 149 − 130 t 50 + 390 t 154

−537 − 43 t −180 + 129 t −546

27 − 133 t 9 + 399 t 25

⎤⎥⎦ (72.9)

For which t is that matrix stable?
> p := CharacteristicPolynomial(AtE, lambda);
> PolynomialTools[Hurwitz](p, lambda, 's', 'g');
This command returns “FAIL,” meaning that it cannot tell whether p is stable or not; this is only to be
expected as t has not yet been specified. However, according to the documentation, all coefficients of λ

returned in s must be positive, in order for p to be stable. The coefficients returned are[
λ

6 + t
, 1/4

(6 + t)2 λ

15 + 433453 t + 123128 t2
,

(
60 + 1733812 t + 492512 t2

)
λ

(6 + t) (6 + 1221271 t)

]
(72.10)

and analysis (not given here) shows that these are all positive if and only if t > −6/1221271.

Acknowledgements

Many people have contributed to linear algebra in Maple, for many years. Dave Hare and David Linder
deserve particular credit, especially for the LinearAlgebra package and its connections to CLAPACK, and
have also greatly helped our understanding of the best way to use this package. We are grateful to Dave
Linder and to Jürgen Gerhard for comments on early drafts of this Chapter.

References

[CGH+96] Robert M. Corless, Gaston H. Gonnet, D.E.G. Hare, David J. Jeffrey, and Donald E. Knuth. On
the Lambert W function. Adv. Comp. Math., 5:329–359, 1996.

[CJ92] R.M. Corless and D.J. Jeffrey. Well... it isn’t quite that simple. SIGSAM Bull., 26(3):2–6, 1992.
[CJ97] R.M. Corless and D.J. Jeffrey. The Turing factorization of a rectangular matrix. SIGSAM Bull.,

31(3):20–28, 1997.
[Cor93] Robert M. Corless. Six, lies, and calculators. Am. Math. Month., 100(4):344–350, April 1993.
[Cor04] Robert M. Corless. Generalized companion matrices in the Lagrange basis. In Laureano Gonzalez-

Vega and Tomas Recio, Eds., Proceedings EACA, pp. 317–322, June 2004.
[CW04] Robert M. Corless and Stephen M. Watt. Bernstein bases are optimal, but, sometimes, Lagrange

bases are better. In Proceedings of SYNASC, Timisoara, pp. 141–153. MITRON Press, September Au: Location
of MITRON
press?

2004.
[Goo61] I.J. Good. The colleague matrix, a Chebyshev analogue of the companion matrix. Q. J. Math.,

12:61–68, 1961.
[JV05] Gudbjorn F. Jónsson and Steven Vavasis. Solving polynomials with small leading coefficients. Siam

J. Matrix Anal. Appl., 26(2):400–414, 2005.
[Win04] Joab R. Winkler. The transformation of the companion matrix resultant between the power and

Bernstein polynomial bases. Appl. Num. Math., 48(1):113–126, 2004.

