

EE-606: Solid State Devices Lecture 8: Density of States

Muhammad Ashraful Alam alam@purdue.edu

Outline

- 1) Calculation of density of states
- 2) Density of states for specific materials
- 3) Characterization of Effective Mass
- 4) Conclusions

Reference: Vol. 6, Ch. 3 (pages 88-96)

Density of States

A single band has total of N-states

Only a fraction of states are occupied

How many states are occupied upto E?

Or equivalently...

How many states per unit energy? (DOS)

Density of States in 1-D Semiconductors

N atoms

States between
$$E_1 + \Delta E \& E_1 = 2 \times \frac{\Delta k}{\delta k}$$

$$= 2 \times \frac{\Delta k}{2\pi/Na}$$

States/unit energy @
$$E_1 = \frac{Na}{\pi} \frac{\Delta k}{\Delta E}$$

1D-DOS

States/unit energy @ $E = \frac{Na}{\pi} \frac{\Delta k}{\Delta E}$

$$E - E_0 = \frac{\hbar^2 k^2}{2m^*} \Rightarrow k = \sqrt{\frac{2m^* (E - E_0)}{\hbar^2}}$$

$$\frac{dk}{dE} = \sqrt{\frac{m^*}{2\hbar^2 (E - E_0)}}$$

States/unit energy @ $E = \frac{L}{\pi} \sqrt{\frac{m^*}{2\hbar^2 (E - E_0)}}$

States/unit energy/unit length @ E

$$\equiv DOS = \frac{1}{\pi} \sqrt{\frac{m^*}{2\hbar^2 (E - E_0)}}$$

1D-DOS

Conservation of DOS

Density of States in 2D Semiconductors

Show that 2D DOS is a constant independent of energy!

Density of States in 3D Semiconductors

States between $E_1 + \Delta E \& E_1$

$$= \frac{\frac{4}{3}\pi(k+dk)^{3} - \frac{4}{3}\pi k^{3}}{\frac{2\pi}{L}\frac{2\pi}{W}\frac{2\pi}{H}} = \frac{V}{2\pi^{2}}k^{2}\Delta k$$

States/unit energy @ $E = \frac{V}{2\pi^2} k^2 \frac{\Delta k}{dE}$

$$E - E_0 = \frac{\hbar^2 k^2}{2m^*} \Rightarrow k = \sqrt{\frac{2m^* \left(E - E_0\right)}{\hbar^2}} \Rightarrow \frac{dk}{dE} = \sqrt{\frac{m^*}{2\hbar^2 \left(E - E_0\right)}}$$

States/unit energy/unit volume @ E_1

$$DOS = \frac{m^*}{2\pi^2 \hbar^3} \sqrt{2m^* (E - E_0)}$$

Macroscopic Sample

3D-DOS

Conservation of DOS

Outline

- 1) Calculation of density of states
- 2) Density of states for specific materials
- 3) Characterization of Effective Mass
- 4) Conclusions

Density of States of GaAs: Conduction/Valence Bands

$$g_c(E) = \frac{m_n^* \sqrt{2m_n^* (E - E_c)}}{2\pi^2 \hbar^3}$$

$$g_{\upsilon}(E) = \begin{cases} \frac{m_{hh}^{*} \sqrt{2m_{hh}^{*}(E - E_{\upsilon})}}{2\pi^{2}\hbar^{3}} \\ \frac{m_{lh}^{*} \sqrt{2m_{lh}^{*}(E - E_{\upsilon})}}{2\pi^{2}\hbar^{3}} \end{cases}$$

Four valleys inside BZ for Germanium

Ellipsoidal Bands and DOS Effective Mass

$$E - E_C = \frac{\hbar^2 k_1^2}{2m_l^*} + \frac{\hbar^2 k_2^2}{2m_t^*} + \frac{\hbar^2 k_3^2}{2m_t^*}$$
 E=const. ellipsoid

$$1 = \frac{k_1^2}{\left[\frac{2m_t^*(E - E_C)}{\hbar^2}\right]} + \frac{k_2^2}{\left[\frac{2m_t^*(E - E_C)}{\hbar^2}\right]} + \frac{k_3^2}{\left[\frac{2m_t^*(E - E_C)}{\hbar^2}\right]}$$

$$\mathcal{U}_{k} = N_{el} \left(\frac{4}{3} \pi \alpha \beta^{2} \right) \equiv \frac{4}{3} \pi k_{eff}^{3}$$

$$N_{el} \frac{4}{3} \pi \sqrt{\frac{2m_{l}^{*} (E - E_{c})}{\hbar^{2}}} \sqrt{\frac{2m_{t}^{*} (E - E_{c})}{\hbar^{2}}} \sqrt{\frac{2m_{t}^{*} (E - E_{c})}{\hbar^{2}}} = \frac{4}{3} \pi \left[\sqrt{\frac{2m_{eff}^{*} (E - E_{c})}{\hbar^{2}}} \right]^{3}$$

$$m_{eff}^* = N_{el}^{2/3} \left(m_l^* m_t^{*2} \right)^{1/3}$$

DOS Effective Mass for Conduction Band

$$m_{eff}^* = 4^{2/3} \left(m_l^* m_t^{*2} \right)^{1/3}$$

$$g_{c}(E) = \frac{m_{eff}^{*} \sqrt{2m_{eff}^{*}(E - E_{c})}}{2\pi^{2}\hbar^{3}} \qquad g_{c}(E) = \frac{m_{eff}^{*} \sqrt{2m_{eff}^{*}(E - E_{c})}}{2\pi^{2}\hbar^{3}}$$

$$m_{eff}^* = 6^{2/3} \left(m_l^* m_t^{*2} \right)^{1/3}$$

$$g_{c}(E) = \frac{m_{eff}^{*} \sqrt{2m_{eff}^{*}(E - E_{c})}}{2\pi^{2}\hbar^{3}}$$

Outline

- 1) Calculation of density of states
- 2) Density of states for specific materials
- 3) Characterization of Effective Mass
- 4) Conclusions

Measurement of Effective Mass

$$m^* = \frac{qB_{con}}{2\pi v_0}$$

Motion in Real Space and Phase Space

Energy=constant.

Liquid He temperature ...

Derive the Cyclotron Formula $m^* = \frac{qB_0}{2\pi v_0}$

For an particle in (x-y) plane with B-field in z-direction, the Lorentz force is ...

$$\frac{m*\upsilon^2}{r_0} = q\upsilon \times B_z = q\upsilon B_z$$

$$\upsilon = \frac{qB_0r_0}{m*}$$

$$\tau = \frac{2\pi r_0}{\upsilon} = \frac{2\pi m^*}{qB_0}$$
$$\nu_0 \equiv \frac{1}{\tau} = \frac{qB_0}{2\pi m^*}$$

Effective mass in Ge

4 angles between B field and the ellipsoids ... Recall the HW1

Derivation for the Cyclotron Formula

$$\frac{1}{m_c^2} = \frac{\cos^2 \theta}{m_t^2} + \frac{\sin^2 \theta}{m_l m_t}$$
 Given three m_c and three θ, we will Find m_t, and m_l

The Lorentz force on electrons in a B-field

$$F = q\upsilon \times B = \left[M\right] \frac{d\upsilon}{dt}$$

In other words,

$$F_{x} = q\left(\upsilon_{y}B_{z} - \upsilon_{z}B_{y}\right) = m_{t}^{*}\frac{d\upsilon_{x}}{dt}$$

$$F_{y} = q(\upsilon_{z}B_{x} - \upsilon_{x}B_{z}) = m_{t}^{*} \frac{d\upsilon_{y}}{dt}$$

$$F_z = q\left(\upsilon_x B_y - \upsilon_y B_x\right) = m_l^* \frac{d\upsilon_z}{dt}$$

Continued ...

Let (B) make an angle (θ) with longitudinal axis of the ellipsoid (ellipsoids oriented along k_7)

$$B_x = B_0 \cos(\theta)$$
, $B_y = 0$, $B_z = B_0 \sin(\theta)$,

Differentiate (v_v) and use other equations to find ...

$$\frac{d^2 v_y}{dt^2} + v_y \omega^2 = 0 \quad \text{with} \quad \omega^2 = \left[\omega_t w_l \sin^2 \theta + \omega_t^2 \cos^2 \theta \right]$$

$$\omega_0 \equiv \frac{qB_0}{m_c^*}$$
 $\omega_t \equiv \frac{qB_0}{m_t^*}$ $\omega_l \equiv \frac{qB_0}{m_l^*}$

so that ...
$$\frac{1}{\left(m_c^*\right)^2} = \frac{\sin^2 \theta}{m_l m_t} + \frac{\cos^2 \theta}{m_t^2}$$

Alam ECE-606 S09

Measurement of Effective Mass

$$\frac{1}{m_c^2} = \frac{\cos^2 \theta}{m_t^2} + \frac{\sin^2 \theta}{m_l m_t}$$

Ge

Three peaks
$$B_1$$
, B_2 , B_3
Three masses m_{c1} , m_{c2} , m_{c3}
Three unique angles: 7, 65, 73

$$m_c = \frac{qB_1}{2\pi v_0}$$

Known θ and m_c allows calculation of m_t and m_l .

Valence Band Effective Mass

HW. Which peaks relate to valence band? Why are there two valence band peaks?

Conclusions

- 1) Measurement of Effective mass and band gaps define the energy-band of a material.
- 2) Only a fraction of the available states are occupied. The number of available states change with energy. DOS captures this variation.
- 3) DOS is an important and useful characteristic of a material that should be understood carefully.