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Preface

Since the third edition of this book was published, there has been a noticeable increase of 
interest in computational electromagnetics (CEM), also known as numerical electromagnetics. 
This is evident by the amount of dissertations, theses, books, and articles on CEM appearing 
in journals and conferences each year. Along with this development is the rapid growth 
in commercial or free codes for designing complex EM problems. In spite of these cheap 
and powerful computational tools, there is a need to learn the fundamental analytical and 
numerical concepts behind the codes. It is beneficial to understand the inherent limitations 
of the commercial software. Experience shows that students learn more by developing their 
codes than just pushing buttons in a commercial software package. Also, a closer look at the 
newly published books reveals that they are not suitable for classroom use due to lack of 
examples and practice problems at the end of each chapter. There is still a need for a good 
introductory textbook for the CEM community. This book meets the need.

The book has the following features:

•	 It is comprehensive. Some CEM books cover just one numerical technique, while 
some cover only finite difference method (particularly FDTD), finite element 
method, and method of moments. In addition to these, this present book covers 
variational methods, transmission-line-modeling (TLM), method of lines, and 
Monte Carlo method.

•	 It presents several examples with MATLAB codes where applicable. I believe 
that CEM is best learned through direct programming. Commercially packaged 
programs can be useful, but they should not take priority over direct programming.

•	 It provides several end-of-chapter problems with answers to odd-numbered 
problems in Appendix E.

•	 Each chapter presents a clear, concise introduction to a numerical method in EM 
and provides up-to-date references to information on the method. The last section 
of the chapter is devoted to application(s) of the method.

When the first edition of this book was written, the term “Computational Electromagnetics” 
was not common. Now, it is the most common term used in describing the emerging field. 
Since it is expedient to use the latest term or development, the former name of the book, 
Numerical Techniques in Electromagnetics, has been changed to Computational Electromagnetics 
with MATLAB®. This is part of the process of making another edition—catching up with 
the trends in this exciting field.

Although the book can be covered in one semester, enough material is provided for two-
semester coverage. For two-semesters, it is suggested that Chapters 1 through 5 be covered 
in one semester, while Chapters 6 through 9 is covered in the second semester. In addition 
to serving as an introductory text for students, the book will also serve as a concise, up-to-
date reference for researchers and professionals in CEM.

The book provides a comprehensive bibliography that serves as the best resources for 
learning more about CEM. Appendix A is on vector analysis, while Appendix B provides 
programming in MATLAB. Appendix C covers briefly direct and iterative procedure for 
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solving simultaneous equations. Appendix D provides a list of software packages that 
are either free or commercially available. Appendix E provides answers to odd-numbered 
problems.

Since the publication of the last edition, there has been increased awareness and utilization 
of computational tools. This edition adds noticeable changes in Section 5.2 on how moment 
methods can be used to solve differential equation, in section 310 on advanced applications 
of FDTD, in Section 6.12 on using a commercial solver to analyze microstrip lines, and in 
Section 8.7 on applying Monte Carlo Markov chain to Poisson equation.

MATLAB® is a registered trademark of The MathWorks, Inc. For product information, 
please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

www.mathworks.com


xv

Acknowledgment

I would like to thank Dr. Sarhan Musa of Prairie View A&M University, Dr. Andrew 
Peterson of Georgia Institute of Technology, Dr. Jian-Ming Jin of the University of Illinois 
at Urbana-Champaign, and Dr. David Davidson of University of Stellenbosch for allowing 
me to use their works. I would like to acknowledge the support of Dr. Shield Lin, dean of 
the College of Engineering, and Dr. Pamela Obiomon, head of the Department of Electrical 
and Computer Engineering, at Prairie View A&M University. I am also grateful to Nora 
Konopka, Kyra Lindholm, and other staff of CRC Press for their professional touch on the 
book. I express my profound gratitude to my wife, Kikelomo, for her sacrifices and prayer.



http://taylorandfrancis.com


xvii

A Note to Students

Before you embark on writing your own computer program or using the ones in this text, 
you should try to understand all relevant theoretical backgrounds. A computer is no more 
than a tool used in the analysis of a problem. For this reason, you should be as clear as 
possible what the machine is really being asked to do before setting it off on several hours 
of expensive computations.

It has been well said by A. C. Doyle that, “It is a capital mistake to theorize before you 
have all the evidence. It biases the judgment.” Therefore, you should never trust the results 
of numerical computation unless they are validated, as least in part. You validate the 
results by comparing them with those obtained by previous investigators or with similar 
results obtained using a different approach, which may be analytical or numerical. For 
this reason, it is advisable that you become familiar with as many numerical techniques 
as possible.

The references provided at the end of each chapter are by no means exhaustive but are 
meant to serve as the starting point for further reading.
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1

1
Fundamental Concepts

We must keep innovating in order to stay relevant.

—Joel Comiskey

1.1  Introduction

Scientists and engineers use several techniques in solving continuum or field problems. 
Loosely speaking, these techniques can be classified as experimental, analytical, or 
numerical. The three are related as shown in Figure 1.1 [1]. Experiments are expensive, 
time consuming, sometimes hazardous, and usually do not allow much flexibility 
in parameter variation. However, every numerical method, as we shall see, involves 
an analytic simplification to the point where it is easy to apply the numerical method. 
Notwithstanding this fact, the following methods are among the most commonly used in 
electromagnetics (EM).

	 A.	Analytical methods (exact solutions)
	 1.	 Separation of variables
	 2.	 Series expansion
	 3.	 Conformal mapping
	 4.	 Integral solutions, for example, Laplace and Fourier transforms
	 5.	 Perturbation methods
	 B.	Numerical methods (approximate solutions)
	 1.	 Finite difference method
	 2.	 Method of weighted residuals
	 3.	 Moment method
	 4.	 Finite element method
	 5.	 Transmission-line modeling
	 6.	 Monte Carlo method
	 7.	 Method of lines

The numerical techniques mentioned above are usually known as low-frequency methods 
because they solve Maxwell’s equation without making approximations and are limited 
to geometries of small electrical size. High-frequency methods include optical physics, 
geometrical theory of diffraction, and physical theory of diffraction. These techniques are 
too specialized and will not be covered in this book.
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In the past 50 years, the electromagnetic (EM) community has witnessed a breathtaking 
evolution in the way we solve and apply EM concepts. With the ever-increasing power and 
memory of the digital computers, the art of computational electromagnetics (CEM) has 
gained momentum.

CEM deals with numerical methods applied in solving EM problems. It is based on 
computer implementation of mathematical models of EM systems using Maxwell equations. 
CEM tools are useful in analyzing and designing power systems, electrical machines, 
generators, transformers, microwave networks, waveguides, antennas, and aircraft. They 
are also used in predicting the electromagnetic compatibility (EMC) between complex 
electronic systems and their environment. For this reason, CEM is of increasing importance 
to the civil and defense sectors [2].

Application of these methods is not limited to EM-related problems; they find applications 
in other continuum problems such as in fluid, heat transfer, and acoustics.

As we shall see, some of the numerical methods are related and they all generally give 
approximate solutions of sufficient accuracy for engineering purposes. Since our objective 
is to study these methods in detail in the subsequent chapters, it may be premature to say 
more than this at this point.

The need for numerical solution of EM problems is best expressed in the words of Paris 
and Hurd: “Most problems that can be solved formally (analytically) have been solved.” 
Until the 1940s, most EM problems were solved using the classical methods of separation of 
variables and integral equation solutions. Besides the fact that a high degree of ingenuity, 
experience, and effort were required to apply those methods, only a narrow range of 
practical problems could be investigated due to the complex geometries defining the 
problems.

EM started in the mid-1960s with the availability of modern high-speed digital computers. 
Since then, considerable effort has been expended on solving practical, complex EM-related 
problems for which closed-form analytical solutions are either intractable or do not exist. 
The numerical approach has the advantage of allowing the actual work to be carried out by 
operators without a knowledge of higher mathematics or physics, with a resulting economy 
of labor on the part of the highly trained personnel.

Before we set out to study the various techniques used in analyzing EM problems, it is 
expedient to remind ourselves of the physical laws governing EM phenomena in general. 
This will be done in Section 1.2. In Section 1.3, we shall become acquainted with different 
ways EM problems are categorized. The principle of superposition and the uniqueness 
theorem will be covered in Section 1.4.

Nature

�eory Experiment

Simulation

FIGURE 1.1
Relationship between experiment, theory, and simulation [1].
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1.2  Review of EM Theory

The whole subject of EM unfolds as a logical deduction from eight postulated equations, 
namely, Maxwell’s four field equations and four medium-dependent equations [3–6]. 
Before we briefly review these equations, it may be helpful to state two important theorems 
commonly used in EM. These are the divergence (or Gauss’s) theorem,

	

F S F⋅ = ∇⋅∫ ∫d dv
s v


	

(1.1)

and Stokes’s theorem

	

F I F S⋅ = ∇× ⋅∫ ∫d d
L S


	

(1.2)

Perhaps the best way to review EM theory is by using the fundamental concept of electric 
charge. EM theory can be regarded as the study of fields produced by electric charges 
at rest and in motion. Electrostatic fields are usually produced by static electric charges, 
whereas magnetostatic fields are due to motion of electric charges with uniform velocity 
(direct current). Dynamic or time-varying fields are usually due to accelerated charges or 
time-varying currents.

1.2.1  Electrostatic Fields

The two fundamental laws governing these electrostatic fields are Gauss’s law,

	
D ⋅ =∫ ∫dS ρvdv

	
(1.3)

which is a direct consequence of Coulomb’s force law, and the law describing electrostatic 
fields as conservative,

	
E I⋅ =∫ d 0

	
(1.4)

In Equations 1.3 and 1.4,

D = the electric flux density (C/m2)
ρv = the volume charge density (C/m3)
E = the electric field intensity (V/m)

The integral form of the laws in Equations 1.3 and 1.4 can be expressed in the differential 
form by applying Equations 1.1 through 1.3 and Equations 1.2 through 1.4. We obtain

	 ∇ ⋅ D = ρv	 (1.5)
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and

	 ∇ × E = 0	 (1.6)

The vector fields D and E are related as

	 D = εE	 (1.7)

where ε is the dielectric permittivity (F/m) of the medium. In terms of the electric potential 
V (V), E is expressed as

	 E = –∇V	 (1.8)

or

	
V = − ⋅∫ E Id

	
(1.9)

Combining Equations 1.5, 1.7, and 1.8 gives Poisson’s equation:

	 ∇ ⋅ ε∇V = –ρv	 (1.10a)

or, if ε is constant,

	
∇ = −2V vρ

ε 	
(1.10b)

When ρv = 0, Equation 1.10 becomes Laplace’s equation:

	 ∇ ⋅ ε∇V = 0	 (1.11a)

or for constant ε

	 ∇ =2 0V 	
(1.11b)

1.2.2  Magnetostatic Fields

The basic laws of magnetostatic fields are Ampere’s law

	

H I J S⋅ = ⋅∫ ∫d de

L S


	

(1.12)

which is related to Biot–Savart law, and the law of conservation of magnetic flux (also called 
Gauss’s law for magnetostatics)

	

B S⋅ =∫ d
S

 0

	
(1.13)
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where
H = the magnetic field intensity (A/m)
Je = the electric current density (A/m2)
B = the magnetic flux density (T or Wb/m2)

Applying Equations 1.2 to 1.12 and Equations 1.1 to 1.13 yields their differential forms as

	 ∇ × H = Je	 (1.14)

and

	 ∇ ⋅ B = 0	 (1.15)

The vector fields B and H are related through the permeability µ (H/m) of the medium as

	 B = µH	 (1.16)

Also, Je is related to E through the conductivity σ (mhos/m) of the medium as

	 Je = σE	 (1.17)

This is usually referred to as point form of Ohm’s law. In terms of the magnetic vector 
potential A (Wb/m)

	 B = ∇ × A	 (1.18)

Applying the vector identity

	 ∇ × (∇ × F) = ∇(∇ ⋅ F) – ∇2F	 (1.19)

to Equations 1.14 and 1.18 and assuming Coulomb gauge condition (∇ ⋅ A = 0) leads to 
Poisson’s equation for magnetostatic fields:

	
∇ = −2A Jµ e 	

(1.20)

When Je = 0, Equation 1.20 becomes Laplace’s equation

	 ∇ =2 0A 	
(1.21)

1.2.3  Time-Varying Fields

In this case, electric and magnetic fields exist simultaneously. Equations 1.5 and 1.15 remain 
the same whereas Equations 1.6 and 1.14 require some modification for dynamic fields. 
Modification of Equation 1.6 is necessary to incorporate Faraday’s law of induction, and 
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that of Equation 1.14 is warranted to allow for displacement current. The time-varying EM 
fields are governed by physical laws expressed mathematically as

	

∇⋅

∇⋅

∇× −
∂
∂

−

∇× +
∂
∂

D

B

E
B

J

H J
D

=

=

=

=

ρv

m
t

t

0

e
	

(1.22a)

where
Jm = σ*H is the magnetic conductive current density (V/m2)
σ* = the magnetic resistivity (Ω/m)

These equations are referred to as Maxwell’s equations in the generalized form. They are 
first-order linear coupled differential equations relating the vector field quantities to each 
other. The equivalent integral form of Equation 1.22 is

	

D S⋅ =∫ ∫d
S

v

v

dv ρ

                                       	
(1.23a)

	

B ⋅ =∫ dS
S

 0

           	      
(1.23b)

	

E I
B

J S⋅ = −
∂
∂

+






⋅∫ ∫d

L

m

S
t

d
	

(1.23c)

	

H I J
D

S⋅ = +
∂
∂







⋅∫ ∫d

L

e

S
t

d
 	

(1.23d)

In addition to these four Maxwell’s equations, there are four medium-dependent 
equations:

	

D E

B H

J E

J M

=

=

=

=

ε

µ

σ

σ

e

m
*

	

(1.24a)

(1.22b)

(1.22c)

(1.22d)

(1.24b)

(1.24c)

(1.24d)
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These are called constitutive relations for the medium in which the fields exist. Equations 
1.22 and 1.24 form the eight postulated equations on which EM theory unfolds itself. We 
must note that in the region where Maxwellian fields exist, the fields are assumed to be

	 1.	Single valued
	 2.	Bounded and
	 3.	Continuous functions of space and time with continuous derivatives.

It is worthwhile to mention two other fundamental equations that go hand-in-hand with 
Maxwell’s equations. One is the Lorentz force equation

	 F = Q(E + u × B)	 (1.25)

where F is the force experienced by a particle with charge Q moving at velocity u in an EM 
field; the Lorentz force equation constitutes a link between EM and mechanics. The other 
is the continuity equation

	
∇⋅ −

∂
∂

J =
ρv
t 	

(1.26)

which expresses the conservation (or indestructibility) of electric charge. The continuity 
equation is implicit in Maxwell’s equations (see Example 1.2). Equation 1.26 is not peculiar 
to EM. In fluid mechanics, where J corresponds with velocity and ρv with mass, Equation 
1.26 expresses the law of conservation of mass.

1.2.4  Boundary Conditions

The material medium in which an EM field exists is usually characterized by its constitutive 
parameters σ, ε, and µ. The medium is said to be linear if σ, ε, and µ are independent 
of E and H or nonlinear otherwise. It is homogeneous if σ, ε, and µ are not functions of 
space variables or inhomogeneous otherwise. It is isotropic if σ, ε, and µ are independent of 
direction (scalars) or anisotropic otherwise.

The boundary conditions at the interface separating two different media 1 and 2, with 
parameters (σ1, ε1, µ1) and (σ2, ε2, µ2) as shown in Figure 1.1, are easily derived from the 
integral form of Maxwell’s equations. They are

	 E1t = E2t  or  (E1 – E2) × an12 = 0	 (1.27a)

	 H1t – H21 = K  or  (H1 – H2) × an12 = K	 (1.27b)

	 D1n – D2n = ρS  or  (D1 – D2) ⋅ an12 = ρS	 (1.27c)

	 B1n – B2n = 0  or  (B1 – B2) ⋅ an12 = 0	 (1.27d)

where an12 is a unit normal vector directed from medium 1 to medium 2, subscripts 1 and 
2 denote fields in regions 1 and 2, and subscripts t and n, respectively, denote tangential 
and normal components of the fields. Equations 1.27a and 1.27d state that the tangential 
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components of E and the normal components of B are continuous across the boundary. 
Equation 1.27b states that the tangential component of H is discontinuous by the surface 
current density K on the boundary. Equation 1.27c states that the discontinuity in the 
normal component of D is the same as the surface charge density ρs on the boundary.

In practice, only two of Maxwell’s equations are used (Equations 1.22c and 1.22d) when 
a medium is source-free (J = 0, ρv = 0) since the other two are implied (see Problem 1.4). 
Also, in practice, it is sufficient to make the tangential components of the fields satisfy 
the necessary boundary conditions since the normal components implicitly satisfy their 
corresponding boundary conditions.

1.2.5  Wave Equations

As mentioned earlier, Maxwell’s equations are coupled first-order differential equations 
which are difficult to apply when solving boundary-value problems. The difficulty is 
overcome by decoupling the first-order equations, thereby obtaining the wave equation, 
a second-order differential equation which is useful for solving problems. To obtain the 
wave equation for a linear, isotropic, homogeneous, source-free medium (ρv = 0, J = 0) from 
Equation 1.22, we take the curl of both sides of Equation 1.22c. This gives

	
∇×∇× −

∂
∂

∇×E H= µ
t

( )
	

(1.28)

From Equation 1.22d,

	
∇× =

∂
∂

H
E

ε
t

since J = 0, so that Equation 1.28 becomes

	
∇×∇× −

∂
∂

E
E

= µε
2

2t 	
(1.29)

Applying the vector identity

	 ∇ × ∇ × F = ∇(∇ ⋅ F) – ∇2F	 (1.30)

in Equation 1.29,

	
∇ ∇⋅ −∇ −

∂
∂

( E E
E

) 2
2

2= µε
t

Since ρv = 0, ∇ ⋅ E = 0 from Equation 1.22a, and hence we obtain

	
∇ −

∂
∂

=2
2

2 0E
E

= µε
t 	

(1.31)
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which is the time-dependent vector Helmholtz equation or simply wave equation. If we had 
started the derivation with Equation 1.22d, we would obtain the wave equation for H as

	
∇ −

∂
∂

=2
2

2 0H
H

= µε
t 	

(1.32)

Equations 1.31 and 1.32 are the equations of motion of EM waves in the medium under 
consideration. The velocity (m/s) of wave propagation is

	
u =

1
µε 	

(1.33)

where u = c ≈ 3 × 108 m/s in free space. It should be noted that each of the vector equations 
in Equations 1.31 and 1.32 has three scalar components, so that altogether we have six scalar 
equations for Ex, Ey, Ez, Hx, Hy, and Hz. Thus, each component of the wave equations has 
the form

	
∇ −

∂
∂

=2
2

2

2

1
0Ψ

Ψ
u t 	

(1.34)

which is the scalar wave equation.

1.2.6  Time-Varying Potentials

Although we are often interested in electric and magnetic field intensities (E and H), which 
are physically measurable quantities, it is often convenient to use auxiliary functions in 
analyzing an EM field. These auxiliary functions are the scalar electric potential V and 
vector magnetic potential A. Although these potential functions are arbitrary, they are 
required to satisfy Maxwell’s equations. Their derivation is based on two fundamental 
vector identities (see Problem 1.1),

	 ∇ × ∇Φ = 0	 (1.35)

and

	 ∇∇ × F = 0	 (1.36)

which an arbitrary scalar field Φ and vector field F must satisfy. Maxwell’s equation 1.22b 
along with Equation 1.36 is satisfied if we define A such that

	 B= ∇×A 	 (1.37)

Substituting this into Equation 1.22c gives

	
−∇× +

∂
∂







 =E

A
t

0
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Since this equation has to be compatible with Equation 1.35, we can choose the scalar 
field V such that

	
E

A
+

∂
∂

= −∇
t

V

or

	
E

A
= −∇ −

∂
∂

V
t 	

(1.38)

Thus, if we knew the potential functions V and A, the fields E and B could be obtained 
from Equations 1.37 and 1.38. However, we still need to find the solution for the potential 
functions. Substituting Equations 1.37 and 1.38 into Equation 1.22d and assuming a linear, 
homogeneous medium,

	
∇×∇× =

∂
∂

−∇ −
∂
∂







A J

Aµ µ+ε
t

V
t

Applying the vector identity in Equation 1.30 leads to

	
∇ −∇ ∇⋅ − ∇

∂
∂

+ ∇
∂
∂

2
2

2A A J
A

( ) = +µ µ µε ε
t

V
t 	

(1.39)

Substituting Equation 1.38 into Equation 1.22a gives

	
∇⋅ = −∇ −

∂ ∇⋅
∂

E
A

=
ρ
ε

2V
t

( )

or

	
∇ +

∂
∂

∇⋅ −2V
t

vA =
ρ
ε 	

(1.40)

According to the Helmholtz theorem of vector analysis, a vector is uniquely defined if 
and only if both its curl and divergence are specified. We have only specified the curl of A 
in Equation 1.37 we may choose the divergence of A so that the differential equations (1.39) 
and (1.40) have the simplest forms possible. We achieve this in the so-called Lorentz condition

	
∇⋅ −

∂
∂

A = µε V
t 	

(1.41)

Incorporating this condition into Equations 1.39 and 1.40 results in

	
∇ −

∂
∂

= −2
2

2A
A

Jµ µε
t 	

(1.42)
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and

	
∇ −

∂
∂

= −2
2

2V µ ρ
ε

ε
V
t

v

	
(1.43)

which are inhomogeneous wave equations. Thus, Maxwell’s equations in terms of the 
potentials V and A reduce to the three Equations 1.41 through 1.43. In other words, the three 
equations are equivalent to the ordinary form of Maxwell’s equations in that potentials 
satisfying these equations always lead to a solution of Maxwell’s equations for E and B 
when used with Equations 1.37 and 1.38. Integral solutions to Equations 1.42 and 1.43 are 
the so-called retarded potentials

	
A

J
=

µ
π

[ ]dv
4 R∫ 	

(1.44)

and

	
V

dv
=

[ ]ρ
π
v

R4 ε∫ 	
(1.45)

where R is the distance from the source point to the field point, and the square brackets 
denote ρv and J are specified at a time R(µε)1/2 earlier than for which A or V is being 
determined.

1.2.7  Time-Harmonic Fields

Up to this point, we have considered the general case of arbitrary time variation of EM 
fields. In many practical situations, especially at low frequencies, it is sufficient to deal with 
only the steady-state (or equilibrium) solution of EM fields when produced by sinusoidal 
currents. Such fields are said to be sinusoidal time-varying or time-harmonic; that is, they 
vary at a sinusoidal frequency ω. An arbitrary time-dependent field F(x, y, z, t) or F(r, t) can 
be expressed as

	
F r F r( ) ( ), Ret es

j t= 





ω

	
(1.46)

where Fs(r) = Fs(x, y, z) is the phasor form of F(r, t) = F(x, y, z, t) and is in general complex, 
Re[] indicates “taking the real part of” quantity in brackets, and ω is the angular frequency 
(rad/s) of the sinusoidal excitation. The EM field quantities can be represented in phasor 
notation as

	

E r

D r

H r

B r

E r

D r

H

( , )
( , )
( , )
( , )

( )
( )
(

t

t

t

t

























= Re

s

s

s rr

B r

)
( )s

j te













































ω

 	

(1.47)
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Using the phasor representation allows us to replace the time derivations ∂/∂t by jω since

	

∂
∂

=
e
t

j e
j t

j t
ω

ωω

Thus, Maxwell’s equations, in sinusoidal steady state, become

	

∇⋅ =

∇⋅ =

∇× = − −

∇× = +

D

B

E B J

H J D

s vs

s

s s ms

s es s

j

j

ρ

ω

ω

0

	

(1.48a)

We should observe that the effect of the time-harmonic assumption is to eliminate the 
time dependence from Maxwell’s equations, thereby reducing the time-space dependence 
to space dependence only. This simplification does not exclude more general time-varying 
fields if we consider ω to be one element of an entire frequency spectrum, with all the Fourier 
components superposed. In other words, a nonsinusoidal field can be represented as

	

F r F r( , ) Ret = s
j te d( , )ω ωω

−∞

∞

∫
















	

(1.49)

Thus, the solutions to Maxwell’s equations for a nonsinusoidal field can be obtained by 
summing all the Fourier components Fs(r, ω) over ω. Henceforth, we drop the subscript s 
denoting phasor quantity when no confusion results.

Replacing the time derivative in Equation 1.34 by (jω)2 yields the scalar wave equation in 
phasor representation as

	 ∇ + =2 2 0Ψ Ψk 	 (1.50)

where k is the propagation constant (rad/m), given by

	
k

u
f

u
= = =

ω π π
λ

2 2

	
(1.51)

We recall that Equations 1.31 through 1.34 were obtained assuming that ρv = 0 = J. 
If ρv ≠ 0 ≠ J, Equation 1.50 will have the general form (see Problem 1.5)

	
∇ + =2 2Ψ Ψk g

	
(1.52)

We notice that this Helmholtz equation reduces to

	 1.	Poisson’s equation

	 ∇2Ψ = g	 (1.53)

		  when k = 0 (i.e., ω = 0 for static case).

(1.48b)

(1.48c)

(1.48d)
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	 2.	Laplace’s equation

	 ∇2Ψ = 0	 (1.54)

when k = 0 = g.
Thus, Poisson’s and Laplace’s equations are special cases of the Helmholtz equation. Note 

that function Ψ is said to be harmonic if it satisfies Laplace’s equation.

EXAMPLE 1.1

From the divergence theorem, derive Green’s theorem

	

( )U V V U dv U
V
n

V
U
n

d
v S

∇ − ∇ =
∂
∂

−
∂
∂







⋅∫ ∫2 2  S

where ( )∂ ∂ = ∇ ⋅Φ Φ/ n na  is the directional derivative of Φ along the outward normal 
to S.

Solution

In Equation 1.1, let F = U∇V, then

	 v S

U V dv U V d∫ ∫∇⋅ ∇ = ∇ ⋅( ) S
	

(1.55)

However,

	

∇⋅ ∇ = ∇⋅∇ +∇ ⋅∇

= ∇ +∇ ⋅∇

( )U V U V V U

U V U V2

Substituting this into Equation 1.55 gives Green’s first identity:

	 v S

U V U V dv U V d∫ ∫∇ +∇ ⋅∇ = ∇ ⋅( )2 S
	

(1.56)

By interchanging U and V in Equation 1.56, we obtain

	
∫ ∫∇ +∇ ⋅∇ = ∇ ⋅
v S

V U V U dv V U d( )2 S
	

(1.57)

Subtracting Equation 1.57 from Equation 1.56 leads to Green’s second identity or Green’s 
theorem:

	

( ) ( )U V V U dv U V V U d
Sv

∇ − ∇ = ∇ − ∇ ⋅∫∫ 2 2 S
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EXAMPLE 1.2

Show that the continuity equation is implicit (or incorporated) in Maxwell’s equations.

Solution

According to Equation 1.36, the divergence of the curl of any vector field is zero. Hence, 
taking the divergence of Equation 1.22d gives

	
0 = ∇⋅∇× = ∇⋅ +

∂
∂

∇⋅H J D
t

However, ∇ ⋅ D = ρv is from Equation 1.22a. Thus,

	
0 = ∇⋅

∂
∂

J +
ρv

t

which is the continuity equation.

EXAMPLE 1.3

Express

	 a.	 E = 10sin(ωt – kz)ax + 20cos(ωt – kz)ay in phasor form.
	 b.	H a as x

j
zj x e x= − + °( ) ( )4 3 10sin /  in instantaneous form.

Solution

	 a.	 We can express sinθ as cos(θ – π/2). Hence,

	

E = − − + −

= +− − −

10 2 20

10 202

cos( ) cos( )

Re /

ω π ω
π

t kz t kz

e e e

x y

jkz j
x

/ a a

a jjkz
y

j t

s
j t

e

e

a

E

( )





= 





ω

ωRe

Thus,

	

Es
jkz j

x
jkz

y

x y
jkz

e e

e

= +

= − +

− − −

−

10 20

10 20

2e

j

π/

( )

a a

a a

	 b.	 Since

	

H H

a a

= 





= +






− ° + °

Re

Re sin ( . ) ( )

s
j t

j t
x

j t
z

e

xe
x
e

ω

ω ω5
136 87 10 





= − ° + + °












5 36 87
1

10sin cos( . ) cos( )x t
x

tx zω ωa a
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1.3  Classification of EM Problems

Classifying EM problems will help us later to answer the question of what method is best 
for solving a given problem. Continuum problems are categorized differently depending 
on the particular item of interest, which could be one of these:

	 1.	The solution region of the problem
	 2.	The nature of the equation describing the problem, or
	 3.	The associated boundary conditions.

(In fact, the above three items define a problem uniquely.) It will soon become evident 
that these classifications are sometimes not independent of each other.

1.3.1  Classification of Solution Regions

In terms of the solution region or problem domain, the problem could be an interior 
problem, also variably called an inner, closed, or bounded problem, or an exterior problem, 
also variably called an outer, open, or unbounded problem.

Consider the solution region R with boundary S, as shown in Figure 1.2. If part or all of S is 
at infinity, R is exterior/open, otherwise R is interior/closed. For example, wave propagation 
in a waveguide is an interior problem, whereas wave propagations in free space scattering 
of EM waves by raindrops, and radiation from a dipole antenna are exterior problems.

A problem can also be classified in terms of the electrical, constitutive properties (σ, ε, µ) 
of the solution region. As mentioned in Section 1.2.4, the solution region could be linear 
(or nonlinear), homogeneous (or inhomogeneous), and isotropic (or anisotropic). We shall 
be concerned, for the most part, with linear, homogeneous, isotropic media in this chapter.

1.3.2  Classification of Differential Equations

EM problems are classified in terms of the equations describing them. The equations could 
be differential or integral or both. Most EM problems can be stated in terms of an operator 
equation

	
L gΦ =

	
(1.58)

FIGURE 1.2
Solution region R with boundary S.
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where L is an operator (differential, integral, or integro-differential), g is the known excitation or 
source, and Φ is the unknown function to be determined. A typical example is the electrostatic 
problem involving Poisson’s equation. In differential form, Equation 1.58 becomes

	
−∇ =2V vρ

ε 	
(1.59)

so that L = –∇2 is the Laplacian operator, g = ρv/ε is the source term, and Φ = V is the 
electric potential. In integral form, Poisson’s equation is of the form

	
∇ = ∫ ρ

π
vdv
r4 ε 	

(1.60)

so that

	
L

dv
r

g V v= = =∫ 4π
ρ, , and Φ /ε

In this section, we shall limit our discussion to differential equations; integral equations 
will be considered in detail in Chapter 5.

As observed in Equations 1.52 through 1.54, EM problems involve linear, second-order 
differential equations. In general, a second-order partial differential equation (PDE) is 
given by

	
a

x
b

x y
c

y
d

x
e

y
f g

∂
∂

+
∂

∂ ∂
+

∂
∂

+
∂
∂

+
∂
∂

+ =
2

2

2 2

2

Φ Φ Φ Φ Φ
Φ

or simply

	
a b c d e f gxx xy yy x yΦ Φ Φ Φ Φ Φ+ + + + + =

	
(1.61)

The coefficients, a, b, and c in general are functions of x and y; they may also depend on Φ 
itself, in which case the PDE is said to be nonlinear. A PDE in which g(x, y) in Equation 1.61 
equals zero is termed homogeneous; it is inhomogeneous if g(x, y) ≠ 0. Notice that Equation 
1.61 has the same form as Equation 1.58, where L is now a differential operator given by

	
L a

x
b

x
c

y
d

x
e

y
f

y
=

∂
∂

+
∂

∂ ∂
+

∂
∂

+
∂
∂

+
∂

∂
+

2

2

2 2

2

	
(1.62)

A PDE in general can be associated with both boundary values and initial values. PDEs 
whose boundary conditions are specified are called steady-state equations. If only initial 
values are specified, they are called transient equations.

Any linear second-order PDE can be classified as elliptic, hyperbolic, or parabolic 
depending on the coefficients a, b, and c. Equation 1.61 is said to be

	

Elliptic if

Hyperbolic if

Parabolic if

b ac

ac

ac

2

2

2

4 0

4 0

4 0

− <

− >

− =

b

b 	

(1.63)
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The terms hyperbolic, parabolic, and elliptic are derived from the fact that the quadratic 
equation

	 ax bxy cy dx ey f2 2 0+ + + + + =

represents a hyperbola, parabola, or ellipse if b2  – 4ac is positive, zero, or negative, respectively. 
In each of these categories, there are PDEs that model certain physical phenomena. Such 
phenomena are not limited to EM but extend to almost all areas of science and engineering. 
Thus, the mathematical model specified in Equation 1.61 arises in problems involving heat 
transfer, boundary-layer flow, vibrations, elasticity, electrostatic, wave propagation, and so on.

Elliptic PDEs are associated with steady-state phenomena, that is, boundary-value 
problems. Typical examples of this type of PDE include Laplace’s equation

	

∂
∂

+
∂
∂

=
2

2

2

2 0
Φ Φ
x y 	

(1.64)

and Poisson’s equation

	

∂
∂

+
∂
∂

=
2

2

2

2

Φ Φ
x y

g x y( , )
	

(1.65)

where in both cases a = c = 1, b = 0. An elliptic PDE usually models an interior problem, 
and hence the solution region is usually closed or bounded as in Figure 1.3a.

Hyperbolic PDEs arise in propagation problems. They are usually posed as initial 
value problems. The solution region is usually open so that a solution advances outward 
indefinitely from initial conditions while always satisfying specified boundary conditions. 
A typical example of hyperbolic PDE is the wave equation in one dimension

	

∂
∂

=
∂
∂

2

2 2

2

2

1Φ Φ
x u t 	

(1.66)

where a = u2, b = 0, c = −1. Notice that the wave equation in Equation 1.50 is not hyperbolic 
but elliptic since the time-dependence has been suppressed and the equation is merely the 
steady-state solution of Equation 1.34.

Parabolic PDEs are generally associated with problems in which the quantity of interest 
varies slowly in comparison with the random motions which produce the variations. The 
most common parabolic PDE is the diffusion (or heat) equation in one dimension

	

∂
∂

=
∂
∂

2

2

Φ Φ
x

k
t 	

(1.67)

where a = 1, b = 0 = c. Like hyperbolic PDE, the solution region for parabolic PDE is usually 
open, as in Figure 1.3b. The initial and boundary conditions typically associated with 
parabolic equations resemble those for hyperbolic problems except that only one initial 
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condition at t = 0 is necessary since Equation 1.67 is only first order in time. Also, parabolic 
and hyperbolic equations are solved using similar techniques, whereas elliptic equations 
require different techniques.

Note that (1) since the coefficients a, b, and c are in general functions of x and y, the 
classification of Equation 1.61 may change from point to point in the solution region, and 
(2) PDEs with more than two independent variables (x, y, z, t, …) may not fit as neatly into 
the classification above. A summary of our discussion so far in this section is shown in 
Table 1.1.

The type of problem represented by Equation 1.58 is said to be deterministic since the quantity 
of interest can be determined directly. Another type of problem where the quantity is found 
indirectly is called nondeterministic or eigenvalue. The standard eigenproblem is of the form

	 LΦ = λΦ	 (1.68)

TABLE 1.1

Classification of Partial Differential Equations

Type Sign of b2 – 4ac Example Solution Region

Elliptic − Laplace’s equation:
Φxx + Φyy = 0

Closed

Hyperbolic + Wave equation:
u2Φxx = Φtt

Open

Parabolic 0 Diffusion equation:
Φxx = kΦt

Open

FIGURE 1.3
(a) Elliptic, (b) parabolic, or hyperbolic problem.
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where the source term in Equation 1.58 has been replaced by λΦ. A more general version is 
the generalized eigenproblem having the form

	 L MΦ Φ= λ 	 (1.69)

where M, like L, is a linear operator for EM problems. In Equations 1.68 and 1.69, only some 
particular values of λ called eigenvalues are permissible; associated with these values are 
the corresponding solutions Φ called eigenfunctions. Eigenproblems are usually encountered 
in vibration and waveguide problems where the eigenvalues λ correspond to physical 
quantities such as resonance and cutoff frequencies, respectively.

1.3.3  Classification of Boundary Conditions

Our problem consists of finding the unknown function Φ of a partial differential equation. 
In addition to the fact that Φ satisfies Equation 1.58 within a prescribed solution region R, Φ 
must satisfy certain conditions on S, the boundary of R. Usually these boundary conditions 
are of the Dirichlet and Neumann types. Where a boundary has both, a mixed boundary 
condition is said to exist.

	 1.	Dirichlet boundary condition:

	 Φ( ) ,r r= 0 on S 	 (1.70)

	 2.	Neumann boundary condition:

	

∂
∂

=
Φ( )

,
r

r
n

0 on S,
	

(1.71)

		  that is, the normal derivative of Φ vanishes on S.

	 3.	Mixed boundary condition:

	

∂
∂

+ =
Φ

Φ
( )

( ) ( ) ,
r

r r r
n

h 0 on S,
	

(1.72)

where h(r) is a known function and ∂Φ/∂n is the directional derivative of Φ along the 
outward normal to the boundary S, that is,

	

∂
∂

= ∇ ⋅
Φ

Φ
n

na
	

(1.73)

where an is a unit normal directed out of R, as shown in Figure 1.4. Note that the Neumann 
boundary condition is a special case of the mixed condition with h(r) = 0.

The conditions in Equations 1.70 through 1.72 are called homogeneous boundary conditions. 
The more general ones are the inhomogeneous.
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	 1.	Dirichlet:   Φ(r) = p(r),  r on S� (1.74)

	 2.	Neumann: 
∂

∂
=

Φ(
(

r
r r

)
), on S

n
q � (1.75)

	 3.	Mixed:   
∂

∂
= =

Φ
Φ

(
( ( ( ,

r
r r r r

)
) ) ) on S

n
h w � (1.76)

where p(r), q(r), and w(r) are explicitly known functions on the boundary S. For example, 
Φ(0) = 1 is an inhomogeneous Dirichlet boundary condition, and the associated 
homogeneous counterpart is Φ(0) = 0. Also Φ′(1) = 2 and Φ′(1) = 0 are, respectively, 
inhomogeneous and homogeneous Neumann boundary conditions. In electrostatics, for 
example, if the value of electric potential is specified on S, we have Dirichlet boundary 
condition, whereas if the surface charge (ρs = Dn = ε(∂V/∂n)) is specified, the boundary 
condition is Neumann. The problem of finding a function Φ that is harmonic in a region is 
called a Dirichlet problem (or Neumann problem) if Φ(or (∂Φ/∂n)) is prescribed on the boundary 
of the region.

It is worth observing that the term homogeneous has been used to mean different things. 
The solution region could be homogeneous meaning that σ, ε, and µ are constant within R; 
the PDE could be homogeneous if g = 0 so that LΦ = 0; and the boundary conditions are 
homogeneous when p(r) = q(r) = w(r) = 0.

EXAMPLE 1.4

Classify these equations as elliptic, hyperbolic, or parabolic:

	 a.	 4Φxx + ∂2Φx + Φy + x + y = 0

	 b.	 e
V
x

y
V

x y
V
y

x ∂
∂

+
∂

∂ ∂
−

∂
∂

=
2

2

2 2

2 0cos .

State whether the equations are homogeneous or inhomogeneous.

Solution

	 a.	 In this PDE, a = 4, b = 0 = c. Hence,

	 b2 – 4ac = 0,

		  that is, the PDE is parabolic. Since g = –x – y, the PDE is inhomogeneous.
	 b.	 For this PDE, a = ex, b = cos y, c = –1. Hence,

	 b2 – 4ac = cos2y + 4ex > 0

		  and the PDE is hyperbolic. Since g = 0, the PDE is homogeneous.

FIGURE 1.4
Interface between two media.
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1.4  Some Important Theorems

Two theorems are of fundamental importance in solving EM problems. These are the 
principle of superposition and the uniqueness theorem.

1.4.1  Superposition Principle

The principle of superposition is applied in several ways. We shall consider two of these.
If each member of a set of functions Φn, n = 1, 2, …, N, is a solution to the PDE LΦ = 0 with 

some prescribed boundary conditions, then a linear combination

	
Φ Φ ΦN n n

n

N

a= +
=

∑0

1 	
(1.77)

also satisfies LΦ = g.
Given a problem described by the PDE

	 LΦ = g	 (1.78)

subject to the boundary conditions

	

M s

M s

M sN N

1 1

2 2

( )
( )

( ) ,

=
=

=

h

h

h



	

(1.79)

as long as L is linear, we may divide the problem into a series of problems as follows:

	

L g L L

M s M s h M s

M s M s M s

NΦ Φ Φ0 1

1 1 1 1

2 2 2

0
0 0
0 0

= = =
= = =
= =

0 �

�

�

( ) ( ) ( )
( ) ( ) ( ))

( ) ( ) ( )

=

= = =

0

0 0
� � �

�M s M s M s hN N N N 	

(1.80)

where Φ0, Φ1, …, ΦN are the solutions to the reduced problems, which are easier to solve than 
the original problem. The solution to the original problem is given by

	
Φ Φ=

=
∑ n

n

N

0 	
(1.81)

1.4.2  Uniqueness Theorem

This theorem guarantees that the solution obtained for a PDE with some prescribed 
boundary conditions is the only one possible. For EM problems, the theorem may be 
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stated as follows: If in any way a set of fields (E, H) is found which satisfies simultaneously 
Maxwell’s equations and the prescribed boundary conditions, this set is unique. Therefore, 
a field is uniquely specified by the sources (ρv , J) within the medium plus the tangential 
components of E or H over the boundary.

To prove the uniqueness theorem, suppose there exist two solutions (with subscripts 1 
and 2) that satisfy Maxwell’s equations

	 ∇⋅ =εE1 2, ρv        	       (1.82a)

	 ∇⋅ =H1 2 0,          	       (1.82b)

	
∇× = −

∂
∂

E
H

1 2
1 2

,
,µ

t      	  
(1.82c)

	
∇× = +

∂
∂

H J E
E

1 2 1 2
1 2

, ,
,+σ ε

t 	
(1.82d)

If we denote the difference of the two fields as ΔE = E2 – E1 and ΔH = H2 – H1, ΔE and 
ΔH must satisfy the source-free Maxwell’s equations, that is,

	 ∇⋅ ∆ε E 0= 	 (1.83a)

	 ∇⋅∆H 0= 	 (1.83b)

	
∇×∆ −

∂
∂

E
H

= µ ∆
t 	

(1.83c)

	
∇× ∆

∂
∂

∆
∆

H E
E

= +σ ε
t 	

(1.83d)

Dotting both sides of Equation 1.83d with ΔE gives

	
∆ ∆

∆
E H E E

E
⋅∇× ∆ ∇ ⋅

∂
∂

= +σ| |2 ε
t 	

(1.84)

Using the vector identity	

	 A(∇ × B) = B ⋅ (∇ × A) – ∇ ⋅ (A × B)

Equation 1.84 becomes

	
∇⋅ × −

∂
∂

+( )−( | | |∆ ∆ ∆ ∆ ∆E H H| E E) | |=
1
2

2 2 2

t
µ σε
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Integrating over volume v bounded by surface S and applying divergence theorem to the 
left-hand side, we obtain

	

( ) | | | |

| |

∆ ∆ ∆ ∆

∆

E H S E H

E

× ⋅ = −
∂
∂

+












−

∫ ∫

∫

d
t

dv

dv

S v

v

 1
2

1
2

2 2ε µ

σ
	

(1.85)

showing that ΔE and ΔH satisfy the Poynting theorem just as E1,2 and H1,2. Only the 
tangential components of ΔE and ΔH contribute to the surface integral on the left-hand 
side of Equation 1.85. Therefore, if the tangential components of E1 and E2 or H1 and H2 are 
equal over S (thereby satisfying Equation 1.27), the tangential components of ΔE and ΔH 
vanish on S. Consequently, the surface integral in Equation 1.85 is identically zero, and 
hence the right-hand side of the equation must vanish also. It follows that ΔE = 0 due to 
the second integral on the right-hand side, and hence also ΔH = 0 throughout the volume. 
Thus, E1 = E2 and H1 = H2, confirming that the solution is unique.

The theorem just proved for time-varying fields also holds for static fields as a special 
case. In terms of electrostatic potential V, the uniqueness theorem may be stated as follows: 
A solution to ∇2V = 0 is uniquely determined by specifying either the value of V or the 
normal component of ∇V at each point on the boundary surface. For a magnetostatic field, 
the theorem becomes: A solution of ∇2A = 0 (and ∇A = 0) is uniquely determined by 
specifying the value of A or the tangential component of B = (∇ × A) at each point on the 
boundary surface.

PROBLEMS

	1.1	 In a coordinate system of your choice, prove that
	 a.	 ∇ × ∇Φ = 0,
	 b.	 ∇ ⋅ ∇ × F = 0,
	 c.	 ∇ × ∇ × F = ∇ (∇ ⋅ F) – ∇2F,
		  where Φ and F are scalar and vector fields, respectively.
	1.2	 If U and V are scalar fields, show that

	
U V d V U d

LL
∇ ⋅ − ∇ ⋅∫∫ I I= 

	1.3	 If U(x, y, z) and V(x, y, z) are two continuous functions with continuous derivatives 
over a smooth closed surface, show that

	

( ) ( )U V d U V U V dv
S v

∇ ⋅ = ∇ +∇ ⋅∇∫ ∫S 2

	1.4	 Show that in a source-free region (J = 0, ρv = 0), Maxwell’s equations can be 
reduced to the two curl equations.
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	1.5	 In deriving the wave equations (1.31) and (1.32), we assumed a source-free medium 
(J = 0, ρv = 0). Show that if ρv ≠ 0, J ≠ 0, the equations become

	

∇ −
∂
∂

= ∇
∂
∂

∇ −
∂
∂

= −∇×

2
2

2

2

2
2

2

2

1

1

E
E J

H
H

J

c t t

c t

v( ,ρ µ/ε)+

		  What assumptions have you made to arrive at these expressions?
	1.6	 Derive the continuity equation

	
∇ = −

∂
∂

⋅ J
ρv

t

		  from Maxwell’s equations.
	1.7	 Starting with Maxwell’s equations, derive the vector wave equation:

	
ε

µ
∂
∂

+∇× ∇× = −
∂
∂

2

2

1E
E

J
t t

	1.8	 Starting with Maxwell’s equations, show that

	 a.	 ∇×∇×
∂
∂

= ∇×H
H

J+ µε
2

2t

	 b.	 ∇×∇×
∂
∂

= −
∂
∂

E
E J

+ µε µ
2

2t t
	1.9	 Given the total EM energy

	

W = ⋅ ⋅∫1
2

(E D H B+ )dv
υ

		  show from Maxwell’s equations that

	

∂
∂

= − × ⋅ − ⋅∫ ∫W
t

d
S

( )E H E J S dv
υ

	1.10	 Determine whether the fields

	

E a a

H a

= − − +

= − + +

20 10

10 20
0

sin( ) cos( )

[ cos( ) si

ω ω

ωµ
ω

t kz kz

k
x y

x

t

t kz nn ]( ) ,ωt kz y− a

		  where k = ω µ0 0ε  , satisfy Maxwell’s equations.
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	1.11	 In free space, the electric flux density is given by

	 D = D0cos(ωt + βz)ax

		  Use Maxwell’s equation to find H.
	1.12	 In free space, a source radiates the magnetic field

	
Hs H=

−

0
e jβρ

φ
ρ

a

		  where β ω µ= 0 0ε . Determine Es.
	1.13	 In a homogenous, lossless, source-free medium,

	

E E a

H
E

a

s o
j z

x

s
j z

x

e

e

=

=

−

−

β

β

η
0

		  Find β and η for which E and H satisfy Maxwell’s equations.
	1.14	 The field of the TE12 mode of a rectangular waveguide for 0 < x < a, 0 < y < b is

	

H
a
H

x
a

t z

H

H H
x
a

x o

y

z o

= −






 −

=

=








β
π

π ω β

π

sin sin( )

cos

0

 −cos( )ω βt z

		  Determine the surface current densities that are required at x = 0, x = a, y = 0, 
y = b to sustain the field.

	1.15	 In free space, the following electric field vector exists.

	 E a= −cos( )ω βt z x

	 a.	 Does the field vector satisfy the wave equation

	
∇ −

∂
∂











=2
2

2 0µ εo o
t

E

	 b.	 What is the relationship between ω and β?
	 c.	 Find the magnetic field vector corresponding to the electric field vector.
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	1.16	 An electric dipole of length L in free space has a field given in spherical system 
(r, θ, φ) as

	
H as

j rIL
r r

j e= +








−

4
1

π
θ β β

φsin .

		  Find Es using Maxwell’s equations.
1.17	 Show that the electric field

	 E as x y zk x k y= 20sin( )cos( )

		  where k kx y
2 2 2+ = ω µ εo o  can be represented as the superposition of four propagating 

plane waves. Find the corresponding Hs field.

	1.18		 a.	 Express I es
jz= −  sin π x cos π y in instantaneous form.

	 b.	 Determine the phasor form of V = 20 sin(ωt − 2x) − 10 cos(ωt − 4x)
	1.19	 For each of the following phasors, determine the corresponding instantaneous 

form:

	 a.	 A a as x y
jzj e= + −( ) 2

	 b.	 B a as x
j z

zj x e= + − −10 5 12 4sin π/

	 c.	 Cs
j x x j x

j
e x e= +− −2 3 3 42cos

	1.20	 Show that a time-harmonic EM field in a conducting medium (σ >> ωε) satisfies 
the diffusion equation

	 ∇ − =2E E 0s sjωµσ

	1.21	 Use Maxwell’s equations to obtain a partial differential equation for Az.
	1.22	 What is the relationship between the scalar and vector potentials used in defining 

Lorenz gauge?
	1.23	 Given two points P(x, y, z) and P’(x’, y’, z’), let R = r − r’ and R = |R|.

	
Show that ∇







 = − ′∇







 = −

1 1
3R R R

R

	1.24	 Classify the following PDEs as elliptic, parabolic, or hyperbolic.
	 a.	 Φ Φ Φxx xy yy+ + =2 5 0

	 b.	 ( ) ( )y xxx yy
2 21 1 0+ + + =Φ Φ

	 c.	 Φ Φ Φ Φxx xy yy yx x y− − + − =2 3 02cos ( sin )
	 d.	 x xy y x yxx xy yy x y

2 22 0Φ Φ Φ Φ Φ− + + + =
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	1.25	 Repeat Problem 1.24 for the following PDEs.

	 a.		 α β α β∂
∂

=
∂
∂

+
∂
∂

=
2

2

Φ Φ Φ
x x t

( , )constant

		  which is called convective heat equation.
	 b.	 ∇ + =2 0φ λΦ
		  which is the Helmholtz equation.
	 c.		  ∇ + − =2 0Φ Φ[ ( )]λ ρ x
		  which is the time-independent Schrodinger equation.
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2
Analytical Methods

Science never solves a problem without creating ten more.

—George B. Shaw

2.1  Introduction

The most satisfactory solution of a field problem is an exact mathematical one. Although 
in many practical cases such an analytical solution cannot be obtained and we must resort 
to numerical approximate solution, an analytical solution is useful in checking solutions 
obtained from numerical methods. Also, one would hardly appreciate the need for 
numerical methods without first seeing the limitations of the classical analytical methods. 
Hence, our objective in this chapter is to briefly examine the common analytical methods 
and thereby put numerical methods in proper perspective.

The most commonly used analytical methods in solving EM-related problems include [1]

	 1.	Separation of variables
	 2.	Series expansion method
	 3.	Conformal mapping
	 4.	 Integral methods
	 5.	Perturbation methods

Perhaps, the most powerful analytical method is the separation of variables; it is the 
method that will be emphasized in this chapter. Since the application of conformal mapping 
is restricted to certain EM problems, it will not be discussed here. The interested reader is 
referred to Gibbs [2]. The integral methods will be covered in Chapter 5.

2.2  Separation of Variables

The method of separation of variables (sometimes called the method of Fourier) is a 
convenient method for solving a partial differential equation (PDE). Basically, it entails 
seeking a solution which breaks up into a product of functions, each of which involves only 
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one of the variables. For example, if we are seeking a solution Φ(x, y, z, t) to some PDE, we 
require that it has the product form

	 Φ( , , , ) ( ) ( ) ( ) ( )x y z t X x Y y Z z T t= 	 (2.1)

A solution of the form in Equation 2.1 is said to be separable in x, y, z, and t. For example, 
consider the functions

	 1.	x yz t2 10sin ,

	 2.	xy
t

2 2
+ ,

	 3.	( ) cos2 102x y z t+

(1) Is completely separable, (2) is not separable, while (3) is separable only in z and t.
To determine whether the method of independent separation of variables can be applied 

to a given physical problem, we must consider the PDE describing the problem, the shape of 
the solution region, and the boundary conditions—the three elements that uniquely define 
a problem. For example, to apply the method to a problem involving two variables x and y 
(or ρ and φ, etc.), three things must be considered [3]:

	 1.	The differential operator L must be separable, that is, it must be a function of Φ(x, y) 
such that

	

L X x Y y
x y X x Y y
{ ( ) ( )}

( , ) ( ) ( )Φ

		  is a sum of a function of x only and a function of y only.
	 2.	All initial and boundary conditions must be on constant-coordinate surfaces, that 

is, x = constant, y = constant.
	 3.	The linear operators defining the boundary conditions at x = constant (or 

y = constant) must involve no partial derivatives of Φ with respect to y (or x), and 
their coefficient must be independent of y (or x).

For example, the operator equation

	
L

x x y y
Φ

Φ Φ Φ
=

∂
∂

+
∂

∂ ∂
+

∂
∂

2

2

2 2

2

violates (1). If the solution region R is not a rectangle with sides parallel to the x and y axes, 
(2) is violated. With a boundary condition Φ = 0 on a part of x = 0 and ∂Φ/∂x = 0 on another 
part, (3) is violated.

With this preliminary discussion, we will now apply the method of separation of variables 
to PDEs in rectangular, circular cylindrical, and spherical coordinate systems. In each of 
these applications, we shall always take these three major steps:

	 1.	Separate the (independent) variables
	 2.	Find particular solutions of the separated equations, which satisfy some of the 

boundary conditions
	 3.	Combine these solutions to satisfy the remaining boundary conditions.
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We begin the application of separation of variables by finding the product solution of the 
homogeneous scalar wave equation

	
∇ −

∂
∂

=2
2

2

2

1
0Φ

Φ
c t 	

(2.2)

Solution to Laplace’s equation can be derived as a special case of the wave equation. 
Diffusion or heat equation can be handled in the same manner as we will treat the wave 
equation. To solve Equation 2.2, it is expedient that we first separate the time dependence. 
We let

	 Φ( , ) ( ) ( )r rt U T t= 	 (2.3)

Substituting this in Equation 2.2,

	
T U

c
UT∇ − ′′ =2

2

1
0

Dividing by UT gives

	
∇

=
′′2

2

U
U

T
c T 	

(2.4)

The left-hand side is independent of t, while the right-hand side is independent of r; 
the equality can be true only if each side is independent of both variables. If we let an 
arbitrary constant –k2 be the common value of the two sides, Equation 2.4 reduces to

	 ′′ + =T c k T2 2 0,	 (2.5a)

	 ∇ + =2 2 0U k U 	 (2.5b)

Thus, we have been able to separate the space variable r from the time variable t. The 
arbitrary constant –k2 introduced in the course of the separation of variables is called 
the separation constant. We shall see that in general the total number of independent 
separation constants in a given problem is one less than the number of independent 
variables involved.

Equation 2.5a is an ordinary differential equation with solution

	 T t a e a ejckt jckt( ) = + −
1 2 	 (2.6a)

or

	 T t b ckt b ckt( ) cos( ) sin( )= +1 2 	 (2.6b)

Since the time dependence does not change with a coordinate system, the time 
dependence expressed in Equation 2.6a,b is the same for all coordinate systems. 
Therefore, we shall henceforth restrict our effort to seeking a solution to Equation 2.5b. 
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Notice that if k = 0, the time dependence disappears and Equation 2.5b becomes Laplace’s 
equation.

2.3  Separation of Variables in Rectangular Coordinates

In order not to complicate things, we shall first consider Laplace’s equation in two 
dimensions and later extend the idea to wave equations in three dimensions.

2.3.1  Laplace’s Equation

Consider the Dirichlet problem of an infinitely long rectangular conducting trough whose 
cross section is shown in Figure 2.1. For simplicity, let three of its sides be maintained at 
zero potential while the fourth side is at a fixed potential Vo. This is a boundary value 
problem. The PDE to be solved is

	

∂
∂

+
∂
∂

=
2

2

2

2 0
V
x

V
y 	 (2.7)

subject to (Dirichlet) boundary conditions

	 V(0, y) = 0	 (2.8a)

	 V(a, y) = 0	 (2.8b)

	 V(x, 0) = 0	 (2.8c)

	 V(x, b) = Vo	 (2.8d)

We let

	 V(x, y) = X(x)Y(y)	 (2.9)

FIGURE 2.1
Cross section of the rectangular conducting trough.
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Substitute this into Equation 2.7 and divide by XY. This leads to

	
′′

+
′′

=
X
X

Y
Y

0

or

	
′′

= −
′′

=
X
X

Y
Y

λ
	

(2.10)

where λ is the separation constant. Thus, the separated equations are

	 ′′− =X Xλ 0	 (2.11)

	 ′′ + =Y Yλ 0	 (2.12)

To solve the ordinary differential equations (2.11) and (2.12), we must impose the boundary 
conditions in Equation 2.8. However, these boundary conditions must be transformed so 
that they can be applied directly to the separated equations. Since V = XY,

	 V y X( , ) ( )0 0 0 0= → = 	 (2.13a)

	 V a y X a( , ) ( )= → =0 0	 (2.13b)

	 V x Y( , ) ( )0 0 0 0= → = 	 (2.13c)

	 V x b V X x Y b Vo o( , ) ( ) ( )= → = 	 (2.13d)

Notice that only the homogeneous conditions are separable. To solve Equation 2.11, we 
distinguish the three possible cases: λ = 0, λ > 0, and λ < 0.

Case 1: If λ = 0, Equation 2.11 reduces to

	
′′ = =X

d X
dx

0 0
2

2or
	

(2.14)

which has the solution

	 X x a x a( ) = +1 2	 (2.15)

where a1 and a2 are constants. Imposing the conditions in Equations 2.13a and 2.13b,

	

X a

X a a

( )
( )
0 0 0

0 0
2

1

= → =
= → =

Hence, X(x) = 0, a trivial solution. This renders case λ = 0 as unacceptable.

Case 2: If λ > 0, say λ = α2, Equation 2.11 becomes

	 ′′− =X Xα2 0	 (2.16)
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with the corresponding auxiliary equations m2 – α2 = 0 or m = ±α. Hence, the general 
solution is

	 X b e b ex x= +−
1 2

α α
	 (2.17)

or

	 X b x b x= +3 4sinh coshα α 	 (2.18)

The boundary conditions are applied to determine b3 and b4.

	

X b

X a b

( )
( )
0 0 0

0 0
4

3

= → =
= → =

since sinh ax is never zero for α > 0. Hence, X(x) = 0, a trivial solution, and we conclude 
that case λ > 0 is not valid.

Case 3: If λ < 0, say λ = –β 2, Equation 2.11 becomes

	 ′′ + =X Xβ2 0	 (2.19)

with the auxiliary equation m2 + β2 = 0 or m = ±jβ. The solution to Equation 2.19 is

	 X A e A ej x j x= +1 2
β β

	 (2.20a)

or

	 X B x B x= +1 2sinβ βcos 	 (2.20b)

Again,

	

X B

X a a n

( )
( ) sin sin
0 0 0

0 0
2= → =

= → = =β π

or

	
β π

= =
n
a

n, , , ,1 2 3 …
	

(2.21)

since B1 cannot vanish for nontrivial solutions, whereas sin βa can vanish without its 
argument being zero. Thus, we have found an infinite set of discrete values of λ for which 
Equation 2.11 has nontrivial solutions, that is,

	
λ β π

= − =
−

=2
2 2

2 1 2 3
n
a

n, , , ,…
	

(2.22)
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These are the eigenvalues of the problem and the corresponding eigenfunctions are

	
X x x

n x
a

n( ) sin sin= =β π
	

(2.23)

From Equation 2.22 note that it is not necessary to include negative values of n since they 
lead to the same set of eigenvalues. Also we exclude n = 0 since it yields the trivial solution 
X = 0 as shown under Case 1 when λ = 0. Having determined λ, we can solve Equation 
2.12 to find Yn(y) corresponding to Xn(x). That is, we solve

	 Y″ – β 2Y = 0,	 (2.24)

which is similar to Equation 2.16, whose solution is in Equation 2.18. Hence, the solution to 
Equation 2.24 has the form

	
Y y a

n y
a

b
n y
a

n n n( ) sinh cosh= +
π π

	
(2.25)

Imposing the boundary condition in Equation 2.13c,

	 Y bn( )0 0 0= → =

so that

	
Y y a

n y
a

n n( ) sinh=
π

	
(2.26)

Substituting Equations 2.23 and 2.26 into Equation 2.9, we obtain

	
V x y X x Y y a

n x
a

n y
a

n n n n( , ) ( ) ( ) sin sinh ,= =
π π

	
(2.27)

which satisfies Equation 2.7 and the three homogeneous boundary conditions in Equations 
2.8a through 2.8c. By the superposition principle, a linear combination of the solutions Vn, 
each with different values of n and arbitrary coefficient an, is also a solution of Equation 2.7. 
Thus, we may represent the solution V of Equation 2.7 as an infinite series in the function 
Vn, that is,

	
V x y a

n x
a

n y
a

n

n

( , ) sin sinh=
=

∞

∑
1

π π

	
(2.28)

We now determine the coefficient an by imposing the inhomogeneous boundary condition 
in Equation 2.8d on Equation 2.28. We get

	
V x b V a

n x
a

n b
a

o n

n

( , ) sin sinh ,= =
=

∞

∑
1

π π

	
(2.29)
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which is Fourier sine expansion of Vo. Hence,

	
a

n b
a b

V
n x
a

dx
V
n

nn o

b

osinh sin ( cos )
π π

π
π= = −∫2 2

1
0

or

	

a
V
n n b a

n

n
n

o

=
=

=









4 1

0
π πsinh( )

, ,

,
/

odd

even	

(2.30)

Substitution of Equation 2.30 into Equation 2.28 gives the complete solution as

	

V x y
V

n x
a

n y
a

n
n b
a

o

n

( , )
sin sinh

sinh
=

=

∞

∑4
π

π π

π
odd

	
(2.31a)

By replacing n by 2k –1, Equation 2.31a may be written as

	

V x y
V

n x
a

n y
a

n
n b
a

n ko

k

( , )
sin sinh

sinh
,= = −

=

∞

∑4
2 1

π

π π

π
1

	
(2.31b)

2.3.2  Wave Equation

The time dependence has been taken care of in Section 2.2. We are left with solving the 
Helmholtz equation

	 ∇ + =2 2 0U k U 	 (2.5b)

In rectangular coordinates, Equation 2.5b becomes

	

∂
∂

+
∂
∂

+
∂
∂

+ =
2

2

2

2

2

2
2 0

U
x

U
y

U
z

k U
	

(2.32)

We let

	 U x y z X x Y y Z z( , , ) ( ) ( ) ( )= 	 (2.33)

Substituting Equation 2.33 into Equation 2.32 and dividing by XYZ, we obtain

	
′′

+
′′

+
′′

+ =
X
X

Y
Y

Z
Z

k2 0
	

(2.34)
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Each term must be equal to a constant since each term depends only on the corresponding 
variable; X on x, etc. We conclude that

	
′′

= −
′′

= −
′′

= −
X
X

k
Y
Y

k
Z
Z

kx y z
2 2 2, ,

	
(2.35)

so that Equation 2.34 reduces to

	 k k k kx y z
2 2 2 2+ + = 	 (2.36)

Notice that there are four separation constants k, kx, ky, and kz since we have four 
variables t, x, y, and z. However from Equation 2.36, one is related to the other three 
so that only three separation constants are independent. As mentioned earlier, the 
number of independent separation constants is generally one less than the number of 
independent variables involved. The ordinary differential equations in Equation 2.35 
have solutions

	 X A e A ejk x jk xx x= + −
1 2 	 (2.37a)

or

	 X B k x B k xx x= +1 2sin cos ,	 (2.37b)

	 Y A e A ejk y jk yy y= +3 4     	     (2.37c)

or

	 Y B k y B k yy y= +3 4sin cos ,	 (2.37d)

	 Z A e A ejk z jk zz z= + −
5 6     	     (2.37e)

or

	 Z B k z B k zz z= +5 6sin cos ,	 (2.37f)

Various combinations of X, Y, and Z will satisfy Equation 2.5b. Suppose we choose

	 X A e Y A e A ejk x jk y jk zx y z= = =1 3 5, , Z ,	 (2.38)

then

	 U x y z Ae j k x k y k zx y z( , , ) ( )= + +
	 (2.39)

or

	 U(r) = Aejk · r	 (2.40)
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Introducing the time dependence of Equation 2.6a gives

	 Φ( , , , ) (x y z t Ae j t= ⋅ +k r ω )

	 (2.41)

where ω = kc is the angular frequency of the wave and k is given by Equation 2.36. The 
solution in Equation 2.41 represents a plane wave of amplitude A propagating in the 
direction of the wave vector k = kxax + kyay + kzaz with velocity c.

EXAMPLE 2.1

In this example, we show that the method of separation of variables is not limited to 
a problem with only one inhomogeneous boundary condition as presented in Section 
2.3.1. We reconsider the problem of Figure 2.1, but with four inhomogeneous boundary 
conditions as in Figure 2.2a.

Solution

The problem can be stated as solving Laplace’s equation

	

∂
∂

+
∂
∂

=
2

2

2

2 0
V
x

V
y 	

(2.42)

FIGURE 2.2
Applying the principle of superposition reduces the problem in (a) to those in (b).
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subject to the following inhomogeneous Dirichlet conditions:

	 V(x, 0) = V1

	 V(x, b) = V3

	 V(0, y) = V4

	 V(a, y) = V2	 (2.43)

Since Laplace’s equation is a linear homogeneous equation, the problem can be 
simplified by applying the superposition principle. If we let

	 V = VI + VII + VIII + VIV ,	 (2.44)

we may reduce the problem to four simpler problems, each of which is associated with 
one of the inhomogeneous conditions. The reduced, simpler problems are illustrated in 
Figure 2.2b and stated as follows:

	

∂
∂

+
∂
∂

=
2

2

2

2 0
V
x

V
y

I I

	
(2.45)

subject to

	

V x V

V x b

V y

V a y

I

I

I

I

( , )
( , )
( , )
( , ) ;

0
0

0 0
0

1=
=
=
= 	 (2.46)

	

∂
∂

+
∂
∂

=
2

2

2

2 0
V
x

V
y

II II

	
(2.47)

subject to

	

V x

V x b

V y

V a y V

II

II

II

II

( , )
( , )
( , )
( , ) ;

0 0
0

0 0

2

=
=
=
= 	 (2.48)

	

∂
∂

+
∂
∂

=
2

2

2

2 0
V
x

V
y

III III

	
(2.49)

subject to

	

V x

V x b V

V y

V a y

III

III

III

III

( , )
( , )
( , )
( , ) ;

0 0

0 0
0

3

=
=
=
= 	 (2.50)
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and

	

∂
∂

+
∂
∂

=
2

2

2

2 0
V
x

V
y

IV IV

	
(2.51)

subject to

	

V x

V x b

V y V

V a y

IV

IV

IV

IV

( , )
( , )
( , )
( , )

0 0
0

0
0

4

=
=
=
= 	 (2.52)

It is obvious that the reduced problem in Equations 2.49 and 2.50 with solution VIII is 
the same as that in Figure 2.1. The other three reduced problems are quite similar. Hence, 
the solutions VI, VII, and VIV can be obtained by taking the same steps as in Section 2.3.1 
or by a proper exchange of variables in Equation 2.31. Thus,

	

V
V

n x
a

n b y
a

n
n b
a

n

I =

−

=

∞

∑4 1

π

π π

π

sin sinh
( )

sinh
,

odd
	

(2.53)

	

V
V

n x
b

n y
b

n
n a
b

n

II =
=

∞

∑4 2

π

π π

π

sin sinh

sinh
,

odd
	

(2.54)

	

V
V

n x
a

n y
a

n
n b
a

n

III =
=

∞

∑4 3

π

π π

π

sin sinh

sinh
,

odd
	

(2.55)

	

V
V

n a x
b

n y
b

n
n a
b

n

IV =

−

=

∞

∑4 4

π

π π

π

sin
( )

sinh

sinhodd
	

(2.56)

We obtain the complete solution by substituting Equations 2.53 through 2.56 into 
Equation 2.44.

EXAMPLE 2.2

Find the product solution of the diffusion equation

	 Φ Φt xxk x t+ < < >, ,0 1 0	 (2.57)

subject to the boundary conditions

	 Φ Φ( , ) ( , ),0 0 1 0t t t= = > 	 (2.58)

and initial condition

	 Φ( , ) sin ,x x x0 5 2 0 1= < <π 	 (2.59)
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Solution

Let

	 Φ(x, t) = X(x)U(t)	 (2.60)

Substitute this into Equation 2.57 and divide by kXT to obtain

	

′
=

′′
=

U
kU

X
X

λ

where λ is the separation constant. Thus,

	 ′′ − =X Xλ 0	 (2.61)

	 ′ − =U kUλ 0	 (2.62)

As usual, in order for the solution of Equation 2.61 to satisfy Equation 2.58, we must 
choose λ = –β 2 = –n2π2 so that n = 1, 2, 3, … and

	 Xn(x) = sin nπx	 (2.63)

Equation 2.62 becomes

	 ′ + =U kn U2 2 0π ,

which has solution

	 U t en
kn t( ) = − 2 2π

	 (2.64)

Substituting Equations 2.63 and 2.64 into Equation 2.60,

	 Φn nx t a n x kn t( , ) sin exp( )= −π π2 2

where the coefficients an are to be determined from the initial condition in Equation 2.59. 
The complete solution is a linear combination of Φn, that is,

	
Φ( , ) sin exp( )x t a n x kn tn

n

= −
=

∞

∑ π π2 2

1

This satisfies Equation 2.59 if

	
Φ( , ) sin sinx a n x xn

n

0 5 2
1

= =
=

∞

∑ π π
	

(2.65)

The coefficients an are determined as

	

a
T

x n xdx
n

nn = =
=
≠




∫2

5 2
5 2
0 0

0

1

sin sin
,
,

π π
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Alternatively, by comparing the middle term in Equation 2.65 with the last term, 
the two are equal only when n = 2, an = 5, otherwise an = 0. Hence, the solution of the 
diffusion problem becomes

	 Φ( , ) sin exp( )x t x k t= −5 2 4 2π π

2.4  Separation of Variables in Cylindrical Coordinates

Coordinate geometries other than rectangular Cartesian are used to describe many 
EM problems whenever it is necessary and convenient. For example, a problem having 
cylindrical symmetry is best solved in a cylindrical system where the coordinate variables 
(ρ, φ, z) are related as shown in Figure 2.3 and 0 ≤ ρ ≤ ∞, 0 ≤ φ ≤ 2n, –∞ ≤ z ≤ ∞. In this 
system, the wave equation (2.5b) becomes

	
∇ + =

∂
∂

∂
∂









+

∂
∂

+
∂
∂

+ =2 2
2 2

2

2

2

2
21 1

0U k U
U U U

z
k U

ρ ρ
ρ

ρ ρ φ 	
(2.66)

As we did in the previous section, we shall first solve Laplace’s equation (k = 0) in two 
dimensions before we solve the wave equation.

Consider an infinitely long conducting cylinder of radius a with the cross section shown 
in Figure 2.4. Assume that the upper half of the cylinder is maintained at potential Vo 
while the lower half is maintained at potential –Vo. This is a Laplacian problem in two 
dimensions. Hence, we need to solve for V(ρ, φ) in Laplace’s equation

	
∇ =

∂
∂

∂
∂









+

∂
∂

=2
2

2

2

1 1
0V

V V
ρ ρ

ρ
ρ ρ φ 	

(2.67)

subject to the inhomogeneous Dirichlet boundary condition

	
V a

V

V
o

o
( , )

,
,

φ
φ π

π φ π
=

< <
− < <






0
2 	

(2.68)

FIGURE 2.3
Coordinate relations in a cylindrical system.
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We let

	 V(ρ, φ) = R(ρ)F(φ)	 (2.69)

Substituting Equation 2.69 into Equation 2.67 and dividing through by RF/ρ2 result in

	

ρ
ρ

ρ
ρ φR

d
d

dR
d F

d F
d









+ =

1
0

2

2

or

	

ρ
ρ

ρ
ρ φ

λ
2 2

2

2

2
21

R
d R
d R

dR
d F

d F
d

+ = − =
	

(2.70)

where λ is the separation constant. Thus, the separated equations are

	               ′′ + =F Fλ2 0	 (2.71a)

	 ρ ρ λ2 2 0′′ + ′− =R R R 	 (2.71b)

It is evident that Equation 2.71a has the general solution of the form

	 F(φ) = c1cos(λφ) + c2 sin(λφ)	 (2.72)

From the boundary conditions of Equation 2.68, we observe that F(φ) must be a periodic, 
odd function. Thus, c1 = 0, λ = n, a real integer, and hence Equation 2.72 becomes

	 Fn(φ) = c2 sin nφ	 (2.73)

Equation 2.71b, known as the Cauchy–Euler equation, can be solved by making a substitution 
R = ρn and reducing it to an equation with constant coefficients. This leads to

	 R c c nn
n n( ) , , ,...ρ ρ ρ= + =−

3 4 1 2 	 (2.74)

FIGURE 2.4
A two-dimensional Laplacian problem in cylindrical coordinates.
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Note that case n = 0 is excluded; if n = 0, we obtain R(ρ) = ln ρ + constant, which is not 
finite at ρ = 0. For the problem of a coaxial cable, a < ρ < b, ρ ≠ 0 so that case n = 0 is the 
only solution. However, for the problem at hand, n = 0 is not acceptable.

Substitution of Equations 2.73 and 2.74 into Equation 2.69 yields

	 V n A Bn n
n

n
n( , ) sin ( )ρ φ φ ρ ρ= + −

	 (2.75)

where An and Bn are constants to be determined. As usual, it is possible by the superposition 
principle to form a complete series solution

	
V A B nn

n
n

n

n

( , ) ( )sinρ φ ρ ρ φ= + −

=

∞

∑
1 	

(2.76)

For ρ < a, inside the cylinder, V must be finite as ρ → 0 so that Bn = 0. At ρ = a,

	
V a A a n

V

Vn
n

n

o

o
( , )

,
,

φ φ
φ π

π φ π
= =

< <
− < <




=

∞

∑ sin
1

0
2 	

(2.77)

Multiplying both sides by sin mφ and integrating over 0 < φ < 2π, we get

	
V m d V m d A a n m do o n

n

n

sin sin sin sinφ φ φ φ φ φ φ
π

ππ

− =∫ ∫∑∫
=

∞2

010

All terms on the right-hand side vanish except when m = n. Hence,

	

2
1 2

0

2
V
n

n A a d A ao
n

n
n

n( cos ) sin− = =∫π φ φ π
π

or

	

A
V

n a
n

n
n

o
n=

=

=









4
π

, odd

0, even	

(2.78)

Thus,

	
V

V n
na

ao
n

n
n

( , )
sin

,ρ φ
π

ρ φ ρ= <
=

∞

∑4

odd 	
(2.79)

For ρ > a, outside the cylinder, V must be finite as ρ → ∞ so that An = 0 in Equation 2.76 
for this case. By imposing the boundary condition in Equation 2.68 and following the same 
steps as for case ρ < a, we obtain
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B
V a
n

n

n
n

o
n

=
=

=









4
π

, odd

0, even	

(2.80)

Hence,
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(2.81)

2.4.1  Wave Equation

Having taken care of the time-dependence in Section 2.2, we now solve Helmholtz’s 
equation (2.66), that is,
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(2.66)

Let

	 U(ρ, φ, z) = R(ρ)F(φ)Z(z)	 (2.82)

Substituting Equation 2.82 into Equation 2.66 and dividing by RFZ/ρ2 yields
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where n = 0, 1, 2, … and n2 is the separation constant. Thus,

	 ′′ + =F n F2 0	
(2.83)

and
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(2.84)

Dividing both sides of Equation 2.84 by ρ2 leads to
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where µ2 is another separation constant. Hence,
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(2.85)
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and
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(2.86)

If we let

	 λ2 = k2 – µ2,	 (2.87)

the three separated Equations 2.83, 2.85, and 2.86 become

	 F″ + n2F = 0,	 (2.88)

	 Z″ + µ2Z = 0,	 (2.89)

	 ρ2R″ + ρR′ + (λ2ρ2 – n2)R = 0	 (2.90)

The solution to Equation 2.88 is given by

	 F(φ) = c1e
jnφ + c2e

−jnφ	 (2.91a)

or

	 F(φ) = c3 sin nφ + c4cosnφ	 (2.91b)

Similarly, Equation 2.89 has the solution

	 Z z c e c ejn jn( ) = + −
5 6

µ µ
	 (2.92a)

or

	 Z(z) = c7 sin nµ + c8 cos nµ	 (2.92b)

To solve Equation 2.90, we let x = λρ and replace R by y; R′ = λy′ and R″ = λ2y″ and 
Equation 2.90 becomes

	 x y xy x n y2 2 2 0′′ + ′ + − =( ) 	 (2.93)

This is called Bessel’s equation. It has a general solution of the form

	 y x b J x b Y xn n( ) ( ) ( )= +1 2 	 (2.94)

where Jn(x) and Yn(x) are, respectively, Bessel functions of the first and second kinds of 
order n and real argument x. Yn is also called the Neumann function. If x in Equation 2.93 is 
imaginary so that we may replace x by jx, the equation becomes

	 x y xy x n y2 2 2 0′′ + ′− + =( ) 	 (2.95)
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which is called modified Bessel’s equation. This equation has a solution of the form

	 y x b I x b K xn n( ) ( ) ( )= +3 4 	 (2.96)

where In(x) and Kn(x) are, respectively, modified Bessel functions of the first and second kind of 
order n. For small values of x, Figure 2.5 shows the sketch of some typical Bessel functions 
(or cylindrical functions) Jn(x), Yn(x), In(x), and Kn(x).

To obtain the Bessel functions from Equations 2.93 and 2.95, the method of Frobenius 
is applied. A detailed discussion is found in Kersten [4] and Myint-U [5]. For the Bessel 
function of the first kind,
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(2.97)

where Γ(k + 1) = k! is the Gamma function. This is the most useful of all Bessel functions. 
Some of its important properties and identities are listed in Table 2.1. For the modified 
Bessel function of the first kind,
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(2.98)

FIGURE 2.5
Bessel functions.
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For the Neumann function, when n > 0,

	

Y x J x
x

m

x

n n

m n

m

n

m

( ) ( )
( )!(

!

( ) (

= − =
− −

−
−

−

=

−

∑2
2

1

1 1

2

0

1

π
γ

π

π

ln
/n m x1 2)

//2
1

2

0

)
! ( )

[ ( ) ( )]
n m

m
m n m

p m p n m
+

=

∞

+ +
+ +∑ Γ 	

(2.99)

where γ = 1.781 is Euler’s constant and
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(2.100)

If n = 0,
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(2.101)

TABLE 2.1

Properties and Identities of Bessel Functionsa Jn(x)

	 a.	 J x J xn
n

n− = −( ) ( ) ( )1

	 b.	 J x J xn
n

n( ) ( ) ( )− = −1

	 c.	 J x
n
x
J x J xn n n+ −= −1 1

2
( ) ( ) ( ) (recurrenceformula)

	 d.	
d
dx

J x J x J xn n n( ) [ ( ) ( )]= −− +
1
2

1 1

	 e.	
d
dx

x J x x J xn
n

n
n[ ( )] ( )= −1

	 f.	
d
dx

x J x x J xn
n

n
n[ ( )] ( )− −

−= − 1

	 g.	 J x n x d nn( ) cos( sin ) ,= − ≥∫1
0

0
π

θ θ θ
π

	 h.	Fourier–Bessel expansion of f (x):

	
f x A J x nk n k

k

( ) ( ),= ≥
=
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∑ λ
1

0

	
A

aJ a
xf x J x dx x ak

n i
n k

a

= < <
+

∫2
0

1
2

0
[ ( )]

( ) ( ) ,
λ

λ

       where λk are the positive roots in ascending order of magnitude of Jn(λia) = 0.

	 i.	 ρ λ ρ λ ρ ρ λ δJ J d
a

J an i n j n i ij

a

( ) ( ) [ ( )]= +∫
2

1
2

0
2

       where λi and λj are the positive roots of Jn(λa) = 0.

a	 Properties (a) through (f) also hold for Yn(x).
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For the modified Bessel function of the second kind,
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(2.102)

If n > 0,
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and if n = 0,
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Other functions closely related to Bessel functions are Hankel functions of the first and 
second kinds defined, respectively, by

	 H x J x jY xn n n
( )( ) ( ) ( )1 = + 	 (2.105a)

	 H x J x jY xn n n
( )( ) ( ) ( )2 = − 	 (2.105b)

Hankel functions are analogous to functions exp(±jx) just as Jn and Yn are analogous to 
cosine and sine functions. This is evident from asymptotic expressions
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With the time factor e H xj t
n

ω , ( )( )1  and H xn
( )( )2  represent inward and outward traveling 

waves, respectively, while Jn(x) or Yn(x) represents a standing wave. With the time factor 
e−jωt, the roles of H xn

( )( )1  and H xn
( )( )2  are reversed. For further treatment of Bessel and related 

functions, refer to the works of Watson [6] and Bell [7].
Any of the Bessel functions or related functions can be a solution to Equation 2.90 

depending on the problem. If we choose R(ρ) = Jn(x) = Jn(λρ) with Equations 2.91 and 2.92 
and apply the superposition theorem, the solution to Equation 2.66 is

	
U z A J jn j zn n

n

( , , ) ( )exp( )ρ φ λρ φ µµ

µ

= ± ±∑∑
	

(2.107)

Introducing the time dependence of Equation 2.6a, we finally get

	
Φ( , , , ) ( )exp( ),ρ φ λρ φ µ ωµ

µ

z t A J jn j z tmn n

nm

= ± ± ±∑∑∑
	

(2.108)

where ω = kc.

EXAMPLE 2.3

Consider the skin effect on a solid cylindrical conductor. The current density distribution 
within a good conducting wire (σ/ωε >> 1) obeys the diffusion equation

	
∇ =

∂
∂

2J
J
t

µσ

We want to solve this equation for a long conducting wire of radius a.

Solution

We may derive the diffusion equation directly from Maxwell’s equation. We recall that

	 ∇ × H = J + Jd

where J = σE is the conduction current density and J
D

d
t

=
∂
∂  is the displacement 

current density. For σ/ωε >> 1, Jd is negligibly small compared with J. Hence,

	 ∇×H J 	 (2.109)

Also,

	

∆× = −
∂
∂

∇×∇× = ∇∇ −∇ = −
∂
∂

∇×

E
H

E E E H

µ

µ

t

t
· 2

Since ∇E = 0, introducing Equation 2.109, we obtain

	
∇ =

∂
∂

2E
J

µ
t 	

(2.110)
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Replacing E with J/σ, Equation 2.110 becomes

	
∇ =

∂
∂

2J
Jµσ
t

,
	

(2.111)

which is the diffusion equation.
Assuming time-harmonic field with time factor ejωt,

	 ∇ =2J Jjωµσ 	 (2.112)

For an infinitely long wire, Equation 2.112 reduces to a one-dimensional problem in 
cylindrical coordinates:
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z
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	 ρ ρ ωµσρ2 2 0′′+ ′ − =J J j Jz z z 	 (2.113)

Comparing this with Equation 2.95 shows that Equation 2.113 is the modified Bessel 
equation of zero order. Hence, the solution of Equation 2.113 is

	 J c I c Kz( ) ( ) ( )ρ λρ λρ= +1 0 2 0 	 (2.114)

where c1 and c2 are constants and

	
λ ωµσ

δ
= =j j1 2 2/

	
(2.115)

and δ σµω= ( )2/  is the skin depth. Constant c2 must vanish if Jz is to be finite at 
ρ = 0. At ρ = a,

	 Jz(a) = c1I0(λa) → c1 = Jz(a)/I0(λa)

Thus,

	
J J a

I
I a

z z( ) ( )
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0 	
(2.116)

If we let λρ δ ρ= =j j x1 2 1 22/ /( )/ , it is convenient to replace
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(2.117)

where ber0 and bei0 are ber and bei functions of zero order. Ber and bei functions are 
also known as Kelvin functions. For zero order, they are given by
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(2.119)

Using ber and bei functions, Equation 2.116 may be written as

	
J J a

ber x jbei x
ber y jbei y

z z( ) ( )
( ) ( )
( ) ( )

ρ =
+
+

0 0

0 0 	
(2.120)

where x y a= =2 2ρ δ δ/ /, .

EXAMPLE 2.4

A semi-infinitely long cylinder (z ≥ 0) of radius a has its end at z = 0 maintained at Vo(a
2 – ρ2), 

0 ≤ ρ ≤ a. Find the potential distribution within the cylinder.

Solution

The problem is that of finding a function V(ρ, z) satisfying the PDE

	
∇ =

∂
∂

+
∂
∂

+
∂
∂

=2
2

2

2

2

1
0V

V V V
zρ ρ ρ 	

(2.121)

subject to the boundary conditions:

	 1.	 V = Vo(a
2 – ρ2), z = 0, 0 ≤ ρ ≤ a,

	 2.	 V → 0 as z → ∞, that is, V is bounded,
	 3.	 V = 0 on ρ = a,
	 4.	 V is finite on ρ = 0.

Let V = R(ρ)Z(z) and obtain the separated equations

	 Z″–λ2Z = 0	 (2.122a)

and

	 ρ2R″ + ρR′ + λ2ρ2R = 0	 (2.122b)

where λ is the separated constant. The solution to Equation 2.122a is

	 Z c e c ez z
1 1 2= +−λ λ

	 (2.123)

Comparing Equation 2.122b with Equation 2.93 shows that n = 0 so that Equation 
2.122b is Bessel’s equation with solution

	 R c J c Y= +3 0 4 0( ) ( )λρ λρ 	 (2.124)

Condition (ii) forces c2 = 0, while condition (iv) implies c4 = 0, since Y0(λρ) blows up 
when ρ = 0. Hence, the solution to Equation 2.121 is

	
V z A e Jn

z
n

n

n( , ) ( )ρ λ ρλ= −

=

∞

∑ 0

0 	
(2.125)
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where An and λn are constants to be determined using conditions (i) and (iii). Imposing 
condition (iii) on Equation 2.125 yields the transcendent equation

	 J0(λna) = 0	 (2.126)

Thus, λn are the positive roots of J0(λna). If we take λ1 as the first root, λ2 as the second 
root, etc., n must start from 1 in Equation 2.125. Imposing condition (i) on Equation 2.125, 
we obtain

	
V V a A Jo n n
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which is simply the Fourier–Bessel expansion of Vo(a
2 – ρ2). From Table 2.1, property (h),
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(2.127)

To evaluate the integral, we utilize property (e) in Table 2.1:
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By changing variables, x = λρ,
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If n = 1,
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Similarly, using property (e) in Table 2.1, we may write
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Integrating the right-hand side by parts and applying Equation 2.128,
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J2(x) can be expressed in terms of J0(x) and J1(x) using the recurrence relations, that is, 
property (c) in Table 2.1:

	
J x
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J x J x2 1 0

2
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(2.130)

Substitution of Equations 2.129 and 2.130 into Equation 2.127 gives
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since J0(λna) = 0 from Equation 2.126. Thus, the potential distribution is given by
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EXAMPLE 2.5

A plane wave E = Eoe
j(ωt–kx)az is incident on an infinitely long conducting cylinder of 

radius a. Determine the scattered field.

Solution

Since the cylinder is infinitely long, the problem is two-dimensional as shown 
in Figure 2.6. We shall suppress the time factor ejωt throughout the analysis. For the 
sake of convenience, we need to express the plane wave in terms of cylindrical waves. 
We let

FIGURE 2.6
Scattering by a conducting cylinder.
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e e a J ejx j

n n
jn

n

− −

=−∞

∞

= = ∑ρ φ φρcos ( )
	

(2.131)

where an are expansion coefficients to be determined. Since ejnφ are orthogonal 
functions, multiplying both sides of Equation 2.131 by ejmφ and integrating over 
0 ≤ φ ≤ 2π gives

	

e e d a Jj jm
m m

− =∫ ρ φ φ

π

φ π ρcos ( )2
0

2

Taking the mth derivative of both sides with respect to ρ and evaluating at ρ = 0 leads 
to
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Substituting this into Equation 2.131, we obtain

	
e j J ejx n

n
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=−∞

∞

= ∑ ( )ρ φ

(An alternative, easier way of obtaining this is using the generating function for Jn(x) 
in Table 2.7.) Thus, the incident wave may be written as
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(2.132)

Since the scattered field Ez
s must consist of outgoing waves that vanish at infinity, it 

contains

	 J k jY k H kn n n( ) ( ) ( )( )ρ ρ ρ− = 2

Hence,

	
E A H k ez
s

n n
jn

n

=
=−∞

∞
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(2.133)

The total field in medium 2 is

	 E E Ez
i

z
s

2 = +

while the total field in medium 1 is E1 = 0 since medium 1 is conducting. At ρ = a, the 
boundary condition requires that the tangential components of E1 and E2 be equal. 
Hence,

	 E a E az
i

z
s( ) ( )ρ ρ= + = = 0	 (2.134)
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Substituting Equations 2.132 and 2.133 into Equation 2.134,
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From this, we obtain

	
A

E j J ka
H ka

n
o

n
n

n
= −

−( ) ( )
( )( )2

Finally, substituting An into Equation 2.133 and introducing the time factor leads to 
the scattered wave as
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2.5  Separation of Variables in Spherical Coordinates

Spherical coordinates (r, θ, φ) may be defined as in Figure 2.7, where 0 ≤ r ≤ ∞, 0 ≤ θ ≤ π, 
0 ≤ φ < 2π. In this system, the wave equation (2.5b) becomes
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sin θ φ 	

(2.135)

As usual, we shall first solve Laplace’s equation in two dimensions and later solve the 
wave equation in three dimensions.

FIGURE 2.7
Coordinate relations in a spherical system.
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2.5.1  Laplace’s Equation

Consider the problem of finding the potential distribution due to an uncharged conducting 
sphere of radius a located in an external uniform electric field as in Figure 2.8. The external 
electric field can be described as

	 E = Eoaz	 (2.136)

while the corresponding electric potential can be described as

	
V d E zo= − ⋅ = −∫ E l

or

	 V = –Eor cos θ	 (2.137)

where V(θ = π/2) = 0 has been assumed. From Equation 2.137, it is evident that V is 
independent of φ, and hence our problem is solving Laplace’s equation in two dimensions, 
namely,

	
∇ =

∂
∂

∂
∂







+

∂
∂

∂
∂







 =2
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sin

sin
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(2.138)

subject to the conditions

	 V(r, θ) = –Eor cos θ  as  r → ∞,	 (2.139a)

	 V(a, θ) = 0	 (2.139b)

We let

	 V(r, θ) = R(r)H(θ)	 (2.140)

FIGURE 2.8
An uncharged conducting sphere in a uniform external electric field.
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so that Equation 2.138 becomes

	
1 12

R
d
dr

r R
H

d
d

H( )
sin

(sin )′ = − ′ =
θ θ

θ λ
	

(2.141)

where λ is the separation constant. Thus, the separated equations are

	 r2R″ + 2rR′ – λR = 0	 (2.142)

and

	
d
d

H H
θ

θ λ θ(sin ) sin′ + = 0
	

(2.143)

Equation 2.142 is the Cauchy–Euler equation. It can be solved by making the substitution 
R = rk. This leads to the solution

	 Rn(r) = Anr
n + Bnr

−(n+1),  n = 0,1,2, …	 (2.144)

with λ = n(n + 1). To solve Equation 2.143, we may replace H by y and cos θ by x so that
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Making these substitutions in Equation 2.143 yields

	

d
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n n y( ) ( )1 1 02−
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
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+ + =

or

	 (1–x2)y″ – 2xy′ + n(n + 1)y = 0	 (2.145)

which is the Legendre differential equation. Its solution is obtained by the method of Frobenius 
[5] as

	 y = cnPn(x) + dnQn(x)	 (2.146)

where Pn(x) and Qn(x) are Legendre functions of the first and second kind, respectively.
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(2.147)
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where N = n/2 if n is even and N = (n – 1)/2 if n is odd. For example,
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Some useful identities and properties [5] of Legendre functions are listed in Table 2.2. 
The Legendre functions of the second kind are given by
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(2.148)

where p(k) is as defined in Equation 2.100. Typical graphs of Pn(x) and Qn(x) are shown 
in Figure 2.9. Qn are not as useful as Pn since they are singular at x = ±1 (or θ = 0, π) 
due to the logarithmic term in Equation 2.148. We use Qn only when x ≠ ±1 (or θ ≠ 0, π), 
for example, in problems having conical boundaries that exclude the axis from the 
solution region. For the problem at hand, θ = 0, π is included so that the solution to 
Equation 2.143 is

	 Hn(θ) = Pn(cos θ)	 (2.149)

Substituting Equations 2.144 and 2.149 into Equation 2.140 gives

	 Vn(r, θ) = [Anr
n + Bnr

−(n+1)]Pn(cos θ)	 (2.150)

To determine An and Bn, we apply the boundary conditions in Equation 2.139. Since as 
r → ∞, V = –Eor cos θ, it follows that n = 1 and A1 = –Eo, that is,
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3. Hence, the complete solution is
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(2.151)
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TABLE 2.2

Properties and Identities of Legendre Functionsa

	 a.	
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	 i.	Orthogonality property
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a	 Properties (d) through (g) are also valid for Qn(x).



61Analytical Methods

The electric field intensity is given by
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(2.152)

2.5.2  Wave Equation

To solve the wave equation (2.135), we substitute

	 U(r, θ, φ) = R(r)H(θ)F(φ)	 (2.153)

into the equation. Multiplying the result by r2 sin2 θ/RHF gives
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(2.154)

FIGURE 2.9
Typical Legendre functions of the first and second kinds.
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Since the left-hand side of this equation is independent of φ, we let

	
− = =
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m m
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, , , ,…

where m, the first separation constant, is chosen to be nonnegative integer such that U is 
periodic in φ. This requirement is necessary for physical reasons that will be evident later. 
Thus, Equation 2.154 reduces to
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where λ is the second separation constant. As in Equations 2.141 through 2.144, λ = n(n + 1) 
so that the separated equations are now

	 ′′ + =F m F2 0,	 (2.155)
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and
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As usual, the solution to Equation 2.155 is

	 F(φ) = c1e
jmφ + c2e

−jmφ	 (2.158a)

or

	 F(φ) = c3sinmφ + c4 cos mφ	 (2.158b)

If we let R(r) = r−1/2 R r( ), Equation 2.156 becomes

	
  ′′ + ′ + −

+









 =R

r
R k

n
r

R
1 1 2

02
2

2

( )
,

/

which has the solution
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Functions zn(x) are spherical Bessel functions and are related to ordinary Bessel functions 
Zn+1/2 according to
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In Equation 2.160, Zn+1/2(x) may be any of the ordinary Bessel functions of half-integer 
order, Jn+1/2(x), Yn+1/2(x), In+1/2(x), Kn+1/2(x), H xn+1 2

1
/

( ) ( ), and H xn+1 2
2

/
( ) ( ), while zn(x) may be any of 

the corresponding spherical Bessel functions jn(x), yn(x), in(x), kn(x), h xn
( )( )1 , and h xn

( )( )2 . Bessel 
functions of fractional order are, in general, given by
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(2.161)
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where J–ν and I–ν are, respectively, obtained from Equations 2.161 and 2.163 by replacing ν 
with –ν. Although ν in Equations 2.161 through 2.164 can assume any fractional value, in 
our specific problem, ν = n + 1/2. Since Gamma function of half-integer order is needed in 
Equation 2.161, it is necessary to add that
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Thus, the lower-order spherical Bessel functions are as follows:
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Other zn(x) can be obtained from the series expansion in Equations 2.161 and 2.162 or the 
recurrence relations and properties of zn(x) presented in Table 2.3.

By replacing H in Equation 2.157 with y, cos θ by x, and making other substitutions as we 
did for Equation 2.143 we obtain
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which is Legendre’s associated differential equation. Its general solution is of the form

	 y x a P x d Q xmn n
m

mn n
m( ) ( ) ( )= + 	 (2.167)

where P xn
m( ) and Q xn

m( ) are called associated Legendre functions of the first and second 
kind, respectively. Equation 2.146 is a special case of Equation 2.167 when m = 0. P xn

m( ) and 
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and

	
Q x x

d
dx

Q xn
m m

m

m n( ) [ ] ( )/= −1 2 2

	
(2.169)

where –1 < x < 1. We note that
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Typical associated Legendre functions are
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TABLE 2.3

Properties and Identities of Spherical Bessel Functions
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Higher-order associated Legendre functions can be obtained using Equations 2.168 and 
2.169 along with the properties in Table 2.4. As mentioned earlier, Q xn

m( ) is unbounded at 
x = ±1, and hence it is only used when x = ±1 is excluded. Substituting Equations 2.158, 
2.159, and 2.167 into Equation 2.153 and applying superposition theorem, we obtain
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(2.171)

Note that the products H(θ)F(φ) are known as spherical harmonics.

EXAMPLE 2.6

A thin ring of radius a carries charge of density ρ. Find the potential at: (a) point P(0, 0, z) 
on the axis of the ring, (b) point P(r, θ, φ) in space.

Solution

Consider the thin ring as in Figure 2.10.

	 a.	 From elementary electrostatics, at P(0, 0, z)
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(2.172)

	 b.	 To find the potential at P(r, 0, φ), we may evaluate the integral for the potential 
as we did in part (a). However, it turns out that the boundary-value solution is 
simpler. So we solve Laplace’s equation ∇2V = 0, where V(0, 0, z) must conform 
with the result in part (a). From Figure 2.10, it is evident that V is invariant 
with φ. Hence, the solution to Laplace’s equation is
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where u = cos θ. Since Qn is singular at θ = 0, π, ′ =Bn 0. Thus,
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TABLE 2.4

Properties and Identities of Associated Legendre Functionsa
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		 where [t] is the bracket or greatest integer function, for example, [3.54] = 3.
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a	 Properties (b) and (c) are also valid for Qn
m (x).
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For 0 ≤ r ≤ a, ′ =Dn 0 since V must be finite at r = 0.

	
V C r P un

n
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∞

∑ ( )
0 	

(2.174)

To determine the coefficients ′Cn , we set θ = 0 and equate V to the result in part (a). But 
when θ = 0, u = 1, Pn(1) = 1, and r = z. Hence,
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Using the binomial expansion, the term [a2 + z2]1/2 can be written as
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Comparing this with the last term in Equation 2.175, we obtain
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or in general,
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Substituting these into Equation (2.174) gives
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(2.176)

FIGURE 2.10
Charged ring of Example 2.6.
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For r ≥ a, ′ =Cn 0 since V must be finite as r → ∞, and
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Again, when θ = 0, u = 1, Pn(1) = 1, r = z,
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Using the binomial expansion, the middle term [a2 + z2]−1/2 can be written as
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Comparing this with the last term in Equation 2.178, we obtain
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or in general,
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Substituting these into Equation 2.177 gives
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(2.179)

We may combine Equations 2.176 and 2.179 to get
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EXAMPLE 2.7

A conducting spherical shell of radius a is maintained at potential Vo cos 2φ; determine 
the potential at any point inside the sphere.
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Solution

The solution to this problem is somewhat similar to that of the previous problem except 
that V is a function of φ. Hence, the solution to Laplace’s equation for 0 ≤ r ≤ a is of the form
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Since cos mφ and sin mφ are orthogonal functions, amn = 0 = bmn except that an2 ≠ 0. 
Hence, at r = a
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which is the Legendre expansion of Vo. Multiplying both sides by P xm
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Integrating by parts twice yields
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Using the generating functions for Pn(x) (see Table 2.7 and Example 2.10), it is readily 
shown that
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by the orthogonality property of Pn(x). Hence,
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EXAMPLE 2.8

Express (a) the plane wave ejz and (b) the cylindrical wave J0(ρ) in terms of spherical wave 
functions.

Solution

	 a.	 Since ejz = ejrcosθ is independent of φ and finite at the origin, we let
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where an are the expansion coefficients. To determine an, we multiply both sides of 
Equation 2.180 by Pm(cos θ) sin θ and integrate over 0 < θ < π:
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where the orthogonality property (i) of Table 2.2 has been utilized. Taking the nth 
derivative of both sides and evaluating at r = 0 gives
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The left-hand side of Equation (2.181) yields
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To evaluate the right-hand side of Equation 2.181, we recall that
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Substituting Equations 2.182 and 2.183 into Equation 2.181 gives

	 a j nn
n= +( )2 1
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Thus,
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	 b.	 Since J0(ρ) = J0(r sin θ) is even, independent of φ, and finite at the origin,
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To determine the coefficients of expansion bn, we multiply both sides by Pm(cos θ) sin θ 
and integrate over 0 < θ < π. We obtain
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Differentiating both sides 2n times with respect to r and setting r = 0 gives
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2.6  Some Useful Orthogonal Functions

Orthogonal functions are of great importance in mathematical physics and engineering. 
A system of real functions Φn(n = 0, 1, 2, …) is said to be orthogonal with weight w(x) on the 
interval (a, b) if
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for every m ≠ n. For example, the system of functions cos(nx) is orthogonal with weight 1 
on the interval (0, π) since
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Orthogonal functions usually arise in the solution of PDEs governing the behavior of 
certain physical phenomena. These include Bessel, Legendre, Hermite, Laguerre, and 
Chebyshev functions. In addition to the orthogonality properties in Equation 2.186, these 
functions have many other general properties, which will be discussed briefly in this section. 
They are very useful in series expansion of functions belonging to very general classes, 
for example, Fourier–Bessel series, Legendre series, etc. Although Hermite, Laguerre, and 
Chebyshev functions are of less importance in EM problems than Bessel and Legendre 
functions, they are sometimes useful and therefore deserve some attention.

An arbitrary function f (x), defined over interval (a, b), can be expressed in terms of any 
complete, orthogonal set of functions:
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where the expansion coefficients are given by
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and the (weighted) norm Nn is defined as
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Simple orthogonality results when w(x) = 1 in Equations 2.186 through 2.189.
Perhaps the best way to briefly describe the orthogonal functions is in table form. This is 

done in Tables 2.5 through 2.7. The differential equations giving rise to each function are 
provided in Table 2.5. The orthogonality relations in Table 2.6 are necessary for expanding 
a given arbitrary function f (x) in terms of the orthogonal functions as in Equations 2.187 
through 2.189. Most of the properties of the orthogonal functions can be proved using the 
generating functions of Table 2.7. To the properties in Tables 2.5 through 2.7 we may add 
the recurrence relations and series expansion formulas for calculating the functions for 
specific argument x and order n. These have been provided for Jn(x) and Yn(x) in Table 2.1 
and Equations 2.97 and 2.99, for Pn(x) and Qn(x) in Table 2.2 and Equations 2.147 and 2.148, 
for jn(x) and yn(x) in Table 2.3 and Equation 2.160, and for P xn

m( ) and Q xn
m( ) in Table 2.4 and 

Equations 2.168 and 2.169. For Hermite polynomials, the series expansion formula is
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where [n/2] = N is the largest even integer ≤ n/2 or simply the greatest integer function. 
Thus,

	 H0(x) = 1, H1(x) = 2x, H2(x) = 4x2−2, etc.
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The recurrence relations are

	 Hn+1(x) = 2xHn(x) – 2nHn–1(x)	 (2.191a)

and

	 ′ = −H x nH xn n( ) ( )2 1 	 (2.191b)

For Laguerre polynomials,
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so that
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TABLE 2.5

Differential Equations with Solutions

Equations Solutions

x y xy x n y2 2 2 0′′ + ′ + − =( ) Jn(x) Bessel functions of the first kind
Yn(x) Bessel functions of the second kind

H xn
( )( )1 Hankel functions of the first kind

H xn
( )( )2 Hankel functions of the second kind

x y xy x n y2 2 2 0′′ + ′ − + =( )
In(x) Modified Bessel functions of the first kind
Kn(x) Modified Bessel functions of the second kind

x y xy x n n y2 22 1 0′′ + ′ − − + =[ ( )] jn(x) Spherical Bessel functions of the first kind
yn(x) Spherical Bessel functions of the second kind

( ) ( )1 2 1 02− ′′ − + + =x y xy n n y Pn(x) Legendre polynomials
Qn(x) Legendre functions of the second kind

( ) ( )1 2 1
1
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2

2− ′′ − ′ + + −
−











 =x y xy n n

m
x

y
P xn
m( ) Associated Legendre polynomials

Q xn
m( ) Associated Legendre functions of the second kind

′′ − ′ + =y xy ny2 2 0 Hn(x) Hermite polynomials

xy x y ny′′ + − ′ + =( )1 0 Ln(x) Laguerre polynomials

xy m x y ny′′ + + − ′ + =( )1 0 L xn
m( ) Associated Laguerre polynomials

( )1 02 2− ′′ − ′ + =x y xy n y Tn(x) Chebyshev polynomials of the first kind
Un(x) Chebyshev polynomials of the second kind



74 Computational Electromagnetics with MATLAB®

For the associated Laguerre polynomials,
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so that
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Orthogonality Relations

Functions Relations

Bessel functions
xJ x J x dx

a
J an n j n i ij

a

( ) ( ) [ ( )]λ λ λ δ1

2

1
2

0
2

= +∫
where λi and λj are the roots of Jn(λa) = 0

Spherical Bessel functions
j x j x dx

n
n m mn( ) ( ) =

+
∞

∞

∫ π
δ

2 1

Legendre polynomials
P x P x dx

n
n m mn( ) ( ) =

+
−

∫ 2
2 1

1

1

δ

Associated Legendre polynomials
P x P x dx

n k
n n k

n
k

m
k

mn( ) ( )
( )!

( )( )
=

+
+ −

−

∫ 2
2 1

1

1

δ

P x P x
x

dx
n m

m n m
n
m

n
k

mk
( ) ( ) ( )!

( )!1 2

1

1

−
=

+
−

−

∫ δ

Hermite polynomials
e H x H x dx nx

n m
n

mn
−

−∞

∞

=∫
2

2( ) ( ) !( )π δ

Laguerre polynomials
e L x L x dxx

n m mn
−

∞

=∫ ( ) ( ) δ
0

Associated Laguerre polynomials
e x L x L x dx

n k
n

x k
n
k

m
k

mn
−

∞

=
+∫ ( ) ( )

( )!
!

0

δ

Chebyshev polynomials
T x T x

x
n m dx

m n

m n

m n

( ) ( )
( ) /

,
,

,
1

1

1

2 1 2

0
2 0

0
−

−

∫ =
≠
= ≠
= =










π
π

/

U x U x
x

dx

m n

m n

m n

n m( ) ( )
( )

,
,

,
/1

0
2 0

0
2 1 2

1

1

−
=

≠
= ≠
= =








−

∫ π
π

/



75Analytical Methods

Note that L x m nn
m( ) ,= >0 . The recurrence relations are
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For Chebyshev polynomials of the first kind,
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so that

	 T0(x) = 1,  T1(x) = x,  T2(x) = 2x2−1, etc.

The recurrence relation is

	 Tn+1(x) = 2xTn(x) – Tn–1(x)	 (2.197)

TABLE 2.7

Generating Functions

Functions Generating Function

R = [1– 2xt + t2]1/2
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
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∞
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−
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∞
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1
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n

n
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1
1 1

0

Chebyshev polynomial 1
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2

2 0

1

−
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∞
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T x t T xn
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n

( ) ( )

1 2
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For Chebyshev polynomials of the second kind,

	
U x

n x x
k n k

n

k n k k

k

N

( )
( ) ( )! ( )

( )!( )!
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− + −
+ − +

−
− − + −

=
∑ 1 1 1

2 1 2 2

1 2 2 2 1
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11 1≤ ≤x
	

(2.198)

where N = [n + 1/2] so that

	 U0(x) = 1,  U1(x) = 2x,  U2(x) = 4x2 − 1, etc.

The recurrence relation is the same as that in Equation 2.197.
For example, if a function f (x) is to be expanded on the interval (0, ∞), Laguerre functions 

can be used as the orthogonal functions with an exponential weighting function, that is, 
w(x) = e−x. If f (x) is to be expanded on the interval (–∞, ∞), we may use Hermite functions 
with w x e x( ) = − 2

. As we have noticed earlier, if f (x) is defined on the interval (–1, 1), we may 
choose Legendre functions with w(x) = 1. For more detailed treatment of these functions, 
see Andrews et al. [7] or Johnson and Johnson [8].

EXAMPLE 2.9

Expand the function

	 f(x) = |x|, –1 ≤ x ≤ 1

in a series of Chebyshev polynomials.

Solution

The given function can be written as

	
f x

x x

x x
( )

,
,

=
− − ≤ <

< ≤






1 0
0 1

Let

	
f x A T xn n

n

( ) ( )=
=

∞

∑
0

where An are expansion coefficients to be determined. Since f(x) is an even function, the 
odd terms in the expansion vanish. Hence,

	
f x A A T xn n

n

( ) ( )= +
=

∞

∑0 2 2

1

If we multiply both sides by w x T xm( ) = −( )2
21/  and integrate over –1 ≤ x ≤ 1, all terms 

in the summation vanish except when m = n. That is, from Table 2.6, the orthogonality 
property of Tn(x) requires that

	

T x T x
x
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m n
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,
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≠
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/
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Hence,
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Since Tn(x) = cos(n cos−1 x), it is convenient to let x = cos θ so that

	

A
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Hence,
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EXAMPLE 2.10

	
Evaluate at and 1.

P x
xn

1

1
( )

sinθ
= = −x

Solution

This example serves to illustrate how the generating functions are useful in deriving 
some properties of the corresponding orthogonal functions. Since

	

P x P x

x
n n
1 1

21

( )
sin

( )
,

θ
=

−

direct substitution of x = 1 or x = –1 gives 0/0, which is indeterminate. But 
P x d dx Pxn n

1 2 1 21( ) ( ) ( )/= − /  by definition. Hence,

	
P x d

dx
Pn
n

1( )
sin

,
θ

=

that is, the problem is reduced to evaluating dPn/dx at x = ±1. We use the generating 
function for Pn, namely,

	
( ) ( )/1 2 2 1 2

0

− + =−
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∞

∑xt t t P xn
n

n
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Differentiating both sides with respect to x,

	

t
xt t

t
d
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n
( ) /1 2 2 3 2

0
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=
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∑
	

(2.199)

When x = 1,

	

1
1 3

1

0 1( )−
= −
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∞
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(2.200)

But

	
( ) ( )1 1 3 6 10 15

2
13 2 3 4
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∞
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n
n t
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(2.201)

Comparing this with Equation 2.200 clearly shows that

	

d
dx

P n nn
x=

= +
1

1 2( )/

Similarly, when x = –1, Equation 2.199 becomes

	

1
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(2.202)

But
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2
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11 1 2( ) ( )/

EXAMPLE 2.11

Write a program to generate Hermite functions Hn(x) for any argument x and order n. Use 
the series expansion and recurrence formulas and compare your results. Take x = 0.5, 
0 ≤ n ≤ 15.

Solution

The program is shown in Figure 2.11. Equation 2.190 is used for the series expansion 
method, while Equation 2.191a with H0(x) = 1 and H1(x) = 2x is used for the recurrence 
formula. Note that in the program, we have replaced n by n – 1 in Equation 2.191a so that

	 Hn(x) = 2xHn–1(x) – 2(n–1)Hn–2(x)
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The result of the computation is in Table 2.8. In this case, the two methods give 
identical results. In general, the series expansion method gives results of greater accuracy 
since error in one computation is not propagated to the next as is the case when using 
recurrence relations.

Generating functions such as this is sometimes needed in numerical computations. 
This example has served to illustrate how this can be done in two ways. Special 
techniques may be required for very large or very small values of x or n.

FIGURE 2.11
Program for Hermite function Hn(x).
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2.7  Series Expansion

As we have noticed in earlier sections, PDEs can be solved with the aid of infinite series 
and, more generally, with the aid of series of orthogonal functions. In this section we apply 
the idea of infinite series expansion to those PDEs in which the independent variables are 
not separable or, if they are separable, the boundary conditions are not satisfied by the 
particular solutions. We will illustrate the technique in the following three examples.

2.7.1  Poisson’s Equation in a Cube

Consider the problem

	
∇ =

∂
∂

=
∂
∂

+
∂
∂

= −2
2

2

2

2

2

2V
V
x

V
y

V
z

f x y z( , , )
	

(2.203)

subject to the boundary conditions

	 V(0, y, z) = V(a, y, z) = V(x, 0, z) = 0

	 V(x, b, z) = V(x, y, 0) = V(x, y, c) = 0	 (2.204)

where f(x, y, z), the source term, is given. We should note that the independent variables 
in Equation 2.203 are not separable. However, in Laplace’s equation, f(x, y, z) = 0, and the 
variables are separable. Although the problem defined by Equations 2.203 and 2.204 can be 
solved in several ways, we stress the use of series expansion in this section.

TABLE 2.8

Results of the Program in Figure 2.11

n

Values of Hn(x) for x = 0.5, 0 ≤ n ≤ 15

Series Expansion Recurrence Difference

0 1.00 1.00 0.00
1 1.00 1.00 0.00
2 –1.00 –1.00 0.00
3 –5.00 –5.00 0.00
4 1.00 1.00 0.00
5 44.00 44.00 0.00
6 31.00 31.00 0.00
7 –461.00 –461.00 0.00
8 –895.00 –895.00 0.00
9 6181.00 6181.00 0.00
10 22591.00 22591.00 0.00
11 –107029.00 –107029.00 0.00
12 –604031.00 –604031.00 0.00
13 1964665.00 1964665.00 0.00
14 17669472.00 17669472.00 0.00
15 –37341152.00 –37341148.00 –4.00
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Let the solution be of the form

	
V x y z A

m x
a

n y
b

p z
c

mnp

pnm

( , , ) sin sin sin=
=

∞

=

∞

=

∞

∑∑∑ π π π

111 	
(2.205)

where the triple sine series is chosen so that the individual terms and the entire series 
would satisfy the boundary conditions of Equation 2.204. However, the individual terms do 
not satisfy either Poisson’s or Laplace’s equation. Since the expansion coefficients Amnp are 
arbitrary, they can be chosen such that Equation 2.205 satisfies Equation 2.203. We achieve 
this by substituting Equation 2.205 into Equation 2.203. We obtain

	

−

−

∑∑∑ A m a
m x
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n y
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p z
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A n b
m x
a
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∑∑∑
∑− = −/ 2 ))∑∑

Multiplying both sides by sin(iπx/a), sin(jπy/b), sin(kπz/c), and integrating over 0 < x < a, 
0 < y < b, 0 < z < c gives
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π
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Each of the integrals on the left-hand side vanishes except when m = i, n = j, and p = k. 
Hence,
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(2.206)
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Thus, the series expansion solution to the problem is in Equation 2.205 with Amnp given 
by Equation 2.206.

2.7.2  Poisson’s Equation in a Cylinder

The problem to be solved is shown in Figure 2.12, which illustrates a cylindrical metal tank 
partially filled with charged liquid [9]. To find the potential distribution V in the tank, we 
let V and Vg be the potential in the liquid and gas portions, respectively, that is,

	
V

V z b

V b z b cg
=

< <
< < +


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 ,
,
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Thus, we need to solve a two-dimensional problem:
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(2.207b)

subject to

	

V

V V z b

V
g

g

z

= =
= =

∂
∂

0, ( )
, (
ρ a at the wall

at the gas liquid interface)-

==
∂
∂

=εr
V
z

z b , (at the gas liquid interface)-

FIGURE 2.12
A cylindrical metal tank partially filled with charged liquid.
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Applying the series expansion techniques, we let

	
V J F zn n

n

 =
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∞
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(2.208b)

where Fn(z), An, and Bn are to be determined.
At z = b + c, Vg = 0, which implies that Bn = 0. Hence, Equation 2.208b becomes

	
V A J b c zg n n n
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(2.209)

Substituting Equation 2.208a into 2.207a yields
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At ρ = a, Vg = V = 0, which makes

	 J0(λna) = 0

indicating that λn are the roots of J0 divided by a. Multiplying Equation 2.210 by ρJ0(λmρ) and 
integrating over the interval 0 < ρ < a gives
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The left-hand side is zero except when m = n.
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since J0(λna) = 0. Also,
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Hence,
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showing that Gn is a constant. Thus,

	 ′′− =F F Gn n n nλ2

which is an inhomogeneous ordinary differential equation. Its solution is
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(2.211)

Imposing the conditions at z = b, that is,

	 Vℓ(ρ, b) = Vg(ρ, b)

we obtain
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(2.212)

Also,
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Solving Equations 2.212 and 2.213, we get
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Substituting An and Cn in Equations 2.209 and 2.211, we obtain the complete solution as
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(2.214a)
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(2.214b)

2.7.3  Strip Transmission Line

Consider a strip conductor enclosed in a shielded box containing homogeneous medium as 
shown in Figure 2.13a. If TEM mode of propagation is assumed, our problem is reduced to 
finding V satisfying Laplace’s equation ∇2V = 0. Due to symmetry, we need only consider 
one quarter-section of the line as in Figure 2.13b. This quadrant can be subdivided into 
regions 1 and 2, where region 1 is under the center conductor and region 2 is not. We now 
seek solutions V1 and V2 for regions 1 and 2, respectively.

If w >> b, region 1 is similar to a parallel-plate problem. Thus, we have a one-dimensional 
problem similar to Equation 2.14 with solution

	 V1 = a1y + a2

Since V1(y = 0) = V0 and V1(y = –b/2) = V0, a2 = 0, a1 = –2Vo/b. Hence,

	
V x y
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2
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(2.215)

For region 2, the series expansion solution is of the form

	
V x y A
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which satisfies Laplace’s equation and the boundary condition along the box. Notice that 
the even-numbered terms could not be included because they do not satisfy the boundary 
condition requirements about line y = 0, that is, Ey(y = 0) = − ∂V2/∂y|y=0 ≠ 0. To determine 
the expansion coefficients An in Equation 2.216, we utilize the fact that V must be continuous 
at the interface x = w/2 between regions 1 and 2, that is,

	 V x w y V x w y1 22 2( , ) ( , )= = =/ /

or
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=
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FIGURE 2.13
Strip line example.
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Hence,
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It is instructive to find the capacitance per unit length C of the strip line using the fact 
that the energy stored per length is related to C according to
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where
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For region 1,
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For region 2,
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where the double summation is used to show that we are multiplying two series which 
may have different indices m and n. Due to the orthogonality properties of sine and cosine 
functions, all terms vanish except when m = n. Thus,
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Substituting for An gives
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V
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3 3
1 3 5

8
2
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=

∞

∑ ε
π

π
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, , 	
(2.221)

The total energy in the four quadrants is

	 W = 4(W1 + W2)

Thus,
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(2.222)

The characteristic impedance of the lossless line is given by

	
Z

C cC C
o

r r= = =
µ µ µε ε

ε ε
1
/
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Z
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b n
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ε coth ( )
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(2.223)

where c = 3 × 108 m/s, the speed of light in a vacuum, and µr = 1 is assumed.

EXAMPLE 2.12

Solve the two-dimensional problem

	
∇ = −2V s

o

ρ
ε
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where

	 ρs = x(y – 1)nC/m2

subject to

	 eV(x, 0) = 0,  V(x, b) = Vo,  V(0, y) = 0 = V(a, y)

Solution

If we let

	 ∇2V1 = 0,	 (2.224a)

subject to

	 V1(x, 0) = 0,  V1(x, b) = Vo,  V1(0, y) = 0 = V(a, y)	 (2.224b)

and

	
∇ = −2

2V
s

o

ρ
ε

,
	

(2.225a)

subject to

	 V2(x, 0) = 0,  V2(x, b) = 0,  V2(0, y) = 0 = V(a, y)	 (2.225b)

By the superposition principle, the solution to the given problem is

	 V = V1 + V2	 (2.226)

The solution to Equation 2.224 is already found in Section 2.3.1, that is,
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(2.227)

The solution to Equation 2.225 is a special case of that of Equation 2.205. The only 
difference between this problem and that of Equations 2.203 and 2.204 is that this problem 
is two-dimensional while that of Equations 2.203 and 2.204 is three-dimensional. Hence,
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(2.228)

where, according to Equation 2.206, Amn is given by
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But f (x, y) = x(y – 1)/ε0
 nC/m2,
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(2.230)

since cos nπ = (–1)n. Substitution of Equation 2.230 into Equation 2.229 leads to
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(2.231)

Substituting Equations 2.227 and 2.228 into Equation 2.226 gives the complete solution 
as

 

V x y
V

m x
a

n y
a

n
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(2.232)

where Amn is in Equation 2.231.

2.8  Practical Applications

The scattering of EM waves by a dielectric sphere, known as the Mie scattering problem 
due to its first investigator in 1908, is an important problem whose analytic solution is 
usually referred to in assessing some numerical computations. Though the analysis of the 
problem is more rigorous, the procedure is similar to that of Example 2.5, where scattering 
due to a conducting cylinder was treated. Our treatment here will be brief; for an in-depth 
treatment, consult Stratton [10].

2.8.1  Scattering by Dielectric Sphere

Consider a dielectric sphere illuminated by a plane wave propagating in the z direction and 
E polarized in the x direction as shown in Figure 2.14. The incident wave is described by

	 E ai
o

j t kz
xE e= −( )ω
  	 (2.233a)

	
H ai o j t kz

y
E

e= −

η
ω( )

	
(2.233b)



91Analytical Methods

The first step is to express this incident wave in terms of spherical wave functions as in 
Example 2.8. Since

	 ax = sin θ cos φ ar + cos θ cos φ aθ–sin φ aφ,

the r-component of Ei, for example, is

	
E E E e

jkr er
i

x
i

o
j t jkr= =

∂
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( )−cos sin
cos cosφ θ φ

θ
ω θ

Introducing Equation 2.184,
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(2.234)

FIGURE 2.14
Incident EM plane wave on a dielectric sphere.
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where the n = 0 term has been dropped since P0
1 0= . The same steps can be taken to express 

Ei
θ  and Ei

φ in terms of the spherical wave functions. The result is
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where
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(2.237)

The superscript (1) on the spherical vector functions M and N in Equation 2.235 indicates 
that these functions are constructed with spherical Bessel function of the first kind; that 
is, zn(kr) in Equations 2.236 and 2.237 is replaced by jn(kr) when M and N are substituted in 
Equation 2.235.

The induced secondary field consists of two parts. One part applies to the interior of the 
sphere and is referred to as the transmitted field, while the other applies to the exterior of 
the sphere and is called the scattered field. Thus, the total field outside the sphere is the 
sum of the incident and scattered fields. We now construct these fields in a fashion similar 
to that of the incident field. For the scattered field, we let
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(2.238b)

where an and bn are expansion coefficients and the superscript (4) on M and N shows that 
these functions are constructed with spherical Bessel function of the fourth kind (or Hankel 
function of the second kind); that is, zn(kr) in Equations 2.236 and 2.237 is replaced by h krn

( )( )2  
when M and N are substituted into Equation 2.238. The spherical Hankel function has 
been chosen to satisfy the radiation condition. In other words, the asymptotic behavior of 
h krn

( )( )2 , namely,
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n
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(2.239)

when combined with the time factor ejωt, represents an outgoing spherical wave (see 
Equation 2.106d). Similarly, the transmitted field inside the sphere can be constructed as
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where cn and dn are expansion coefficients, k1 is the propagation constant in the sphere. The 
functions Mn

( )1  and Nn
( )1  in Equation 2.240 are obtained by replacing zn(kr) in Equations 2.236 

and 2.237 by jn(k1r); jn is the only solution in this case since the field must be finite at the 
origin, the center of the sphere.

The unknown expansion coefficients an, bn, cn, and dn are determined by letting the fields 
satisfy the boundary conditions, namely, the continuity of the tangential components of the 
total electric and magnetic fields at the surface of the sphere. Thus at r = a,

	 ar × (Ei + Es–Et) = 0	 (2.241a)

	 ar × (Hi + Hs–Ht) = 0	 (2.241b)

This is equivalent to

	         E E E r ai s t
θ θ θ+ = =, 	 (2.242a)

	        E E E r ai s t
φ φ φ+ = =, 	 (2.242b)

	   H H H r ai s t
θ θ θ+ = =, 	 (2.242c)

	 H H H r ai s t
φ φ φ+ = =, 	 (2.242d)

Substituting Equations 2.235, 2.238, and 2.240 into Equation 2.242, multiplying the 
resulting equations by cos φ or sin φ and integrating over 0 ≤ φ < 2π, and then multiplying 
by ( / )d dmρ θ1  and integrating over 0 ≤ θ ≤ π, we obtain

	 j ka a h ka c j k an n n n n( ) ( ) ( )( )+ =2
1 	 (2.243a)

	 µ µ µ1 1
2

1 1kaj ka a kah ka c k aj k an n n n n( ) ( ) ( )( )[ ]′ +  
′ = [ ]′	 (2.243b)

	 µ µ µ1 1
2

1j ka b h ka d j k an n n n n( ) ( ) ( )( )+ = 	 (2.243c)

	 k kaj ka b k kah ka d k k aj k an n n n n( ) ( ) ( )( )[ ]′ +  
′ = [ ]′2

1 1 1 	 (2.243d)
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Solving Equations 2.243a and 2.243b gives an and cn, while solving Equations 2.243c and 
2.243d gives bn and dn. Thus, for µ = µo = µ1,
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(2.244d)

where α = ka = 2πa/λ and m = k1/k is the refractive index of the dielectric, which may be 
real or complex depending on whether the dielectric is lossless or lossy. The primes at the 
square brackets indicate differentiation with respect to the argument of the Bessel function 
inside the brackets, that is, [xzn(x)]’ = (∂/∂x)[xzn(x)]. To obtain Equations 2.244c and 2.244d, 
we have made use of the Wronskian relationship

	 j x xh x h x xj x j xn n n n( ) ( ) ( )[ ( )]( ) ( )2 2
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
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′ − ′ = − / 	

(2.245)

If the dielectric is lossy and its surrounding medium is free space,

	 k j ko o o1
2

1
2 2= − =ωµ ω σ ω µ( ),ε ε 	 (2.246)

so that the (complex) refractive index m becomes
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The problem of scattering by a conducting sphere can be obtained as a special case of the 
problem considered above. Since the EM fields must vanish inside the conducting sphere, 
the right-hand sides of Equations 2.242a, 2.242b, 2.243a, and 2.243d must be equal to zero 
so that (cn = 0 = dn)
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Thus we have completed the Mie solution; the field at any point inside or outside the sphere 
can now be determined. We will now apply the solution to problems of practical interest.

2.8.2  Scattering Cross Sections

Often scattered radiation is most conveniently measured by the scattering cross section Qsca 
(in meter2) which may be defined as the ratio of the total energy scattered per second Ws to 
the energy density P of the incident wave, that is,

	
Q

W
P
s

sca =
	

(2.249)

The energy density of the incident wave is given by
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The scattered energy from the sphere is
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where the star sign denotes complex conjugation and field components are evaluated at far 
field (r >> a). By using the asymptotic expressions for spherical Bessel functions, we can 
write the resulting field components as
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where the amplitude functions S1(θ) and S2(θ) are given by [11]
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Thus,
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This is evaluated with the help of the identities [10]
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Substituting Equations 2.250 and 2.253 into Equation 2.249, the scattering cross section 
is found to be
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Similarly, the cross section for extinction Qext (in meter2) is obtained [11] from the amplitude 
functions for θ = 0, that is,
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where
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In obtaining Equation 2.256, we have made use of
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If the sphere is absorbing, the absorption cross section Qabs (in meter2) is obtained from

	 Qabs = Qext – Qsca	 (2.257)

since the energy removed is partly scattered and partly absorbed.
A useful, measurable quantity in radar communications is the radar cross section or back-

scattering cross section σb of a scattering obstacle. It is a lump measure of the efficiency of the 
obstacle in scattering radiation back to the source (θ = 180°). It is defined in terms of the far 
zone scattered field as

	
σ π θ πb

s

o
r

E
= =4 2

2

2

| |
,

E

	
(2.258)

From Equation 2.251,

	
σ π π πb

k
S S= +





2
2 1

2
2

2| ( )| | ( )|

But

	
− = = − + −

=

∞

∑S S n a bn
n n

n

( ) ( ) ( ) ( )( )π π2

1

1
2

1 2 1

where we have used

	
− = = − +

= =

P dP
d

n nn n n
1 1

1 1 2
sin

( ) ( )
θ θ

θ π θ π

/

Thus,

	
σ π
b

n
n n

n
k

n a b= − + −
=

∞

∑2
1

2

1 2 1( ) ( )( )
	

(2.259)

Similarly, we may determine the forward-scattering cross section (θ = 0°) as

	
σ π
f

k
S S= +





2
0 02 1

2
2

2| ( )| | ( )|

Substituting Equation 2.256 into this yields

	
σ π
f n n

n
k

n a b= + +
=

∞

∑2
1

2

2 1( )( )
	

(2.260)
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2.9  Attenuation due to Raindrops

The rapid growth in demand for additional communication capacity has put pressure on 
engineers to develop microwave systems operating at higher frequencies. It turns out, 
however, that at frequencies above 10 GHz attenuation caused by atmospheric particles 
can reduce the reliability and performance of radar and space communication links. Such 
particles include oxygen, ice crystals, rain, fog, and snow. Prediction of the effect of these 
precipitates on the performance of a system becomes important. In this final subsection, 
we will examine attenuation and phase shift of an EM wave propagating through rain 
drops. We will assume that raindrops are spherical so that Mie rigorous solution can be 
applied. This assumption is valid if the rate intensity is low. For high rain intensity, an 
oblate spheroidal model would be more realistic [12].

The magnitude of an EM wave traveling through a homogeneous medium (with N 
identical spherical particles per unit volume) in a distance ℓ is given by e−y, where γ is the 
attenuation coefficient given by [11]

	 γ = NQext

or

	
γ λ

π
=
N

S
2

0Re ( )
	

(2.261)

Thus, the wave is attenuated by

	
A

e
e= =−10

1
1010 10log logγ γ 

or

	 A = 4 343. γ (ind )B

The attenuation per length (in dB/m) is

	 A = 4.343γ

or

	
A

N
S= 4 343 0

2

. Re ( )
λ

π 	
(2.262)

Similarly, it can be shown [11] that the phase shift of the EM wave caused by the medium 
is

	
Φ = −

λ
π

2

2
N

Im (0) (in rad/unit length)S
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or

	
Φ = −

λ
π π

2

2
0

180N
SIm ( ) (indeg/m)

	
(2.263)

To relate attenuation and phase shift to a realistic rainfall rather than identical drops 
assumed so far, it is necessary to know the drop-size distribution for a given rate intensity. 
Representative distributions were obtained by Laws and Parsons [13] as shown in Table 
2.9. To evaluate the effect of the drop-size distribution, suppose for a particular rain rate 
R, p is the percent of the total volume of water reaching the ground (as in Table 2.9), which 
consists of drops whose diameters fall in the interval centered in D cm (D = 2a), the number 
of drops in that interval is given by

	 Nc = pN(D)	 (2.264)

The total attenuation and phase shift over the entire volume become

	
A pN D S= ⋅ ∑0 4343 10 0

2
6. ( )Re ( ) ( )

λ
π

dB/km
	

(2.265)

	
Φ = − ⋅ ∑9

10 0
2

2
6λ

π
pN D S( )Im ( ) ( )deg/km

	
(2.266)

where λ is the wavelength in cm and N(D) is the number of raindrops with equivolumic 
diameter D per cm3. The summations are taken over all drop sizes. In order to relate the 
attenuation and phase shift to the rain intensity measured in rain rate R (in mm/h), it is 

TABLE 2.9

Laws and Parsons’ Drop-Size Distributions for Various Rain Rates

Drop 0.25 1.25

Rain Rate (mm/h)

50 100 1502.5 5 12.5 25

Diameter (cm) Percent of Total Volume

0.05 28.0 10.9 7.3 4.7 2.6 1.7 1.2 1.0 1.0
0.1 50.1 37.1 27.8 20.3 11.5 7.6 5.4 4.6 4.1
0.15 18.2 31.3 32.8 31.0 24.5 18.4 12.5 8.8 7.6
0.2 3.0 13.5 19.0 22.2 25.4 23.9 19.9 13.9 11.7
0.25 0.7 4.9 7.9 11.8 17.3 19.9 20.9 17.1 13.9
0.3 – 1.5 3.3 5.7 10.1 12.8 15.6 18.4 17.7
0.35 – 0.6 1.1 2.5 4.3 8.2 10.9 15.0 16.1
0.4 – 0.2 0.6 1.0 2.3 3.5 6.7 9.0 11.9
0.45 – – 0.2 0.5 1.2 2.1 3.3 5.8 7.7
0.5 – – – 0.3 0.6 1.1 1.8 3.0 3.6
0.55 – – – – 0.2 0.5 1.1 1.7 2.2
0.6 – – – – – 0.3 0.5 1.0 1.2
0.65 – – – – – – 0.2 0.7 1.0
0.7 – – – – – – – – 0.3
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necessary to have a relationship between N and R. The relationship obtained by Setzer 
[13], shown in Table 2.10, involves the terminal velocity u (in m/s) of the rain drops, that is,

	

R u N

uN
a

= ⋅ ⋅

=

(volume of a drop)

(in m/s)
4

3

3π

or

	 R NuD= ⋅6 103 5π ( )mm/h

Thus,

	
N D

R
uD

( ) = −

6
103

5

π 	
(2.267)

Substituting this into Equations 2.265 and 2.266 leads to

	
A R

p
uD

S= ∑4.343 (dB/km)
λ
π

2

2 36
0Re ( )

	
(2.268)

	
Φ = − ∑90

6

2

3 3

λ
π

R
P
uD

SIm (0) deg/km( ),
	

(2.269)

where N(D) is in per cm3, D and λ are in cm, u is in m/s, p is in percent, and S(0) is the 
complex forward-scattering amplitude defined in Equation 2.256. The complex refractive 
index of raindrops [14] at 20°C required in calculating attenuation and phase shift is shown 
in Table 2.11.

TABLE 2.10

Raindrop Terminal Velocity

Radius (cm) Velocity (m/s)

0.025 2.1
0.05 3.9
0.075 5.3
0.10 6.4
0.125 7.3
0.15 7.9
0.175 8.35
0.20 8.7
0.225 9.0
0.25 9.2
0.275 9.35
0.30 9.5
0.325 9.6
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EXAMPLE 2.13

For ice spheres, plot the normalized back-scattering cross section, σb/πa2, as a function 
of the normalized circumference, α = 2πa/λ. Assume that the refractive index of ice is 
independent of wavelength, making the normalized cross section for ice applicable over 
the entire microwave region. Take m = 1.78 – j2.4 × 10−3 at 0°C.

Solution

From Equation 2.259,

	
σ

π
b

n
n n

n
k

n a b= − + −
=

∞

∑2
1

2

1 2 1( ) ( )( )

Since α = ka, the normalized back-scattering cross section is

	

σ
π α

b n
n n

n
a

n a b2 2
1

2

1
1 2 1= − + −

=

∞

∑( ) ( )( )
	

(2.270)

Using this expression in conjunction with Equation 2.244, the section SCATTERING in 
the MATLAB code of Figure 2.15 was used as the main program to determine σb/πa2 for 
0.2 < α < 4. Details on the program will be explained in the next example. It suffices to 
mention that the maximum number of terms of the infinite series in Equation 2.270 was 10. 
It has been found that truncating the series at n = 2α provides sufficient accuracy. The plot 
of the normalized radar cross section versus a is shown in Figure 2.16. From the plot, we 
note that back-scattering oscillates between very large and small values. If α is increased 

TABLE 2.11

Refractive Index of Water at 20°C

Frequency (GHz) Refractive Index (m = m′ – jm″)

0.6 8.960 – j0.1713
0.8 8.956 – j0.2172
1.0 8.952 – j0.2648
1.6 8.933 – j0.4105
2.0 8.915 – j0.5078
3.0 8.858 – j0.7471
4.0 8.780 – j0.9771
6.0 8.574 – j1.399
11 7.884 – j2.184
16 7.148 – j2.614
20 6.614 – j2.780
30 5.581 – j2.848
40 4.886 – j2.725
60 4.052 – j2.393
80 3.581 – j2.100
100 3.282 – j1.864
160 2.820 – j1.382
200 2.668 – j1.174
300 2.481 – j0.8466
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further, the normalized radar cross section increases rapidly. The unexpectedly large cross 
sections have been attributed to a lens effect; the ice sphere acts like a lens which focuses 
the incoming wave on the back side from which it is reflected backward in a concentrated 
beam. This is recognized as a crude description, but it at least permits visualization of a 
physical process which may have some reality.

FIGURE 2.15
MATLAB program for Examples 2.13 and 2.14.� (Continued)
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EXAMPLE 2.14

Assuming the Laws and Parsons’ rain drop-size distribution, calculate the attenuation 
in dB/km for rain rates of 0.25, 1.25, 2.5, 5.0, 12.5, 50.0, 100.0, and 150.0 mm/h. Consider 
the incident microwave frequencies of 6, 11, and 30 GHz.

FIGURE 2.15 (Continued)
MATLAB program for Examples 2.13 and 2.14.
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Solution

The MATLAB code developed for calculating attenuation and phase shift of microwaves 
due to rain is shown in Figure 2.15. The main program calculates attenuation and phase 
shift for given values of frequency and rain rate by employing Equations 2.268 and 2.269. 
For each frequency, the corresponding value of the refractive index of water at 20°C is 
taken from Table 2.11. The data in Tables 2.9 and 2.10 on the drop-size distributions and 
terminal velocity are incorporated in the main program.

MATLAB provides commands for calculating Bessel functions. The derivative of 
Bessel–Riccati function [xzn(x)] is obtained from (see Problem 2.14)

	 [ ( )] ( ) ( )xz x nz x xz xn n n′ = − + −1

where zn is jn, j–n, yn or hn(x). Subroutine GAMMA calculates Γ(n + 1/2) using Equation 
2.165, while subroutine FACTORIAL determines n!. All computations were done in 
double precision arithmetic, although it was observed that using single precision would 
only alter results slightly.

Typical results for 11 GHz are tabulated in Table 2.12. A graph of attenuation vs. rain 
rate is portrayed in Figure 2.17. The plot shows that attenuation increases with rain 
rate and conforms with the common rule of thumb. We must note that the underlying 
assumption of spherical raindrops renders the result as only a first-order approximation 
of the practical rainfall situation.

FIGURE 2.16
Normalized back-scattering (radar) cross sections α = 2πa/λ for ice at 0°C.

TABLE 2.12

Attenuation and Phase Shift at 11 GHz

Rain Rate (mm/h) Attenuation (dB/km) Phase Shift (deg/km)

0.25 2.56 × 10−3 0.4119

1.25 1.702 × 10−3 1.655

2.5 4.072 × 10−3 3.040

5.0 9.878 × 10−3 5.601

12.5 0.3155 12.58
25 0.7513 23.19
50 1.740 42.74
100 3.947 78.59
150 6.189 112.16
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2.10  Concluding Remarks

We have reviewed analytic methods for solving PDEs. Analytic solutions are of major 
interest as test models for comparison with numerical techniques. The emphasis has 
been on the method of separation of variables, the most powerful analytic method. For an 
excellent, more in-depth exposition of this method, consult Myint-U [5]. In the course of 
applying the method of separation of variables, we have encountered some mathematical 
functions such as Bessel functions and Legendre polynomials. For a thorough treatment 
of these functions and their properties, Johnson and Johnson [8] is recommended. The 
mathematical handbook by Abramowitz and Stegun [15] provides tabulated values of these 
functions for specific orders and arguments. A few useful texts on the topics covered in this 
chapter are also listed in the references.

As an example of real-life problems, we have applied the analytical techniques developed 
in this chapter to the problem of attenuation of microwaves due to spherical raindrops. 
Spherical models have also been used to assess the absorption characteristics of the human 
skull exposed to EM plane waves [16–20] (see Problems 2.58 through 2.61).

We conclude this chapter by remarking that the most satisfactory solution of a field 
problem is an exact analytical one. In many practical situations, no solution can be obtained 
by the analytical methods, and one must therefore resort to numerical approximation or 
graphical or experimental solutions. (Experimental solutions are usually very expensive, 
while graphical solutions are not so accurate.) More information on analytical modeling in 
EM can be found in References 1, 21–24. The remainder of this book will be devoted to a 
study of the numerical methods commonly used in EM.

  PROBLEMS

	 2.1	 Consider the PDE

	 a b c d e fxx xy yy x yΦ Φ Φ Φ Φ Φ+ + + + + = 0

		  where the coefficients a, b, c, d, e, and f are in general functions of x and y. Under 
what conditions is the PDE separable?

FIGURE 2.17
Attenuation vs. rain rate.
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	 2.2	 Determine the distribution of electrostatic potential inside the conducting 
rectangular boxes with cross sections shown in Figure 2.18.

	 2.3	 The cross sections of the cylindrical systems that extend to infinity in the 
z-direction are shown in Figure 2.19. The potentials on the boundaries are as 
shown. For each system, find the potential distribution.

FIGURE 2.18
For Problem 2.2.

FIGURE 2.19
For Problem 2.3.
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	 2.4	 Find the solution U of
	 a.	 Laplace equation

	

∇ = < <
= = =
= − < <

2 0 0
0 0 0 0
U x y

U y U y U x

U x x x
x x

, ,
( , ) ( , ), ( , ) ,
( , )

π
π

π π, 0

	 b.	 Heat equation

	

kU U x t

U t t U t t

U x x

xx t= ≤ ≤ >
= > = >
= ≤ ≤

, ,
( , ) , , ( , ) ,

( , ) ,

0 1
0 0 0 1 1 0

0 0 0 1

0

	 c.	 Wave equation

	

a U U x t

U t U t t

U x U x x

xx tt

t

2 0 1 0
0 0 1 0

0 0 0

= ≤ ≤ >
= = >
= =

, ,
( , ) ( , ),
( , ) , ( , )

	 2.5	 Find the solution Φ of
	 a.	 Laplace equation

	

∇ = ≥ < <
= = =

2 0 1 0
1 0 0

Φ
Φ Φ Φ

, ,
( , ) sin , ( , ) ( , )

ρ φ π
φ φ ρ ρ π

	 b.	 Laplace equation

	

∇ = < < < <
= = =

2 0 0 0
0 0 1

Φ
Φ Φ Φ

,
( , ) ( , ), ( , )

ρ
ρ ρ

q

L

, z L

a z

	 c.	 Heat equation

	

Φ Φ

Φ Φ
t k z t

a t t

= ∇ ≤ ≤ −∞ < < ∞ >

= > = ≤

2

2

0 1 0

0 0 0 2 0

, , ,

( , , ) , , ( , , ) cos ,

ρ

φ ρ φ ρ φ φφ π< 2

	 2.6	 The one-dimensional heat equation is given by

	 U U x txx t= < < >, ,0 1 0 

		  subject to Neumann boundary condition

	 U t Ux x( , ) ( , t)0 0 1= =

		  and an inhomogeneous initial condition

	 U x f x x( , ) ( ) cos( )0 2= = π

		  Obtain the solution for U(x, t).
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	 2.7	 Solve the diffusion equation

	 U U x txx t= < < >, ,0 1 0 

		  subject to boundary conditions

	 U t U t( , ) ( , )0 0 1= =

		  and the initial condition

	 U x x x( , ) ( )0 1= −

	 2.8	 Solve the two-dimensional wave equation

	 U U U x y txx yy tt+ = < < < < >, , ,0 0 0π π   

		  subject to the following conditions:

	

U y t U y t

U x t U x t

U x y x

( , , ) , ( , , )
( , , ) ( , , )

( , , ) sin( )s

0 0 1
0 0

0 3

= =
= =

=

π
π

π iin( )

( , , )

4

0 0

π
π

y
x

U x yt

+

=

	 2.9	 Solve the two-dimensional heat equation

	 U U U x y txx yy t+ = < < < < >, , ,0 1 0 1 0

		  Boundary conditions:

	

U y t U y t y t

U x t U x t x t

( , , ) ( , , ), ,
( , , ) ( , , ), ,
0 0 1 0 1 0

0 0 1 0 1 0
= = < < >
= = < < >

		  Initial condition:

	 U x y xy x y( , , ) , ,0 10 0 1 0 1= < < < <

	 2.10	 Solve the PDE

	
4 0 0 1 0

4

4

2

2

∂
∂

+
∂
∂

= < < >
Φ Φ
x t

x t, ,

		  subject to the boundary conditions:

	 Φ Φ Φ Φ( , ) ( , ) ( , ) ( , )0 0 1 0 1t t t txx xx= = = =

		  and initial conditions:

	 Φ Φt x x x( , ) , ( , )0 0 0= =
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	 2.11	 Consider the following Laplace’s equation with Neumann boundary conditions:

	

∇ = < < < <
= =
=

2 0 0 0
0 0

0

V x y x y

V y V y

V x x V x
x x

y y

( , ) , ,
( , ) ( , )
( , ) cos , ( ,

π π
π

π)) = 0

		  Show that the analytical solution is

	
V x y y

y
x( , ) sinh

cosh
tanh

cos= −










π

	 2.12	 Solve Laplace’s equation

	 ∇ = < < < < ∞2 0 0 1 0V y x, ,

		  subject to:

	

V x V x

V y V y

( , ) ( , )
( , ) , ( , )

0 0 1
0 10 0

= =
= ∞ = 

	 2.13	 Determine the solution to the wave equation

	 U x t a U x t x ttt xx( , ) ( , ), ,= < < >2 0 1 0 

		  subject to

	

U t U t t

U x x x x

U x xt

( , ) ( , ),
( , ) ( ),
( , ) ,

0 0 1 0
0 1 0 1
0 0 0 1

= = >
= − < <
= < <

	 2.14	 Find the solution to Laplace’s equation

	 ∇ = < < < <2 0 0 1 0 1U x y, ,

		  subject to the boundary conditions

	

U y U y

U x U x x
x x( , ) ( , )
( , ) , ( , )
0 0 1

0 0 1
= =
= =

	 2.15	 A cylinder similar to the one in Figure 2.20 has its ends z = 0 and z = L held at 
zero potential. If

	
V a z

V z L z L

V z L L z L
o

o
( , )

,
( ),

=
< <

− < <






/ /
/ /

0 2
1 2

		  find V(ρ, z). Calculate the potential at (ρ, z) = (0.8a, 0.3L).
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	 2.16	 Determine the potential distribution in a hollow cylinder of radius a and length L 
with ends held at zero potential while the lateral surface is held at potential Vo as 
in Figure 2.20. Calculate the potential along the axis of the cylinder when L = 2a.

	 2.17	 The conductor whose cross section is shown in Figure 2.21 is maintained at 
V = 0 everywhere except on the curved electrode where it is held at V = Vo. Find 
the potential distribution V(ρ, φ).

	 2.18	 Solve the PDE

	

∂
∂

+
∂
∂

=
∂
∂

≤ ≤ ≥
2

2

2

2

1
0 0

Φ Φ Φ
ρ ρ ρ

ρ
t

a t, ,

		  under the conditions

	

Φ Φ

Φ
Φ

( , ) , ( , ) , ,

( , ) ( ), ,

0 0 0

0 1 0 02 2

0

t a t t

a
t t

is bounded

/

= ≥

= −
∂
∂

=
=

ρ ρ ≤≤ ≤ρ a

FIGURE 2.20
For Problem 2.9.

FIGURE 2.21
For Problem 2.11.
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	 2.19	 Find the solution of

	
∇ =

∂
∂

→ + = < < >2 1
0 1 0U

U
t

U U U ttρρ ρ
ρ

ρ, ,

		  subject to

	 U t U o( , ) , ( , ) ( )1 0 0= =ρ V constant

	 2.20	 Determine the solution to

	
U U U U z tzz tρρ ρ

ρ
ρ+ + = < < < < >

1
0 1 0 1 0, , ,

		  subject to the boundary conditions

	 U t U t U z t( , , ) ( , , ) ( , , )ρ ρ0 0 1 1= = =

		  and initial condition

	 U z o( , , ) ( )ρ 0 =V constant

	 2.21	 a.	 Prove that

	
e J ej n

n
jn

n

±

=−∞

∞

= ±∑ρ φ φρsin ( ) ( )1

	 b.	 Derive the Bessel’s integral formula

	
J n dn( ) cos( sin )ρ

π
θ ρ θ θ

π

= −∫1

0

	 2.22	 Show that

	
cos ( ) ( ) ( )x J x J xo

n
n

n

= + −
=

∞

∑2 1 2

1

		  and

	
sin ( ) ( )x J xn

n

n

= − +
+

=

∞

∑2 1 1
2 1

1
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	 2.23	 Show that

	 a.	 J x
x

x1 2
2

/ ( ) sin ,=
π

	 b.	 J x
x

x− =1 2
2

/ ( ) cos ,
π

	 c.	
d
dx

x J x x J xn
n

n
n[ ( )] ( ).−

+= − 1

	 d.	
d
dx

J x
n

n n

x
n( ) ,

=

=
0

1
2

	 e.	
d
dx

xz x nz x xz x n z x xz xn n n n n[ ( )] ( ) ( ) ( ) ( ) ( )= − + = + +− +1 11

	 2.24	 Prove that

	
J x

x
J x

x
J xo3 2 1

4 8
1( ) ( ) ( )= − + −









	 2.25	 Evaluate the following integrals:

	
a.

	
x J x dxn

n−∫ 1( ) ,

	
b.

	

1
1

x
J x dxn n∫ + ( )

	 2.26	 Reduce ∫x2J2(x)dx to an integral involving only J0(x).
	 2.27	 Write a computer program that will evaluate the first roots λnm of Bessel function 

Jn(x) for n = 1, 2, …, 5, that is, Jn(λnm) = 0.
	 2.28	 Evaluate

	 a.	 P x P x dx1 2

1

1

( ) ( ) ,
−

∫

	 b.	 [ ( )] ,P x dx4
2

1

1

−

∫

	 c.	 x P x dx2
3

0

1

( )∫
	 2.29	 In Legendre series of the form A P xn n

n
( )

=

∞

∑ 0
, expand

	 a.	 f x
x

x
( )

, ,
,

=
− < <

< <






0 1 0
1 0 1

	 b.	 f x x x( ) , ,= − < <3 1 1
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	 c.	 f x
x

x x
( )

, ,
,

=
− < <

< <






0 1 0
0 1

	 d.	 f x
x x

x x
( )

, ,
,

=
+ − < <
− < <






1 1 0
1 0 1

	 2.30	 Derive the following associated Legendre functions:
	 a.	 P x3

2( ),
	 b.	 P x2

3( ),
	 c.	 P x3

3( )
	 2.31	 Determine the following polynomials:
	 a.	 L x3

1 ( ),
	 b.	 T x T x3 4( ), ( )
	 c.	 U x U x3 4( ), ( )
	 2.32	 Use MATLAB to determine:
	 a.	 J3 0 5( . ),
	 b.	 P3 0 5( . ),
	 c.	 T3 0 5( . ),
	 d.	 U3 0 5( . )
	 2.33	 Evaluate
	 a.	 H3(x) and H4(x)
	 b.	 L3(x) and L4(x)
	 2.34	 Laguerre polynomials can be defined as

	
L t

e
n

d
dt

t e nn

t n

n
n t( )

!
, , , ,= ( ) =− 0 1 2 …

		  Use this definition to obtain L t L t L t0 1 2( ), ( ), ( ), and L t3( ).
	 2.35	 Hermite polynomials may be given by Rodrigue’s formula:

	
H x e

d
dx

e nn
n x

n

n
x( ) ( ) , , , ,= − ( ) =−1 0 1 2

2 2
…

		  Use this formula to determine H x H x H x H x0 1 2 3( ), ( ), ( ), ( )and .
	 2.36	 Solve Laplace’s equation:

	 a.	 ∇ = ≤ ≤ =
< <





2 0 0
1 0 2
0

U r a U a, , ( , )
,
,

θ
θ π/

otherwise

	 b.	 ∇ = >
∂
∂

= + < <
=

2 30 3 0U r a
U
r r a

, , cos cos , ,θ θ θ π

	 c.	 ∇ = < < < < <2 0 0 0 2U r a, , , ,θ π φ π

	 U a( , , ) sinθ φ θ= 2
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	 2.37	 A hollow conducting sphere of radius a has its upper half charged to potential 
Vo while its lower half is grounded. Find the potential distribution inside and 
outside the sphere.

	 2.38	 A circular disk of radius a carries charge of surface charge density ρo. Show that 
the potential at point (0, 0, z) on its axis θ = 0 is

	
V z a zo= + − 

ρ
2

2 2 1 2

ε
( ) /

		  From this deduce the potential at any point (r, θ, φ).
	 2.39	 a.	 Verify the three-term recurrence relation

	 ( ) ( ) ( ) ( ) ( )2 1 1 1 1n xP x n P x nP xn n n+ = + ++ −

	 b.	 Use the recurrence relation to find P6(x) and P7(x).
	 2.40	 Establish the formula

	 P x P xn
n

n( ) ( ) ( )− = −1

	 2.41	 Verify the following identities:

	 a.	 P x P x dx
n

n m nm( ) ( ) ,=
+

−

∫ 2
2 1

1

1

δ

	 b.	 P x P x dx
n

n m
n m

n
m

k
m

nk( ) ( )
( )!
( )!

=
+

+
−

−

∫ 2
2 1

1

1

δ

	 2.42	 Rework the problem in Figure 2.8 if the boundary conditions are now

	 V r a V V r E r Vo o o( ) , ( ) cos= = → ∞ = +θ

		  Find V and E everywhere. Determine the maximum value of the field strength.
	 2.43	 In a sphere of radius a, obtain the solution V(r, θ) of Laplace’s equation

	 ∇ = ≤2 0V r r a( , ) ,θ

		  subject to

	 V a( , ) cos cosθ θ θ= + +3 3 12

	 2.44	 Determine the solution to Laplace’s equation

	 ∇ =2 0V

		  outside a sphere r > a subject to the boundary condition

	
∂
∂

= +
r
V a( , ) cos cosθ θ θ3 3
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	 2.45	 Find the potential distribution inside and outside a dielectric sphere of radius a 
placed in a uniform electric field Eo.

		  Hint: The problem to be solved is ∇2V = 0 subject to

	

εr

o

V
r

V
r

r a V V r a

V E r r

∂
∂

=
∂
∂

= = =

= − → ∞

1 2
1 2

2

on on

as

, ,

cosθ

	 2.46	 a.	 Derive the recurrence relation of the associated Legendre polynomials

	
P x

mx
x

P x n n m m P xn
m

n
m

n
m+ −=

−
− + − −1

2 1 2
12

1
1 1( )

( )
( ) [ ( ) ( )] ( )/

	 b.	 Using the recurrence relation on the formula for Pnm, find P3
2, P3

3, P4
1, and P4

2.
	 2.47	 Expand V = cos 2φ sin2φ in terms of the spherical harmonics P mn

m(cos )sinθ φ and 
P mn
m(cos )cosθ φ.

	 2.48	 In the prolate spheroidal coordinates (ξ, η, φ), the equation

	 ∇ + =2 2 0Φ Φk

		  assumes the form

	

∂
∂

−
∂
∂











 +

∂
∂

−
∂
∂











 + −







+
−

ξ
ξ

ξ η
η

η ξ

η

( ) ( )2 2
21 1
1

1

1
1

Φ Φ

22

2

2
2 2 2 2 0






∂
∂

+ − =
Φ

Φ
φ

ξ ηk d ( )

		  Show that the separated equations are

	

d
d

d
d

k d
m

c

d
d

ξ
ξ

ξ
ξ

ξ

η
η

( )

(

2 1 2 2 2
2

2 1

2

1
1

0

1

+










 + −

−
−











 =

−

Ψ
Ψ

))
d
d

k d
m

c

d
d

m

Ψ
Ψ

Ψ
Ψ

2 2 2 2
2

2 2

2
3

2
2

3

1
0

0

η
η

η

φ











 − +

−
−











 =

+ =

		  where m and c are separation constants.
	 2.49	 Solve Equation 2.203 if a = b = c = π and
	 a.	 f(x, y, z) = e−x,
	 b.	 f(x, y, z) = sin2 x.
	 2.50	 Solve the inhomogeneous potential problem

	 U U xy x yxx yy+ = − < < < <, ,0 0π π
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		  Subject to the following boundary conditions

	

U y U y

U x U x Uo

( , ) , ( , )
( , ) , ( , ) ( )
0 0 0

0 0
= =
= =

π
π constant

	 2.51	 Solve the inhomogeneous PDE

	

∂
∂

+
∂
∂

−
∂
∂

= − ≤ ≤ ≥
2

2

2

2

1
0 0

Φ Φ Φ
Φ

ρ ρ ρ
ω ρ

t
t a to sin , ,

		  subject to the conditions Φ(a, t) = 0, Φ(ρ, 0) = 0, Φt(ρ, 0) = 0, Φ is finite for all 
0 ≤ ρ ≤ a. Take Φo as a constant and aω not being a zero of J0(x).

	 2.52	 Infinitely long metal box has a rectangular cross section shown in Figure 2.22. 
If the box is filled with charge ρυ = ρox/a, find V inside the box.

	 2.53	 In Section 2.7.2, find Eg and Eℓ, the electric field intensities in gas and liquid, 
respectively.

	 2.54	 Consider the potential problem shown in Figure 2.23. The potentials at x = 0, 
x = a, and y = 0 sides are zero while the potential at y = b side is Vo. Using the 
series expansion technique similar to that used in Section 2.7.2, find the potential 
distribution in the solution region.

FIGURE 2.22
For Problem 2.52.

FIGURE 2.23
Potential system for Problem 2.54.
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	 2.55	 Consider a grounded rectangular pipe with the cross section shown in Figure 
2.24. Assuming that the pipe is partially filled with hydrocarbons with charge 
density ρo, apply the same series expansion technique used in Section 2.7.2 to 
find the potential distribution in the pipe.

	 2.56	 Write a program to generate associated Legendre polynomial, with x = 
cos θ = 0.5. You may use either series expansion or recurrence relations. Take 
0 ≤ n ≤ 15, 0 ≤ m ≤ n. Compare your results with those tabulated in standard 
tables.

	 2.57	 Show that

	

T x dx T x

T x dx T x

T x dx
T x
n

T
n

n n

0 1

1 2

1 1

1
4

1
4

1
2 1

( ) ( )

( ) ( )

( )
( )

=

= +

=
+

−

∫
∫

+ − (( )
,

x
n

n
−







 >∫ 1

1

	 2.58	 A function is defined by

	
f x

x
( )

,
,

=
− ≤ ≤





1 1 1
0 otherwise

	 a.	 Expand f(x) in a series of Hermite functions,
	 b.	 Expand f(x) in a series of Laquerre functions.
	 2.59	 By expressing Ei

θ  and Ei
φ in terms of the spherical wave functions, show that 

Equation 2.235 is valid.

FIGURE 2.24
Earthed rectangular pipe partially filled with charged liquid—for Problem 2.36.
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	 2.60	 By defining

	
ρ σn n n nx

d
dx

xh x x
d
dx

xj x( ) ln[ ( )], ( ) ln[ ( )],( )= =2

		  show that the scattering amplitude coefficients can be written as

	

a
j
h

m m
m m

b
j

n
n

n

n n

n n

n
n

=
−













=

( )
( )

( ) ( )
( ) ( )

( )

( )

α
α

σ α σ α
ρ α σ α

α

2

−

hh
m m
m mn

n n

n n
( )( )

( ) ( )
( ) ( )2 α

σ α σ α
σ α σ α

−
−













	 2.61	 For the problem in Figure 2.14, plot E Ez
t

x
i/  for − a < z < a along the axis of 

the dielectric sphere of radius a = 9 cm in the x − z plane. Take Eo = 1, ω = 
2π × 5 × 109 rad/s, ε1 = 4εo, µ1 = µo, σ1 = 0. You may modify the program in 
Figure 2.15 or write your own.

	 2.62	 In analytical treatment of the radio-frequency radiation effect on the human 
body, the human skull is frequently modeled as a lossy sphere. Of major concern 
is the calculation of the normalized heating potential

	
Φ Ω( )

| ( )|
| |

( ) ,r
E r
E

m
t

o
= −1

2

2

2
1σ ⋅

		  where Et is the internal electric field strength and Eo is the peak incident field 
strength. If the human skull can be represented by a homogeneous sphere 
of radius a = 10 cm, plot Φ(r) against the radial distance −10 ≤ r = z ≤ 10 cm. 
Assume an incident field as in Figure 2.14 with f = 1 GHz, µr = 1, εr = 60, σ = 0.9 
mhos/m, Eo = 1.

	 2.63	 Instead of the homogeneous spherical model assumed in the previous problem, 
consider the multilayered spherical model shown in Figure 2.25 with each 
region labeled by an integer p, such that p = 1 represents the central core region 
and p = 4 represents air. At f = 2.45 GHz, plot the heating potential along the x 
axis, y axis, and z axis. Assume the data given below.

Region p Tissue Radius (mm) εr  σ (mho/m)
1 Muscle 18.5 46 2.5
2 Fat 19 6.95 0.29
3 Skin 20 43 2.5
4 Air   1 0

µr = 1

		  Note that for each region p, the resultant field consists of the transmitted and 
scattered fields and in general given by

	

E r E e j
n

n n
a k

jb

p o
j t n

np np

n

np np

( , , ) ( )
( )

( )( )θ φ ω= −
+
+

[ ]

+
=

∞

∑ 2 1
1

4

1

M

N(( ) ( ) ( )( ) ( ) ( )4 1
1

1 1k c k jd knp np np np+ +M N
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	 2.64	 The absorption characteristic of biological bodies is determined in terms of the 
specific absorption rate (SAR) defined as the total power absorbed divided as the 
power incident on the geometrical cross section. For an incident power density 
of 1 mW/cm2 in a spherical model of the human head,

	
SAR 2 mW/cmabs 3=

Q
aπ

		  where a is in centimeters. Using the above relation, plot SAR against frequency 
for 0.1 < f < 3 GHz, a = 10 cm assuming frequency-dependent and dielectric 
properties of head as

	

εr
o

o

o

o

f f
f f

f f
f f

=
+

+











=
+
+

5
12
1

6
1 62
1

2

2

2

2

( )
( )

( )
( )

/
/

/
/

σ










		  where f is in GHz and fo = 20 GHz.
	 2.65	 For the previous problem, repeat the calculations of SAR assuming a six-layered 

spherical model of the human skull (similar to that of Figure 2.25) of outer radius 
a = 10 cm. Plot Pa/Pi vs. frequency for 0.1 < f < 3 GHz where

	

P
P

n a b a ba

i
n n n n= + + − +( )



∑2

2 12
2 2

α
( ) Re( ) | | | | ,

FIGURE 2.25
For Problem 2.63, a multilayered spherical model of the human skull.
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		  Pa = absorbed power, Pi = incident power, α = 2πa/λ, λ is the wavelength in the 
external medium. Use the dimensions and electrical properties shown below.

Layer p Tissue Radius (mm) εr

 σo 
(mho/m)

1 Brain 9 5∇(f) 6∇(f)
2 CSF 12 7∇(f) 8∇(f)
3 Dura 13 4∇(f) 8∇(f)
4 Bone 17.3 5 62
5 Fat 18.5 6.95 0.29
6 Skin 20 43 2.5

		  where µr = 1,

	

∇ =
+
+

=
+
+

( )
( )

( )
,

( )
( )

( )
,

f
f f
f f

f
f f
f f

o

o

o

o

1 12
1

1 62
1

2

2

2

2

/
/

/
/

∆

		  f is in GHz, and fo = 20 GHz. Compare your result with that from the previous 
problem.
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3
Finite Difference Methods

The reason why worry kills more people than hard work is that more people worry than work.

—Robert Frost

3.1  Introduction

It is rare for real-life EM problems to fall neatly into a class that can be solved by the 
analytical methods presented in the preceding chapter. Classical approaches may fail if [1]

•	 PDE is not linear and cannot be linearized without seriously affecting the result
•	 The solution region is complex
•	 The boundary conditions are of mixed types
•	 The boundary conditions are time-dependent
•	 The medium is inhomogeneous or anisotropic

Whenever a problem with such complexity arises, numerical solutions must be employed. 
Of the numerical methods available for solving PDEs, those employing finite differences 
are more easily understood, more frequently used, and more universally applicable than 
any other.

The finite difference method (FDM) was first developed by A. Thom [2] in the 1920s under 
the title “the method of squares” to solve nonlinear hydrodynamic equations. Since then, 
the method has found applications in solving different field problems. The finite difference 
techniques are based upon approximations which permit replacing differential equations 
by finite difference equations. These finite difference approximations are algebraic in form; 
they relate the value of the dependent variable at a point in the solution region to the values 
at some neighboring points. Thus a finite difference solution basically involves three steps:

	 1.	Dividing the solution region into a grid of nodes
	 2.	Approximating the given differential equation by finite difference equivalent that 

relates the dependent variable at a point in the solution region to its values at the 
neighboring points

	 3.	Solving the difference equations subject to the prescribed boundary conditions 
and/or initial conditions

The course of action taken in three steps is dictated by the nature of the problem being 
solved, the solution region, and the boundary conditions. The most commonly used grid 
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patterns for two-dimensional problems are shown in Figure 3.1. A three-dimensional grid 
pattern will be considered later in the chapter.

3.2  Finite Difference Schemes

Before finding the finite difference solutions to specific PDEs, we will look at how one 
constructs finite difference approximations from a given differential equation. This 
essentially involves estimating derivatives numerically.

Given a function f (x) shown in Figure 3.2, we can approximate its derivative, slope or the 
tangent at P by the slope of the arc PB, giving the forward-difference formula

	
′ +∆ −

∆
f x

f x x f x
x

o
o o( )

( ) ( )


	
(3.1)

FIGURE 3.1
Common grid patterns: (a) rectangular grid, (b) skew grid, (c) triangular grid, (d) circular grid.

FIGURE 3.2
Estimates for the derivative of f (x) at P using forward, backward, and central differences.
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or the slope of the arc AP, yielding the backward-difference formula

	
′ − −∆

∆
f x

f x f x x
x

o
o o( )

( ) ( )


	
(3.2)

or the slope of the arc AB, resulting in the central-difference formula

	
′ +∆ − −∆

∆
f x

f x x f x x
x

o
o o( )

( ) ( )


2 	
(3.3)

We can also estimate the second derivative of f(x) at P by applying Equation 3.3 twice
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(3.4)

Any approximation of a derivative in terms of values at a discrete set of points is called 
finite difference approximation.

The approach used above in obtaining finite difference approximations is rather intuitive. 
A more general approach is using Taylor’s series. According to the well-known expansion,

	
f x x f x xf x x f x x f xo o o o o( ) ( ) ( )
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( ) ( )
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(3.5)

and
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(3.6)

Upon adding these expansions,

	 f x x f x x f x x f x O xo o o o( ) ( ) ( ) ( ) ( ) ( )+∆ + −∆ = + ∆ ′′ + ∆2 2 4
	 (3.7)

where O(Δx)4 is the error introduced by truncating the series. We say that this error is of 
the order (Δx)4 or simply O(Δx)4. Therefore, O(Δx)4 represents terms that are not greater 
than (Δx)4. Assuming that these terms are negligible,
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which is Equation 3.4. Subtracting Equation 3.6 from Equation 3.5 and neglecting terms of 
the order (Δx)3 yields
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which is Equation 3.3. This shows that the leading errors in Equations 3.3 and 3.4 are of 
the order (Δx)2. Similarly, the difference formula in Equations 3.1 and 3.2 have truncation 
errors of O(Δx). Higher-order finite difference approximations can be obtained by taking 
more terms in Taylor-series expansion. If the infinite Taylor series were retained, an exact 
solution would be realized for the problem. However, for practical reasons, the infinite 
series is usually truncated after the second-order term. This imposes an error which exists 
in all finite difference solutions.

To apply the difference method to find the solution of a function Φ(x, t), we divide the 
solution region in the x – t plane into equal rectangles or meshes of sides Δx and Δt as in 
Figure 3.3. We let the coordinates (x, t) of a typical grid point or node be

	

x i x i

t j t j

= ∆ =
= ∆ =

, , , ,
, , , ,

0 1 2
0 1 2

…

…	
(3.8a)

and the value of Φ at P be

	 ΦP = Φ(i Δx, j Δt) = Φ(i, j)	 (3.8b)

With this notation, the central difference approximations of the derivatives of Φ at the 
(i, j)th node are
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Table 3.1 gives some useful finite difference approximations for Φx and Φxx.

FIGURE 3.3
Finite difference mesh for two independent variables x and t.
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3.3  Finite Differencing of Parabolic PDEs

Consider a simple example of a parabolic (or diffusion) partial differential equation with 
one spatial independent variable

	
k

t x
∂
∂

=
∂
∂

Φ Φ2

2 	
(3.10)

where k is a constant. The equivalent finite difference approximation is

	
k

i j i j
t

i j i j i j
x

Φ Φ Φ Φ Φ( , ) ( , ) ( , ) ( , ) ( , )
( )

+ −
∆

=
+ − + −

∆
1 1 2 1

2
	

(3.11)

where x = i Δx, i = 0, 1, 2, … , n, t = j Δt, j = 0, 1, 2, … . In Equation 3.11, we have used 
the forward difference formula for the derivative with respect to t and central difference 
formula for that with respect to x. If we let

	
r

t
k x

=
∆
∆( )

,2
	

(3.12)

Equation 3.11 can be written as

	 Φ Φ Φ Φ( , ) ( , ) ( ) ( , ) ( , )i j r i j r i j r i j+ = + + − + −1 1 1 2 1 	
(3.13)

TABLE 3.1

Finite Difference Approximations for Φx and Φxx

Derivative Finite Difference Approximation Type Error
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16 30 16
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where FD = Forward Difference, BD = Backward Difference, and CD = Central Difference.
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This explicit formula can be used to compute Φ(x, t + Δt) explicitly in terms of Φ(x, t). Thus, 
the values of Φ along the first time row (see Figure 3.3), t = Δt, can be calculated in terms 
of the boundary and initial conditions, then the values of Φ along the second time row, 
t = 2Δt, are calculated in terms of the first time row, and so on.

A graphic way of describing the difference formula of Equation 3.13 is through the 
computational molecule of Figure 3.4a, where the square is used to represent the grid point 
where Φ is presumed known and a circle where Φ is unknown.

In order to ensure a stable solution or reduce errors, care must be exercised in selecting 
the value of r in Equations 3.12 and 3.13. It will be shown in Section 3.6 that Equation 3.13 
is valid only if the coefficient (1 − 2r) in Equation 3.13 is nonnegative or 0 < r ≤ 1/2. If we 
choose r = 1/2, Equation 3.13 becomes

	
Φ Φ Φ( , ) [ ( , ) ( , )]i j i j i j+ = + + −1

1
2

1 1
	

(3.14)

so that the computational molecule becomes that shown in Figure 3.4b.
The fact that obtaining stable solutions depends on r or the size of the time step Δt 

renders the explicit formula of Equation 3.13 inefficient. Although the formula is simple to 
implement, its computation is slow. An implicit formula, proposed by Crank and Nicholson 
in 1974, is valid for all finite values of r. We replace ∂ 2Φ/∂x2 in Equation 3.10 by the average 
of the central difference formulas on the jth and (j + 1)th time rows so that
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This can be rewritten as

	

− − + + + + − + +
= − + −

r i j r i j r i j

r i j r

Φ Φ Φ
Φ Φ

( , ) ( ) ( , ) ( , )
( , ) ( ) (

1 1 2 1 1 1 1
1 2 1 ii j r i j, ) ( , )+ +Φ 1 	 (3.15)

where r is given by Equation 3.12. The right-hand side of Equation 3.15 consists of three 
known values, while the left-hand side has the three unknown values of Φ. This is illustrated 
in the computational molecule of Figure 3.5a. Thus if there are n free nodes along each time 
row, then for j = 0, applying Equation 3.15 to nodes i = 1, 2, … , n results in n simultaneous 
equations with n unknown values of Φ and known initial and boundary values of Φ. 
Similarly, for j = 1, we obtain n simultaneous equations for n unknown values of Φ in 
terms of the known values j = 0, and so on. The combination of accuracy and unconditional 

FIGURE 3.4
Computational molecule for parabolic PDE: (a) for 0 < r ≤ 1/2, (b) for r = 1/2.
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stability allows the use of a much larger time step with the Crank–Nicholson method than 
is possible with the explicit formula. Although the method is valid for all finite values of r, 
a convenient choice of r = 1 reduces Equation 3.15 to

	 −Φ(i − 1, j + 1) + 4Φ(i, j + 1) − Φ(i + 1, j + 1) = Φ(i − 1, j) + Φ(i + 1, j)	 (3.16)

with the computational molecule of Figure 3.5b.
More complex finite difference schemes can be developed by applying the same principles 

discussed above. Two of such schemes are the Leapfrog method and the Dufort–Frankel 
method [3,4]. These and those discussed earlier are summarized in Table 3.2. Notice that 
the last two methods are two-step finite difference schemes in that finding Φ at time j + 1 
requires knowing Φ at two previous time steps j and j − 1, whereas the first two methods 
are one-step schemes. For further treatment on the finite difference solution of parabolic 
PDEs, see Smith [5] and Ferziger [6].

FIGURE 3.5
Computational molecule for Crank–Nicholson method: (a) for finite values of r, (b) for r = 1.

TABLE 3.2
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∂
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EXAMPLE 3.1

Solve the diffusion equation

	
∂
∂

=
∂
∂

≤ ≤
2

2 0 1
Φ Φ
x t

x,
	

(3.17)

subject to the boundary conditions

	 Φ(0, t) = 0 = Φ(1, t) = 0,  t > 0	 (3.18a)

and initial condition

	 Φ(x, 0) = 100	 (3.18b)

Solution

This problem may be regarded as a mathematical model of the temperature distribution 
in a rod of length L = 1 m with its end in contact with ice blocks (or held at 0°C) and 
the rod initially at 100°C. With that physical interpretation, our problem is finding the 
internal temperature Φ as a function of position and time. We will solve this problem 
using both explicit and implicit methods.

	 a.	 Explicit Method
		  For easy hand calculations, let us choose Δx = 0.1, r = 1/2 so that

	 Δt = kr(Δx)2 = 0.005

		  since k = 1. We need the solution for only 0 ≤ x ≤ 0.5 because the problem is 
symmetric with respect to x = 0.5. First, we calculate the initial and boundary 
values using Equation 3.18. These values of Φ at the fixed nodes are shown in 
Table 3.3 for x = 0, x = 1, and t = 0. Notice that the values of Φ(0, 0) and Φ(1, 0) 
are taken as the average of 0 and 100. We now calculate Φ at the free nodes using 
Equation 3.14 or the molecule of Figure 3.4b. The result is shown in Table 3.3. 
The analytic solution to Equation 3.17 subject to Equation 3.18 is

	
Φ( , ) sin exp( ),x t

n
n x n t n k

k

= − = +
=

∞

∑400 1
2 1

0

2 2

π
π π

TABLE 3.3

Results for Example 3.1

x 0 0.1 0.2 0.3 0.4 0.5 0.6 … 1.0
t

0 50 100 100 100 100 100 100 50
0.005 0 75.0 100 100 100 100 100 0
0.01 0 50 87.5 100 100 100 100 0
0.015 0 43.75 75 93.75 100 100 100 0
0.02 0 37.5 68.75 87.5 96.87 100 96.87 0
0.025 0 34.37 62.5 82.81 93.75 96.87 93.75 0
0.03 0 31.25 58.59 78.21 89.84 93.75 89.84 0
⋮
0.1 0 14.66 27.92 38.39 45.18 47.44 45.18 0
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		  Comparison of the explicit finite difference solution with the analytic solution at 
x = 0.4 is shown in Table 3.4. The table shows that the finite difference solution 
is reasonably accurate. Greater accuracy can be achieved by choosing smaller 
values of Δx and Δt.

	 b.	 Implicit Method
		  Let us choose Δx = 0.2, r = 1 so that Δt = 0.04. The values of Φ at the fixed 

nodes are calculated as in part (a) (see Table 3.3). For the free nodes, we apply 
Equation 3.16 or the molecule of Figure 3.5b. If we denote Φ(i, j + 1) by Φi(i = 1, 
2, 3, 4), the values of Φ for the first time step (Figure 3.6) can be obtained by 
solving the following simultaneous equations:

	 −0 + 4Φ1 − Φ2 = 50 + 100

	 −Φ1 + 4Φ2 + Φ3 = 100 + 100

	 −Φ2 + 4Φ3 − Φ4 = 100 + 100

	 −Φ3 + 4Φ4 − 0 = 100 + 50

TABLE 3.4

Comparison of Explicit Finite Difference Solution with Analytic 
Solution; for Example 3.1

t
Finite Difference 
Solution at x = 0.4

Analytic Solution 
at x = 0.4

Percentage 
Error

0.005 100 99.99 0.01
0.01 100 99.53 0.47
0.015 100 97.85 2.2
0.02 96.87 95.18 1.8
0.025 93.75 91.91 2.0
0.03 89.84 88.32 1.7
0.035 85.94 84.61 1.6
0.04 82.03 80.88 1.4
⋮
0.10 45.18 45.13 0.11

FIGURE 3.6
For Example 3.1, part (b).
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We obtain

	 Φ1 = 58.13,  Φ2 = 82.54,  Φ3 = 72,  Φ4 = 55.5

at t = 0.04. Using these values of Φ, we apply Equation 3.16 to obtain another set of 
simultaneous equations for t = 0.08 as

	 −0 + 4Φ1 − Φ2 = 0 + 82.54

	 −Φ1 + 4Φ2 − Φ3 = 58.13 + 72

	 −Φ2 + 4Φ3 − Φ4 = 82.54 + 55.5

	 −Φ3 + 4Φ4 − 0 = 72 + 0

which results in

	 Φ1 = 34.44,  Φ2 = 55.23,  Φ3 = 56.33,  Φ4 = 32.08

This procedure can be programmed and accuracy can be increased by choosing more 
points for each time step.

3.4  Finite Differencing of Hyperbolic PDEs

The simplest hyperbolic PDE is the wave equation of the form

	
u

x t
2

2

2

2

2

∂
∂

=
∂
∂

Φ Φ
	

(3.19)

where u is the speed of the wave. An equivalent finite difference formula is
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where x = i Δx, t = j Δt, i, j = 0, 1, 2, … This equation can be written as

	 Φ Φ Φ Φ Φ( , ) ( ) ( , ) [ ( , ) ( , )] ( , )i j r i j r i j i j i j+ = − + + + − − −1 2 1 1 1 1 	
(3.20)

where Φ(i, j) is an approximation to Φ(x, t) and r is the “aspect ratio” given by

	
r

u t
x

=
∆

∆





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2

	
(3.21)

Equation 3.20 is an explicit formula for the wave equation. The corresponding 
computational molecule is shown in Figure 3.7a. For the solution algorithm in Equation 
3.20 to be stable, the aspect ratio r ≤ 1, as will be shown in Example 3.5. If we choose r = 1, 
Equation 3.20 becomes

	 Φ(i, j + 1) = Φ(i + 1, j) + Φ(i − 1, j) − Φ(i, j − 1)	 (3.22)
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with the computational molecule in Figure 3.7b. Unlike the single-step schemes of Equations 
3.13 and 3.15, the two-step schemes of Equations 3.20 and 3.22 require that the values of Φ at 
times j and j − 1 be known to get Φ at time j + 1. Thus, we must derive a separate algorithm 
to “start” the solution of Equation 3.20 or 3.22; that is, we must compute Φ(i, 1) and Φ(i, 2). 
To do this, we utilize the prescribed initial condition. For example, suppose the initial 
condition on the PDE in Equation 3.19 is

	

∂
∂

=
=

Φ
t t 0

0

We use the backward-difference formula

	
∂

∂
− −
∆

=
Φ Φ Φ( , ) ( , ) ( , )x

t
i i

t
0 1 1

2
0

or

	 Φ(i, 1) = Φ(i, −1)	 (3.23)

Substituting Equation 3.23 into Equation 3.20 and taking j = 0 (i.e., at t = 0), we get

	 Φ(i, 1) = 2(1 − r)Φ(i, 0) + r[Φ(i − 1, 0) + Φ(i + 1, 0)] − Φ(i, 1)

or

	
Φ Φ Φ Φ( , ) ( ) ( , ) [ ( , ) ( , )]i r i

r
i i1 1 0

2
1 0 1 0= − + − + +

	
(3.24)

Using the starting formula in Equation 3.24 together with the prescribed boundary 
and initial conditions, the value of Φ at any grid point (i, j) can be obtained directly from 
Equation 3.20.

There are implicit methods for solving hyperbolic PDEs just as we have implicit methods 
for parabolic PDEs. However, for hyperbolic PDEs, implicit methods result in an infinite 
number of simultaneous equations to be solved and therefore cannot be used without 
making some simplifying assumptions. Interested readers are referred to Smith [5] or 
Ferziger [6].

FIGURE 3.7
Computational molecule for wave equation: (a) for arbitrary r ≤ 1, (b) for r = 1.
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EXAMPLE 3.2

Solve the wave equation

	 Φtt = Φxx,    0 < x < 1,  t ≥ 0

subject to the boundary conditions

	 Φ(0, t) = 0 = Φ(1, t),  t ≥ 0

and the initial conditions

	 Φ(x, 0) = sinπx,  0 < x < 1,

	 Φt(x, 0) = 0,  0 < x < 1

Solution

The analytical solution is easily obtained as

	 Φ(x, t) = sin πx cos πt	 (3.25)

Using the explicit finite difference scheme of Equation 3.20 with r = 1, we obtain

	 Φ(i, j + 1) = Φ(i − 1, j) + Φ(i + 1, j) − Φ(i, j − 1),  j ≥ 1	 (3.26)

For j = 0, substituting

	
Φ

Φ Φ
t

i i
t

=
− −
∆

=
( , ) ( , )1 1

2
0

or

	 Φ(i, 1) = Φ(i, −1)

into Equation 3.26 gives the starting formula

	
Φ Φ Φ( , ) [ ( , ) ( , )]i i i1

1
2

1 0 1 0= − + +
	

(3.27)

Since u = 1, and r = 1, Δt = Δx. Also, since the problem is symmetric with respect 
to x = 0.5, we solve for Φ using Equations 3.26 and 3.27 within 0 < x < 0.5, t ≥ 0. We 
can either calculate the values by hand or write a simple computer program. With the 
MATLAB code in Figure 3.8, the result shown in Table 3.5 is obtained for Δt = Δx = 0.1. 
The finite difference solution agrees with the exact solution in Equation 3.25 to six 
decimal places. The accuracy of the FD solution can be increased by choosing a smaller 
spatial increment Δx and a smaller time increment Δt.
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FIGURE 3.8
MATLAB code for Example 3.2.

TABLE 3.5

Solution of the Wave Equation in Example 3.2

x 0 0.1 0.2 0.3 0.4 0.5 0.6 …
t

0.0 0 0.3090 0.5879 0.8990 0.9511 1.0 0.9511
0.1 0 0.2939 0.5590 0.7694 0.9045 0.9511 0.9045
0.2 0 0.2500 0.4755 0.6545 0.7694 0.8090 0.7694
0.3 0 0.1816 0.3455 0.4755 0.5590 0.5878 0.5590
0.4 0 0.0955 0.1816 0.2500 0.2939 0.3090 0.2939
0.5 0 0 0 0 0 0 0
0.6 0 –0.0955 –0.1816 –0.2500 –0.2939 –0.3090 –0.2939
0.7 0 –0.1816 –0.3455 –0.4755 –0.5590 –0.5878 –0.5590
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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3.5  Finite Differencing of Elliptic PDEs

A typical elliptic PDE is Poisson’s equation, which in two dimensions is given by
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=2
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x y

g x y( , )
	

(3.28)

We can use the central difference approximation for the partial derivatives of which the 
simplest forms are
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(3.29b)

where x = i Δx, y = j Δy, and i, j = 0, 1, 2, …. If we assume that Δx = Δy = h, to simplify 
calculations, substituting Equation 3.29 into Equation 3.28 gives

	 Φ Φ Φ Φ Φ( , ) ( , ) ( , ) ( , ) ( , ) ( , )i j i j i j i j i j h g i j+ + − + + −  − =1 1 1 4 2

or

	
Φ Φ Φ Φ Φ( , ) ( , ) ( , ) ( , ) ( , ) ( , )i j i j i j i j i j h g i j= + + − + + + − −





1
4

1 1 1 1 2

	

(3.30)

at every point (i, j) in the mesh for Poisson’s equation. The spatial increment h is called 
the mesh size. A special case of Equation 3.28 is when the source term vanishes, that is, g(x, 
y) = 0. This leads to Laplace’s equation. Thus for Laplace’s equation, Equation 3.30 becomes

	
Φ Φ Φ Φ Φ( , ) [ ( , ) ( , ) ( , ) ( , )]i j i j i j i j i j= + + − + + + −

1
4

1 1 1 1
	

(3.31)

It is worth noting that Equation 3.31 states that the value of Φ for each point is the 
average of those at the four surrounding points. The five-point computational molecule 
for the difference scheme in Equation 3.31 is illustrated in Figure 3.9a, where values of the 

FIGURE 3.9
Computational molecules for Laplace’s equation based on: (a) second-order approximation, (b) fourth-order 
approximation.
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coefficients are shown. This is a convenient way of displaying finite difference algorithms 
for elliptic PDEs. The molecule in Figure 3.9a is the second-order approximation of Laplace’s 
equation. This is obviously not the only way to approximate Laplace’s equation, but it is the 
most popular choice. An alternative fourth-order difference is

	

− + + + − + + + −
+ + −
20 4 1 1 1 1

1 1
Φ Φ Φ Φ Φ
Φ

( , ) [ ( , ) ( , ) ( , ) ( , )]
( ,
i j i j i j i j i j

i j )) ( , ) ( , )
( , )

+ − − + − +
+ + + =

Φ Φ
Φ

i j i j

i j

1 1 1 1
1 1 0 	 (3.32)

The corresponding computational molecule is shown in Figure 3.9b.
The application of the finite difference method to elliptic PDEs often leads to a large 

system of algebraic equations, and their solution is a major problem in itself. Two commonly 
used methods of solving the system of equations are band matrix and iterative methods.

3.5.1  Band Matrix Method

From Equations 3.30 through 3.32, we notice that only nearest-neighboring nodes affect the 
value of Φ at each node. Hence, application of any of Equations 3.30 through 3.32 to all free 
nodes in the solution region results in a set of simultaneous equations of the form

	 [A][X] = [B]	 (3.33)

where [A] is a sparse matrix (it has many zero elements), [X] is a column matrix consisting 
of the unknown values of Φ at the free nodes, and [B] is a column matrix containing the 
known values of Φ at fixed nodes. Matrix [A] is also banded in that its nonzero terms appear 
clustered near the main diagonal. Matrix [X], containing the unknown elements, can be 
obtained from

	 [X] = [A]−1[B]	 (3.34)

or by solving Equation 3.33 using the Gauss elimination discussed in Appendix C.1.

3.5.2  Iterative Methods

The iterative methods are generally used to solve a large system of simultaneous equations. 
An iterative method for solving equations is one in which a first approximation is used to 
calculate a second approximation, which in turn is used to calculate a third approximation, 
and so on. The three common iterative methods (Jacobi, Gauss–Seidel, and successive over-
relaxation [SOR]) are discussed in Appendix C.2. We will apply only SOR here.

To apply the method of SOR to Equation 3.30, for example, we first define the residual R(i, j) 
at node (i, j) as the amount by which the value of Φ(i, j) does not satisfy Equation 3.30, that is,

	

R i j i j i j i j

i j i j h g i j

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( ,

= + + − + +

+ − − −

Φ Φ Φ

Φ Φ

1 1 1

1 4 2 )) 	 (3.35)

The value of the residual at kth iteration, denoted by Rk(i, j), may be regarded as a correction 
which must be added to Φ(i, j) to make it nearer to the correct value. As convergence to the 
correct value is approached, Rk(i, j) tends to zero. Hence to improve the rate of convergence, 
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we multiply the residual by a number ω and add that to Φ(i, j) at the kth iteration to get Φ 
(i, j) at (k + 1)th iteration. Thus,

	
Φ Φk k ki j i j R i j+ = +1

4
( , ) ( , ) ( , )

ω

or

	

Φ Φ Φ Φ Φ

Φ

k k k k k

k

i j i j i j i j i j

i

+ = + + + − + −


+

1

4
1 1 1( , ) ( , ) ( , ) ( , ) ( , )

( ,

ω

jj i j h g i jk+ − − 
1 4 2) ( , ) ( , )Φ 	 (3.36)

The parameter ω is called the relaxation factor while the technique is known as the method 
of successive over-relaxation. The value of ω lies between 1 and 2. (When ω = 1, the method 
is simply called successive relaxation.) Its optimum value ωopt must be found by trial and 
error. In order to start Equation 3.36, an initial guess, Φ0(i, j), is made at every free node. 
Typically, we may choose Φ0(i, j) = 0 or the average of Φ at the fixed nodes.

EXAMPLE 3.3

Solve Laplace’s equation

	 ∇2V = 0,  0 ≤ x ≤ 1,  0 ≤ y ≤ 1

with V(x, 1) = 45x(1 − x), V(x, 0) = 0 = V(0, y) = V(1, y).

Solution

Let h = 1/3 so that the solution region is as in Figure 3.10. Applying Equation 3.31 to each 
of the four points leads to

	 4V1 − V2 − V3 − 0 = 10

	 −V1 + 4V2 − 0 − V4 = 10

	 −V1 − 0 + 4V3 − V4 = 0

	 −0 − V2 − V3 + 4V4 = 0

FIGURE 3.10
Finite difference grid for Example 3.3.
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This can be written as
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or

	 [A][V] = [B]

where [A] is the band matrix, [V] is the column matrix containing the unknown potentials 
at the free nodes, and [B] is the column matrix of potentials at the fixed nodes. Solving 
the equations either by matrix inversion or by Gauss elimination, we obtain

	 V1 = 3.75,  V2 = 3.75,  V3 = 1.25,  V4 = 1.25

with MATLAB, [V] = inv[A]|[B].

EXAMPLE 3.4

Solve Poisson’s equation

	
∇ = − ≤ ≤2 0 1V x ySρ

ε
, ,

and obtain the potential at the grid points shown in Figure 3.11. Assume ρS = x(y − 1) 
nC/m3 and εr = 1.0. Use the method of successive over-relaxation.

Solution

This problem has an exact analytical solution and is deliberately chosen so that we can 
verify the numerical results with exact ones, and we can also see how a problem with a 
complicated analytical solution is easily solved using finite difference method. For the 
exact solution, we use the superposition theorem and let

	 V = V1 + V2

FIGURE 3.11
Solution region for the problem in Example 3.4.
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where V1 is the solution to Laplace’s equation ∇2V1 = 0 with the inhomogeneous 
boundary conditions shown in Figure 3.11 and V2 is the solution to Poisson’s equation 
∇2V2 = g = −ρS/ε subject to homogeneous boundary conditions. From Example 2.1, it is 
evident that

	 V1 = VI + VII + VIII + VIV

where VI to VIV are defined by Equations 2.53 through 2.56. V2 can be obtained by the 
series expansion method of Section 2.7. From Example 2.12,
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a = b = 1, and g(x, y) = –x(y − 1) ⋅ 10−9/εo.
For the finite difference solution, it can be shown that in a rectangular region, 

the  optimum  over-relaxation factor is given by the smaller root of the quadratic 
equation [7]

	 t2ω2 − 16ω + 16 = 0

where t = cos(π/Nx) + cos(π/Ny) and Nx and Ny are the number of intervals along x and 
y axes, respectively. Hence,

	
ω =

− −8 64 16 2

2

t
t

We try three cases of Nx = Ny = 4, 12, and 20 so that Δx = Δy = h = 1/4, 1/12, and 1/20, 
respectively. Also, we set

	
g x y

x y
x yS( , )

( )
/

( )= − = −
− ×

= − −
−

−

ρ
ε π

π
1 10

10 36
36 1

9

9

Figure 3.12 presents the MATLAB code for the solution of this problem. The potentials 
at the free nodes for the different cases of h are shown in Table 3.6. Notice that as the 
mesh size h reduces, the solution becomes more accurate, but it takes more iterations for 
the same tolerance.

3.6  Accuracy and Stability of FD Solutions

The question of accuracy and stability of numerical methods is extremely important if 
our solution is to be reliable and useful. Accuracy has to do with the closeness of the 
approximate solution to exact solutions (assuming they exist). Stability is the requirement 
that the scheme does not increase the magnitude of the solution with increase in time.
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The analysis of errors in numerical schemes is important because it indicates where 
errors come from and how to minimize them. There are three sources of errors that are 
nearly unavoidable in numerical solution of physical problems [8]:

	 1.	Modeling errors,
	 2.	Truncation (or discretization) errors, and
	 3.	Roundoff errors.

FIGURE 3.12
MATLAB code for Example 3.4.� (Continued)
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FIGURE 3.12 (Continued)
MATLAB code for Example 3.4.� (Continued)
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Each of these error types will affect accuracy and therefore degrade the solution.
The modeling errors are due to several assumptions made in arriving at the mathematical 

model. For example, a nonlinear system may be represented by a linear PDE. Truncation 
errors arise from the fact that in numerical analysis, we can deal only with a finite number 
of terms from processes which are usually described by infinite series. For example, in 

FIGURE 3.12 (Continued)
MATLAB code for Example 3.4.
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deriving finite difference schemes, some higher-order terms in the Taylor series expansion 
were neglected, thereby introducing truncation error. Truncation errors may be reduced 
by using finer meshes, that is, by reducing the mesh size h and time increment Δt. 
Alternatively, truncation errors may be reduced by using a large number of terms in the 
series expansion of derivatives, that is, by using higher-order approximations. However, 
care must be exercised in applying higher-order approximations. Instability may result if 
we apply a difference equation of an order higher than the PDE being examined. These 
higher-order difference equations may introduce “spurious solutions.”

Roundoff errors reflect the fact that computations can be done only with a finite 
precision on a computer. This unavoidable source of errors is due to the limited size of 
registers in the arithmetic unit of the computer. Roundoff errors can be minimized by the 
use of double-precision arithmetic. The only way to avoid roundoff errors completely is 
to code all operations using integer arithmetic. This is hardly possible in most practical 
situations.

Although it has been noted that reducing the mesh size h will increase accuracy, it is not 
possible to indefinitely reduce h. Decreasing the truncation error by using a finer mesh may 
result in increasing the roundoff error due to the increased number of arithmetic operations. 
A point is reached where the minimum total error occurs for any particular algorithm using 
any given word length [9]. This is illustrated in Figure 3.13. The concern about accuracy 
leads us to question whether the finite difference solution can grow unbounded, a property 
termed the instability of the difference scheme. A numerical algorithm is said to be stable 
if a small error at any stage produces a smaller cumulative error. It is unstable otherwise. 
The consequence of instability (producing unbonded solution) is disastrous. To determine 
whether a finite difference scheme is stable, we define an error, εn, which occurs at time 
step n, assuming that there is one independent variable. We define the amplification of this 
error at time step n + 1 as

	 εn+1 = gεn	 (3.37)

where g is known as the amplification factor. In more complex situations, we have two or 
more independent variables, and Equation 3.37 becomes

	 [ε]n+1 = [G][ε]n	 (3.38)

TABLE 3.6

Successive Over-Relaxation Solution of Example 3.4

Node

h = 1/4
ωopt = 1.171
8 iterations

h = 1/12
ωopt = 1.729

26 iterations

h = 1/20
ωopt = 1.729

43 iterations
Exact 

Solution

a –3.247 –3.409 –3.424 –3.429
b –1.703 –1.982 –2.012 –2.029
c 4.305 4.279 4.277 4.277
d –0.0393 –0.0961 –0.1087 –0.1182
e 3.012 2.928 2.921 2.913
f 9.368 9.556 9.578 9.593
g 3.044 2.921 2.909 2.902
h 6.111 6.072 6.069 6.065
i 11.04 11.12 11.23 11.13
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where [G] is the amplification matrix. For the stability of the difference scheme, it is required 
that Equation 3.37 satisfies

	 |εn+1| ≤ |εn|

or

	 |g| ≤ 1	 (3.39a)

For the case in Equation 3.38,

	 ∙G∙ ≤ 1	 (3.39b)

One useful and simple method of finding a stability criterion for a difference scheme is to 
construct a Fourier analysis of the difference equation and thereby derive the amplification 
factor. We illustrate this technique, known as von Neumann’s method [4,5,7,10], by considering 
the explicit scheme of Equation 3.13:

	 Φ Φ Φ Φi
n

i
n

i
n

i
nr r+

+ −= − + +1
1 11 2( ) ( )	 (3.40)

where r = Δt/k(Δx)2. We have changed our usual notation so that we can use j = −1 in the 
Fourier series. Let the solution be

	
Φi

n n jkixA t e x= ≤ ≤∑ ( ) , 0 1
	

(3.41a)

where k is the wave number. Since the differential equation (3.10) approximated by Equation 
3.13 is linear, we need consider only a Fourier mode, that is,

	 Φi
n n jkixA t e= ( ) 	 (3.41b)

FIGURE 3.13
Error as a function of the mesh size.
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Substituting Equation 3.41b into Equation 3.40 gives

	 An+1ejkix = (1 − 2r)Anejkix + r (ejkx + e−jkx) Anejkix

or

	 An+1 = An[1 − 2r + 2r cos kx]	 (3.42)

Hence, the amplification factor is

	

g
A
A

r r kx

r
kx

n

n= = − +

= −

+1

2

1 2 2

1 4
2

cos

sin
	

(3.43)

In order to satisfy Equation 3.39a,

	
1 4

2
12− ≤r

kx
sin

Since this condition must hold for every wave number k, we take the maximum value of 
the sine function so that

	 1 − 4r ≥ −1  and  r ≥ 0

or

	
r r≥ ≥

1
2

0and

Of course, r = 0 implies Δt = 0, which is impractical. Thus,

	
0

1
2

< ≤r
	

(3.44)

EXAMPLE 3.5

For the finite difference scheme of Equation 3.20, use the von Neumann approach to 
determine the stability condition.

Solution

We assume a trial solution of the form

	 Φi
n n jkixA e=

Substituting this into Equation 3.20 results in

	 An+1ejkix = 2(1 − r) Anejkix + r (ejkx + e−jkx) Anejkix − An−1ejkix

or

	 An+1 = An [2(1 − r) + 2r cos kx] − An−1	 (3.45)
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In terms of g = An+1/An, Equation 3.45 becomes

	 g2 − 2pg + 1 = 0	 (3.46)

where p = 1 − 2r sin2kx/2. The quadratic equation 3.46 has solutions

	 g1 = p + [p2 − 1]1/2,  g2 = p − [p2 − 1]1/2

For |gi| ≤ 1, where i = 1, 2, p must lie between 1 and −1, that is, −1 ≤ p ≤ 1 or

	
− ≤ − ≤1 1 2

2
12r

kx
sin

which implies that r ≤ 1 or u Δt ≤ Δx for stability. This idea can be extended to show 

that the stability condition for two-dimensional wave equation is u t h∆ / <
1
2

, where 
h = Δx = Δy.

3.7  Practical Applications I: Guided Structures

The finite difference method has been applied successfully to solve many EM-related 
problems. Besides those simple examples we have considered earlier in this chapter, the 
method has been applied to diverse problems [11] including

•	 Transmission-line problems [12–21],
•	 Waveguides [21–26],
•	 Microwave circuit [27–30],
•	 EM penetration and scattering problems [31,32],
•	 EM pulse (EMP) problems [33],
•	 EM exploration of minerals [34], and
•	 EM energy deposition in human bodies [35,36].

It is practically impossible to cover all those applications within the limited scope of this 
chapter. In this section, we consider the relatively easier problems of transmission lines and 
waveguides while the problems of penetration and scattering of EM waves will be treated 
in the next section. Other applications utilize basically similar techniques.

3.7.1  Transmission Lines

The finite difference techniques are suited for computing the characteristic impedance, 
phase velocity, and attenuation of several transmission lines—polygonal lines, shielded 
strip lines, coupled strip lines, microstrip lines, coaxial lines, and rectangular lines [12–19]. 
The knowledge of the basic parameters of these lines is of paramount importance in the 
design of microwave circuits.

For concreteness, consider the microstrip line shown in Figure 3.14a. The geometry in 
Figure 3.14a is deliberately selected to be able to illustrate how one accounts for discrete 
inhomogeneities (i.e., homogeneous media separated by interfaces) and lines of symmetry 
using a finite difference technique. The techniques presented are equally applicable to other 
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lines. Assuming that the mode is TEM, having components of neither E nor H fields in the 
direction of propagation, the fields obey Laplace’s equation over the line cross section. The 
TEM mode assumption provides good approximations if the line dimensions are much 
smaller than half a wavelength, which means that the operating frequency is far below 
cutoff frequency for all higher-order modes [16]. Also due to biaxial symmetry about the two 
axes only one quarter of the cross section needs to be considered as shown in Figure 3.14b.

The finite difference approximation of Laplace’s equation, ∇2V = 0, was derived in 
Equation 3.31, namely,

	
V i j V i j V i j V i j V i j( , ) [ ( , ) ( , ) ( , ) ( , )]= + + − + + + −

1
4

1 1 1 1
	

(3.47)

For the sake of conciseness, let us denote

	

V V i j

V V i j

V V i j

V V i j

V V i j

o =
= +
= −
= −
= +

( , )
( , )
( , )
( , )
( , )

 
 

 
 

 

1

2

3

4

1
1

1
1 	

(3.48)

FIGURE 3.14
(a) Shielded double-strip line with partial dielectric support; (b) problem in (a) simplified by making full use of 
symmetry.
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so that Equation 3.47 becomes

	
V V V V Vo = + + +

1
4

1 2 3 4[ ]
	

(3.49)

with the computation molecule shown in Figure 3.15. Equation 3.49 is the general formula 
to be applied to all free nodes in the free space and dielectric region of Figure 3.14b.

On the dielectric boundary, the boundary condition,

	 D1n = D2n,	 (3.50)

must be imposed. We recall that this condition is based on Gauss’s law for the electric field, 
that is,

	
D I E I⋅ = ⋅ = =∫ ∫d d Q

� �

� ε enc 0
	

(3.51)

since no free charge is deliberately placed on the dielectric boundary. Substituting E = −∇V 
in Equation 3.51 gives

	
0 = ∇ ⋅ =

∂
∂∫ ∫ε εV d
V
n
dlI

� �

� �
	

(3.52)

where ∂V/∂n denotes the derivative of V normal to the contour ℓ. Applying Equation 3.52 
to the interface in Figure 3.16 yields
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Rearranging the terms,
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FIGURE 3.15
Computation molecule for Laplace’s equation.
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or

	
V V V V V0
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1 2
3 2 4

2 2
1
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1
4

=
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+
+

+ +
ε

ε ε
ε

ε ε( ) ( ) 	
(3.53)

This is the finite difference equivalent of the boundary condition in Equation 3.50. Notice 
that the discrete inhomogeneity does not affect points 2 and 4 on the boundary but affects 
points 1 and 3 in proportion to their corresponding permittivities. Also note that when 
ε1 = ε2, Equation 3.53 reduces to Equation 3.49.

On the line of symmetry, we impose the condition

	
∂
∂

=
V
n

0
	

(3.54)

This implies that on the line of symmetry along the y-axis (x = 0 or i = 0), 
∂
∂

= −
V
x

V V h( )4 2 2/  = 0 or V2 = V4 so that Equation 3.49 becomes

	
V V V Vo = + +

1
4

21 3 4[ ]
	

(3.55a)

or

	
V j V j V j V j( , ) [ ( , ) ( , ) ( , )]0

1
4
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(3.55b)

On the line of symmetry along the x-axis (y = 0 or j = 0), 
∂
∂

= −
V
y

V V( )1 3 2/  h = 0 or V3 = V1 
so that

	
V V V Vo = + +

1
4

2 1 2 4[ ]
	

(3.56a)

or

	
V i V i V i V i( , ) [ ( , ) ( , ) ( , )]0

1
4

2 1 1 0 1 0= + − + +
	

(3.56b)

FIGURE 3.16
Interface between media of dielectric permittivities ε1 and ε2.
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The computation molecules for Equations 3.55 and 3.56 are displayed in Figure 3.17.
By setting the potential at the fixed nodes equal to their prescribed values and applying 

Equations 3.49, 3.53, 3.55, and 3.56 to the free nodes according to the band matrix or iterative 
methods discussed in Section 3.5, the potential at the free nodes can be determined. Once 
this is accomplished, the quantities of interest can be calculated.

The characteristic impedance Zo and phase velocity u of the line are defined as

	
Z

L
C

o =
	

(3.57a)

	
u

LC
=

1

	
(3.57b)

where L and C are the inductance and capacitance per unit length, respectively. If the 
dielectric medium is nonmagnetic (µ = µo), the characteristic impedance Zoo and phase 
velocity uo with the dielectric removed (i.e., the line is air-filled) are given by

	
Z

L
C

oo
o

=
	

(3.58a)

	
u

LC
o

o

=
1

	
(3.58b)

where Co is the capacitance per unit length without the dielectric. Combining Equations 
3.57 and 3.58 yields

	
Z

u CC uC
o

o o

= =
1 1

	
(3.59a)

	
u u

C
C

u
o

o o= =
εeff 	

(3.59b)

	
εeff =

C
Co 	

(3.59c)

FIGURE 3.17
Computation molecule used for satisfying symmetry conditions: (a) ∂V/∂x = 0, (b) ∂V/∂y = 0.
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where uo = c = 3 × 108 m/s, the speed of light in free space, and εeff is the effective dielectric 
constant. Thus to find Zo and u for an inhomogeneous medium require calculating the 
capacitance per unit length of the structure, with and without the dielectric substrate.

If Vd is the potential difference between the inner and the outer conductors,

	
C

Q
Vd

=
4

,
	

(3.60)

so that the problem is reduced to finding the charge per unit length Q. (The factor 4 is 
needed since we are working on only one quarter of the cross section.) To find Q, we 
apply Gauss’s law to a closed path ℓ enclosing the inner conductor. We may select ℓ as the 
rectangular path between two adjacent rectangles as shown in Figure 3.18.
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(3.61)

Since Δx = Δy = h,

	 Q = (εVP + εVM + εVH + εVG +⋯) − (εVN + 2εVL + εVK +⋯)

or

	

Q V io ri i= 
∑ε ε for nodes on outer rectangle GHJMP

with cornerss (such as J) not counted

for nodes on inner 

]

− 
∑ε εo ri iV i rrectangle KLN

with corners (such as L) counted twice], 	

(3.62)

FIGURE 3.18
Rectangular path ℓ used in calculating charge enclosed.
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where Vi and εri are the potential and dielectric constant at the ith node. If i is on the 
dielectric interface, εri = (εr1 + εr2)/2. Also if i is on the line of symmetry, we use Vi/2 instead 
of Vi to avoid including Vi twice in Equation 3.60, where factor 4 is applied. We also find

	 Co = 4Qo/Vd	 (3.63)

where Qo is obtained by removing the dielectric, finding Vi at the free nodes and then using 
Equation 3.62 with εri = 1 at all nodes. Once Q and Qo are calculated, we obtain C and Co 
from Equations 3.60 and 3.63 and Zo and u from Equation 3.59.

An outline of the procedure is given below.

	 1.	Calculate V (with the dielectric space replaced by free space) using Equations 3.49, 
3.53, 3.55, and 3.56.

	 2.	Determine Q using Equation 3.62.

	 3.	Find C
Q
V

o
o

d
=

4
.

	 4.	Repeat steps 1 and 2 (with the dielectric space) and find C
Q
Vd

=
4

.

	 5.	Finally, calculate Z
c CC

co
o

= = ×
1

3 108, .m/s

The attenuation of the line can be calculated by following similar procedure outlined 
in References 14,20,21. The procedure for handling boundaries at infinity and that for 
boundary singularities in finite difference analysis are discussed in References 37,38.

3.7.2  Waveguides

The solution of waveguide problems is well suited for finite difference schemes because the 
solution region is closed. This amounts to solving the Helmholtz or wave equation

	 ∇2Φ + k2 Φ = 0	 (3.64)

where Φ = Ez for TM modes or Φ = Hz for TE modes, while k is the wave number given by

	 k2 = ω2µε − β 2	 (3.65)

The permittivity ε of the dielectric medium can be real for a lossless medium or 
complex for a lossy medium. We consider all fields to vary with time and axial distance 
as exp  j(ωt − βz). In the eigenvalue problem of Equation 3.64, both k and Φ are to be 
determined. The cutoff wavelength is λc = 2π/kc. For each value of the cutoff wave number 
kc, there is a solution for the eigenfunction Φi, which represents the field configuration of 
a propagating mode.

To apply the finite difference method, we discretize the cross section of the waveguide 
by a suitable square mesh. Applying Equation 3.29 to Equation 3.64 gives

	 Φ Φ Φ Φ Φ( , ) ( , ) ( , ) ( , ) ( ) ( , )i j i j i j i j h k i j+ + − + + + − − − =1 1 1 1 4 02 2

	
(3.66)

where Δx = Δy = h is the mesh size. Equation 3.66 applies to all the free or interior nodes. 
At the boundary points, we apply Dirichlet condition (Φ = 0) for the TM modes and 
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Neumann condition (∂Φ/∂n = 0) for the TE modes. This implies that at point A in Figure 
3.19, for example,

	 ΦA = 0	 (3.67)

for TM modes. At point A, ∂Φ/∂n = 0 implies that ΦD = ΦE so that Equation 3.64 becomes

	 ΦB + ΦC + 2ΦD − (4 − h2k2) ΦA = 0	 (3.68)

for TE modes. By applying Equation 3.66 and either Equation 3.67 or Equation 3.68 to all 
mesh points in the waveguide cross section, we obtain m simultaneous equations involving 
the m unknowns (Φ1, Φ2, …, Φm). These simultaneous equations may be conveniently cast 
into the matrix equation

	 (A − λI)Φ = 0	 (3.69a)

or

	 AΦ = λΦ	 (3.69b)

where A is an m × m band matrix of known integer elements, I is an identity matrix, Φ = (Φ1, 
Φ2, … , Φm) is the eigenvector, and

	
λ π

λ
= =









( )kh

h

c

2
2

2

	
(3.70)

is the eigenvalue. There are several ways of determining λ and the corresponding Φ. We 
consider two of these options.

The first option is the direct method. Equation 3.69 can be satisfied only if the determinant 
of (A − λI) vanishes, that is,

	 |A − λI| = 0	 (3.71)

This results in a polynomial in λ, which can be solved [39] for the various eigenvalues 
λ. For each λ, we obtain the corresponding Φ from Equation 3.66. This method requires 

FIGURE 3.19
Finite difference mesh for a waveguide.
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storing the relevant matrix elements and does not take advantage of the fact that matrix A 
is sparse. In favor of the method is the fact that a computer subroutine usually exists (see 
Reference 40 or Appendix C.4) that solves the eigenvalue problem in Equation 3.71 and that 
determines all the eigenvalues of the matrix. These eigenvalues give the dominant and 
higher modes of the waveguide, although accuracy deteriorates rapidly with mode number.

The second option is the iterative method. In this case, the matrix elements are usually 
generated rather than stored. We begin with Φ1 = Φ2 = ⋯ = Φm = 1 and a guessed value 
for k. The field Φij

k+1 at the (i, j)th node in the (k + 1)th iteration is obtained from its known 
value in the kth iteration using

	
Φ Φk k iji j i j

R
h k

+ = +
−

1
2 24

( , ) ( , )
( )

ω

	
(3.72)

where ω is the acceleration factor, 1 < ω < 2, and Rij is the residual at the (i, j)th node 
given by

	

R i j i j i j

i j h k i j

ij = + + − + +

+ − − −

Φ Φ Φ

Φ Φ

( , ) ( , ) ( , )

( , ) ( ) ( , )

1 1 1

1 4 2 2
	 (3.73)

After three or four scans of the complete mesh using Equation 3.73, the value of λ = h2k2 
should be updated using Raleigh formula
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(3.74)

The finite difference equivalent of Equation 3.74 is

	
k

i j i j i j i j i ji j2 1 1 1 1 1 1 4
=
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1 1
2∑ ∑= = Φ 	

(3.75)

where ΦS are the latest field values after three or four scans of the mesh and the summation 
is carried out over all points in the mesh. The new value of k obtained from Equation 3.75 
is now used in applying Equation 3.72 over the mesh for another three or four times to 
give more accurate field values, which are again substituted into Equation 3.75 to update 
k. This process is continued until the difference between consecutive values of k is within 
a specified acceptable tolerance.

If the first option is to be applied, matrix A must first be found. To obtain matrix A is not 
easy. Assuming TM modes, one way of calculating A is to number the free nodes from left 
to right, bottom to top, starting from the left-hand corner as shown typically in Figure 3.20. 
If there are nx and ny divisions along the x and y directions, the number of free nodes is

	 nf = (nx − 1)(ny − 1)	 (3.76)

Each free node must be assigned two sets of numbers, one to correspond to m in Φm and 
the other to correspond to (i, j) in Φ (i, j). An array NL(i, j) = m, i = 1, 2, …, nx − 1, j = 1, 
2, …, ny − 1 is easily developed to relate the two numbering schemes. To determine the 
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value of element Amn, we search NL(i, j) to find (im, jm) and (in, jn), which are the values of (i, j) 
corresponding to nodes m and n, respectively. With these ideas, we obtain
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(3.77)

EXAMPLE 3.6

Calculate Zo for the microstrip transmission line in Figure 3.14 with

	 a = b = 2.5 cm,  d = 0.5 cm,  w = 1 cm

	 t = 0.001 cm,  ε1 = εo,  ε2 = 2.35εo

Solution

This problem is representative of the various types of problems that can be solved 
using the concepts developed in Section 3.7.1. The computer program in Figure 3.21 was 
developed based on the five-step procedure outlined above. By specifying the step size 
h and the number of iterations, the program first sets the potential at all nodes equal to 
zero. The potential on the outer conductor is set equal to zero, while that on the inner 
conductor is set to 100 V so that Vd = 100. The program finds Co when the dielectric slab 
is removed and C when the slab is in place and finally determines Zo. For a selected h, 
the number of iterations must be large enough and greater than the number of divisions 
along x or y direction. Table 3.7 shows some typical results.

3.8  Practical Applications II: Wave Scattering (FDTD)

The finite-difference time-domain (FDTD) formulation of EM field problems is a convenient 
tool for solving scattering problems. The FDTD method, first introduced by Yee [42] in 1966 
and later developed by Taflove and others [31,32,35,43–46], is a direct solution of Maxwell’s 
two time-dependent curl equations. The scheme treats the irradiation of the scatterer as an 
initial value problem. Our discussion on the FD TD method will cover

FIGURE 3.20
Relating node numbering schemes for nx = 6, ny = 4.
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•	 Yee’s finite difference algorithm,
•	 Accuracy and stability,
•	 Lattice truncation conditions,
•	 Initial fields, and
•	 Programming aspects.

Some model examples with MATLAB codes will be provided to illustrate the method.

FIGURE 3.21
MATLAB code for Example 3.6.� (Continued)
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TABLE 3.7

Characteristic Impedance of a Microstrip Line for Example 3.6

h Number of Iterations Zo

0.25 700 69.77
0.1 500 65.75
0.05 500 70.53
0.05 700 67.36
0.05 1000 65.50

Other method [41]: Zo = 62.50.

FIGURE 3.21 (Continued)
MATLAB code for Example 3.6.
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3.8.1  Yee’s Finite Difference Algorithm

In an isotropic medium, Maxwell’s equations can be written as
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(3.78a)
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(3.78b)

The vector Equation 3.78 represents a system of six scalar equations, which can be 
expressed in rectangular coordinate system as
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(3.79b)
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(3.79c)
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(3.79f)

Following Yee’s notation, we define a grid point in the solution region as

	 (i, j, k) ≡ (i Δx, j Δy, k Δz)	 (3.80)

and any function of space and time as

	 Fn(i, j, k) ≡ F(iδ, jδ, kδ, n Δt)	 (3.81)

where δ = Δx = Δy = Δz is the space increment, and Δt is the time increment, while i, 
j, k, and n are integers. Using central finite difference approximation for space and time 
derivatives that are second-order accurate,
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160 Computational Electromagnetics with MATLAB®

In applying Equation 3.82 to all the space derivatives in Equation 3.79, Yee positions the 
components of E and H about a unit cell of the lattice as shown in Figure 3.22. To incorporate 
Equation 3.83, the components of E and H are evaluated at alternate half-time steps. Thus, 
we obtain the explicit finite difference approximation of Equation 3.79 as
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FIGURE 3.22
Positions of the field components in a unit cell of the Yee’s lattice.
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Notice from Equations 3.84a through 3.84f and Figure 3.22 that the components of E 
and H are interlaced within the unit cell and are evaluated at alternate half-time steps. All 
the field components are present in a quarter of a unit cell as shown typically in Figure 
3.23a. Figure 3.23b illustrates typical relations between field components on a plane; this 
is particularly useful when incorporating boundary conditions. The figure can be inferred 
from Equation 3.79d or Equation 3.84d. In translating the hyperbolic system of Equations 
3.84a through 3.84f into a computer code, one must make sure that, within the same time 
loop, one type of field component is calculated first and the results obtained are used in 
calculating another type.

3.8.2  Accuracy and Stability

One factor that dictates the accuracy of FDTD technique is the number of points per 
wavelength for any given frequency. To ensure the accuracy of the computed results, the 
spatial increment δ must be small compared to the wavelength (usually ≤ λ/10) or minimum 
dimension of the scatterer. This amounts to having 10 or more cells per wavelength. To 
ensure the stability of the finite difference scheme of Equations 3.84a through 3.84f, the 
time increment Δt must satisfy the following stability condition [43,47]:
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FIGURE 3.23
Typical relations between field components: (a) within a quarter of a unit cell, (b) in a plane.
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where umax is the maximum wave phase velocity within the model. Since we are using a 
cubic cell with Δx = Δy = Δz = δ, Equation 3.85 becomes

	

u t
n

max∆ ≤
δ

1

	
(3.86)

where n is the number of space dimensions. (n here should not be confused with n in 
Equation 3.84. The former n refers to the number of dimensions, whereas the latter refers 
to time.) For practical reasons, it is best to choose the ratio of the time increment to spatial 
increment as large as possible yet satisfying Equation 3.86.

3.8.3  Lattice Truncation Conditions

A basic difficulty encountered in applying the FDTD method to scattering problems is 
that the domain in which the field is to be computed is open or unbounded (see Figure 
1.3). Since no computer can store an unlimited amount of data, a finite difference scheme 
over the whole domain is impractical. We must limit the extent of our solution region. 
In other words, an artificial boundary must be enforced, as in Figure 3.24, to create the 
numerical illusion of an infinite space. The solution region must be large enough to enclose 
the scatterer, and suitable boundary conditions on the artificial boundary must be used to 
simulate the extension of the solution region to infinity. Outer boundary conditions of this 
type have been called radiation conditions, absorbing boundary conditions, or lattice truncation 
conditions. Although several types of boundary conditions have been proposed [48,49], we 
will only consider those developed by Taflove et al. [43,44].

The lattice truncation conditions developed by Taflove et  al. allow excellent overall 
accuracy and numerical stability even when the lattice truncation planes are positioned 

FIGURE 3.24
Solution region with lattice truncation.
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no more than 5δ from the surface of the scatterer. The conditions relate in a simple way the 
values of the field components at the truncation planes to the field components at points 
one or more δ within the lattice (or solution region).

For simplicity, we first consider one-dimensional wave propagation. Assume waves 
have only Ez and Hx components and propagate in the ±y directions. Also assume a time 
step of δt = δy/c, the maximum allowed by the stability condition of Equation 3.86. If the 
lattice extends from y = 0 to y = J Δy, with Ez component at the end points, the truncation 
conditions are

	 E Ez
n

z
n( ) ( )0 1= − 1 	 (3.87a)

	 E J E Jz
n

z
n( ) ( )= −−1 1 	 (3.87b)

With these lattice conditions, all possible ±y-directed waves are absorbed at y = 0 and J Δy 
without reflection. Equation 3.87 assumes free-space propagation. If we wish to simulate the 
lattice truncation in a dielectric medium of refractive index m, Equation 3.87 is modified to

	 E Ez
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z
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	 (3.88a)

	 E J E Jz
n

z
n m( ) ( )= −− 1 	 (3.88b)

For the three-dimensional case, we consider scattered waves having all six field 
components and propagating in all possible directions. Assume a time step of δt = δ/2c, a 
value which is about 13% lower than the maximum allowed ( )δ δt c= / 3  by Equation 3.86. 
If the lattice occupies 1 2 1 2 0 0/ /δ δ δ δ< < + < < < <x I y J z K( ) , ,max max max , the truncation 
conditions are [36,44]:
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H j k H j k H j ky
n

y
n

y
n( , , ) ( , , ) ( , , )1 2 1 2

1
3

3 2 1 2 3 2 1 22 2/ / / / / /+ = − + +


− −


+ + 


−H j ky
n 2 3 2 3 2( , , ) ,/ / 	 (3.89a)

	

H j k H j k H j kz
n

z
n

z
n( , , ) ( , , ) ( , , )1 2 1 2

1
3

3 2 1 2 1 3 2 1 22 2/ / / / / /+ = + − + +− −


+ + + 


−H j kz
n 2 3 2 1 2 1( , , ) ,/ / 	 (3.89b)

	 b.	Plane i = Imax + 1/2
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	 c.	Plane j = 0,
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	 f.	Plane k = Kmax,
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These boundary conditions minimize the reflection of any outgoing waves by simulating 
the propagation of the wave from the lattice plane adjacent to the lattice truncation plane in 
a number of time steps corresponding to the propagation delay. The averaging process is 
used to take into account all possible local angles of incidence of the outgoing wave at the 
lattice boundary and possible multiple incidences [43]. If the solution region is a dielectric 
medium of refractive index m rather than free space, we replace the superscript n − 2 in 
Equations 3.89a through 3.89l by n − m.

3.8.4  Initial Fields

The initial field components are obtained by simulating either an incident plane wave pulse 
or single-frequency plane wave. The simulation should not take excessive storage nor cause 
spurious wave reflections. A desirable plane wave source condition takes into account the 
scattered fields at the source plane. For the three-dimensional case, a typical wave source 
condition at plane y = js (near y = 0) is

	 E i j k fn t E i j kz
n

s z
n

s( , , ) sin( ) ( , , )+ ← + +1 2 1000 2 1 2/ /π δ 	 (3.90)

where f is the irradiation frequency. Equation 3.90 is a modification of the algorithm for all 
points on plane y = js; the value of the sinusoid is added to the value of Ez

n obtained from 
Equations 3.84a through 3.84f.
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At t = 0, the plane wave source of frequency f is assumed to be turned on. The propagation 
of waves from this source is simulated by time stepping, that is, repeatedly implementing 
Yee’s finite difference algorithm on a lattice of points. The incident wave is tracked as it 
first propagates to the scatterer and then interacts with it via surface–current excitation, 
diffusion, penetration, and diffraction. Time stepping is continued until the sinusoidal 
steady state is achieved at each point. The field envelope, or maximum absolute value, 
during the final half-wave cycle of time stepping is taken as the magnitude of the phasor 
of the steady-state field [32,43].

From experience, the number of time steps needed to reach the sinusoidal steady state 
can be greatly reduced by introducing a small isotropic conductivity σext within the solution 
region exterior to the scatterer. This causes the fields to converge more rapidly to the 
expected steady-state condition.

3.8.5  Programming Aspects

Since most EM scattering problems involve nonmagnetic media (µr = 1), the quantity δt/µ(i, 
j, k)δ can be assumed constant for all (i, j, k). The nine multiplications per unit cell per 
time required by Yee’s algorithm of Equations 3.84a through 3.84f can be reduced to six 
multiplications, thereby reducing computer time. Following Taflove et al. [31,35,44], we 
define the following constants:

	 R = δt/2εo,	 (3.91a)

	 Ra = (cδt/δ)2,	 (3.91b)

	 Rb = δt/µoδ,	 (3.91c)

	
C
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/ 	

(3.91d)

	
C

R
m R m

b
a

r
=

ε σ( ) ( )+ 	
(3.91e)

where m = MEDIA(i, j, k) is an integer referring to the dielectric or conducting medium type 
at location (i, j, k). For example, for a solution region comprising three different homogeneous 
media shown in Figure 3.25, m is assumed to be 1–3. (This m should not be confused with 

FIGURE 3.25
A typical inhomogeneous solution region with integer m assigned to each medium.
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the refractive index of the medium, mentioned earlier.) In addition to the constants in 
Equation 3.91, we define proportional electric field

	 E E= Rb 	 (3.92)

Thus, Yee’s algorithm is modified and simplified for easy programming as [50,51]:
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The relationship between the original and modified algorithms is illustrated in Figure 
3.26 and shown in Table 3.8. Needless to say, the truncation conditions in Equations 3.89a 
through 3.89l must be modified accordingly. This modification eliminates the need for 
computer storage of separate ε and σ arrays; only a MEDIA array which specifies the 
type-integer of the dielectric or conducting medium at the location of each electric field 
component in the lattice need be stored. Also the programming problem of handling half 
integral values of i, j, k has been eliminated.

With the modified algorithm, we determine the scattered fields as follows. Let the 
solution region, completely enclosing the scatterer, be defined by 0 < i < Imax, 0 < j < Jmax, 
0 < k < Kmax. At t ≤ 0, the program is started by setting all field components at the grip 
points equal to zero:

	
  E i j k E i j k E i j kx y z

0 0 0 0( , , ) ( , , ) ( , , )= = = 	 (3.94a)

	 H i j k H i j k H i j kx y z
0 0 0 0( , , ) ( , , ) ( , , )= = = 	 (3.94b)

for 0 < i < Imax, 0 < j < Jmax, 0 < k < Kmax. If we know

	 H i j k E i j kx
n

z
n− −1 1( , , ), ( , , ),
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and

	 E i j ky
n−1( , , )

at all grid points in the solution region, we can determine new H i j kx
n( , , ) everywhere from 

Equation 3.93a. The same applies for finding other field components except that the lattice 
truncation conditions of Equations 3.89a through 3.89l must be applied when necessary. 
The plane wave source is activated at t = δt, the first time step, and left on during the entire 
run. The field components are advanced by Yee’s finite difference formulas in Equations 
3.93a through 3.93f and by the lattice truncation condition in Equations 3.89a through 3.89l. 
The time stepping is continued for t = Nmaxδt, where Nmax is chosen large enough that the 
sinusoidal steady state is achieved. In obtaining the steady-state solutions, the program 
must not be left for too long (i.e., Nmax should not be too large), otherwise the imperfection 
of the boundary conditions causes the model to become unstable.

The FDTD method has the following inherent advantages over other modeling techniques, 
such as the moment method and transmission-line modeling:

•	 It is conceptually simple, general, and robust.
•	 The algorithm does not require the formulation of integral equations, and relatively 

complex scatterers can be treated without the inversion of large matrices.
•	 It is simple to implement for complicated, inhomogeneous conducting or dielectric 

structures because constitutive parameters (σ, µ, ε) can be assigned to each lattice 
point.

FIGURE 3.26
Modified node numbering.
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•	 Its computer memory requirement is not prohibitive for many complex structures 
of interest.

•	 The algorithm makes use of the memory in a simple sequential order.
•	 It is much easier to obtain frequency domain data from time-domain results than 

the converse. Thus, it is more convenient to obtain frequency domain results via 
time domain when many frequencies are involved.

The method has the following disadvantages:

•	 Its implementation necessitates modeling an object as well as its surroundings. 
Thus, FDTD requires a lot of memory space and the required program execution 
time may be excessive.

•	 Its accuracy is at least one order of magnitude worse than that of the method of 
moments, for example.

•	 FDTD employs a low-order approximation in space that requires at least 10 cells 
per wavelength to achieve acceptable accuracy.

•	 Since the computational meshes are rectangular in shape, they do not conform 
to scatterers with curved surfaces, as is the case of the cylindrical or spherical 
boundary.

•	 As in all finite difference algorithms, the field quantities are only known at grid 
nodes.

TABLE 3.8

Relationship between Original and Modified Field Components (lattice 
size = Imaxδ × Jmaxδ × Kmaxδ)

Original Modified Limits on Modified (i, j, k)
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Time-domain modeling in three dimensions involves a number of issues which are yet 
to be resolved even for frequency-domain modeling. Among these are whether it is best to 
reduce Maxwell’s equations to a second-order equation for the electric (or magnetic) field 
or to work directly with the coupled first-order equation. The former approach is used in 
Reference 35, for example, for solving the problem of EM exploration for minerals. The latter 
approach has been used with great success in computing EM scattering from objects as 
demonstrated in this section. In spite of these unresolved issues, the FDTD algorithm has 
been applied to solve scattering and other problems including the following:

	 1.	Aperture penetration [44,52,53],
	 2.	Antenna/radiation problems [54–60],
	 3.	Microwave circuits [61–66],
	 4.	Eigenvalue problems [67],
	 5.	EM absorption in human tissues (bioelectromagnetics) [35,36,68–72], and
	 6.	Other areas [73–77].

The following two examples are taken from the work of Taflove et al. [32,43,44]. The 
problems whose exact solutions are known will be used to illustrate the applications and 
accuracy of FDTD algorithm.

EXAMPLE 3.7

Consider the scattering of a + y-directed plane wave of frequency 2.5 GHz by a uniform, 
circular, dielectric cylinder of radius 6 cm. We assume that the cylinder is infinite in 
the z direction and that the incident fields do not vary along z. Thus, ∂/∂z = 0 and the 
problem is reduced to the two-dimensional scattering of the incident wave with only 
Ez, Hx, and Hy components. Our objective is to compute one of the components, say Ez, 
at points within the cylinder.

Solution

Assuming a lossless dielectric with

	 εd = 4εo,  µd = µo,  σd = 0,	 (3.95)

the speed of the wave in the cylinder is

	
u

c
d

r

= = ×
ε

1 5 108. m /s
	

(3.96)

Hence, λd = ud/f = 6 cm. We may select δ = Δx = Δy = Δz = λd/20 = 0.3 cm and 
δt = δ/2c = 5 ps. Thus, we use the two-dimensional grid of Figure 3.27 as the solution 
domain. Due to the symmetry of the scatterer, the domain can be reduced relative 
to Figure 3.27 to the 25 × 49 subdomain of Figure 3.28. Choosing the cylinder axis as 
passing through point (i, j) = (25.5, 24.5) allows the symmetry condition to be imposed at 
line i = 26, that is,

	
 E j E jz
n

z
n( , ) ( , )26 25= 	 (3.97)

Soft-grid truncation conditions are applied at j = 0, 49 and i = 1/2, that is,
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Assumptions:
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∂
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0 0

0

;

FIGURE 3.27
Two-dimensional lattice for Example 3.7.

FIGURE 3.28
Finite difference model of cylindrical dielectric scatterer relative to the grid of Figure 3.27.
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Maxwell’s equations:
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where n − 2 is due to the fact that δ = 2cδt is selected. Notice that the actual values of 
(i, j, k) are used here, while the modified values for easy programming are used in the 
program; the relationship between the two types of values is in Table 3.8.

Grid points (i, j) internal to the cylinder, determined by

	 [(i − 25.5)2 + (j − 24.5)2]1/2 ≤ 20,	 (3.101)

are assigned the constitutive parameters εd, µo, and εd, while grid points external to the 
cylinder are assigned parameters of free space (ε = εo, µ = µo, σ = 0).

A FORTRAN program has been developed by Bemmel [78] based on the ideas 
expounded above. A similar but more general code is THREDE developed by Holland 
[50]. The program starts by setting all field components at grid points equal to zero. A 
plane wave source

	
 E i f n t E iz
n

z
n( , ) sin( ) ( , )2 1000 2 2← +π δ 	 (3.102)

is used to generate the incident wave at j = 2 and n = 1, the first time step, and left on 
during the entire run. The program is time stepped to t = Nmaxδt, where Nmax is large 
enough that sinusoidal steady state is achieved. Since f = 2.5 GHz, the wave period 
T = 1/f = 400 ps = 80δt. Hence, Nmax = 500 = 6.25 T/δt is sufficient to reach steady state. 
Thus, the process is terminated after 500 timesteps. Typical results are portrayed in 
Figure 3.29 for the envelope of Ez

n (15, j) for 460 ≤ n ≤ 500. Figure 3.29 also shows the exact 
solution using series expansion [79]. Bemmel’s code has both the numerical and exact 
solutions. By simply changing the constitutive parameters of the media and specifying 
the boundary of the scatterer (through a look-up table for complex objects), the program 
can be applied to almost any two-dimensional scattering or penetration problem.

EXAMPLE 3.8

Consider the penetration of a + y-directed plane wave of frequency 2.5 GHz by a uniform, 
dielectric sphere of radius 4.5 cm. The problem is similar to the previous example except 
that it is three dimensional and more general. We assume that the incident wave has only 
Ez and Hx components.

Solution

As in the previous example, we assume that internal to the lossless dielectric sphere,

	 εd = 4εo,  µd = µo,  σd = 0	 (3.103)

We select

	 δ = λd/20 = 0.3 cm	 (3.104)

and

	 δt = δ/2c = 5 ps	 (3.105)
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This choice of the grid size implies that the radius of the sphere is 4.5/0.3 = 15 units. 
The sphere model centered at grid point (19.5, 20, 19) in a 19 × 39 × 19 lattice is portrayed 
in Figure 3.30 at two lattice symmetry planes k = 19 and i = 19.5. Grid points (i, j, k) 
internal to the sphere are determined by

	 [(i − 19.5)2 + (j − 20)2 + (k − 19)2]1/2 ≤ 15	 (3.106)

Rather than assigning σ = 0 to points external to the sphere, a value σ = 0.1 mho/m 
is assumed to reduce spurious wave reflections. The MATLAB code shown in Figure 
3.31, a modified version of Bemmel’s [78], is used to generate field components Ey and Ez 
near the sphere irradiation axis. With the dimensions and constitutive parameters of the 
sphere specified as input data, the program is developed based on the following steps:

	 1.	 Compute the parameters of each medium using Equation 3.91 where m = 1, 2.
	 2.	 Initialize field components.
	 3.	 Use the FDTD algorithm in Equations 3.93a through 3.93f to generate field 

components. This is the heart of the program. It entails taking the following 
steps:

	 a.	 Calculate actual values of grid point (x, y, z) using the relationship in Table 
3.8. This will be needed later to identify the constitutive parameters of the 
medium at that point using subroutine MEDIA.

	 b.	 Apply soft lattice truncation conditions in Equations 3.89a through 3.89l at 
appropriate boundaries, that is, at x = δ/2, y = 0, ymax, and z = 0. Notice that 

FIGURE 3.29
Computed internal Ez on line: (a) i = 25, (b) i = 15.
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some of the conditions in Equations 3.89a through 3.89l are not necessary 
in this case because we restrict the solution to one fourth of the sphere due 
to geometrical symmetry. At other boundaries (x = xmax and z = zmax), the 
symmetry conditions are imposed. For example, at k = 19,

	
 E i j E i jx
n

x
n( , , ) ( , , )20 18=

	 c.	 Apply FDTD algorithm in Equations 3.93a through 3.93f.
	 d.	 Activate the plane wave source, that is,

	
 E i j k fn t E i j kz
n

z
n

s( , , ) sin( ) ( , , )← +2π δ

		  where js = 3 or any plane near y = 0.
	 e.	 Time step until steady state is reached.
	 4.	 Obtain the maximum absolute values (envelopes) of field components in the 

last half-wave and output the results.

Figure 3.32 illustrates the results of the program. The values of |Ey| and |Ez| near the 
sphere axis are plotted against j for observation period 460 ≤ n ≤ 500. The computed 
results are compared with Mie’s exact solution [80] covered in Section 2.8. The code for 
calculating the exact solution is also found in Bemmel’s work [78].

3.9  Absorbing Boundary Conditions for FDTD

The FDTD method is a robust, flexible (adaptable to complex geometries), efficient, versatile, 
easy-to-understand, easy-to-implement, and user-friendly technique to solve Maxwell’s 

FIGURE 3.30
FDTD model of dielectric sphere.
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equations in the time domain. Although the method did not receive as much attention as it 
deserved when it was suggested, it is now becoming the most popular method of choice in 
computational EM. It is finding widespread use for solving open-region scattering, radiation, 
penetration/absorption, electromagnetic interference (EMI), electromagnetic compatibility 
(EMC), diffusion, transient, bioelectromagnetics, and microwave circuit modeling problems. 

FIGURE 3.31
Computer program for FDTD three-dimensional scattering problem.� (Continued)
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FIGURE 3.31 (Continued)
Computer program for FDTD three-dimensional scattering problem.� (Continued)
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FIGURE 3.31 (Continued)
Computer program for FDTD three-dimensional scattering problem.� (Continued)
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FIGURE 3.31 (Continued)
Computer program for FDTD three-dimensional scattering problem.� (Continued)
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FIGURE 3.32
Computed Ey(19.5, j, 18) and Ez(19, j, 18.5) within the lossless dielectric sphere.

FIGURE 3.31 (Continued)
Computer program for FDTD three-dimensional scattering problem.
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However, the method exhibits some problems such as slow convergence for solving resonant 
structures, requirement of large memory for inhomogeneous waveguide structures due to 
the necessity of a full-wave analysis, inability to properly handle curved boundaries due to 
its orthogonal nature, low stability, and low accuracy unless fine mesh is used, to mention a 
few. These problems prohibit the application of the standard FDTD technique and have led 
to various forms of its modifications [81–91] and hybrid FDTD methods [92–94]. Although 
these new FDTD methods have enhanced the standard FDTD (increase accuracy and 
stability, etc.), some researchers still prefer the standard FDTD.

One of the major problems inherent in the standard FDTD, however, is the requirement 
for artificial mesh truncation (boundary) condition. The artificial termination truncates the 
solution region electrically close to the radiating/scattering object but effectively simulates 
the solution to infinity. These artificial termination conditions are known as absorbing 
boundary conditions (ABCs) as they theoretically absorb incident and scattered fields. The 
accuracy of the ABC dictates the accuracy of the FDTD method. The need for accurate ABCs 
has resulted in various types of ABCs [95–105], which are fully discussed in Reference 102. 
Due to space limitation, we will consider only Berenger’s perfectly matched layer (PML) type 
of ABC [98–102] since PML has been the most widely accepted and is set to revolutionize 
the FDTD method. It acts in the same way as absorbing material in anechoic rooms.

In the PML truncation technique, an artificial layer of absorbing material is placed around 
the outer boundary of the computational domain. The goal is to ensure that a plane wave 
that is incident from FDTD free space to the PML region at an arbitrary angle is completely 
absorbed there without reflection. This is the same as saying that there is complete 
transmission of the incident plane wave at the interface between free space and the PML 
region (see Figure 3.33). Thus, the FDTD and the PML region are said to be perfectly matched.

To illustrate the PML technique, consider Maxwell’s equation in two dimensions for 
transverse electric (TE) case with field components Ex, Ey and Hz and no variation with z. 
Expanding Equations 1.22c and 1.22d in Cartesian coordinates and setting E zz = = ∂ ∂0 , 
we obtain
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FIGURE 3.33
Reflectionless transmission of a plane wave at a PML/free-space interface.
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where the PML, as a lossy medium, is characterized by an electrical conductivity σ and a 
magnetic conductivity σ*. The conductivities are related as
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This relationship ensures a required level of attenuation and forces the wave impedance 
of the PML to be equal to that of the free space. Thus, a reflectionless transmission of a 
plane wave propagation across the interface is permitted. For oblique incident angles, the 
conductivity of the PML must have a certain anisotropy characteristic to ensure reflectionless 
transmission. To achieve this, the Hz component must be split into two subcomponents, Hzx 
and Hzy, with the possibility of assigning losses to the individual split field components. 
This is the cornerstone of the PML technique. It leads to four components Ex, Ey, Hzx, and 
Hzy and four (rather than the usual three) coupled field equations.
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These equations can be discretized to provide the FDTD time-stepping equations for 
the PML region. The standard Yee time-stepping cannot be used because of the rapid 
attenuation to outgoing waves afforded by a PML medium. We use the exponentially 
differenced equations to preclude any possibility of diffusion instability. In the usual FDTD 
notations, the resulting four time-stepping equations for the PML region are [99]
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These equations can be directly implemented in an FDTD simulation to model PML 
medium. All that is required is to select the depth of the PML and its conductivity. In 
theory, the PML could be δ deep and have near-infinite conductivity. It has been shown, 
however, that increasing the conductivity gradually with depth minimizes reflections; 
hence, the “layering” of the medium and the dependence of σ on i and j.

The TM case can be obtained by duality, with Ez split so that Ez = Ezx + Ezy. In three 
dimensions, all six Cartesian field components are split so that the resulting PML 
modification of Maxwell’s equations yields 12 equations [102].

3.10  Advanced Applications of FDTD

As a versatile, powerful technique, FDTD is being used in several areas including 
computing, communications, and medicine. The simple technique has been improved upon 
in the following ways:

•	 Perfectly matched layers (PML), discussed earlier.
•	 The segmented FDTD (SFDTD), which divides the problem space into segments so 

that the computational redundancy is reduced [106].
•	 Fast and memory-efficient algorithms of the high-order difference equations [107].
•	 Pseudospectral time-domain (PSTD) methods for broadband electromagnetic 

[108,109].

These changes coupled with the advances in computer hardware have expanded the 
popularity, accuracy, and speed of FDTD modeling.

In this section, we consider some topics that are useful in a variety of FDTD applications 
[110]. Since the topics are advanced and there is space limitation, only an introductory 
treatment is provided; the reader is encouraged to get more information from the references 
provided [102,111].

3.10.1  Periodic Structures

Periodic structures, such as frequency selective surfaces and volumes, are useful in practice 
because of their spatial filtering characteristics. They are found in photonic bandgap 
structures and antenna arrays. Due to the geometric nature of the structure, this kind of 
problem can be handled by modeling a single period of the structure [112,113]. Since the 
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structure consists of replicas of the basic element, one can model the basic element using 
FDTD algorithm and apply boundary conditions to simulate the periodic replication.

3.10.2  Antennas

FDTD is lagging behind the method of moments (MOM) in antenna modeling because 
MOM can handle antennas with less time and memory. Originally, FDTD was basically 
used to model the scattering of EM waves from objects. The technique has now been 
developed to model radiating structures (transmitting and receiving antennas) with 
realistic complexity. It has been accurately used to model antennas and obtain their farfield 
radiation and reception properties such as farfield radiation patterns, receiving apertures, 
gain, efficiency, and driving-point impedances.

3.10.3  PSTD Techniques

FDTD modeling of electrically large-scale problems is very challenging for scattering 
and propagation problems. To address this challenge, various hybrid methods have been 
proposed recently. These include the PSTD techniques and the general vector auxiliary 
differential equation (GVADE). We will consider only PSTD here. There are two common 
types of PSTD techniques for solving Maxwell’s equations: the Fourier and Chebyshev 
methods. PSTD applications for large-scale problems include wave propagation, wave 
scattering, nonlinear optics, and photonics. The emerging PSTD techniques have expanded 
the scope and applicability of the original FDTD scheme. The major advantage of the PSTD 
algorithm over the standard FDTD algorithm lies in its higher accuracy achieved by less 
sampling density. Its low sampling rate, as low as two cells per wavelength, makes it much 
more efficient than the conventional FDTD [114].

3.10.4  Photonics

The application of FDTD has been expanded to embrace a closely related PSTD. FDTD 
together with PSTD can be used to discretize Maxwell’s equations on a spatial mesh and 
apply a leapfrog time-matching schemes. This can be applied to wide variety of photonic 
technologies such as optical waveguides, microcavity rings, photonic crystals, biophotonics, 
nanotechnology, and biomedical applications of light. It requires simulating the behavior 
of the materials involved at optical wavelengths. FDTD and PSTD can put Maxwell’s 
equations to work in the analysis and simulation of a wide range of biophotonic devices. 
This application will grow with the continuing improvement in computer capabilities.

3.10.5  Metamaterials

Until recently, research by CEM community has focused on fields and waves in vacuum and 
in other simple mediums. Interest in complex-mediums electromagnetics (CME) has been 
demonstrated and given impetus by the emergence of nanoscience and nanotechnologies 
[115]. There is the potential ability to engineer the exotic properties of metamaterials for 
a variety of engineering applications. Two of those properties are negative refractive 
index and decrease in size and weight of components and devices. The FDTD technique 
is regarded as the most effective numerical method for studying metamaterial-based 
structures. The incorporation of material nonlinearity and handling of metamaterials is 
an emerging area in FDTD modeling [116,117].
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3.10.6  MEEP

This is a free, open-source implementation of the FDTD simulation. The software package 
was developed at MIT. MEEP is an acronym for MIT electromagnetic equation propagation. 
Such a free FDTD package will greatly aid research in EM. It was first released in 2006 and 
it can be downloaded from http://ab-initio.mit.edu/meep

MEEP can handle: arbitrary anisotropic, nonlinear media; a variety of boundary 
conditions including symmetries and perfectly matched layers (PML); distributed-memory 
parallelism; and Cartesian and cylindrical coordinates [118].

3.11  Finite Differencing for Nonrectangular Systems

So far in this chapter, we have considered only rectangular solution regions within which 
a rectangular grid can be readily placed. Although we can always replace a nonrectangular 
solution region by an approximate rectangular one, our discussion in this chapter would 
be incomplete if we failed to apply the method to nonrectangular coordinates since it is 
sometimes preferable to use these coordinates. We will demonstrate the finite differencing 
technique in cylindrical coordinates (ρ, φ, z) and spherical coordinates (r, θ, φ) by solving 
Laplace’s equation ∇2V = 0. The idea is readily extended to other PDEs.

3.11.1  Cylindrical Coordinates

Laplace’s equation in cylindrical coordinates can be written as
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Refer to the cylindrical system and finite difference molecule shown in Figure 3.34. At 
point O(ρo, φo, zo), the equivalent finite difference approximation is
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FIGURE 3.34
Typical node in cylindrical coordinate.

http://ab-initio.mit.edu/meep
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where Δρ, Δφ, and Δz are the step sizes along ρ, φ, and z, respectively, and
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We now consider a special case of Equation 3.112 for an axisymmetric system [119]. In 
this case, there is no dependence on φ so that V = V(ρ, z). If we assume square nets so that 
Δρ = Δz = h, the solution region is discretized as in Figure 3.35 and Equation 3.112 becomes

	
1

2
1

2
4 01 2 5 6+









 + −









 + + − =

h
V

h
V V V V

o o
o

ρ ρ 	
(3.114)

If point O is at (ρo, zo) = (ih, jh), then
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so that Equation 3.114 becomes
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Notice that in Equation 3.114, it appears we have a singularity for ρo = 0. However, by 
symmetry, all odd order derivatives must be zero. Hence,
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FIGURE 3.35
Finite difference grid for an axisymmetric system.
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since

	 V (Δρ, zo) = V(–Δρ, zo)	 (3.117)

Therefore by L’Hopital’s rule,
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Thus, at ρ = 0, Laplace’s equation becomes
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The finite difference equivalent to Equation 3.119 is
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which is used at ρ = 0.
To solve Poisson’s equation ∇2V = −ρv/ε in cylindrical coordinates, we obtain the finite 

difference form by replacing zero on the right-hand side of Equation 3.112 with g = −ρv/ε. 
We obtain
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where h is the step size.
As in Section 3.7.1, the boundary condition D1n = D2n must be imposed at the interface 

between two media. As an alternative to applying Gauss’s law as in Section 3.7.1, we will 
apply Taylor-series expansion [120]. Applying the series expansion to points 1, 2, 5 in 
medium 1 in Figure 3.36, we obtain
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where superscript (1) denotes medium 1. Combining Equations 3.111 and 3.122 results in
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Similarly, applying Taylor series to points 1, 2, and 6 in medium 2, we get
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Combining Equations 3.111 and 3.124 leads to
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But D1n = D2n or
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FIGURE 3.36
Interface between two dielectric media.
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Substituting Equations 3.123 and 3.125 into Equation 3.126 and solving for Vo yields
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Equation 3.127 is only applicable to interface points. Notice that Equation 3.127 becomes 
Equation 3.114 if ε1 = ε2.

Typical examples of finite difference approximations for boundary points, written for 
square nets in rectangular and cylindrical systems, are tabulated in Table 3.9. For more 
examples, see References 12,121. The FDTD has also been applied in solving time-varying 
axisymmetric problems [91,122].

3.11.2  Spherical Coordinates

In spherical coordinates, Laplace’s equation can be written as
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TABLE 3.9

Finite Difference Approximations at Boundary Points

Description Figure Cartesian Equation Cylindrical Equation

1. Bottom edge 4V0 = V1 + V2 + 2V3 4V0 = V1 + V2 + 4V3

2. Top edge 4V0 = V1 + V2 + 2V4 4V0 = V1 + V2 + 2V3

3. Left edge 4V0 = 2V2 + V3 + V4 8 4
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5. Bottom left corner point 2V0 = V1 + V3 3V0 = V1 + 2V3

6. Bottom right corner point 2V0 = V2 + V3 3V0 = V2 + 2V3

7. Top left corner point 2V0 = V1 + V4 3V0 = V1 + 2V4

8. Top right corner point 2V0 = V2 + V4 3V0 = V2 + 2V4
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At a grid point O(ro, θo, φo) shown in Figure 3.37, the finite difference approximation to 
Equation 3.128 is
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Note that θ increases from node 6 to 5, and hence we have V5 − V6 and not V6 − V5 in 
Equation 3.129.

EXAMPLE 3.9

Consider an earthed metal cylindrical tank partly filled with a charge liquid, such 
as hydrocarbons, as illustrated in Figure 3.38a. Using the finite difference method, 
determine the potential distribution in the entire domain. Plot the potential along 
ρ = 0.5, 0 < z < 2 m and on the surface of the liquid. Take

a = b = c = 1.0 m,
εr = 2.0 (hydrocarbons),
ρv = 10−5 C/m3

Solution

The exact analytic solution to this problem was given in Section 2.7.2.
It is apparent from Figure 3.38a and from the fact that ρv is uniform that V = V(ρ, z) (i.e., 

the problem is two-dimensional) and the domain of the problem is symmetrical about 
the z-axis. Therefore, it is only necessary to investigate the solution region in Figure 3.38b 
and impose the condition that the z-axis is a flux line, that is, ∂V/∂n = ∂V/∂ρ = 0.

The finite difference grid of Figure 3.35 is used with 0 ≤ i ≤ Imax and 0 ≤ j ≤ Jmax. 
Choosing Δρ = Δz = h = 0.05 m makes Imax = 20 and Jmax = 40. Equation 3.115 is applied 
for gas space, and Equation 3.121 for liquid space. Along the z-axis, that is, i = 0, we 
impose the Neumann condition in Equation 3.120. To account for the fact that the gas 
has dielectric constant εr1 while the liquid has εr2, we impose the boundary condition in 
Equation 3.127 on the liquid–gas interface.

Based on these ideas, the computer program shown in Figure 3.39 was developed to 
determine the potential distribution in the entire domain. The values of the potential 
along ρ = 0.5, 0 < z < 2 and along the gas–liquid interface are plotted in Figure 3.40.

FIGURE 3.37
Typical node in spherical coordinates.
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It is evident from the figure that the finite difference solution compares well with the 
exact solution in Section 2.7.2. It is the simplicity in concept and ease of programming 
finite difference schemes that make them very attractive for solving problems such as this.

3.12  Numerical Integration

Numerical integration (also called numerical quadrature) is used in science and engineering 
whenever a function cannot easily be integrated in closed form or when the function is 
described in the form of discrete data. Integration is a more stable and reliable process than 
differentiation. The term quadrature or integration rule will be used to indicate any formula 
that yields an integral approximation. Several integration rules have been developed over 
the years. The common ones include

	 1.	Euler’s rule,
	 2.	Trapezoidal rule,
	 3.	Simpson’s rule,
	 4.	Newton–Cotes rules, and
	 5.	Gaussian (quadrature) rules.

FIGURE 3.38
For Example 3.9: (a) earthed cylindrical tank, (b) solution region.
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The first three are simple and will be considered first to help build up background for 
other rules which are more general and accurate. A discussion on the subject of numerical 
integration with diverse FORTRAN codes can be found in Davis and Rabinowitz [123]. A 
program package called QUADPACK for automatic integration covering a wide variety 
of problems and various degrees of difficulty is presented in Piessens et al. [124]. Our 
discussion will be brief but sufficient for the purpose of this text.

3.12.1  Euler’s Rule

To apply the Euler or rectangular rule in evaluating the integral

	
I f x dx

a

b

= ∫ ( ) ,
	

(3.130)

where f (x) is shown in Figure 3.41, we seek an approximation for the area under the curve. 
We divide the curve into n equal intervals as shown in Figure 3.41. The subarea under the 
curve within xi–1 < x < xi is

	

A f x dx h fi i

x

x

i

i

=
−

∫ ( ) 
1 	

(3.131)

FIGURE 3.39
MATLAB code for Example 3.9.� (Continued)
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where fi = f (xi). The total area under the curve is

	

I f x dx A

h f f f
a

b

i

i

n

n

=

= + + +

∫ ∑
=

( )

[ ]

�

�
1

1 2

or

	
I h fi

i

n

=
=

∑
1 	

(3.132)

It is clear from Figure 3.41 that this quadrature method gives an inaccurate result 
since each Ai is less or greater than the true area introducing negative or positive error, 
respectively.

FIGURE 3.39 (Continued)
MATLAB code for Example 3.9.



192 Computational Electromagnetics with MATLAB®

3.12.2  Trapezoidal Rule

To evaluate the same integral in Equation 3.130 using the trapezoidal rule, the subareas are 
chosen as shown in Figure 3.42. For the interval xi–1 < x < xi,

	

A f x dx
f f

hi

x

x

i i

i

i

=
+








−

−∫ ( )
1

1

2


	
(3.133)

FIGURE 3.40
Potential distribution in the tank of Figure 3.38: (a) along ρ = 0.5 m, 0 ≤ z ≤ 2 m; (b) along the gas–liquid interface.

FIGURE 3.41
Integration using Euler’s rule.
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Hence,

	

I f x dx A

h
f f f f f f f f

a

b

i

i

n

o n n n n
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=
+

+
+

+ +
+

+
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

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or

	
I h f

h
f fi

i

n

o n= + +
=

−

∑
1

1

2
( )

	

(3.134)

3.12.3  Simpson’s Rule

Simpson’s rule gives a still more accurate result than the trapezoidal rule. While the 
trapezoidal rule approximates the curve by connecting successive points on the curve by 
straight lines, Simpson’s rule connects successive groups of three points on the curve by a 
second-degree polynomial (i.e., a parabola). Thus,

	

A f x dx
h

f f fi

x

x

i i i

i

i

= + +
−

− −∫ ( ) ( )
1

1 1
3



	
(3.135)

Therefore,

	

I f x dx A

I
h

f f f f f f f

a

b

i

i
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o n n n

=

= + + + + + + +

∫ ∑
=

− −

( )
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1

1 2 3 2 1
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4 2 4 2 4
	

(3.136)

where n is even.

FIGURE 3.42
Integration using the trapezoidal rule.
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The computational molecules for Euler’s, trapezoidal, and Simpson’s rules are shown 
in Figure 3.43. Now that we have considered simple quadrature rules to help build up 
background, we now consider more general, accurate methods.

3.12.4  Newton–Cotes Rules

To apply a Newton–Cotes rule to evaluate the integral in Equation 3.130, we divide the 
interval a < x < b into m equal intervals so that

	
h

b a
m

=
−

	
(3.137)

where m is a multiple of n, and n is the number of intervals covered at a time or the order 
of the approximating polynomial. The subarea in the interval xn(i–1) < x < xni is

	

A f x dx
nh
N

C f xi

x i

x

k
n

n i k

k

n

n

ni

=
−

− +

=
∫ ∑( ) ( )
( )

( )

1

1

0



	

(3.138)

The coefficients C k nk
n , ,0 ≤ ≤  are called Newton–Cotes numbers and tabulated in 

Table 3.10. The numbers are obtained from

	
C

n
L s dsk

n
k

N

= ∫1

0
( )

	
(3.139)

where

	
L s

s j
k j

k

j k

n

( )
,

=
−
−

= ≠
∏

0 	
(3.140)

It is easily shown that the coefficients are symmetric, that is,

	 C Ck
n

n k
n= − 	 (3.141a)

FIGURE 3.43
Computational molecules for integration.
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and they sum up to unity, that is,

	
Ck

n

k

n

=
=

∑ 1
0 	

(3.141b)

For example, for n = 2,

	

C
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Once the subareas are found using Equation 3.138, then

	

I f x dx A
a

b

i

i

m n

= ∫ ∑
=

( )
/


1 	

(3.142)

The most widely known Newton–Cotes formulas are

n = 1 (2-point; trapezoidal rule)

	
A

h
f fi i i

2
1( ),+ +

	
(3.143)

n = 2 (3-point; Simpson’s 1/3 rule)

	
A

h
f f fi i i i

3
41 1( ),− ++ +

	
(3.144)

n = 3 (4-point; Newton’s rule)

	
A

h
f f f fi i i i i

3
8

3 31 2 3( )+ + ++ + +
	

(3.145)

TABLE 3.10

Newton–Cotes Numbers

n N NCo
n NCn

1 NCn
2 NCn

3 NCn
4 NCn

5 NCn
6 NCn

7 NCn
8

1 2 1 1
2 6 1 4 1
3 8 1 3 3 1
4 90 7 32 12 32 7
5 288 19 75 50 50 75 19
6 840 41 216 27 272 27 216 41
7 17280 751 3577 1323 2989 2989 1323 3577 751
8 28350 989 5888 –928 10496 –4540 10946 –928 5888 989
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3.12.5  Gaussian Rules

The integration rules considered so far involve the use of equally spaced abscissa points. 
The idea of integration rules using unequally spaced abscissa points stems from Gauss. The 
Gaussian rules are more complicated but more accurate than the Newton–Cotes rules. A 
Gaussian rule has the general form

	

f x dx w f x
a

b

i i

i

n

( ) ( )∫ ∑
=


1 	

(3.146)

where (a, b) is the interval for which a sequence of orthogonal polynomials {wi(x)} exists, xi 
are the zeros of wi(x), and the weights wi are such that Equation 3.146 is of degree of precision 
2n − 1. Any of the orthogonal polynomials discussed in Chapter 2 can be used to give a 
particular Gaussian rule. Commonly used rules are Gauss–Legendre, Gauss–Chebyshev, 
etc., since the sample points xi are the roots of the Legendre, Chebyshev, etc., of degree n. 
For the Legendre (n = 1–16) and Laguerre (n = 1–16) polynomials, the zeros xi and weights 
wi have been tabulated in Reference 112.

Using Gauss–Legendre rule,

	
f x dx

b a
w f u

a

b

i i

i

n

( ) ( )∫ ∑−

=


2

1 	
(3.147)

where u b a x b ai i= − + +[( ) ] [( ) ]2 2  are the transformation of the roots xi of Legendre 
polynomials from limits (−1, 1) to finite limits (a, b). The values of the abscissas xi and 
weights wi for n up to 7 are presented in Table 3.11; for higher values of n, the interested 
reader is referred to [125,126]. Note that −1 < xi < 1 and Σi

n
iw= =1 2.

The Gauss–Chebyshev rule is similar to the Gauss–Legendre rule. We use Equation 3.147 
except that the sample points xi, the roots of Chebyshev polynomial Tn(x), are

	
x

i
n

i ni =
−

=cos
( )

, , , ,
2 1

2
1 2 …

	
(3.148)

and the weights are all equal [127], that is,

	
w

n
i =

π
	

(3.149)

When either of the limits of integration a or b or both are ±∞, we use Gauss–Laguerre or 
Gauss–Hermite rule. For the Gauss–Laguerre rule,

	
f x dx w f xi i

i

n

( ) ( )
0 1

∞

=
∫ ∑

	
(3.150)

where the appropriate abscissas xi, the roots of Laguerre polynomials, and weights wi are 
listed for n up to 7 in Table 3.12. For the Gauss–Hermite rule,

	
f x dx w f xi i

i

n

( ) ( )
−∞

∞

=
∫ ∑

1 	
(3.151)
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where the abscissas xi, the roots of the Hermite polynomials, and weights wi are listed for n 
up to 7 in Table 3.13. An integral over (a, ∞) is taken care of by a change of variable so that

	
f x dx f y a dy

a

( ) ( )
∞ ∞

∫ ∫ +=
0 	

(3.152)

We apply Equation 3.146 with f (x) evaluated at points xi + a, i = 1, 2, … , n and xis are 
tabulated in Table 3.12.

A major drawback with Gaussian rules is that if one wishes to improve the accuracy, one 
must increase n which means that the values of wi and xi must be included in the program 
for each value of n. Another disadvantage is that the function f (x) must be explicit since the 
sample points xi are unassigned.

3.12.6  Multiple Integration

This is an extension of one-dimensional (1D) integration discussed so far. A double integral 
is evaluated by means of two successive applications of the rules presented above for single 
integral [128]. To evaluate the integral using the Newton–Cotes or Simpson’s 1/3 rule (n = 2), 
for example,

	
I f x y dxdy

c

d

a

b

= ∫∫ ( , )
	

(3.153)

TABLE 3.11

Abscissas (Roots of Legendre Polynomials) and 
Weights for Gauss–Legendre Integration

±xi wi

n = 2
0.57735 02691 89626 1.00000 00000 00000

n = 3
0.00000 00000 00000 0.88888 88888 88889
0.77459 66692 41483 0.55555 55555 55556

n = 4
0.33998 10435 84856 0.65214 51548 62546
0.86113 63115 94053 0.34785 48451 37454

n = 5
0.00000 00000 00000 0.56888 88888 88889
0.53846 93101 05683 0.47862 86704 99366
0.90617 98459 38664 0.23692 68850 56189

n = 6
0.23861 91860 83197 0.46791 39345 72691
0.66120 93864 66265 0.36076 15730 48139
0.93246 95142 03152 0.17132 44923 79170

n = 7
0.00000 00000 00000 0.41795 91836 73469
0.40584 51513 77397 0.38183 00505 05119
0.74153 11855 99394 0.27970 53914 89277
0.94910 79123 42759 0.12948 49661 68870
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over a rectangular region a < x < b, c < y < d, we divide the region into m ⋅ l smaller 
rectangles with sides

	
h

b a
m

x =
−

	
(3.154a)

	
h

d c
l

y =
−

	
(3.154b)

where m and l are multiples of n = 2. The subarea

	

A dy f x y dxij

y

y

x

x

n j

n j

n i

n i

=

−

+

−

+

∫ ∫
( )

( )

( )

( )
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1

1

1

1

	
(3.155)

TABLE 3.12

Abscissas (Roots of Laguerre Polynomials) and 
Weights for Gauss–Laguerre Integration

±xi wi

n = 2
0.58578 64376 27 1.53332 603312
3.41421 35623 73 4.45095 733505

n = 3
0.41577 45567 83 1.07769 285927
2.29428 03602 79 2.76214 296190
6.28994 50829 37 5.60109 462543

n = 4
0.32254 76896 19 0.83273 912383
1.74576 11011 58 2.04810 243845
4.53662 02969 21 3.63114 630582
9.39507 09123 01 6.48714 508441

n = 5
0.26356 03197 18 0.67909 404220
1.41340 30591 07 1.63848 787360
3.59642 57710 41 2.76944 324237
12.64080 08442 76 7.21918 635435

n = 6
0.22284 66041 79 0.57353 550742
1.18893 21016 73 1.36925 259071
2.99273 63260 59 2.26068 459338
5.77514 35691 05 3.35052 458236
9.83746 74183 83 4.88682 680021
15.98287 39806 02 7.84901 594560

n = 7
0.19304 36765 60 0.49647 759754
1.02666 48953 39 1.17764 306086
2.56787 67449 51 1.91824 978166
4.90035 30845 26 2.77184 863623
8.18215 34445 63 3.84124 912249
12.73418 02917 98 5.38067 820792
19.39572 78622 63 8.40543 248683



199Finite Difference Methods

is evaluated by integrating along x and then along y according to Equation 3.144:

	
A

h
g g gij

x
j j j

3
41 1( )− ++ +

	
(3.156)

where

	
g

h
f f fj

y
i j i j i j

3
41 1( ), , ,− ++ +

	
(3.157)

Substitution of Equation 3.157 into Equation 3.156 yields

	

A
h h

f f f f

f

ij
x y

i j i j i j i j

i j

= + + +

+ +

+ + + − − + − −

+
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1 1 1 1 1 1 1 1

1
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(

, , , ,

, ff f f fi j i j i j i j, , , ,)− + −+ + + 1 1 1 16 	 (3.158)

The corresponding schematic or integration molecule is shown in Figure 3.44. Summing 
the value of Aij for all subareas yields

	
I Aij

j

l n

i

m n

=
==

∑∑
11

//

	
(3.159)

TABLE 3.13

Abscissas (Roots of Hermite Polynomials) and Weights for 
Gauss–Hermite Integration

±xi wi

n = 2
0.70710 67811 86548 1.46114 11826 611

n = 3
0.00000 00000 00000 1.18163 59006 037
1.22474 48713 91589 1.32393 11752 136

n = 4
0.52464 76232 75290 1.05996 44828 950
1.65068 01238 85785 1.24022 58176 958

n = 5
0.00000 00000 00000 0.94530 87204 829
0.95857 24646 13819 0.98658 09967 514
2.02018 28704 56086 1.18148 86255 360

n = 6
0.43607 74119 27617 0.87640 13344 362
1.33584 90740 13697 0.93558 05576 312
2.35060 49736 74492 1.13690 83326 745

n = 7
0.00000 00000 00000 0.81026 46175 568
0.81628 78828 58965 0.82868 73032 836
1.67355 16287 67471 0.89718 46002 252
2.65196 13568 35233 1.10133 07296 103
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The procedure applied in the 2D integral can be extended to a 3D integral. To evaluate

	
I f x y z dxdy dz

e

f

c

d

a

b

= ∫∫∫ ( , , )
	

(3.160)

using the n = 2 rule, the cuboid a < x < b, c < y < d, e < z < f is divided into m ⋅ l ⋅ p smaller 
cuboids of sides

	

h
b a
m

h
d c
l

h
f e
p

x

y

z

=
−

=
−

=
−

	

(3.161)

where m, l, and p are multiples of n = 2. The subvolume Aijk is evaluated by integrating along 
x according to Equation 3.144 to obtain

	
g

h
f f fj k

x
i j k i j k i j k, , , , , , ,= + ++ −

3
1 1( 4 ),

	
(3.162)

then along y to obtain

	
g

h
g g gk

y
j k j k j k= + ++ −

3
41 1( ),, , ,

	
(3.163)

and finally along z to obtain

	
A

h
g g gijk

z
k k k= + ++ −

3
41 1( )

	
(3.164)

FIGURE 3.44
Double integration molecule for Simpson’s 1/3 rule.
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Substituting Equations 3.162 and 3.163 into Equation 3.164 results in [115]

	

A
h h h

f f f

f

ijk
x y z

i j k i j k i j k= + +
+

− − + − + − + +
27

4

4

1 1 1 1 1 1 1 1( )

(

, , , , , ,

ii j k i j k i j k

i j k i j k

f f
f f

, , , , , ,

, , , ,

)
(

− + + + +

+ − + +

+ +
+ +

1 1 1 1 1

1 1 1 1

16 4
4 ++ + + +

− − − − +

+
+ + +
+

1 1 1 1

1 1 1 1 14 16 4
16

f
f f f

i j k

i j k i j k i j k

, ,

, , , , , ,

)
( )
( ff f f
f f f

i j k i j k i j k

i j k i j k i

, , , , , ,

, , , ,

)
(

− +

+ − +

+ +
+ + +

1 1

1 1 1

64 16
4 16 4 ++ +

− − − − − − + −

−

+ + +
+

1 1

1 1 1 1 1 1 1 14
4

, ,

, , , , , ,

,

)
( )
(

j k

i j k i j k i j k

i j

f f f
f 11 1 1 1 1

1 1 1 1 1

16 4
4

, , , , ,

, , , ,

)
(

k i j k i j k

i j k i j k

f f

f f f
− − + −

+ − − + −

+ +

+ + + ii j k+ + − 1 1 1, , ) 	

(3.165)

The integration molecule is portrayed in Figure 3.45. Observe that the molecule is 
symmetric with respect to all planes that cut the molecule in half.

EXAMPLE 3.10

Write a program that uses the Newton–Cotes rule (n = 6) to evaluate Bessel function of 
order m, that is,

	

J x x m dm( ) cos( sin )= −∫1

0
π

θ θ θ
π

Run the program for m = 0 and x = 0.1, 0.2, … , 2.0.

FIGURE 3.45
Triple integration molecule for Simpson’s 1/3 rule.
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Solution

The computer program is shown in Figure 3.46. The program is based on Equations 
3.138 and 3.142. It evaluates the integral within a subinterval θn(i–1) < θ < θni. The 
summation over all the subintervals gives the required integral. The result for m = 0 
and 0.1 < x < 2.0 is shown in Table 3.14; the values agree up to six significant figures 
with those in standard tables [126, p. 390]. The program is intentionally made general so 
that n, the corresponding Newton–Cotes numbers, and the integrand can be changed 
easily. Although the integrand in Figure 3.46 is real, the program can be modified for 
complex integrand.

3.13  Concluding Remarks

Only a brief treatment of the finite difference analysis of PDEs is given here. There 
are many valuable references on the subject which answer many of the questions left 

FIGURE 3.46
(a) Main program for Example 3.10. (b) Function for the main program in (a); for Example 3.10.� (Continued)
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FIGURE 3.46 (Continued)
(a) Main program for Example 3.10. (b) Function for the main program in (a); for Example 3.10.� (Continued)
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unanswered here [3–8,10, 102, 103]. The book by Smith [5] gives an excellent exposition 
with numerous examples. The problems of stability and convergence of finite difference 
solutions are further discussed in References 129,130, while the error estimates are 
discussed in Reference 131.

As noted in Section 3.8, the finite difference method has some inherent advantages 
and disadvantages. It is conceptually simple and easy to program. The finite difference 
approximation to a given PDE is by no means unique; more accurate expressions can be 
obtained by employing more elaborate and complicated formulas. However, the relatively 
simple approximations may be employed to yield solutions of any specified accuracy simply 
by reducing the mesh size provided that the criteria for stability and convergence are met.

A very important difficulty in finite differencing of PDEs, especially parabolic and 
hyperbolic types, is that if one value of Φ is not calculated and therefore is set equal to 
zero by mistake, the solution may become unstable. For example, in finding the difference 
between Φi = 1000 and Φi+1 = 1002, if Φi+1 is set equal to zero by mistake, the difference of 
1000 instead of 2 may cause instability. To guard against such error, care must be taken to 
ensure that Φ is calculated at every point, particularly at boundary points.

TABLE 3.14

Result of the Program 
in Figure 3.46 for m = 0

x J0(x)

0.1 0.9975015
0.2 0.9900251
0.3 0.9776263
0.4 0.9603984
0.5 0.9384694
⋮ ⋮
1.5 0.5118274
1.6 0.4554018
1.7 0.3979859
1.8 0.3399859
1.9 0.2818182
2.0 0.2238902

FIGURE 3.46 (Continued)
(a) Main program for Example 3.10. (b) Function for the main program in (a); for Example 3.10.
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The applications of finite difference method in general and FDTD method in particular 
have been limited due to memory requirement in spite of the fact that they are simple in 
concept and implementation. Several memory-efficient algorithms and hybrid methods 
have been proposed to increase the efficiency of FDTD method [132].

A serious limitation of the finite difference method is that interpolation of some kind 
must be used to determine solutions at points not on the grid. Suppose we want to find Φ 
at a point P which is not on the grid, as in Figure 3.47. Assuming Φ is known at the four grid 
points surrounding P, at a distance xo along the bottom edge of the rectangle in Figure 3.47,

	
Φ Φ Φ Φb

ox
x

i j i j i j=
∆

+ − +[ ( , ) ( , )] ( , )1
	

(3.166)

At a distance xo along the top edge,

	
Φ Φ Φ Φt

ox
x

i j i j i j=
∆

+ + − + + +[ ( , ) ( , )] ( , )1 1 1 1
	

(3.167)

The value of Φ at P is estimated by combining Equations 3.166 and 3.167, that is,

	
Φ Φ Φ ΦP

o
t b b

y
y

=
∆

− +( )
	

(3.168)

One obvious way to avoid interpolation is to use a finer grid if possible.

PROBLEMS

	 3.1	 Show that the following finite difference approximations for Φx are valid:
	 a.	 forward difference,

	
− + −

∆
+ +Φ Φ Φi i i

x
2 14 3

2

	 b.	 backward difference,

	
3 4

2
1 2Φ Φ Φi i i

x
− +

∆
− −

FIGURE 3.47
Evaluating Φ at a point P not on the grid.
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	 c.	 central difference

	
− + − +

∆
+ + − −Φ Φ Φ Φi i i i

x
2 1 1 28 8

12

	 3.2	 Solve y″ − y = −1, 0 < x < 1 with y′(0) = 0, y(1) = 2. You should use finite 
difference method and take Δx = 0.25.

	 3.3	 Solve the equation Φt = Φxx, 0 ≤ x ≤ 1, subject to initial and boundary conditions

	 Φ(x, 0) = sinπx, 0 ≤ x ≤ 1,

	 Φ(0, t) = 0 = Φ(1, t) t > 0

		  Obtain the solution by hand calculation and use Δx = 0.25 and r = 0.5.
	 3.4	 Obtain the finite difference formula for the differential equation:

	 U Ux t+ = 0

		  around the grid point (i, n), where x i x t n t= ∆ = ∆, . 
	 3.5	 A one-dimensional wave equation is given by

	
∂
∂

=
∂
∂

2

2

2

2

V
x

V
t

		  Let V x y V i n x i x t n t( , ) ( , ), , .= = ∆ = ∆  Obtain the finite difference equivalent.
	 3.6	 Derive the finite difference scheme for the one-dimension heat equation in 

cylindrical coordinates.

	
U U U ttρρ ρρ

ρ+ = < < >
1

0 1 0, ,

		  around the grid point (i, n), where ρ ρ= ∆ = = ∆i ih t n t, . 
	 3.7	 Repeat the previous problem for two-dimensional heat equation

	
U U U U z tzz tρρ ρρ

ρ+ + = < < < < >
1

0 1 0 1 0, , ,

		  Let U z t U i j n z h ih z ih t n t( , , ) ( , , ), , , ,ρ ρ ρ= ∆ = ∆ = = = =  where    .∆
	 3.8	 Derive the Crank–Nicholson implicit algorithm for the hyperbolic equation 

Φ Φxx yya a= =2 , constant2 . Let Δx = Δy = Δ.
	 3.9	 Given a boundary-value problem defined by

	
d
dx

x x
2

2 1 0 1
Φ

= + < <,

		  subject to Φ(0) = 0 and Φ(1) = 1, use the finite difference method to find Φ(0.5). 
You may take Δ = 0.25 and perform five iterations. Compare your result with 
the exact solution.
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	 3.10	 Prove that the fourth-order approximation of Laplace’s equation Φxx + Φyy = 0 is

	

60 16 1 1 1 1
2

Φ Φ Φ Φ Φ
Φ
( , ) [ ( , ) ( , ) ( , ) ( , )]

( , )
i j i j i j i j i j

i j

− + + − + + + −
+ + +ΦΦ Φ Φ( , ) ( , ) ( , )i j i j i j− + + + − =2 2 2 0

		  Draw the computational molecule for the finite difference scheme.
	 3.11	 a. � If Δx ≠ Δy, show that for the computational molecule in Figure 3.48a, Equation 

3.49 becomes

	
V

V V V V
o =

+
+

+
+

+
+

+
1 2 3 4

2 1 2 1 2 1 1 2 1 1( ) ( ) ( ) ( )α α α α/ /

		  where α = (Δx/Δy)2.
	 b.	 Show that for the molecule in Figure 3.48b, Equation 3.49 becomes

	

V
V

x x x x y y

V
x x x x

o =
+ +

+
+ +

1

1 2 1 2 3 4

2

2 1 1 2

1 1

1 1

( )( )

( )(

∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆

/ /

/ / yy y

V
y y y y x x

V
y y y

3 4

3

3 4 3 4 1 2

4

4 3 3

1 1

1 1

∆

∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆

)

( )( )

( )(

+
+ +

+
+ +

/ /

/ ∆∆ ∆ ∆y x x4 1 2/ )

		  The molecule in Figure 3.48b is useful in treating irregular boundaries.

FIGURE 3.48
For Problem 3.11.
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	 c.	 For the nine-point molecule in Figure 3.48c, show that

	
V Vo i

i

=
=

∑1
8

1

8

		  This is a more accurate difference equation than Equation 3.49.
	 3.12	 A Dirichlet problem is characterized by

	

U U x y

U y U x

U y y U x

xx yy+ = < < < <

= =
= =

0 0 1 0 1

0 0 0 0
1 100 1 1

, ,

( , ) , ( , )
( , ) , ( , ) 000x

		  By selecting Δx = Δy = 0.25, we have the square grid shown in Figure 3.49.
Determine the potential at the nine free nodes.

	 3.13	 For a long hollow conductor with a uniform U-shape cross section shown in 
Figure 3.50, find the potential at points A, B, C, D, and E.

FIGURE 3.49
For Problem 3.12.

FIGURE 3.50
For Problem 3.13.
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	 3.14	 It is desired to solve

	

∂
∂

+
∂
∂

+ =
2

2

2

2 50 0
Φ Φ
x y

		  in the square region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 subject to the boundary conditions 
Φ = 10 at x = 0, 1, Φy = 40 at y = 0, Φy = −20 at y = 1.

	 a.	 Set up a system of finite difference equations which will allow the solution to 
be found at x = y = 0.25 using Δx = Δy = h = 0.25. Perform three iterations.

	 b.	 Develop a program to solve the same problem using h = 0.05, 0.1, and 0.2.
	 3.15	 A potential problem is characterized by Poisson’s equation

	 U U x yxx yy+ = − < < < <2, 0 6, 0 8

		  with zero potential U = 0 on the boundaries. By selecting Δx = Δy = h = 2, we 
realize that there are six free nodes as shown in Figure 3.51. Use finite difference 
to determine the potential at the nodes.

	 3.16	 Modify the code of Figure 3.12 to solve the following three-dimensional problem:

	 ∇ = − ≤ ≤ ≤ ≤ ≤ ≤2 / , 0 meter,V x y zρ εν 1 0 1 0 1, ,

		  where ρν = xyz2nC/m2 and ε = 2εo subject to the boundary conditions

	

V y z V y z

V x z V x z

V x y V x y

(0, , ) 0 (1, , )
( , 0, ) 0 ( , 1, )
( , , 0) 0 ( , , 1)

= =
= =
= = =VVo

		  Find the potential at the center of the cube and compare your result with the 
analytic solution. Take Vo = 100 V.

	 3.17	 Show that the leapfrog method applied to the parabolic equation (3.10) is unstable, 
whereas applying the DuFort–Frankel scheme yields an unconditionally stable 
solution.

FIGURE 3.51
For Problem 3.15.
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	 3.18	 The advective equation

	
∂
∂

+
∂
∂

= >
Φ Φ
t

u
x

u0 0,

		  can be discretized as

	 Φ Φ Φ Φi
n

i
n

i
n

i
nr+

+ −= − −1
1 1( ),

		  where r = uΔt/2Δx. Show that the difference scheme is unstable. An alternative 
scheme is

	
Φ Φ Φ Φ Φn i

n
i
n

i
n

i
nr+ + − + −= + − −1 1 1 1 1

1
2

( ) ( )

		  Find the condition on r for which this scheme is stable.
	 3.19	 The two-dimensional parabolic equation

	

∂
∂

=
∂
∂

+
∂
∂

≤ ≤ ≤ ≤ >
U
t

U
x

U
y

x y t
2

2

2

2 0 1 0 1 0, , ,

		  is approximated by the finite difference methods:
	 i.	 U r Ui j

n
x y ij

n
, [ ( )]+ = + +1 2 21 δ δ

	 ii.	 U r r Ui j
n

x y ij
n

, ( )( )]+ = + +1 2 21 1δ δ

		  where
	 r = Δt/h2, h = Δx = Δy

		  and

	

δ

δ

x i j
n

i j
n

i j
n

i j
n

y i j
n

i j
n

i j
n

i

U U U U

U U U U

2
1 1

2
1

2

2

, , , ,

, , , ,

= − +

= − +

− +

− jj
n

+1

		  Show that (i) is stable for r ≤ 1/4 and (ii) is stable for r ≤ 1/2.
	 3.20	 a. � The constitutive parameters of the earth allow the displacement currents to 

be negligibly small. In this type of medium, show that Maxwell’s equation 
for two-dimensional TM mode, where

	 E a( , , )x y t Ez z=

		  and

	 H a a( , , ) ,x y t H Hx x y y= +

		  reduce to the diffusion equation

	

∂
∂

+
∂
∂

−
∂
∂

=
∂
∂

2

2

2

2

E
x

E
y

E
t

J
t
sµσ µ

		  where E = Ez and Js is the source current density in the z direction.
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	 b.	 Taking Js = 0, Δx = Δy = Δ, and

	
E E E E Ei j i j

n
i j
n

i j
n

i j
n

, , , , , ,∑ = + + ++ − + −1 1 1 1

		  show that applying Euler, leapfrog, and DuFort–Frankel difference methods 
to the diffusion equation gives

		    Euler:

	
E r E r Ei j
n

i j
n

i j
n

, , ,( ) ,+ = − + ∑1 1 4

		    Leapfrog:

	
E E r E Ei j
n

i j
n

i j
n

i j
n

, , , , ,+ −= + −( )∑1 1 2 4

		    DuFort–Frankel:

	
E

r
r
E

r
r

Ei j
n

i j
n

i j
n

, , ,
+ −=

−
+

+
+ ∑1 11 4

1 4
2

1 4

		  where r = Δt/(σµΔ2).
	 c.	 Analyze the stability of these finite difference schemes by substituting for 

Ei jn,  a Fourier mode of the form

	 E E x i y j t n t A k i k Ji j
n

n x y, ( , , ) cos( )cos( )= = ∆ = ∆ = ∆ = ∆ ∆

	 3.21	 Yee’s FDTD algorithm for one-dimensional wave problems is given by

	
H k H k

t
E k E ky

n
y
n

x
n

x
n+ −+ = + + − +1 2 1 21 2 1 2 1/ /( ) ( ) [ ( ) ( )]/ /

δ
µδ

		    Determine the stability criterion for the scheme by letting

	
E k A e H k

A
ex

n n j k
y
n

n
j k( ) , ( ) ,= =β δ β δ

η

		  where η = (µ/ε)1/2 is the intrinsic impedance of the medium.
	 3.22	 a. � The potential system in Figure 3.52a is symmetric about the y-axis. Set the 

initial values at free nodes equal to zero and calculate (by hand) the potential 
at nodes 1–5 for five or more iterations.

	 b.	 Consider the square mesh in Figure 3.52b. By setting initial values at the free 
nodes equals to zero, find (by hand calculation) the potential at nodes 1–4 for 
five or more iterations.

	 3.23	 The potential system shown in Figure 3.53 is a quarter section of a transmission 
line. Using hand calculation, find the potential at nodes 1, 2, 3, 4, and 5 after five 
iterations.
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	 3.24	 Modify the program in Figure 3.21 or write your own program to calculate Z0 
for the microstrip line shown in Figure 3.54. Take a = 2.02, b = 7.0, h = 1.0 = w, 
t = 0.01, ε1 = ε0, ε2 = 9.6ε0.

	 3.25	 Use the FDM to calculate the characteristic impedance of the high-frequency, 
air-filled rectangular transmission line shown in Figure 3.55. Take advantage of 
the symmetry of the problem and consider cases for which

	 a.	 B/A = 1.0, a/A = 1/2, b/B = 1/2, a = 1,
	 b.	 B/A = 1/2, a/A = 1/3, b/B = 1/3, a = 1.
	 3.26	 Figure 3.56 shows a shield microstrip line. Write a program to calculate the 

potential distribution within the cross section of the line. Take ε1 = ε0, ε2 = 3.5ε0 
and h = 0.5 mm. Find the potential at the middle of the conducting plates.

FIGURE 3.52
For Problem 3.22.

FIGURE 3.53
For Problem 3.23.
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FIGURE 3.54
For Problem 3.24.

FIGURE 3.55
For Problem 3.25.

FIGURE 3.56
For Problem 3.26.
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	 3.27	 Use the FDM to determine the lowest (or dominant) cut-off wave-number kc of 
the TM11 mode in waveguides with square (a × a) and rectangular (a × b, b = 2a) 
cross sections. Compare your results with the exact solution

	 k m a n bc = +( ) ( )π π/ /2 2

		  where m = n = 1. Take a = 1.
	 3.28	 Instead of the 5-point schema of Equation 3.121, use a more accurate 5-point 

formula

	

2 8 5 4 2 4 1 1

4 2 4 1 1

2 3 2

3 2

i i V i j i i i V i j

i i i V i

( ) ( , ) ( ) ( , )

( ) (

− = + − + +

+ − − − − ,, )

( ) ( , ) ( ) ( , )

j

i i V i j i i V i j4 1 1 4 1 12 2− + + − −

		  in Example 3.9 while other things remain the same.
	 3.29	 For two-dimensional problems in which the field components do not vary with 

z coordinate (∂/∂z = 0), show that Yee’s algorithm of Equations 3.84a through 
3.84f becomes

	 a.	 for TE waves (Ez = 0)

	

H i j H i j

E i j

z
n

z
n

y
n

+ −+ + = + +

− + +

1 2 1 21 2 1 2 1 2 1 2

1 1 2
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/ / / /
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/
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/

α

,, ) ( , )

[ ( , ) ( ,/ /
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+
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1 2 1

1 2 1 2
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γ

β 22 1 2 1 2( / , / )];i j− +

	 b.	 for TM waves (Hz = 0)

	

E i j E i j

H i j H i j

z
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z
n

y
n

y
n

+

+ +

=

+ + − −
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ni j H i j E i j E i j+ −+ = + + + −1 2 1 21 2 1 2 1/ /( , ) ( , ) [ ( , ) ( , )],/ / α
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		  where

	
α δ

µδ
β δ

εδ
γ σδ

ε
= = = −

t t t
, , ,1

		  and δ = Δx = Δy.
	 3.30	 Consider the diffraction/scattering of an incident TM wave by a perfectly 

conducting square of side 4a. The conducting obstacle occupies 17 < i < 49, 
33 < j < 65, while artificial boundaries are placed at i = 1, 81, j = 0.5, 97.5 as 
shown in Figure 3.57. Assume an incident wave with only Ez and Hy components 
given by

	

E

H E

z

y
o

z

=
< <





=

sin ,
,

πθ θ

η

0 1
0

1

otherwise

		  where η π θo x a ct a x y a t c x a= = − + ∆ = ∆ = ∆ = ∆ =120 50 8 8 16Ω, (( ) ), ,/ / / . Write a 
program that applies the algorithm in Problem 3.25(b). Assume “hard lattice 
truncation conditions” at the artificial boundaries shown in Figure 3.57 and 
reproduce Yee’s result [42] in his figure 3.

	 3.31	 Repeat the previous problem but assume “soft lattice truncation condition” of 
Equations 3.87 through 3.89a to 3.891 at the artificial boundaries.

	 3.32	 For axisymmetric problems (no variation with respect to φ), show that Yees 
algorithm for TM waves can be written as

	

H i j H i j E i j E i jn n
z
n

z
n

φ φ α

α

+ + += + + − −

−

1 1 2 1 21 2 1 2( , ) ( , ) [ ( , ) ( , )]/ // /

[[ ( , ) ( , )]/ /E i j E i jn n
ρ ρ

+ ++ − −1 2 1 21 2 1 2/ /

FIGURE 3.57
For Problem 3.30.
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	 E i j i j H i j H in n n n
ρ ρ φ φγ β+ + + ++ = + − + −3 2 1 2 1 11 2 1 2 1/ ( , ) ( , ) [ ( , ) ( ,/ //E jj)],

		  where

	
α δ

µδ
β δ

εδ
γ σδ

ε
δ ρ= = = − = =

t t t
z, , , ,1 ∆ ∆

		  and Hφ φ φρ ρ ρ δ( , , ) ( , ( ) , ) ( , )z t H z i z j t n t H i jn= = = − = = 1 2/ .
	 3.33	 a. � Show that the finite difference discretization of Mur’s ABC for two-

dimensional problem
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−
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−
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z o o x1
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		  at the boundary x = 0 is
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		  where co is the velocity of wave propagation.
	 b.	 Discretize the first-order boundary condition

	

∂
∂

−
∂
∂

=
E
x c

E
t

z

o

z1
0

		  at x = 0
	 3.34	 For a three-dimensional problem, the PML modification of Maxwell’s equations 

yields 12 equations because all six Cartesian field components split. Obtain the 
12 resulting equations.

	 3.35	 In a PML region, Ez is split into Ezx and Ezy for the TM case. Show that Maxwell’s 
equation becomes
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	 3.36	 An FDTD equation for a PML region is given by

	

H i k H i k

t
E i k E i

z
n

z
n

yx
n

yz
n

+ −+ = +

− + + +

1 2 1 21 2 1 2

1

/ /( , ) ( , )

[ ( , ) (

/ /
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11, ) ( , ) ( , )]k E i k E i kyx yz
n− −

		  where δ, δt, n, i, and k have their usual FDTD meanings. By substituting the 
harmonic dependence e ejwt jk zz− , show that the impedance of the PML region is

	
Z

E
H t

t
k

z
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z

o

o
= =

µ δ
δ

ωδ
δ

sin( )
sin( )
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2
2

	 3.37	 Consider the finite cylindrical conductor held at V = 100 V and enclosed in a 
larger grounded cylinder as in Figure 3.58. Such a deceptively simple looking 
problem is beyond closed-form solution, but by employing finite difference 
techniques, the problem can be solved without much effort. Using the finite 
difference method, write a program that determines the potential distribution 
in the axisymmetric solution region. Output the potential at (ρ, z) = (2, 10), (5, 10), 
(8, 10), (5, 2), and (5, 18).

	 3.38	 The problem in Figure 3.59 is a prototype of an electrostatic particle focusing 
system which is employed in a recoil-mass time-of-flight spectrometer. Write 
a program to determine the potential distribution in the system. The problem 
is similar to the previous problem except that the outer conductor abruptly 
expands radius by a factor of 2. Output the potential at (ρ, z) = (5, 18), (5, 10), 
(5, 2), (10, 2), and (15, 2).

	 3.39	 The conventional 3-D FDTD lattice in cylindrical coordinates is shown is Figure 
3.60a while its projection on the ρ − z plane is in Figure 3.60b. Show that by 
discretizing Maxwell’s equation,
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		  where δ = Δz = Δρ. Obtain the FDTD equations for Hρ and Hφ.

FIGURE 3.58
For Problem 3.37.
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	 3.40	 Consider the one-dimensional parabolic equation in cylindrical coordinates

	
∇ =

∂
∂

2U
U
t

		  or

	
U U U tρρ ρρ

ρ+ =
1

, 0 1, 0t < < >

FIGURE 3.60
For Problem 3.39: (a) A conventional 3-D FDTD lattice in cylindrical coordinates, (b) projection of 3-D FDTD 
cell at ρ − z plane.

FIGURE 3.59
For Problem 3.37.
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		  subject to U(1, t) = 0, t > 0

	 U( , 0) constantρ =To( )

		    By selecting Δρ = h = 0.1, and To = 10, calculate U at ρ = 0.5, t = 0.1, 0.2, 0.3, 
0.4, 0.5, 1.0 using finite difference. Compare your result with the exact solution

	
U t( , ) 2

( )
( )

( )ρ λ ρ
λ λ

λ= −
=

∞

∑T
J
J

to
n

n nn

n
0

11

2exp

		  where J0 and J1 are Bessel function of orders 0 and 1, respectively, and λn are the 
positive roots of J0.

	 3.41	 For a two-dimensional heat equation in cylindrical system, consider

	
∇ =

∂
∂

2U
U
t

		  or

	
U U U U z tzz tρρ ρ

ρ
ρ+ + = < < < < >

1
0 1 0 1 0, , ,

		  with the boundary conditions

	

U t U t t

U z t z t

( , 0, ) 0 ( , 1, ), 0 1, 0
(1, , ) 0, 0 1, 0
ρ ρ ρ= = < < >

= < < >

		  and initial condition

	 U z( , , 0) , 0 1, 0 1ρ ρz To= < < < <

		    By selecting Δz = Δρ = h = 0.1, and To = 10, use the finite difference method 
to determine U at ρ = 0.5, z = 0.5, t = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3.

	 3.42	 Given the tabulated values of y = sin x for x = 0.4 to 0.52 rad in intervals of 

Δx = 0.02, find (a) 
dy
dx

 at x = 0.44, (b) ∫ 0 4

0 52

.

.
y dx using Simpson’s rule.

x Sin x

0.40 0.38942

0.42 0.40776

0.44 0.42594

0.46 0.44395

0.48 0.46178

0.50 0.47943

0.52 0.49688
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	 3.43	 a. � Use a pocket calculator to determine the approximate area under the curve 
f(x) = 4 − x2, 0 < x < 1 by the trapezoidal rule with h = 0.2.

	 b.	 Repeat part (a) using the Newton–Cotes rules with n = 3.
	 3.44	 For a half-wave dipole, evaluation the integral

	

cos cos

sin

/ 2

0

1 2

2
π θ

θ
θ









∫ d

		  is usually required. Evaluate this integral numerically using any quadrature 
rule of your choice.

	 3.45	 Compute

	
e dxx−∫

0

1

		  using the Newton–Cotes rule for cases n = 2, 4, and 6. Compare your results 
with exact values.

	 3.46	 Given that

	
J z z n dn( ) cos( cos )= +∫1

0
π

θ θ θ
π

		    Let n = 1, z = 4 so that

	
I d= +∫1

4
0

π
θ θ θ

π

cos( cos )

		    Evaluate I,
	 a.	 using the trapezoidal rule with ∆ =θ π/10
	 b.	 using Simpson’s 1/3- rule with ∆ =θ π/10
	 c.	 using Gaussian quadrature.
		    Compare numerical results with the exact value of J1(4).
	 3.47	 The criterion for accuracy of the numerical approximation of an integral

	
I f x dx a f xi i

ia

b

=
=

∞

∑∫ ( ) ( )
0

		  is that the formula is exact for all polynomials of degree less than or equals to n. 
If a = 0, b = 4, and the values of f(x) are available at points x0 = 0, x1 = 1, x2 = 3, 
x4 = 4, find the values of the coefficients ai for which the above requirement of 
accuracy is met.
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	 3.48	 The elliptic integral of the first type

	
F k k d( , ) ( sin ) /φ θ θ

φ

= − −∫ 1 2 2 1 2

0

		  cannot be evaluated in a closed form. Write a program using Simpson’s rule to 
determine F(k, φ) for k = 2 and φ = π/2.

	 3.49	 The following integral represents radiation from a circular aperture antenna 
with a constant current amplitude and phase distribution

	
I e d dj

o
= ∫∫ αρ φ

π

ρ φ ρcos
2

0

1

		    Find I numerically for α = 5 and compare your result with the exact result

	
I

J
( )

( )α π α
α

=
2 1

	 3.50	 Evaluate the following integrals numerically:

	 a.	 I e dxdyx y= ∫ ∫ +
0
1

0
1

	 b.	 J x y dxdyy x= ∫ ∫ +=− =2
2

0
2 22 3( )
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4
Variational Methods

Faith ends where worry begins, and worry ends where faith begins.

—George Mueller

4.1  Introduction

In solving problems arising from mathematical physics and engineering, we find that it is 
often possible to replace the problem of integrating a differential equation by the equivalent 
problem of seeking a function that gives a minimum value of some integral. Problems of 
this type are called variational problems. The methods that allow us to reduce the problem 
of integrating a differential equation to the equivalent variational problem are usually 
called variational methods [1]. The variational methods form a common base for both the 
method of moments (MoM) and finite element method (FEM). Therefore, it is appropriate 
that we study the variational methods before MoM and FEM. Besides, it is relatively easy 
to formulate the solution of certain differential and integral equations in variational terms. 
Also, variational methods give accurate results without making excessive demands on 
computer storage and time.

Variational methods can be classified into two groups: direct and indirect methods. 
The direct method is the classical Rayleigh–Ritz method, while the indirect methods are 
collectively referred to as the method of weighted residuals: collocation (or point-matching), 
subdomain, Galerkin, and least-squares methods. The variational solution of a given PDE 
using an indirect method usually involves two basic steps [2]:

•	 Casting the PDE into variational form, and
•	 Determining the approximate solution using one of the methods.

The literature on the theory and applications of variational methods to EM problems is quite 
extensive, and no attempt will be made to provide an exhaustive list of references. Numerous 
additional references may be found in those cited in this chapter. Owing to a lack of space, we 
can only hint at some of the topics usually covered in an introduction to this subject.

4.2  Operators in Linear Spaces

In this section, we will review some principles of operators in linear spaces and establish 
notation [2–5]. We define the inner (dot or scalar) product of functions u and v as
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〈 〉= Ω
Ω

∫u v uv d, *

	
(4.1)

where * denotes the complex conjugate and the integration is performed over Ω, which may 
be one-, two-, or three-dimensional physical space depending on the problem. In a sense, 
the inner product 〈u, v〉 gives the component or projection of function u in the direction 
of v. If u and v are vector fields, we modify Equation 4.1 slightly to include a dot between 
them, that is,

	
〈 〉= ⋅∫u v u v,

Ω

Ω* d

	
(4.2)

However, we shall consider u and v to be complex-valued scalar functions. For each pair 
of u and v belonging to the linear space, a number 〈u, v〉 is obtained that satisfies

	

( ) , , *,
( ) , , , ,
( ) ,

1
2
3 0

1 2 1 2

〈 〉=〈 〉
〈 + 〉= 〈 〉+ 〈 〉
〈 〉>

u v v u

u u v u v u v

u v

α β α β
iff 0

(4) if 0
u ,

u

≠
〈 〉= =u v,

( )
( )
( )
( )0

4.3a
4.3b
4.3c
4.3d

If 〈u, v〉 = 0, u and v are said to be orthogonal. Notice that these properties mimic familiar 
properties of the dot product in three-dimensional space. Equation 4.3 is easily derived 
from Equation 4.1. Note that from Equations 4.3a and 4.3b,

	 〈 〉= 〈 〉 = 〈 〉u v v u u v, * , * * ,α α α

where α is a complex scalar.
Equation 4.1 is called an unweighted or standard inner product. A weighted inner product is 

given by

	
〈 〉= ∫u v uv wd, * Ω

Ω 	
(4.4)

where w is a suitable weight function.
We define the norm of the function u as

	  u u u= 〈 〉, 	 (4.5)

The norm is a measure of the “length” or “magnitude” of the function. (As far as a field 
is concerned, the norm is its rms value.) A vector is said to be normal if its norm is 1. Since 
the Schwarz inequality

	 |〈 〉|≤u v u v,   	 (4.6)
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holds for any inner product space, the angle θ between two nonzero vectors u and v can 
be obtained as

	
θ =

〈 〉−cos 1 u,v
u v  	

(4.7)

We now consider the operator equation

	 L gΦ = 	 (4.8)

where L is any linear operator, Φ is the unknown function, and g is the source function. 
The space spanned by all functions resulting from the operator L is

	 〈 〉 = 〈 〉L g L gaΦ Φ, , 	 (4.9)

The operator L is said to be

	 1.	Self-adjoint if L = La, i.e., 〈LΦ, g〉 = 〈Φ, Lg〉,
	 2.	Positive definite if 〈LΦ, Φ〉 > 0 for any Φ ≠ 0 in the domain of L,
	 3.	Negative definite if 〈LΦ, Φ〉 < 0 for any Φ ≠ 0 in the domain of L.

The properties of the solution of Equation 4.8 depend strongly on the properties of the 
operator L. If, for example, L is positive definite, we can easily show that the solution of Φ 
in Equation 4.8 is unique, that is, Equation 4.8 cannot have more than one solution. To do 
this, suppose that Φ and Ψ are two solutions to Equation 4.8 such that LΦ = g and LΨ = g. 
Then, by virtue of linearity of L, f = Φ − Ψ is also a solution. Therefore, Lf = 0. Since L is 
positive definite, f = 0 implies that Φ = Ψ and confirms the uniqueness of the solution Φ.

EXAMPLE 4.1

Find the inner product of u(x) = 1 − x and v(x) = 2x in the interval (0, 1).

Solution

In this case, both u and v are real functions. Hence,

	

〈 〉=〈 〉= −

= −










=

∫u v v u x xdx

x x

, , ( )

.

1 2

2
2 3

0 333

0

1

2 3

0

1

EXAMPLE 4.2

Show that the operator

	
L

x y
= −∇ = −

∂
∂

−
∂

∂
2

2

2

2

2

is self-adjoint.
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Solution

	

〈 〉= − ∇∫Lu v v udS
S

, 2

Taking u and v to be real functions (for convenience) and applying Green’s identity

	

v
u
n
dl u vdS v udS

S S

∂
∂

= ∇ ⋅∇ + ∇∫ ∫ ∫
�

� 2

yields

	

〈 〉= ∇ ⋅∇ −
∂
∂∫ ∫Lu v u vdS v
u
n
dl

S

,
�

�
	

(4.10)

where S is bounded by ℓ and n is the outward normal. Similarly,

	

〈 〉= ∇ ⋅∇ −
∂
∂∫ ∫u Lv u vdS u
v
n
dl

S

,
�

�
	

(4.11)

The line integrals in Equations 4.10 and 4.11 vanish under either the homogeneous 
Dirichlet or Neumann boundary conditions. Under the homogeneous mixed boundary 
conditions, they become equal. Thus, L is self-adjoint under any one of these boundary 
conditions. L is also positive definite.

4.3  Calculus of Variations

The calculus of variations, an extension of ordinary calculus, is a discipline that is 
concerned primarily with the theory of maxima and minima. Here we are concerned with 
seeking the extrema (minima or maxima) of an integral expression involving a function of 
functions or functionals. Whereas a function produces a number as a result of giving values 
to one or more independent variables, a functional produces a number that depends on the 
entire form of one or more functions between prescribed limits. In a sense, a functional 
is a measure of the function. A simple example is the inner product 〈u, v〉. Variational 
formulation refers to the construction of a functional that is equivalent to the governing 
equation of the given problem.

In the calculus of variation, we are interested in the necessary condition for a functional 
to achieve a stationary value. This necessary condition on the functional is generally in the 
form of a differential equation with boundary conditions on the required function.

Consider the problem of finding a function y(x) such that the function

	
I F x y y dx

a

b

( ) ( , , ) ,y = ′∫
	

(4.12a)
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subject to the boundary conditions

	 y a A y b B( ) , ( ) ,= = 	 (4.12b)

is rendered stationary. In other words, we want to find y(x) from which the integral in 
Equation 4.12a is an extremum. The integrand F(x, y, y′) is a given function of x, y, and 
y′ = dy/dx. In Equation 4.12a, I(y) is called a functional or variational (or stationary) principle. 
The problem here is finding an extremizing function y(x) for which the functional I(y) has 
an extremum. Before attacking this problem, it is necessary that we introduce the operator 
δ, called the variational symbol.

The variation δy of a function y(x) is an infinitesimal change in y for a fixed value of the 
independent variable x, that is, for δx = 0. The variation δy of y vanishes at points where 
y is prescribed (since the prescribed value cannot be varied) and it is arbitrary elsewhere 
(see Figure 4.1). Due to the change in y (i.e., y → y + δy), there is a corresponding change in 
F. The first variation of F at y is defined by

	
δ δ δF

F
y

y
F
y

y=
∂
∂

+
∂
∂ ′

′
	

(4.13)

This is analogous to the total differential of F,

	
dF

F
x
dx

F
y
dy

F
y
dy=

∂
∂

+
∂
∂

+
∂
∂ ′

′
	

(4.14)

where δx = 0 since x does not change as y changes to y + δy. Thus, we note that the operator 
δ is similar to the differential operator. Therefore, if F1 = F1(y) and F2 = F2(y), then

	 (i) δ δ δ( ) ,F F F F1 2 1 2± = ± 	 (4.15a)

	 (ii) δ δ δ( ) ,F F F1 2 2 1 1 2= +F F F 	 (4.15b)

	
(iii) δ δ δF

F
F F F

F
1

2

2 1 1 2

2
2









 =

− F
,
	

(4.15c)

	 (iv) δ δ( ) ( ) ,F n F Fn n
1 1

1
1= −

	 (4.15d)

FIGURE 4.1
Variation of extremizing function with fixed ends.
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(v)

d
dx

y
dy
dx

( ) ,δ δ=






 	

(4.15e)

	
(vi) δ δy x dx y x dx

a

b

a

b

( ) ( )=∫ ∫
	

(4.15f)

A necessary condition for the function I(y) in Equation 4.12a to have an extremum is that 
the variation vanishes, that is,

	 δI = 0 	 (4.16)

To apply this condition, we must be able to find the variation δI of I in Equation 4.12a. 
To this end, let h(x) be an increment in y(x). For Equation 4.12b to be satisfied by y(x) + h(x),

	 h(a) = h(b) = 0	 (4.17)

The corresponding increment in I in Equation 4.12a is

	

∆ = + −

= + ′ + ′ − ′∫

I I y h I y

F x y h y h F x y y dx
a

b

( ) ( )

[ ( , , ) ( , , )]

On applying Taylor’s expansion,

	

∆ = ′ − ′ ′

+

= +

′∫I F x y y h F x y y h dxy y

a

b

[ ( , , ) ( , , ) ]

higher order terms-

δI O(( )h2

where

	
δI F x y y h F x y y h dxy y

a

b

= ′ − ′ ′′∫ [ ( , , ) ( , , ) ]

Integration by parts leads to

	
δI F

y
d
dx

F
y

hdx
F
y
h

a

b

x

x b

=
∂
∂

−
∂
∂ ′



























+
∂
∂ ′∫

=

=

0

The last term vanishes since h(b) = h(a) = 0 according to Equation 4.17. In order that δI = 0, 
the integrand must vanish, that is,
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∂
∂

−
∂
∂ ′











=
F
y

d
dx

F
y

0

or

	
F

d
dx

Fy y− =′ 0
	

(4.18)

This is called Euler’s (or Euler–Lagrange) equation. Thus, a necessary condition for I(y) to 
have an extremum for a given function y(x) is that y(x) satisfies Euler’s equation.

This idea can be extended to more general cases. In the case considered so far, we have 
one dependent variable y and one independent variable x, that is, y = y(x). If we have one 
dependent variable u and two independent variables x and y, that is, u = u(x, y), then

	
I u F x y u u u dSx y

S

( ) ( , , , , )= ∫
	

(4.19)

where ux = ∂u/∂x, uy = ∂u/∂y, and d S = dx dy. The functional in Equation 4.19 is stationary 
when δI = 0, and it is easily shown that the corresponding Euler’s equation is [6]

	

∂
∂

−
∂
∂

∂
∂









−

∂
∂

∂
∂











=
F
u x

F
u y

F
ux y

0
	

(4.20)

Next, we consider the case of two independent variables x and y and two dependent 
variables u(x, y) and v(x, y). The functional to be minimized is

	
I u v F x y u v u u v dSx y x y

S

( , ) ( , , , , , , , )= ∫ v

	

(4.21)

The corresponding Euler’s equation is

	

∂
∂

−
∂
∂

∂
∂









−

∂
∂

∂
∂











=

∂
∂

−
∂
∂

∂

F
u x

F
u y

F
u

F
v x

F

x y
0

∂∂









−

∂
∂

∂
∂











=
v y

F
vx y

0

( )

( )

4.22a

4.22b

Another case is when the functional depends on second- or higher-order derivatives. 
For example,

	
I y F x y y y y dx

a

b

n( ) ( , , , , , )( )= ′ ′′∫ …

	
(4.23)
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In this case, the corresponding Euler’s equation is

	
F

d
dx

F
d
dx

F
d
dx

F
d
dx

Fy y y y
n

n

n y n− + − +⋅⋅⋅+ − =′ ′′ ′′′

2

2

3

3 1 0( ) ( )

	
(4.24)

Note that each of Euler’s equations (4.18), (4.20), (4.22), and (4.24) is a differential equation.

EXAMPLE 4.3

Given the functional

	

I f x y dxdyx y

S

( ) ( , ) ,Φ Φ Φ Φ= +( )−










∫ 1

2
2 2

obtain the relevant Euler’s equation.

Solution

Let

	
F x y f x yx y x y( , , , , ) ( , )Φ Φ Φ Φ Φ Φ= +( )−

1
2

2 2

showing that we have two independent variables x and y and one dependent variable Φ. 
Hence, Euler’s equation (4.20) becomes

	
− −

∂
∂

−
∂

∂
=f x y

x y
x y( , ) Φ Φ 0

or

	 Φ Φxx yy f x y+ = − ( , ),

that is,

	 ∇ = −2Φ f x y( , )

which is Poisson’s equation. Thus, solving Poisson’s equation is equivalent to finding Φ 
that extremizes the given functional I(Φ).

4.4  Construction of Functionals from PDEs

In the previous section, we noticed that Euler’s equation produces the governing differential 
equation corresponding to a given functional or variational principle. Here, we seek the 
inverse procedure of constructing a variational principle for a given differential equation. 
The procedure for finding the functional associated with the differential equation involves 
four basic steps [2,7]:
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•	 Multiply the operator equation LΦ = g (Euler’s equation) with the variational δΦ of 
the dependent variable Φ and integrate over the domain of the problem.

•	 Use the divergence theorem or integration by parts to transfer the derivatives to 
variation δΦ.

•	 Express the boundary integrals in terms of the specified boundary conditions.
•	 Bring the variational operator δ outside the integrals.

The procedure is best illustrated with an example. Suppose we are interested in finding 
the variational principle associated with the Poisson’s equation

	 ∇ 2Φ =  − f(x, y)	 (4.25)

which is the converse of what we did in Example 4.3. After taking step 1, we have

	

δ δ

δ δ

I f dx dy

dx dy f dx dy

= −∇ − =

= − ∇ −

∫∫
∫∫ ∫∫

[ ]2

2

0Φ Φ

Φ Φ Φ

This can be evaluated by applying divergence theorem or integrating by parts. To 
integrate by parts, let u = δΦ, dv = (∂/∂x)(∂Φ/∂x)dx so that du = (∂/∂x)δΦdx, v = (∂Φ/∂x) and
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(4.26)

The last two terms vanish if we assume either the homogeneous Dirichlet or Neumann 
conditions at the boundaries. Hence,

	
δ δI fx y= + −∫∫ 1

2
22 2[ ] ,Φ Φ Φ dxdy

that is,

	
I f dxdyx y( ) [ ]Φ Φ Φ Φ= + −∫∫1

2
22 2

	
(4.27)

as expected.
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Rather than following the four steps listed above to find the function I(Φ) corresponding 
to the operator equation (4.8), an alternative approach is provided by Mikhlin [1 pp. 74–78]. 
According to Mikhlin, if L in Equation 4.8 is real, self-adjoint, and positive definite, the 
solution of Equation 4.8 minimizes the functional

	 I L g( ) , ,Φ Φ Φ Φ= 〈 〉− 〈 〉2 	 (4.28)

(See Problem 4.6 for a proof.) Thus, Equation 4.27, for example, can be obtained from 
Equation 4.25 by applying Equation 4.28. This approach has been applied to derive 
variational solutions of integral equations [8].

Other systematic approaches for the derivation of variational principles for EM problems 
include Hamilton’s principle or the principle of least action [9,10], Lagrange multipliers 
[10–14], and a technique described as variational electromagnetics [15,16]. The method of 
Lagrange undetermined multipliers is particularly useful for deriving a functional for a 
PDE whose arguments are constrained. Table 4.1 provides the variational principles for 
some differential equations commonly found in EM-related problems.

EXAMPLE 4.4

Find the functional for the ordinary differential equation

	 y″ + y + x = 0,  0 < x < 1

subject to y(0) = y(1) = 0.

TABLE 4.1

Variational Principle Associated with Common PDEs in EMa

Name of Equation PDE Variational Principle

Inhomogeneous wave equation ∇ + =2 2Φ Φk g I k g dv
v

( ) [| | ]Φ Φ Φ Φ= ∇ − +∫1
2

22 2 2

Homogeneous wave equation ∇ + =2 2 0Φ Φk I k dv
v

( ) [| | ]Φ Φ Φ= ∇ −∫1
2

2 2 2

or

∇ − =2
2

1
0Φ Φ

u
tt I dvdt

u t

v

to

( ) [| | ]Φ Φ Φ= ∇ −∫∫1
2

2 1 2
2

Diffusion equation ∇ − =2 0Φ Φk t I k dvdtt

v

to

( ) [| | ]Φ Φ ΦΦ= ∇ −∫∫1
2

2

Poisson’s equation ∇ =2Φ g I g dv
v

( ) [| | ]Φ Φ Φ= ∇ +∫1
2

22

Laplace’s equation ∇ =2 0Φ I dv
v

( ) [| | ]Φ Φ= ∇∫1
2

2

a	 Note that | | .∇ = ∇ ⋅∇ = + +Φ Φ Φ Φ Φ Φ2 2 2 2
x y z



239Variational Methods

Solution

Given that

	

d y
dx

y x x
2

2 0 0 1+ + = < <, ,

we obtain

	

δ δ

δ δ δ

I
d y
dx

y x y dx

d y
dx

y dx y y dx x y

= + +








 =

= + +

∫

∫

2

2

0

1

2

2

0

1

0

ddx
0

1

0

1

∫∫

Integrating the first term by parts,

	

δ δ δ δ δI y
dy
dx

dy
dx

d
dx

y y dx xy dx
x

x

= − + +
=

=

∫ ∫ ∫
0

1

0

1

2

0

1

0

1
1
2

( )

Since y is fixed at x = 0, 1, δy(1) = δy(0) = 0. Hence,

	

δ δ δ δ

δ

I
dy
dx

dx y dx xy dx

y y

= −






 + +

= − ′ +

∫ ∫ ∫1
2

1
2

2

2

0

1

2

0

1

0

1

2[ 22

0

1

2+∫ xy dx]

or

	

I y y y xy dx( ) [ ]= − ′ + +∫1
2

22 2

0

1

Check: Taking F(x, y, y′ ) = y′2 − y2 − 2xy, Euler’s equation Fy−(d/dx)Fy′ = 0 gives the 
differential equation

	 ′′ + + =y y x 0

4.5  Rayleigh–Ritz Method

The Rayleigh–Ritz method is the direct variational method for minimizing a given 
functional. It is direct in that it yields a solution to the variational problem without recourse 
to the associated differential equation [17]. In other words, it is the direct application of 
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variational principles discussed in the previous sections. The method was first presented by 
Rayleigh in 1877 and extended by Ritz in 1909. Without loss of generality, let the associated 
variational principle be

	
I F x y dSx y

S

( ) ( , , , , )Φ Φ Φ Φ= ∫
	

(4.29)

Our objective is to minimize this integral. In the Rayleigh–Ritz method, we select a 
linearly independent set of functions called expansion functions (or basis functions) un and 
construct an approximate solution to Equation 4.29, satisfying some prescribed boundary 
conditions. The solution is in the form of a finite series

	

� �Φ a u un n o

n

N

+
=

∑
1 	

(4.30)

where uo meets the nonhomogeneous boundary conditions, and un satisfies homogeneous 
boundary conditions. an are expansion coefficients to be determined and Φ is an approximate 
solution to Φ (the exact solution). We substitute Equation 4.30 into Equation 4.29 and convert 
the integral I(Φ) into a function of N coefficients a1, a2, …, aN, that is,

	 I(Φ) = I(a1, a2, …, aN)

The minimum of this function is obtained when its partial derivatives with respect to 
each coefficient are zero:

	

∂
∂

=
∂
∂

=
∂

∂
=

I
a

I
a

I
aN1 2

0 0 0, , ,…

or

	

∂
∂

= =
I
a

n N
n

0 1 2, , , ,…
	

(4.31)

Thus, we obtain a set of N simultaneous equations. The system of linear algebraic 
equations obtained is solved to get an, which are finally substituted into the approximate 
solution of Equation 4.30. In the approximate solution of Equation 4.30, if Φ Φ→  as N → ∞ 
in some sense, then the procedure is said to converge to the exact solution.

An alternative, perhaps easier, procedure to determine the expansion coefficients an is 
by solving a system of simultaneous equations obtained as follows [4,18]. Substituting 
Equation 4.30 (ignoring uo since it can be lumped with the right-hand side of the equation) 
into Equation 4.28 yields

	

I a Lu a u a u g

Lu a a u g a

m m

m

N

n n

n

N

m m

m

N

m n n m m m

= −

= 〈 〉 − 〈 〉

= = =
∑ ∑ ∑, ,

, ,

1 1 1

2

2u
mm

N

n

N

m

N

===
∑∑∑

111
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Expanding this into powers of am results in

	

I Lu a Lu a a Lu a a

g u a

m m m m n m n

n m

N

k m

k m

N

k m

m

=〈 〉 + 〈 〉 + 〈 〉

− 〈 〉
≠ ≠

∑ ∑, , ,

,

u u u2

2 mm ma+ terms not containing 	 (4.32)

Assuming L is self-adjoint and replacing k with n in the second summation,

	
I Lu u a Lu u a a g u am m m m n

n m

N

n m m m= 〈 〉 + 〈 〉 − 〈 〉 +
≠

∑, , ,2 2 2 
	

(4.33)

Since we are interested in selecting am such that I is minimized, Equation 4.33 must satisfy 
Equation 4.31. Thus, differentiating Equation 4.33 with respect to am and setting the result 
equal to zero leads to

	
〈 〉 =〈 〉 =

=
∑ Lu u a g u Nm n

n

N

n m, , , , , ,
1

1 2m …
	

(4.34)

which can be put in matrix form as

	

〈 〉 〈 〉 〈 〉

〈 〉 〈 〉 〈 〉










Lu u Lu u Lu u

Lu u Lu u Lu u

N

N N N n

1 1 1 2 1

1 2

, , ,

, , ,

�

� �

�




























=
〈 〉

〈 〉



















a

a

g u

g uN N

1 1

� �

,

, 	

(4.35a)

or

	 [A][X] = [B]	 (4.35b)

where Amn = 〈Lum, un〉, Bm = 〈g, um〉, Xn = an. Solving for [X] in Equation 4.35 and substituting 
am in Equation 4.30 gives the approximate solution Φ. Equation 4.35 is called the Rayleigh–
Ritz system.

We are yet to know how the expansion functions are selected. They are selected to 
satisfy the prescribed boundary conditions of the problem. uo is chosen to satisfy the 
inhomogeneous boundary conditions, while un(n = 1, 2, …, N) are selected to satisfy 
the homogeneous boundary conditions. If the prescribed boundary conditions are all 
homogeneous (Dirichlet conditions), uo = 0. The next section will discuss more on the 
selection of the expansion functions.

The Rayleigh–Ritz method has two major limitations. First, the variational principle in 
Equation 4.29 may not exist in some problems such as in nonself-adjoint equations (odd 
order derivatives). Second, it is difficult, if not impossible, to find the functions uo satisfying 
the global boundary conditions for the domains with complicated geometries [19].

EXAMPLE 4.5

Use the Rayleigh–Ritz method to solve the ordinary differential equation:

	 ′′ + − = < <Φ Φ4 0 0 12x x,

subject to Φ(0) = 0 = Φ(1).
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Solution

The exact solution is

	
Φ( )

sin ( ) sin
sin

x
x x x

=
− −

+ −
2 1 2

8 2 4
1
8

2

The variational principle associated with Φ″ + 4Φ − x2 = 0 is

	

I x dx( ) [( ) ]Φ Φ Φ Φ= ′ − +∫ 2 2 2

0

1

4 2

	
(4.36)

This is readily verified using Euler’s equation. We let the approximate solution be

	

Φ = +∑u a uo n n

n

N

=1 	
(4.37)

where uo = 0, un = xn(1 − x) since Φ(0) = 0 = Φ(1) must be satisfied. (This choice of un is 
not unique. Other possible choices are un = x(1 − xn) and un = sin nπ x. Note that each 
choice satisfies the prescribed boundary conditions.) Let us try different values of N, the 
number of expansion coefficients. We can find the expansion coefficients an in two ways: 
using the functional directly as in Equation 4.31 or using the Rayleigh–Ritz system of 
Equation 4.35.

Method 1

For N = 1, Φ = a1u1 = a1x(1 − x). Substituting this into Equation 4.36 gives

	

I a a x a x x a x x dx

a a

( ) [ ( ) ( ) ( )]1 1
2 2

1
2 2 2

1
3

0

1

1
2

1

1 2 4 2 1

1
5

1
10

= − − − + −

= +

∫

I(a1) is minimum when

	

∂
∂

= → + = = −
I
a

a
1

1 10
2
5

1
10

0
1
4

or a

Hence, the quadratic approximate solution is

	
Φ = − −

1
4

1x x( )
	

(4.38)

For N a u a u a x x a x x= = + = − + −2 1 11 1 2 2 1 2
2, ( ) ( ).Φ  Substituting Φ into Equation 4.36,
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I a a a x a x x a x x a x x( , ) [[ ( ) ( )] [ ( ) ( )]1 2 1 2
2 2

1
2

2
2 3 2

0

1

1 2 2 3 4= − + − − − + −∫
++ − + −

= + + + +

2 2
1
5

2
21

1
5

1
10

1
1

1
2 2

1
2 2 3

1
2

2
2

1 2 1

a x x x a x x x

a a a a a

( ) ( )]dx

55

0
2
5

1
5

1
10

0

2

1
1 2

a

I
a

a a
∂
∂

= → + + =

or

	 4 2 11 2a a+ = − 	 (4.39a)

	

∂
∂

= → + + =
I
a

a a
2

2 10
4
21

1
5

1
15

0

or

	 21a1 + 20a2 = –7	 (4.39b)

Solving Equation 4.39 gives

	
a a1 2

6
38

7
38

= − = −,

and hence the cubic approximate solution is

	
Φ = − − − −

6
38

1
7
38

12x x x x( ) ( )

or

	
Φ = − −

x
x x

38
7 62( )

Method 2

We now determine am using Equation 4.35. From the given differential equation,

	
L

d
dx

g x= + =
2

2
24,

Hence,

	

A Lu u u u

x x
d
dx

x x

mn m n m n

m n

=〈 〉=〈 〉

= − +










−






, ,

( ) ( )

L

1 4 1
2

2










=
−

+ −
−

+
+

+ +
+ +

−
+ +

+

∫ dx

A
n n
m n

n
m n

n n
m n m n

mn

,

( ) ( )
0

1

21
1

2 1 4
1

8
2

44
3

1
1

3
1

4
2

0

1

m n

g u x n x dx
n n

n n
n

+ +

=〈 〉= − =
+

−
+∫

,

, ( )B
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When N A= = − =1
1
5

1
20

11 1, , , that is,B

	
− = → = −

1
5

1
20

1
4

1 1a a

as before. When N = 2,

	
A A A A11 12 21 22 1 2

1
5

1
10

2
21

1
20

1
30

= − = = − = − = =, , , ,B B

Hence,

	

− −

− −































 =











1
5

1
10

1
10

2
21

1
20
1

30

1

2

a

a











which gives a1 = −6/38, a2 = −7/38 as obtained previously. When N = 3,

	
A A A A A B13 31 23 32 33 3

13
210

28
105

22
315

1
42

= = − = = − = − =, , , ,

that is,

	

− − −

− − −

− − −



















1
5

1
10

13
210

1
10

2
21

28
105

13
210

28
105

22
315



















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




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=

























a

a

a

1

2

3

1
20
1

30
1
42






from which we obtain

	
a a a1 2 3

6
38

7
38

0= − = − =, ,

showing that we obtain the same solution as for the case N = 2. For different values of 
x, 0 < x < 1, the Rayleigh–Ritz solution is compared with the exact solution in Table 4.2.

EXAMPLE 4.6

Using the Rayleigh–Ritz method, solve Poisson’s equation:

	 ∇2V = –ρo,  ρo = constant

in a square −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, subject to the homogeneous boundary conditions 
V(x, ±1) = 0 = V(±1, y).

Solution

Due to the symmetry of the problem, we choose the basis functions as

	 u x x y x y m nmn
m n n m= − − + =( )( )( ), , , , ,1 1 0 1 22 2 2 2 2 2y …
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Hence,

	
� �Φ = − − + + + + + +( )( )[ ( ) ( ) ]1 12 2

1 2
2 2

3
2 2

4
4 4x y a a x y a x y a x y

Case 1: When m = n = 0, we obtain the first approximation (N = 1) as

	 Φ = a u1 1

where u1 = (1 − x2)(1 − y2).

	

A Lu u
u
x

u
y

u dxdy11 1 1

2
1

2

2
1

2

1

1

1

1

1

8

=〈 〉=
∂
∂

+
∂
∂











= −

−−

∫∫,

(( )( )( )

,

2 1 1

256
45

2 2

0

1

0

1

2 2− − − −

= −

∫∫ x y yx dxdy

	

B g u x y dxdyo
o

1 1
2 2

1

1

1

1

1 1
16

9
=〈 〉= − − − = −

−−

∫∫, ( )( )ρ ρ

Hence,

	
− = − → =

256
45

16
9

5
16

1 1a ao oρ ρ

and

	
Φ = − −

5
16

1 12 2ρo y( )( )x

Case 2: When m = n = 1, we obtain the second-order approximation (N = 2) as

	 Φ = +a u a u1 1 2 2

TABLE 4.2

Comparison of Exact Solution with the Rayleigh–Ritz Solution 
of Φ″ + 4Φ − x2 = 0, Φ(0) = 0 = Φ(1)

x Exact Solution
Rayleigh–Ritz

N = 1
Solution

N = 2

0.0 0.0 0.0 0.0
0.2 −0.0301 −0.0400 −0.0312
0.4 −0.0555 −0.0600 −0.0556
0.6 −0.0625 −0.0625 −0.0644
0.8 −0.0489 −0.0400 −0.0488
1.0 0.0 0.0 0.0
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where u1 = (1 − x2)(1 − y2), u2 = (1 − x2)(1 − y2)(x2 + y2). A11 and B1 are the same as in case 1.

	

A A Lu u

A Lu u

g u

12 21 1 2

22 2 2
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45

ρ
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o

o

Solving this yields

	
a ao o o o1 2

1295
4432

0 2922
525

8864
0 0592= = = =ρ ρ ρ ρ. , .

and

	 Φ = − − + +( )( )( . . ( ))1 1 0 2922 0 05922 2 2 2
0x y x y ρ

4.6  Weighted Residual Method

As noted earlier, the Rayleigh–Ritz method is applicable when a suitable functional exists. In 
cases where such a functional cannot be found, we apply one of the techniques collectively 
referred to as the method of weighted residuals. The method is more general and has wider 
application than the Rayleigh–Ritz method because it is not limited to a class of variational 
problems. It does not require that the governing equation be stationary.

Consider the operator equation

	 LФ = g	 (4.40)

In the weighted residual method, the solution to Equation 4.40 is approximated, in the 
same manner as in the Rayleigh–Ritz method, using the expansion functions, un, that is,

	

Φ =
=

∑ a un n

n

N

1 	
(4.41a)

where an are the expansion coefficients. We seek to make

	 L gΦ ≈ 	 (4.41b)
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Substitution of the approximate solution in the operator equation results in a residual R 
(an error in the equation), that is,

	 R L L g= − = −( ) Φ Φ Φ 	 (4.42)

In the weighted residual method, the weighting functions wm (which, in general, are not 
the same as the expansion functions un) are chosen such that the integral of a weighted 
residual of the approximation is zero, that is,

	
w Rdvm =∫ 0

or

	 〈 〉 =w Rm , 0 	 (4.43)

If a set of weighting functions {wm} (also known as testing functions) are chosen and the inner 
product of Equation 4.41b is taken for each wm, we obtain

	
a w Lu w m Nn m n

n

N

m〈 〉 = 〈 〉 =
=

∑ , , g , , , ,
1

1 2 …
	

(4.44)

The system of linear equations (4.44) can be cast into matrix form as

	 [A][X] = [B]	 (4.45)

where Amn = 〈wm, Lun〉, Bm = 〈wm, g〉, Xn = an. Solving for [X] in Equation 4.45 and substituting 
for an in Equation 4.41a gives the approximate solution to Equation 4.40. However, there are 
different ways of choosing the weighting functions wm leading to

•	 Collocation (or point-matching) method,
•	 Subdomain method,
•	 Galerkin method,
•	 Least-squares method.

4.7  Collocation Method

We select the Dirac delta function as the weighting function, that is,

	
wm m

m

m
( ) ( )

,
,

r r r
r r

r r
= − =

=
≠






δ
1
0 	

(4.46)
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Substituting Equation 4.46 into Equation 4.43 results in

	 R(r) = 0	 (4.47)

Thus, we select as many collocation (or matching) points in the interval as there are unknown 
coefficients an and make the residual zero at those points. This is equivalent to enforcing

	
La u gn n

n

N

=
=

∑
1 	

(4.48)

at discrete points in the region of interest, generally where boundary conditions must be 
met. Although the point-matching method is the simplest specialization for computation, it 
is not possible to determine in advance for a particular operator equation what collocation 
points would be suitable. An accurate result is ensured only if judicious choice of the match 
points is taken. (This will be illustrated in Example 4.7.) It is important to note that the 
finite difference method is a particular case of collocation with locally defined expansion 
functions [20]. The validity and legitimacy of the point-matching technique are discussed 
in References 21,22.

4.7.1  Subdomain Method

We select weighting functions wm, each of which exists only over subdomains of the domain 
of Φ. Typical examples of such functions for one-dimensional problems are illustrated in 
Figure 4.2 and defined as follows:

	 1.	Piecewise uniform (or pulse) function:

	
w x

x x x
m

m m
( )

,
,

=
< <





− +1
0

1 1

otherwise 	
(4.49a)

	 2.	Piecewise linear (or triangular) function:

	

w x
x x

x x x
m

m
m m( )

| |
,

, otherwise
=

∆− −
∆

< <








− +1 1

0 	

(4.49b)

	 3.	Piecewise sinusoidal function:

	

w x
k x x x

x x x
m

m
m m( )

sin ( | |)
,

,
=

− −
∆

< <








− +1 1

0 otherwise 	

(4.49c)

Using the unit pulse function, for example, is equivalent to dividing the domain of Φ into 
as many subdomains as there are unknown terms and letting the average value of R over 
such subdomains vanish.
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4.7.2  Galerkin Method

We select basis functions as the weighting function, that is, wm = um. When the operator is 
a linear differential operator of even order, the Galerkin method* reduces to the Rayleigh–
Ritz method. This is due to the fact that the differentiation can be transferred to the 
weighting functions and the resulting coefficient matrix [A] will be symmetric [7]. In order 
for the Galerkin method to be applicable, the operator must be of a certain type. Also, the 
expansion function un must span both the domain and the range of the operator; that is, 
the Galerkin method is a global approach (or entire domain basis function). It is commonly 
used in FEM and in moment methods.

4.7.3  Least Squares Method

This involves minimizing the integral of the square of the residual, that is,

	

∂
∂

=∫a
R dv

m

2 0

or

	

∂
∂

=∫ R
a
Rdv

m
0

	
(4.50)

Comparing Equation 4.50 with Equation 4.43 shows that we must choose

	
w

R
a

Lum
m

m=
∂
∂

=
	

(4.51)

*	 The Galerkin method was developed by the Russian engineer B.G. Galerkin in 1915.

FIGURE 4.2
Typical subdomain weighting functions: (a) piecewise uniform function, (b) piecewise linear function, 
(c) piecewise sinusoidal function.
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This may be viewed as requiring that

	
1
2

2R dv∫
be minimum. In other words, the choice of wm corresponds to minimizing the mean square 
residual. It should be noted that the least-squares method involves higher-order derivatives 
which will, in general, lead to a better convergence than the Rayleigh–Ritz method or 
Galerkin method, but it has the disadvantage of requiring higher-order weighting 
functions [19].

The concept of convergence discussed in the previous section applies here as well. That 
is, if the approximate solution Φ were to converge to the exact solution Φ as N → ∞, the 
residual must approach zero as N → ∞. Otherwise, the sequence of approximate solutions 
may not converge to any meaningful result.

The inner product involved in applying a weighted residual method can sometimes be 
evaluated analytically, but in most practical situations it is evaluated numerically. Due to a 
careless evaluation of the inner product, one may think that the least-squares technique is 
being used when the resulting solution is identical to a point-matching solution. To avoid 
such erroneous results or conclusions, one must be certain that the overall number of points 
involved in the numerical integration is not smaller than the number of unknowns, N, 
involved in the weighted residual method [23].

The accuracy and efficiency of a weighted residual method are largely dependent on the 
selection of expansion functions. The solution may be exact or approximate depending 
on how we select the expansion and weighting functions [17]. The criteria for selecting 
expansion and weighting functions in a weighted residual method are provided in the work 
of Sarkar and others [24–27]. We summarize their results here. The expansion functions un 
are selected to satisfy the following requirements [27]:

	 1.	The expansion functions should be in the domain of the operator L in some sense, 
that is, they should satisfy the differentiability criterion and they must satisfy 
the boundary conditions for the operator. It is not necessary for each expansion 
function to satisfy exactly the boundary conditions. What is required is that the 
total solution must satisfy the boundary conditions at least in some distributional 
sense. The same holds for the differentiability conditions.

	 2.	The expansion functions must be such that L un form a complete set for the range of 
the operator. It really does not matter whether the expansion functions are complete 
in the domain of the operator. What is important is that un must be chosen in such 
a way that L un is complete. This will be illustrated in Example 4.8.

From a mathematical point of view, the choice of expansion functions does not depend 
on the choice of weighting functions. It is required that the weighting functions wn must 
make the difference Φ Φ−   small. For the Galerkin method to be applicable, the expansion 
functions un must span both the domain and the range of the operator. For the least-squares 
method, the weighting functions are already presented and defined by L un. It is necessary 
that L un form a complete set. The least-squares technique mathematically and numerically 
is one of the safest techniques to utilize when very little is known about the nature of the 
operator and the exact solution.
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EXAMPLE 4.7

Find an approximate solution to

	 ′′ + − = < <Φ Φ4 0 0 12x x, ,

with Φ(0) = 0, Φ′(1) = 1, using the method of weighted residuals.

Solution

The exact solution is

	
Φ( )

cos ( ) sin
cos

x
x x

=
− +

+ −
2 1 2 2

8 2 4
1
8

2x

	
(4.52)

Let the approximate solution be

	

Φ = +
=

∑u a un n

n

N

0

1 	
(4.53)

The boundary conditions can be decomposed into two parts:

	 1.	 Homogeneous part → Φ(0) = 0, Φ′(0) = 0,
	 2.	 Inhomogeneous part → Φ′(1) = 1.

We choose u0 to satisfy the inhomogeneous boundary condition. A reasonable choice is

	 u0 = x	 (4.54a)

We choose un(n = 1, 2, …, N) to satisfy the homogeneous boundary condition. Suppose 
we select

	
u x x x

n
n

n
n( ) = −

+







1

	
(4.54b)

Thus, if we take N = 2, the approximate solution is

	

Φ = + +

= + − + −

u a u a u

x a x x a x x

0 1 1 2 2

1 2
22 3 2( ) ( )/ 	 (4.55)

where the expansion coefficients, a1 and a2, are to be determined. We find the residual R 
using Equation 4.42, namely,

	

R L g

d
dx

x

a x x a x x

= −

= +










−

= − + + − +





Φ

Φ
2

2
2

1
2

2
3 2

4

4 8 2 4 6 6( ) ( xx x x− − +3 42) 	 (4.56)

We now apply each of the four techniques discussed and compare the solutions.
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Method 1: Collocation or point-matching method

Since we have two unknowns a1 and a2, we select two match points, at x = 1/3 and 
x = 2/3, and set the residual equal to zero at those points, that is,

	

R a a

R a a

1
3

0 6 41 33

2
3

0 42 13 60

1 2

1 2







= → + =







= → + =

Solving these equations,

	
a a1 2

677
548

342
548

= =,

Substituting a1 and a2 into Equation 4.55 gives

	 Φ( ) . . .x x x x= − + +1 471 0 2993 0 62412 3
	 (4.57)

To illustrate the dependence of the solution on the match points, suppose we select 
x = 1/4 and x = 3/4 as the match points. Then,

	

R a a

R a a

=






= → − + =

=






= → + =

1
4

0 4 29 15

3
4

0 28 3 3

1 2

1 2 99

Solving for a1 and a2, we obtain

	
a a1 2

543
412

288
412

= =,

with the approximate solution

	 Φ( ) . . .x x x= − + +1 636 0 2694 0 6992 3x 	 (4.58)

We will refer to the solutions in Equations 4.57 and 4.58 as collocation 1 and collocation 2, 
respectively. It is evident from Table 4.3 that collocation 2 is more accurate than collocation 1.

Method 2: Subdomain method

Divide the interval 0 < x < 1 into two segments since we have two unknowns a1 and a2. 
We select pulse functions as weighting functions:

	

w x

w x

1

2

1 0
1
2

1
1
2

1

= < <

= < <

, ,

,

so that

	

w Rdx a a

w Rdx a a

1

0

1 2

1 2

2

1 2

1

1 2

0 8 45 22

0 40 3 58

/

/

∫

∫

= → − + =

= → + =
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Solving the two equations gives

	
a a1 2

53
38

28
38

= =,

and hence Equation 4.55 becomes

	 Φ( ) . . .x x x x= − + +1 789 0 2895 0 73682 3
	 (4.59)

Method 3: Galerkin method

In this case, we select wm = um, that is,

	 w x x w x x1 2
22 3 2= − = −( ), ( )/

We now apply Equation 4.43, namely, ∫ wm R dx = 0. We obtain

	

( )x x Rdx a a

x x Rdx a

2

0

1

1 2

3 2

0

1

2 0 24 11 41

3
2

0 77

− = → + =

−






 = →

∫

∫ 11 215 119+ =a

Solving these leads to

	
a a1 2

694
487

301
487

= =,

Substituting a1 and a2 into Equation 4.55 gives

	 Φ( ) . . .x x x x= − + +1 85 0 4979 0 61812 3
	 (4.60)

TABLE 4.3

Comparison of the Weighted Residual Solutions of the Problem in Example 4.7 with the Exact 
Solution in Equation 4.52

x Exact Solution Collocation 1 Collocation 2 Subdomain Galerkin Least Squares

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 −0.1736 −0.1435 −0.1602 −0.1753 −0.1794 −0.1657
0.2 −0.3402 −0.2772 −0.3108 −0.3403 −0.3451 −0.3217
0.3 −0.4928 −0.3975 −0.4477 −0.4907 −0.4935 −0.4635
0.4 −0.6248 −0.5006 −0.5666 −0.6221 −0.6208 −0.5869
0.5 −0.7303 −0.5827 −0.6633 −0.7300 −0.7233 −0.6877
0.6 −0.8042 −0.6400 −0.7336 −0.8100 −0.7972 −0.7615
0.7 −0.8424 −0.6690 −0.7734 −0.8577 −0.8390 −0.8041
0.8 −0.8422 −0.6657 −0.7785 −0.8687 −0.8449 −0.8113
0.9 −0.8019 −0.6264 −0.7446 −0.8385 −0.8111 −0.7788
1.0 −0.7216 −0.5476 −0.6676 −0.7627 −0.7340 −0.7022
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Method 4: Least-squares method

For this method, we select wm = ∂R/∂am, that is,

	 w1 = 4x2 − 8x + 2,  w2 = 4x3 − 6x2 + 6x − 3

Applying Equation 4.43

	

w Rdx a a

w Rdx a a

1 1

0

1

2

2 1

0

1

2

0 7 2 8

0 112 438 161

= → − =

= → − − =

∫

∫

Thus,

	
a a1 2

3826
2842

2023
2842

= =,

and Equation 4.55 becomes

	 Φ( ) . . .x x x x= − + +1 6925 0 2785 0 71182 3
	 (4.61)

Notice that the approximate solutions in Equations 4.57 through 4.61 all satisfy the 
boundary conditions Φ(0) = 0 and Φ′(1) = 1. The five approximate solutions are compared 
in Table 4.3.

EXAMPLE 4.8

This example illustrates the fact that expansion functions un must be selected such that L 
un form a complete set for the range of the operator L. Consider the differential equation

	 −Φ″ = 2 + sinx,  0 ≤ x ≤ 2π	 (4.62)

subject to

	 Φ(0) = Φ(2π) = 0	 (4.63)

Suppose we carelessly select

	 un = sin nx,  n = 1,2, …	 (4.64)

as the expansion functions, the approximate solution is

	

Φ =
=

∑a nxn

n

N

1

sin
	

(4.65)

If we apply the Galerkin method, we obtain

	 Φ = sin x	 (4.66)
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Although un satisfies both the differentiability and boundary conditions, Equation 4.66 
does not satisfy Equation 4.62. Hence, Equation 4.66 is an incorrect solution. The problem 
is that the set {sin nx} does not form a complete set. If we add constant and cosine terms 
to the expansion functions in Equation 4.65, then

	

Φ = + +
=

∑a a nx b nxn

n

N

n0

1

[ sin cos ]
	

(4.67)

As N → ∞, Equation 4.67 is the classical Fourier series solution. Applying the Galerkin 
method leads to

	 Φ = sinnx	 (4.68)

which is again an incorrect solution. The problem is that even though un forms a complete 
set, L un do not. For example, nonzero constants cannot be approximated by L un. In order 
for L un to form a complete set, Φ must be of the form

	

Φ = + + + +
=

∑[ sin cos ]a nx b nx a cx dxn

n

n

n

1

0
2

	
(4.69)

Notice that the expansion functions {1, x, x2, sin nx, cos nx} in the interval [0, 2π] form 
a linearly dependent set. This is because any function such as x or x2 can be represented 
in the interval [0, 2π] by the set {sin nx, cos nx}. Applying the Galerkin method, Equation 
4.69 leads to

	 Φ = + −sin ( )x x x2π 	 (4.70)

which is the exact solution Φ.

4.8  Eigenvalue Problems

As mentioned in Section 1.3.2, eigenvalue (nondeterministic) problems are described by 
equations of the type

	 LΦ = λMΦ	 (4.71)

where L and M are differential or integral, scalar or vector operators. The problem here is 
the determination of the eigenvalues λ and the corresponding eigenfunctions Ф. It can be 
shown [11] that the variational principle for λ takes the form

	

λ =
〈 〉
〈 〉

=
∫
∫

min
,
,

min
Φ Φ
Φ Φ

Φ Φ

Φ Φ

L
M

L dv

M dv
	

(4.72)

We may apply Equation 4.72 to the Helmholtz’s equation for scalar waves, for example,

	 ∇ 2Φ + k2Φ = 0	 (4.73)
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Comparing Equation 4.73 with Equation 4.71, we obtain L = −∇ 2, M = 1 (the identity 
operator), λ = k2 so that

	

k
dv

dv

2

2

2
=

∇∫
∫

min
Φ Φ

Φ
	

(4.74)

Applying Green’s identity (see Example 1.1),

	
( ) ,U V U V dv U

V
n
dS

v

∇ +∇ ⋅∇ =
∂
∂∫∫ 2 

to Equation 4.74 yields

	

k

dv
n
dS

dv

v

v

2

2

2
=

∇ −
∂
∂∫ ∫

∫
min

| |Φ Φ
Φ

Φ




	

(4.75)

Consider the following special cases.
	 a.	 For homogeneous boundary conditions of the Dirichlet type (Φ = 0) or 

Neumann type (∂Φ/∂n = 0). Equation 4.75 reduces to

	

k

dv

dv

v

v

2

2

2
=

∇∫

∫
min

| |Φ

Φ
	

(4.76)

	 b.	 For mixed boundary conditions ((∂Φ/∂n) + hΦ = 0) Equation 4.75 becomes

	

k

dv h dS

dv

v

v

2

2 2

2
=

∇ +∫ ∫

∫
min

| |Φ Φ

Φ



	

(4.77)

It is usually possible to solve Equation 4.71 in a different way. We choose the basis 
functions u1, u2, …, uN which satisfy the boundary conditions and assume the approximate 
solution

	 � �Φ = ++ +a u a u a uN N1 1 2 2

or

	

Φ =
=

∑ a un n

n

N

1 	
(4.78)
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Substituting this into Equation 4.71 gives

	
a Lu a Mun n

n

N

n n

n

N

= =
∑ ∑=

1 1

λ
	

(4.79)

Choosing the weighting functions wm and taking the inner product of Equation 4.79 with 
each wm, we obtain

	
〈 〉− 〈 〉[ ] = =

=
∑ w Lu w Mu a Nm n m n n

n

N

, , , , , ,λ 0 1 2
1

m …
	

(4.80)

This can be cast into matrix form as

	
( )A B Xmn mn n

n

N

− =
=

∑ λ 0
1 	

(4.81)

where Amn = 〈wm, Lun〉, Bmn = 〈wm, Mun〉, Xn = an. Thus, we have a set of homogeneous 
equations. In order for Φ in Equation 4.78 not to vanish, it is necessary that the expansion 
coefficients an not all be equal to zero. This implies that the determinant of simultaneous 
equations (4.81) vanishes, that is,

	

A B A B A B

A B A B A B

N N

N N N N NN NN

11 11 12 12 1 1

1 1 2 2

0
− − −

− − −
=

λ λ λ

λ λ λ

�

� �

�

or

	 |[A] − λ[B]| = 0	 (4.82)

Solving this gives N approximate eigenvalues λ1, …, λN. The various ways of choosing 
wm leads to different weighted residual techniques as discussed in the previous section.

Examples of eigenvalue problems for which variational methods have been applied 
include [28–37]:

•	 The cutoff frequency of a waveguide,
•	 The propagation constant of a waveguide, and
•	 The resonant frequency of a resonator.

EXAMPLE 4.9

Solve the eigenvalue problem

	 Φ″ + λΦ = 0,  0 < x < 1

with boundary conditions Φ(0) = 0 = Φ(1).

Solution

The exact eigenvalues are

	 λn = (nπ)2,  n = 1,2,3, …	 (4.83)
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and the corresponding (normalized) eigenfunctions are

	 Φn n x= 2 sin( )π 	 (4.84)

where Φn has been normalized to unity, that is, 〈Φn, Φn〉 = 1.
The approximate eigenvalues and eigenfunctions can be obtained by using either 

Equation 4.72 or Equation 4.82. Let the approximate solution be

	

Φ( ) , ( )x a u u x xk k k
k

k

N

= = −
=

∑ 1
0 	

(4.85)

From the given problem, L = −(d2/dx2), M = 1 (identity operator). Using the Galerkin 
method, wm = um.

	

A u Lu x x
d
dx

x x dx

mn
m n

mn m n
m n=〈 〉= − − −













=
+ +

+ +∫, ( ) ( )

,

1
2

2
1

0

1

1 	
(4.86)

	

B u Mu x x x x dx

mn m n
m n m

mn m n
m n=〈 〉= − −

=
+ +

+ + +

+ +∫, ( )( )

( )
( )( )(

1 1

0

1

6
3 3 3 nn+ 3) 	

(4.87)

The eigenvalues are obtained from

	 |[A] − λ[B]| = 0	 (4.88)

For N = 1,

	
A B11 1

1
3

1
30

= =, ,

giving

	
1
3

1
30

0 10− = → =λ λ

The first approximate eigenvalue is λ = 10, a good approximation to the exact value 
of π2 = 9.8696. The corresponding eigenfunction Φ = a x x1

2( )−  can be normalized to 
unity so that

	 Φ = −30 2( )x x

For N = 2, evaluating Equations 4.86 and 4.87, we obtain

	

1
3

1
2

1
2

4
5

1
30

1
20

1
20

8
105

1

2































 =











a

a























a

a
1

2

or

	

10 0
0 42

0
−

−
=

λ
λ
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giving eigenvalues λ1 = 10, λ2 = 42, compared with the exact values λ1 = π2 = 9.8696, 
λ2 = 4π2 = 39.4784, and the corresponding normalized eigenfunctions are

	




Φ

Φ

1
2

2
2 3

30

2 210 2 210

= −

= − − −

( )

( ) ( )

x x

x x x x

Continuing this way for higher N, the approximate eigenvalues shown in Table 4.4 are 
obtained. Unfortunately, the labor of computation increases as more uk are included in Φ. 
Notice from Table 4.4 that the approximate eigenvalues are always greater than the exact 
values. This is always true for a self-adjoint, positive-definite operator [17]. Figure 4.3 
shows the comparison between the approximate and exact eigenfunctions.

TABLE 4.4

Comparison between Approximate and Exact Eigenvalues 
for Example 4.9

Exact

Approximate

N = 1 N = 2 N = 3 N = 4

9.870 10.0 10.0 9.8697 9.8697
39.478 − 42.0 39.497 39.478

88.826 − − 102.133 102.133

157.914 − − − 200.583

FIGURE 4.3
Comparison of approximate eigenfunctions with the exact solutions: (a) first eigenfunction, (b) second 
eigenfunction. (After R.F. Harrington, Field Computation by Moment Methods. Malabar, FL: R.E. Krieger, 1968, 
pp. 19, 126–131; with permission of Krieger Publishing Co.)
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EXAMPLE 4.10

Calculate the cutoff frequency of the inhomogeneous rectangular waveguide shown in 
Figure 4.4. Take ε = 4εo and s = a/3.

Solution

We will find the lowest mode having ∂/∂y ≡ 0. It is this dominant mode that is of most 
practical value. Since the dielectric constant varies from one region to another, it is 
reasonable to choose Φ to be an electric field, that is, Φ = Ey. Also, since k2 = ω2/u2 = ω2µε, 
Equation 4.74 becomes

	

ω µ ω µ ω µ2 2 2

0

2 2 2

2

o o y

s

o o r y

s

a s

o o y

a s

a

y
y

E dx E dx E dx

E
d E

ε ε ε ε+ +

= −

∫ ∫ ∫
−

−

ddx
dx

a

2

0
∫

	
(4.89)

Notice that in this implementation of Equation 4.74, there are no coefficients so that 
there is nothing to minimize. We simply take k2 as a ratio. Equation 4.89 can be written as

	

ω µ ω µ2 2

0

2 2

0

2

21o o y

a

o o r y

s

a s

y

a

yE dx E dx E
d E
dx

dxε ε ε+ − = −∫ ∫ ∫
−

( )

	
(4.90)

We now choose the trial function for Ey. It must be chosen to satisfy the boundary 
conditions, namely, Ey = 0 at x = 0, a. Since Ey ∼ sin(nπ x/a) for the empty waveguide, it 
makes sense to choose the trial function of the form

	
E c

n x
a

y n

n

=
=

∞

∑ sin
, ,

π

1 3 5 	
(4.91)

We choose the odd values of n because the dielectric is symmetrically placed; 
otherwise, we would have both odd and even terms.

Let us consider the trial function

	
E

x
a

y = sin
π

	
(4.92)

FIGURE 4.4
Symmetrically loaded rectangular waveguide.
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Substituting Equation 4.92 into Equation 4.90 yields

	

ω µ
π

ω µ
π

π π

2 2

0

2 2

2

2
2

1o o

a

o o r

s

a s
x
a
dx

x
a
dx

a
x
a
d

ε ε εsin ( ) sin

sin

∫ ∫+ −

=

−

xx

a

0
∫

	
(4.93)

which leads to

	
ω µ

π
π2 1 1 1

2 1 2
o o r

s
a

s
a

ε ε+ − −






+























( ) sin 


=

π 2

2a

But ko o o c
2 2 2 24= =ω µ π λε ( )/ , where λc is the cutoff wavelength of the waveguide filled 

with vacuum. Hence,

	

4

1 1 1
2 1 2

2

2

2π
λ

π

π
πc

r

a
s
a

s
a

=
+ − −







+













( )

( ) sin

/

ε

Taking εr = 4 and s = a/3 gives

	

4

2
3 3
2

2

2

2π
λ

π

π
c

a
=

+

( )/

or

	

a

cλ
= 0 2974.

This is a considerable reduction in a/λc compared with the value of a/λc = 0.5 for the 
empty guide. The accuracy of the result may be improved by choosing more terms in 
Equation 4.91.

4.9  Practical Applications

The various techniques discussed in this chapter have been applied to solve a considerable 
number of EM problems. We select a simple example for illustration [38,39]. This example 
illustrates the conventional use of the least-squares method.

Consider a strip transmission line enclosed in a box containing a homogeneous medium 
as shown in Figure 4.5. If a TEM mode of propagation is assumed, Laplace’s equation

	 ∇2V = 0	 (4.94)

is obeyed. Due to symmetry, we will consider only one quarter section of the line as 
in Figure 4.6 and adopt a boundary condition ∂V/∂x = 0 at x = −W. We allow for the 
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singularity at the edge of the strip. The variation of the potential in the vicinity of such a 
singularity is approximated, in terms of trigonometric basis functions, as

	
V V c

k
o k

k

k

= +
=

∞

∑ ρ φ/

, ,

cos ,2

1 3 5
2

	
(4.95)

where Vo is the potential on the trip conductor and the expansion coefficients ck are to be 
determined. If we truncate the infinite series in Equation 4.95 so that we have N unknown 
coefficients, we determine the coefficients by requiring that Equation 4.95 be satisfied at 
M(≥N) points on the boundary. If M = N, we are applying the collocation method. If M > N, 
we obtain an overdetermined system of equations which can be solved by the method of 
least squares. Enforcing Equation 4.95 at M boundary points, we obtain M simultaneous 
equations
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FIGURE 4.5
Strip line enclosed in a shielded box.

FIGURE 4.6
Quarter-section of the strip line.
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that is,

	 [V] = [A][X]	 (4.96)

where [X] is an N × 1 matrix containing the unknown expansion coefficients, [V] is an 
M × 1 column matrix containing the boundary conditions, and [A] is the M × N coefficient 
matrix. Due to redundancy, [X] cannot be uniquely determined from Equation 4.96 if 
M > N. To solve this redundant system of equations by the method of least squares, we 
define the residual matrix [R] as

	 [R] = [A][X] − [V]	 (4.97)

We seek for [X], which minimizes [R]2. Consider
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−t t1

	 (4.98)

where the superscript t denotes the transposition of the relevant matrix. Thus, we have 
reduced the original redundant system of equations to a determinate set of N simultaneous 
equations in N unknown coefficients c1, c2, …, cN.

Once [X] = [c1, c2, …, cN] is determined from Equation 4.98, the approximate solution 
in Equation 4.95 is completely determined. We can now determine the capacitance and 
consequently the characteristic impedance of the line for a given value of width-to-height 
ratio. The capacitance is determined from

	
C

Q
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Q
o

= =
	

(4.99)

if we let Vo = 1 V. The characteristic impedance is found from [40]

	
Z

cC
o

r=
ε

	
(4.100)

where c = 3 × 108 m/s, the speed of light in vacuum. The major problem here is finding Q 
in Equation 4.99. If we divide the boundary BCD into segments,

	
Q dl lL L

BCD

= = ∆∫ ∑ρ ρ4

where the charge density ρL = D ⋅ an = εE ⋅ an, E = −∇V, and the factor 4 is due to the fact 
that we consider only one quarter section of the line. However,
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Since ax = cos φaρ − sin φaφ and ay = sin φaρ + cos φaφ,
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(4.101a)

and

	

ρ

ρ φ φ φ φ

L BC y

k
k

k

k
c

k k

|

cos sin sin cos/

= ⋅

−







= − −

=
∑

ε

ε

E a

2 2 2
2 1

odd


	

(4.101b)

EXAMPLE 4.11

Using the collocation (or point matching) method, write a computer program to calculate 
the characteristics impedance of the line shown in Figure 4.5. Take
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( ) .
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b 0.5 m, m, 

V,W H W

W H W

= = =
= = =

= =
=

1

1

05 0
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1 1ε

ε
r

r

V

11 10,V = V.

Solution

The computer program is presented in Figure 4.7. For the first run, we take the number 
of matching points N = 11; the points are selected as illustrated in Figure 4.6. The 
selection of the points is based on our prior knowledge of the fact that the flux lines are 
concentrated on the side of the strip line numbered 6–10; hence, more points are chosen 
on that side.

The first step is to determine the potential distribution within the strip line using 
Equation 4.95. In order to determine the expansion coefficients ck in Equation 4.95, we 
let Equation 4.95 be satisfied at the matching points. On points 1–10 in Figure 4.6, V = 0 
so that Equation 4.95 can be written as
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(4.102)

The infinite series is terminated at k = 19 so that 10 points are selected on the sides 
of the strip line. The 11th point is selected such that ∂V/∂x = 0 is satisfied at the point. 
Hence at point 11,
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(4.103)

With Equations 4.102 and 4.103, we set up a matrix equation of the form

	 [B] = [F][A]	 (4.104)
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FIGURE 4.7
Computer program for Example 4.11.� (Continued)
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FIGURE 4.7 (Continued)
Computer program for Example 4.11.� (Continued)
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where

	
B

V k N

k Nk
o

=
− ≠

=






,
, ,0

	

F

k i N

k N

k
k

ki

i
k

i

i
k

i

=
= −
=

−

ρ φ

ρ φ φ

/

/

cos , , ,
, ,

(cos( )cos

2

2 1

2 1 1
1

2
2

/

/

…

…

ii i ik+ = =










sin( sin ), ,φ φ/2 i N k N1, ,…

where (ρi, φi) are the cylindrical coordinates of the ith point. Matrix [A] consists of the 
unknown expansion coefficients ck. By matrix inversion, we obtain [A] as

	 [A] = [F]−1[B]	 (4.105)

FIGURE 4.7 (Continued)
Computer program for Example 4.11.
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Once the expansion coefficients are determined, we now calculate the total charge on 
the sides of the strip line using Equation 4.101 and

	
Q lL

BDC

= ∆∑4 ρ

Finally, we obtain Zo from Equations 4.99 and 4.100. Table 4.5 shows the results obtained 
using the program in Figure 4.7 for different cases. In Table 4.5, N = Nx + Ny, where Nx 
and Ny are the number of matching points selected along the x and y axes, respectively. 
By comparing Figure 4.5 with Figure 2.13, one may be tempted to apply Equation 2.223 
to obtain the exact solution of part (a) as 61.1 Ω. But we must recall that Equation 2.223 
was derived based on the assumption that w ≫ b in Figure 2.12 or W ≫ H in Figure 4.5. 
The assumption is not valid in this case, the exact solution given in Reference 39 is more 
appropriate.

4.10  Concluding Remarks

This chapter has provided an elementary introduction to the variational techniques. The 
variational methods provide simple, elegant, and powerful solutions to physical problems 
provided we can find approximate basis functions. A prominent feature of the variational 
method lies in the ability to achieve high accuracy with few terms in the approximate 
solution. A major drawback is the difficulty encountered in selecting the basis functions. 
In spite of the drawback, the variational methods have been very useful and provide basis 
for both the method of moments and FEM to be discussed in the forthcoming chapters.

Needless to say, our discussion on variational techniques in this chapter has been only 
introductory. An exhaustive treatment of the subject can be found in References 1,6,10,11,41–
43. Various applications of variational methods to EM-related problems include

•	 Waveguides and resonators [28–37]
•	 Transmission lines [38,39,44–47]
•	 Acoustic radiation [48]
•	 Wave propagation [49–51]
•	 Transient problems [52]
•	 Scattering problems [53–59].
•	 Optical fibers [60]

TABLE 4.5

Characteristic Impedance of the Strip Transmission Line of Figure 4.5; for 
Example 4.11 with W1 = 5.0

W = H N Nx Ny c1 Calculated Zo(Ω) Exact [39] Zo(Ω)

1.0 7 5 2 −1.1549 67.735 65.16

11 8 3 −1.1266 64.963

0.5 7 5 2 −1.1549 96.758 100.57

11 8 3 −1.1266 99.098



269Variational Methods

The problem of variational principles for EM waves in inhomogeneous media is discussed 
in Reference 60. Basic information on calculus of variations can be found in References 61–63.

PROBLEMS

	 4.1	 Find 〈u, v〉 if
	 a.	 u = x2, v = 2 − x in the interval −1 < x < 1,
	 b.	 u = 1, v = x2 − 2y2 in the rectangular region 0 < x < 1, 1 < y < 2,
	 c.	 u = x + y, v = xz in the cylindrical region x2 + y2 ≤ 4, 0 < z < 5.
	 4.2	 Show that
	 a.	 〈 〉=〈 − 〉h x h x( ), ( ), ,f x f x( ) ( )

	 b.	 〈 〉=






h x h x

a
f
x
a

( ), ( ), ,a f x( )
1

	 c.	
df
dx

h x f x
dh
dx

, ( ) ( ), ,= −

	 d.	
d f
dx

h x f x
d h
dx

n

n
n

n

n, ( ) ( ) ( ),= − −1

		  Note from (d) that L = (d/dx), (d3/dx3), etc., are not self-adjoint, whereas L = (d2/dx2), 
(d4/dx4), etc., are.

	 4.3	 Given the functions

	

f x x x

g x

x x

x x

( ) ,

( )
,

,
,
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=
< <

− < <










1 0 2

0 1
2 1 2
0 otherwise

		  Calculate their inner product.
	 4.4	 Show that the functional

	
I y

dy
dx

y dx( ) =






 +




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
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
∫

2
2

0

1

		  with boundary conditions y(0) = 0, y(1) = 1 is made stationary by the solution of 
the differential equation (d2y/dx2) − y = 0.

	 4.5	 Obtain an admissible extremals to minimize:

	 a.	 I y y ye dx y yx[ ] ( ) , ( ) , ( )= ′ + = =∫ 2

0

1

2 0 0 1 1

	 b.	 J y y y y dx y y[ ] ( ) , ( ) , ( )= + ′ + = =∫ 2 2

0

1

2 0 0 1 0

	 c.	 K y y y ye dx y yx[ ] ( ) , ( ) , ( )= + ′ + = =∫ 2 2

0

1

2 0 0 1 0
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	 4.6	 Repeat Problem 4.3 for the following functionals:

	
a.

	
( )′ −∫ y y dx

a

b

2 2

	
b.

	
[ ( ) ]5 102 2y y x dx

a

− ′′ +∫

	
c.

	
( )3 2 2 2uv u u v dx

a

b

− + ′ − ′∫
	 4.7	 Determine the extremal y(x) for each of the following variational problems:

	 a.	 ( ) , ( ) , ( )2 0 0 1 12

0

1

′ + ′ + ′ + = =∫ y yy y y dx y y

	 b.	 ( ) , ( ) , ( )′ − = =∫ y y dx y y2 2 0 1 2 0π/

	 4.8	 If L is a positive definite, self-adjoint operator and LΦ = g has a solution Φo, show 
that the function

	 I = 〈LΦ, Φ〉 − 2〈Φ, g〉,

		  where Φ and g are real functions, is minimized by the solution Φo.
	 4.9	 Show that Euler’s equation

	

d
dx

dF
dy

dF
dy′










− = 0

		  can be written as

	

d
dx

F y
dF
dy

dF
dx

− ′
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









 − = 0

	 4.10	 Obtain Euler’s equation (or first variation) corresponding to the integral

	
I

dV
dx

g x V dx=



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
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	 4.11	 Show that a function that minimizes the functional

	
I k g dS

S

( ) [| | ]Φ Φ Φ Φ= ∇ − +∫1
2

22 2 2

		  is the solution to the inhomogeneous Helmholtz equation

	 ∇ 2Φ + k2Φ = g
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	 4.12	 Using Euler’s equation, obtain the differential equation corresponding to the 
electrostatic field functional

	
I dvE Vv

v

=
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
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


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−∫ 1
2

2ε ρ

		  where E = |E| and ρv is the volume charge density.
	 4.13	 Repeat Problem 4.12 for the energy function for steady-state currents

	
I

v

= ⋅∫ 1
2
J Edv

		  where J = σE.
	 4.14	 Poisson’s equation in an anisotropic medium is

	

∂
∂

∂
∂







+

∂
∂

∂
∂










+

∂
∂

∂
∂






x

V
x y

V
y z

V
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x y zε ε ε  = −ρv

		  in three dimensions. Derive the functional for the boundary-value problem. 
Assume εx, εy, and εz are constants.

	 4.15	 Show that the variational principle for the boundary-value problem

	 ∇ 2Φ = f (x, y, z)

		  subject to the mixed boundary condition

	
∂
∂

+ =
Φ

Φ
n

g h Son

		  is

	
I fg dv

v

( ) [| | ] [ ]Φ Φ Φ Φ= ∇ − + −∫∫ 2 22 2g h dS

	 4.16	 Obtain the variational principle for the differential equation

	
− + = < <
d y
dx

y x x
2

2 0 1sin ,π

		  subject to y(0) = 0 = y(1).
	 4.17	 Determine the variational principle for

	 Φ″ = Φ − 4xex,  0 < x < 1

		  subject to Φ′(0) = Φ(0) + 1, Φ′(1) = Φ(1) − e.
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	 4.18	 For the boundary-value problem

	 −Φ″ = x,  0 < x < 1

	 Φ(0) = 0,  Φ(1) = 2

		  determine the approximate solution using the Rayleigh–Ritz method with basis 
functions

	 uk = xk(x − 1),  k = 0,1,2, …, M

	 Try cases when M = 1, 2, and 3.
	 4.19	 Use Rayleigh–Ritz method to solve

	
d U
dx

U x x
2

2
2 0 0 1+ − = < <,

		  Consider the following sets of boundary conditions:

	 U(0) = 0 = U(1)

	 U(0) = 0,  U′(1) = 1.

	 4.20	 Using Rayleigh–Ritz method, find the solution to the differential equation

	

d
dx

x x
2

2 4 0 0 2

0 0 2

Φ
Φ

Φ Φ

− + = < <

= =

,

( ) ( )subject to . Assume the trial functtion Φ( ) ( ).x x x= −2 24

	 4.21	 Use the Rayleigh method and the least-squares method to solve the differential 
equation:

	
d
dx

x x
2

2 0 0 1
Φ

+ = < <cos ,π

		  subject to:
	 a.	 Φ Φ( ) ( )0 0 1= =
	 b.	 Φ Φ( ) ( )0 0 1= = ′

		  Consider a two-term solution.
	 4.22	 Given the functional

	
I y

dy
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		  a.	 Show that the corresponding Euler’s equation is

	
d y
dx

2

2 1 0+ =
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		  b.	� Use Rayleigh–Ritz method to obtain the approximate solution. Use the two-
parameter trial function

	 y x a x a x( ) sin( ) sin( )= +1 2 2π π

		  c.	 Compare the solution in part (b) with the exact solution

	
y x x x( ) ( )= −

1
2

1

	 4.23	 Rework Example 4.5 using
	 a.	 um = x(1 − xm),
	 b.	 um = sin mπx, m = 1, 2, 3, …, M. Try cases when M = 1, 2, and 3.
	 4.24	 Solve the differential equation

	 −Φ″(x) + 0.1 Φ(x) = 1,  0 ≤ x ≤ 10

		  subject to the boundary conditions Φ′(0) = 0 = Φ(0) using the trial function

	
Φ( ) cos cos cosx a

x
a

x
a

x
= + +1 2 3

20
3
20

5
20

π π π

		  Determine the expansion coefficients using (a) collocation method, (b) subdomain 
method, (c) Galerkin method, and (d) least-squares method.

	 4.25	 For the boundary-value problem

	 Φ″ + Φ + x = 0,  0 < x < 1

		  with homogeneous boundary conditions Φ = 0 at x = 0 and x = 1, determine the 
coefficients of the approximate solution function

	
Φ( ) ( )( )x x x a a x= − +1 1 2 

		  using (a) collocation method (choose x = 1/4, x = 1/2 as collocation points), (b) 
Galerkin method, and (c) least-squares method.

	 4.26	 Use the Ritz method to solve the ordinary differential equation

	
d y
dx

x x
2

2
2100 0 0 1+ = ≤ ≤,

		  subject to y(0) = 0 = y(1). Use the trial function u1 = x(1 − x2).
	 4.27	 Rework Problem 4.18 using the trial function u1 = x(1 − x3).
	 4.28	 Given the boundary-value problem

	 ′′ + + + = − < < − = =y x y x y y( ) , ( ) ( ),1 1 0 1 1 1 0 12

		  solve for y assuming the approximate solution

	 y a x x a x x= − − + −1
2 2

2
2 21 1 4 1( )( ) ( )

		  Use the Galerkin and the least-squares methods to determine a1 and a2.
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	 4.29	 Consider the problem

	 Φ″ + xΦ′ + Φ = 2x,  0 < x < 1

		  subject to Φ(0) = 1, Φ(1) = 0. Find the approximate solution using the Galerkin 
method. Use uk = xk(1 − x), k = 0, 1, …, N. Try N = 3.

	 4.30	 Solve the differential equation

	
d
dx

x
2

2 100 0 0 10
Φ

Φ− + = ≤ ≤, x

		  subject to Φ(0) = 0 = Φ(10). Assume the two trial functions

	 u1(x) = x(1 − x2),  u2(x) = x(1 − x4)

		  Take the two collocation points at x = 1/3 and x = 2/3.
	 4.31	 Determine the first three eigenvalues of the equation

	 y″ + λy = 0,  0 < x < 1,

		  y(0) = 0 = y(1) using collocation at x = 1/4, 1/2, 3/4.
	 4.32	 The differential equation governing the vibration of a string is given by

	
d
dx

x
2

2 0 0 1
Φ

Φ+ = ≤ ≤λ ,

		  with the boundary conditions

	 Φ(0) = 0 = Φ(1)

		  where λ is the eigenvalue. Using the trial solution

	 Φ(x) = a1x(1 − x) + a2x2(1 − x)

		  where a1 and a2 are constants, use Garlekin’s method to determine the eigenvalues 
of the string.

	 4.33	 Determine the fundamental eigenvalue of the problem

	 Φ″(x) + 0.1Φ(x) = λ Φ(x),  0 < x < 10

		  subject to Φ(0) = 0 = Φ(10). Use the trial function

	
Φ( ) ( )x x x= −10

	 4.34	 Obtain the lowest eigenvalue of the problem

	 ∇ 2Φ + λ Φ = 0,  0 < ρ < 1

		  with Φ = 0 at ρ = 1.



275Variational Methods

	 4.35	 Calculate the smallest eigenvalue of

	 y y x’’ ,+ = < <λ 0 0 1

		  with y(0) = 0 = y(1).

		  Hint: Consider λ = ′








∫∫ ( )y dx y dx2 2

0

1

0

1

		  and assume the approximate solution

	 y a a x a x a x= + + +0 1 2
2

3
3

	 4.36	 Determine the first two eigenvalues of the differential equation

	

d U
dx

U x

U U U

2

2 0 0 1

0 0 1 1 0

+ = < <

= + ′ =

λ ,

( ) , ( ) ( )

subject to:

	 4.37	 The two-dimensional Helmholtz wave equation is

	 LU U k U f x y x a y b= −∇ − = < < < <2 2 0 0( , ), ,

		  subject to a homogeneous Dirichlet boundary conditions. Prove that the 
eigenvalues of the operator L is

	
λ π π
mn

m
a

n
a

k=






 +







 −

2 2
2

	 4.38	 Rework Example 4.10 using the trial function

	
E

x
a

c
x
a

y = +sin sin
π π

1
3

		  where c1 is a coefficient to be chosen such that ω2εoµo is minimized.
	 4.39	 Consider the waveguide in Figure 4.4 as homogeneous. To determine the cutoff 

frequency, we may use the polynomial trial function

	 Hz = Ax3 + Bx2 + Cx + D

		  By applying the conditions

	

H

H
x

z z

z

= = = − =
∂
∂

= =

1 1

0

at 0, at

at 0, ,

x H x a

x a

,

		  determine A, B, C, and D. Using the trial function, calculate the cutoff frequency.
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5
Moment Methods

There are no shortcuts to any place worth going.

—Beverly Sills

5.1  Introduction

In Section 1.3.2, it was mentioned that most EM problems can be stated in terms of an 
inhomogeneous equation

	 LΦ = g	 (5.1)

where L is an operator which may be differential, integral, or integro-differential, g is the 
known excitation or source function, and Φ is the unknown function to be determined. So 
far, we have limited our discussion to cases for which L is differential. In this chapter, we 
will treat L as an integral or integro-differential operator.

The method of moments (MoM) is a general procedure for solving Equation 5.1. The method 
owes its name to the process of taking moments by multiplying with appropriate weighing 
functions and integrating, as discussed in Section 4.6. The name “method of moments” has 
its origin in Russian literature [1,2]. In western literature, the first use of the name is usually 
attributed to Harrington [3]. The origin and development of the moment method are fully 
documented by Harrington [4,5].

The MoM is essentially the method of weighted residuals discussed in Section 4.6. 
Therefore, the method is applicable for solving both differential and integral equations 
(IEs). The method is also known as the boundary element method (BEM), the Galerkin 
method, or the surface integral method (SIE).

The use of MoM in EM has become popular since the work of Richmond [6] in 1965 and 
Harrington [7] in 1967. The method has been successfully applied to a wide variety of 
EM problems of practical interest such as radiation due to thin-wire elements and arrays, 
scattering problems, analysis of microstrips and lossy structures, propagation over an 
inhomogeneous earth, and antenna beam pattern, to mention a few. An updated review of 
the method is found in Ney [8]. The literature on MoM is already so large as to prohibit a 
comprehensive bibliography. A partial bibliography is provided by Adams [9].

The procedure for applying MoM to solve Equation 5.1 usually involves four steps:

	 1.	Derivation of the appropriate IE,
	 2.	Conversion (discretization) of the IE into a matrix equation using basis (or 

expansions) functions and weighting (or testing) functions,
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	 3.	Evaluation of the matrix elements, and
	 4.	Solving the matrix equation and obtaining the parameters of interest.

The basic tools for step 2 have already been mastered in Section 4.6; in this chapter we 
will apply them to IEs rather than PDEs.

5.2  Differential Equations

We first consider the case in which the operator L in Equation 5.1 is differential. The 
following is a list of examples L may assume:

	 L x x[ ( )] ( )Φ Φ= 	 (5.2a)

	
L x

d
dx

d
dx

[ ( )]Φ
Φ Φ

= + 3
2

2 	
(5.2b)

	 L x y x y[ ( , )] ( , )Φ Φ= ∇2
	 (5.2c)

Our objective in this section to present the procedure for applying the MoM to a 
differential equation [9]. This basically involves utilizing the variational techniques covered 
in the previous chapter.

Given the linear-operator equation of Equation 5.1, the MoM starts by expanding the 
unknown function Φ into a series of known expansion functions, u1, u2, …, uN in the domain 
of L, as follows:

	
Φ( ) ( )x a u x

n

N

n n
=

∑
1 	

(5.3)

where an are expansion coefficients to be determined. Substituting Equation 5.3 into 
Equation 5.1 gives

	
g x L x L a u x a L u x a L u x

n

N

n n( ) [ ( )] ( ) [ ( )] [ ( )]� Φ =















= +

=
∑

1

1 1 2 2 ++ +� a L u xN N[ ( )]
	

(5.4)

Taking the inner product of this equation with each of the weighting or testing functions, 
w1, w2, …, wN, produces

	

w x L a u x

a w x L u x a w x

m

n

N

n n

m m

( ), ( )

( ), [ ( )] ( ),
=

∑
















= 〈 〉+ 〈
1

1 1 2 LL u x a w x L u x m NN m N[ ( )] ( ), [ ( )] , , , ,2 1 2〉+ + 〈 〉 = … 	
� (5.5)
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This can be written in matrix form as

	

A A A

A A A

A A A

a

a

a

N

N

N N NN

11 12 1

21 22 2

1 2

1

2

�

�

� � � � �

…























 NN N

w x g x

w x g x

w x g x

























=

〈 〉
〈 〉

〈 〉

1

2

( ), ( )
( ), ( )

( ), ( )
�























 	

(5.6a)

Or

	 [A] [a] = [B]	 (5.6b)

where A w x L u x B w x g xmn m n m m= =〈 〉 〈 〉( ), [ ( )] ( ), ( ), , and [a] consists of unknown coefficients.
Solving the simultaneous equations in Equation 5.6 yields the set of unknown expansion 

coefficients, an. This completes the MoM analysis. The choice of expansion and testing 
functions determines the accuracy of the solution to Equation 5.6.

EXAMPLE 5.1

Use the MoM to solve the differential equation [10]

	
d U
dx

x x
2

2
2 0 1= − < <,

	

subject to U(0) = 0 = U(1).

Solution

In this example,

	
L

d
dx

g x x= = −
2

2
2, ( ) .

	

We may select the basis function

	 u x x x n Nn
n( ) , , , ,= − = …+1 1 2 	

If we choose Galerkin approach, the weighting function wn = un. For example, let N = 2 
so that

	 U x a u x a u x a x x a x x( ) ( ) ( ) ( ) ( )= + = − + −1 1 2 2 1
2

2
3

	 (5.1.1)

We determine a1 and a2 by solving Equation 5.6. The coefficients are obtained from 
Equation 5.6, namely

	

A w x L u x x x
d
dx

x x x x x11 1 1
2

2

2
2 2

1

0

2=〈 〉= − − =〈 − − 〉= −∫( ), [ ( )] ( ), ( ) ( ), ( xx dx2 2
1
3

)( )− = −
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Similarly,

	

A x x x dx

A x x dx

A x x

12

1

0

2

21

1

0

2

22

1

0

6
1
2

2
1
2

= − − = −

= − − = −

= −

∫

∫

∫

( )( )

( )( )

( 33

1

1

0

2 2

2

1

0

3 2

6
4
5

1
20

)( )

( )( )

( )( )

− = −

= − − = −

= − − =

∫

∫

x dx

B x x x dx

B x x x dx −−
1

12

Putting these in matrix form,

	

− −
− −






















 =

−
−













1 3 1 2
1 2 4 5

1 20
1 12

11

2

/ /
/ /

/
/

or
a

a

// /
/ /

/
/

3 1 2
1 2 4 5

1 20
1 12

1

2






















 =













a

a

We can solve this in many ways. Using Cramer’s rule, we obtain the determinants as

	

∆ = = − =

∆ = = − = −

∆

1 3 1 2
1 2 4 5

4
15

1
4

1
60

1 20 1 2
1 12 4 5

1
25

1
24

1
600

1

2

/ /
/ /

/ /
/ /

== = − = −

=
∆
∆

= − =
∆
∆

=

1 3 1 20
1 2 1 12

1
36

1
40

1
360

1
10

1
6

1
1

2
2

/ /
/ /

a a,

Thus, Equation 5.1.1 becomes

	
U x x x x x( ) ( ) ( )− − + −

1
10

1
6

2 3

This approximate solution may be compared with the exact solution:

	
U x x x( ) ( )= −

1
12

4

5.3  Integral Equations

An IE is any equation involving unknown function Φ under the integral sign. Simple 
examples of IEs are Fourier, Laplace, and Hankel transforms.
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5.3.1  Classification of IEs

Linear IEs that are most frequently studied fall into two categories named after Fredholm 
and Volterra. One class is the Fredholm equations of the first, second, and third kind, 
namely,

	
f x K x t t dt

a

b

( ) ( , ) ( ) ,= ∫ Φ
	

(5.7a)

	
f x x K x t t dt

a

b

( ) ( ) ( , ) ( ) ,= − ∫Φ Φλ
	

(5.7b)

	
f x a x x K x t t dt

a

b

( ) ( ) ( ) ( , ) ( ) ,= − ∫Φ Φλ
	

(5.7c)

where λ is a scalar (or possibly complex) parameter. Functions K(x, t) and f (x) and the limits 
a and b are known, while Φ(x) is unknown. The function K(x, t) is known as the kernel of the 
IE. The parameter λ is sometimes equal to unity.

The second class of IEs is the Volterra equations of the first, second, and third kind, 
namely,

	
f x K x t t dt

a

x

( ) ( , ) ( ) ,= ∫ Φ
	

(5.8a)

	
f x x K x t t dt

a

x

( ) ( ) ( , ) ( ) ,= − ∫Φ Φλ
	

(5.8b)

	
f x a x x K x t t dt

a

x

( ) ( ) ( ) ( , ) ( ) ,= − ∫Φ Φλ
	

(5.8c)

with a variable upper limit of integration. If f(x) = 0, the IEs (5.7a) through (5.8c) become 
homogeneous. Note that Equations 5.7a through 5.8c are all linear equations in that Φ enters 
the equations in a linear manner. An IE is nonlinear if Φ appears in the power of n > 1 
under the integral sign. For example, the IE

	
f x x K x t t dt

a

b

( ) ( ) ( , ) ( )= −∫Φ Φ2

	

(5.8)

is nonlinear. Also, if limit a or b or the kernel K(x, t) becomes infinite, an IE is said to be 
singular. Finally, a kernel K(x, t) is said to be symmetric if K(x, t) = K(t, x).
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5.3.2  Connection between Differential and IEs

The above classification of one-dimensional IEs arises naturally from the theory of 
differential equations, thereby showing a close connection between the integral and 
differential formulation of a given problem. Most ordinary differential equations can 
be expressed as IEs, but the reverse is not true. While boundary conditions are imposed 
externally in differential equations, they are incorporated within an IE.

For example, consider the first-order ordinary differential equation

	
d
dx

F x a x b
Φ

Φ= ≤ ≤( , ),
	

(5.9)

subject to Φ(a) = constant. This can be written as the Volterra integral of the second kind. 
Integrating Equation 5.9 gives

	
Φ Φ( ) ( , ( ))x F t t dt c

a

x

= +∫ 1

where c1 = Φ(a). Hence, Equation 5.9 is the same as

	
Φ Φ Φ( ) ( ) ( , )x a F t dt

a

x

= +∫
	

(5.10)

Any solution of Equation 5.10 satisfies both Equation 5.9 and the boundary conditions. 
Thus, an IE formulation incorporates both the differential equation and the boundary 
conditions.

Similarly, consider the second-order ordinary differential equation

	
d
dx

F x a x b
2

2

Φ
Φ= ≤ ≤( , ),

	
(5.11)

Integrating once yields

	

d
dx

F x t dt c
a

x
Φ

Φ= +∫ ( , ( )) 1

	

(5.12)

where c1 = Φ′(a). Integrating Equation 5.12 by parts,

	
Φ Φ( ) ( ) ( , ( ))x c c x x t F x t dt

a

x

= + + −∫2 1

where c2 = Φ(a) − Φ′(a)a. Hence,

	
Φ Φ Φ Φ( ) ( ) ( ) ( ) ( ) ( , )x a x a a x t F x dt

a

x

= + − + −′ ∫
	

(5.13)
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Again, we notice that IE (5.13) represents both the differential equation (5.11) and the 
boundary conditions. We have considered only one-dimensional IEs. IEs involving 
unknown functions in two or more space dimensions will be discussed later.

EXAMPLE 5.2

Solve the Volterra IE

	

Φ Φ( ) ( )x t dt

x

= + ∫1
0

Solution

This can be solved directly or indirectly by finding the solution of the corresponding 
differential equation. To solve it directly, we differentiate both sides of the given IE. In 
general, given an integral

	

g x f x t dt
x

x

( ) ( , )
( )

( )

= ∫
α

β

	

(5.14)

with variable limits, we differentiate this using the Leibnitz rule, namely,

	

′ ′ ′=
∂

∂
+ −∫g x

f x t
x

dt f x f x
x

x

( )
( , )

( , ) ( , )
( )

( )

α

β

β β α α

	

(5.15)

Differentiating the given IE, we obtain

	
d
dx

x
Φ

Φ= ( )
	

(5.16a)

or

	

d
x

dx
Φ

Φ( )
=

	
(5.16b)

Integrating gives

	 ln Φ = x + ln co

or

	 Φ = coex

where ln co is the integration constant. From the given IE

	 Φ(0) = 1 = co
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Hence,

	 Φ(x) = ex	 (5.17)

is the required solution. This can be checked by substituting it into the given IE.
An indirect way of solving the IE is by comparing it with Equation 5.10 and noting that

	 a = 0,  Φ(a) = Φ(0) = 1

and that F(x, Φ) = Φ(x). Hence, the corresponding first-order differential equation is

	
d
dx
Φ

Φ Φ= =, ( )0 1

which is the same as Equation 5.16, and the solution in Equation 5.17 follows.

EXAMPLE 5.3

Find the IE corresponding to the differential equation

	 Φ″′ − 3Φ″ − 6Φ′ + 8Φ = 0

subject to Φ″(0) = Φ′(0) = Φ(0) = 1.

Solution

Let Φ″′ = F(Φ, Φ, φ, x) = 3Φ″ + 6Φ′ − 8Φ. Integrating both sides,

	

′′ ′= + − +∫Φ Φ Φ Φ3 6 8
0

1

x

t dt c( )

	

(5.18)

where c1 is determined from the initial values, that is,

	 1 = 3 + 6 + c1 → c1 = −8

Integrating both sides of Equation 5.18 gives

	

′ = + − − − +∫ ∫Φ Φ Φ Φ3 6 8 8
0

2

o

x x

t dt x t t dt x c( ) ( ) ( )

	

(5.19)

where

	 1 = 3 + c2 → c2 = −2

Finally, we integrate both sides of Equation 5.19 to get

	

Φ Φ Φ Φ= + − − − − − +∫ ∫ ∫3 6 1 8 4 22 2
3

o

x

o

x

o

x

t dt x t dt x t t dt x x c( ) ( ) ( ) ( ) ( )
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where 1 = c3. Thus, the IE equivalent to the given differential equation is

	

Φ Φ( ) [ ( ) ( ) ] ( )x x x x t x t t dt
o

x

= − − + + − − −∫1 2 4 3 6 42 2

5.4  Green’s Functions

A more systematic means of obtaining an IE from a PDE is by constructing an auxiliary 
function known as Green’s function* for that problem [10–13]. Green’s function, also known 
as the source function or influence function, is the kernel function obtained from a linear 
boundary value problem and forms the essential link between the differential and integral 
formulations. Green’s function also provides a method of dealing with the source term 
(g in LΦ = g) in a PDE. In other words, it provides an alternative approach to the series 
expansion method of Section 2.7 for solving inhomogeneous boundary-value problems by 
reducing the inhomogeneous problem to a homogeneous one.

To obtain the field caused by a distributed source by Green’s function technique, we find 
the effects of each elementary portion of source and sum them. If G(r, r′) is the field at the 
observation point (or field point) r caused by a unit point source at the source point r′, then 
the field at r by a source distribution g(r′) is the integral of g(r′)G(r, r′) over the range of r′ 
occupied by the source. The function G is the Green function. Thus, physically, Green’s 
function G(r, r′) represents the potential at r due to a unit point charge at r′. For example, 
the solution to the Dirichlet problem

	

∇ =
=

2Φ
Φ

g R

f B

in
on 	

(5.20)

is given by

	

Φ = ′ ′ +
∂
∂

′∫
R B

g dv f
G
n
dS( ) ( , )r r rG �

	
(5.21)

where n denotes the outward normal to the boundary B of the solution region R. It is obvious 
from Equation 5.21 that the solution Φ can be determined provided Green’s function G is 
known. So the real problem is not that of finding the solution but that of constructing 
Green’s function for the problem.

Consider the linear second-order PDE

	 LΦ = g	 (5.22)

*	 Named after George Green (1793–1841), an English mathematician.
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We define Green’s function corresponding to the differential operator L as a solution of 
the point source inhomogeneous equation

	 LG (r, r′) = δ (r, r′)	 (5.23)

where r and r ′ are the position vectors of the field point (x, y, z) and source point (x′, y′, 
z′), respectively, and δ(r, r ′) is the Dirac delta function, which vanishes for r ≠ r ′ and 
satisfies

	 ∫ ′ ′ =′δ( ) ( ) ( )r, r rg dv g r
	

(5.24)

From Equation 5.23, we notice that the Green function G(r, r′) can be interpreted as the 
solution to the given boundary value problem with the source term g replaced by the unit 
impulse function. Thus, G(r, r′) physically represents the response of the linear system to a 
unit impulse applied at the point r = r′.

Green’s function has the following properties [13]:
	 a.	 G satisfies the equation LG = 0 except at the source point r′, that is,

	 LG (r, r′) = δ (r, r′)	 (5.23)

	 b.	 G is symmetric in the sense that

	 G (r, r′) = G (r′, r)	 (5.25)

	 c.	 G satisfies that prescribed boundary value f on B, that is,

	 G = f on B	 (5.26)

	 d.	 The directional derivative ∂G/∂n has a discontinuity at r′ which is specified by 
the equation

	
lim
ε→

∂
∂

=∫0
1

G
n
ds

s


	

(5.27)

where n is the outward normal to the sphere of radius ε as shown in Figure 5.1, that is,

	 | |r − ′ =r ε2

Property (b) expresses the principle of reciprocity; it implies that an exchange of source and 
observer does not affect G. The property is proved by Myint-U [13] by applying Green’s 
second identity in conjunction with Equation 5.23 while property (d) is proved by applying 
divergence theorem along with Equation 5.23.

5.4.1  For Free Space

We now illustrate how to construct the free space Green’s function G corresponding to a PDE. 
It is usually convenient to let G be the sum of a particular integral of the inhomogeneous 
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equation LG = g and the solution of the associated homogeneous equation LG = 0. In other 
words, we let

	 G F U( , ) ( , ) ( , )r r r′ = ′ + ′r r r 	 (5.28)

where F, known as the free-space Green’s function or fundamental solution, satisfies

	 LF = δ (r, r′) in R	 (5.29)

and U satisfies

	 LU = 0 in R	 (5.30)

so that by superposition G = F + U satisfies Equation 5.23. Also G = f on the boundary B 
requires that

	 U = −F + f on B	 (5.31)

Notice that F need not satisfy the boundary condition.
We apply this to two specific examples. First, consider the two-dimensional problem for 

which

	
L

x y
=

∂
∂

+
∂

∂
= ∇

2

2

2

2
2

	
(5.32)

The corresponding Green’s function G(x, y; x′, y′) satisfies

	 ∇ = − −′ ′ ′ ′2G x y x y x x y y( , ; , ) ( ) ( )δ δ 	 (5.33)

Hence, F must satisfy

	 ∇ = − −′ ′2F x x y yδ δ( ) ( )

FIGURE 5.1
Illustration of the field point (x, y, z) and source point (x′, y′, z′).
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For i.e forρ = − + − > ≠ ≠′ ′ ′ ′[( ) ( ) ] , , ., , ,/x x y y x x y y2 2 1 2 0

	
∇ =

∂
∂

∂
∂









 =2 1

0F
F

ρ ρ
ρ

ρ 	
(5.34)

which is integrated twice to give

	 F = A ln ρ + B	 (5.35)

Applying the property in Equation 5.27

	
lim lim
ε ε→ →∫ ∫= = =

0 0
0

2

2 1
dF
d

dl
A

d A
ρ ρ

ρ φ π
π



or A = (1/2π). Since B is arbitrary, we may choose B = 0. Thus,

	
F =

1
2π

ρln

and

	
G F U U= + = +

1
2π

ρln
	

(5.36)

We choose U so that G satisfies prescribed boundary conditions.
For the three-dimensional problem,

	
L

x y z
= ∇ =

∂
∂

+
∂

∂
+

∂
∂

2
2

2

2

2

2

2
	

(5.37)

and the corresponding Green’s function G(x, y, z; x′, y′, z′) satisfies

	 LG x y z x y z x x y y z z( , , ; , , ) ( ) ( ) ( )′ ′ ′ ′ ′ ′= − − −δ δ δ 	 (5.38)

Hence, F must satisfy

	

∇ = − − −

= − ′

′ ′ ′2F x x y y z zδ δ δ

δ

( ) ( ) ( )

( )r r

For r ≠ r′,

	
∇ =







 =2

2
21

0F
r

d
dr

r
dF
dr 	

(5.39)
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which is integrated twice to yield

	
F

A
r

B= − +
	

(5.40)

Applying Equation 5.27,

	
1 4

0 0
0

2

0

2
2= = =

→ →∫ ∫ ∫lim lim sin
ε ε

dF
dr

dS
A
r
r d d A

π π

φ θ φ π

or A = (1/4π). Choosing B = 0 leads to

	
F

r
= −

1
4π

and

	
G F U

r
U= + = − +

1
4π 	

(5.41)

where U is chosen so that G satisfies prescribed boundary conditions.
Table 5.1 lists some Green functions that are commonly used in the solution of EM-related 

problems. It should be observed from Table 5.1 that the form of the three-dimensional 
Green’s function for the steady-state wave equation tends to Green’s function for Laplace’s 
equation as the wave number k approaches zero. It is also worthy of remark that each 
of Green’s functions in closed form as in Table 5.1 can be expressed in series form. For 
example, Green’s function

	

F
j
H k

j
H k

= − − ′

= − + ′ − ′ − ′

4

4
2

0
1

0
1 2 2 1 2

( )

( ) /

( | |)

( [ cos( )] )

ρ ρ

ρ ρ ρρ φ φ
	

(5.42)

TABLE 5.1

Free-Space Green’s Functions

Operator Equation Laplace’s Equation
Steady-State Helmholtz’s 

(or wave) Equationa
Modified Steady-State 

Helmholtz’s (or Wave) Equation

Solution Region ∇2G = δ(r, r′) ∇2G + k2G = δ(r, r′) ∇2G − k2G = δ(r, r′)

1-Dimensional No solution for (−∞, ∞) − − ′j
k

jk x x
2

exp( | |) − − − ′1
2k

k x xexp( | |)

2-Dimensional
1

2π
ρ ρln| |− ′ − − ′j

H k
4 0

1( )( | |)ρ ρ − − ′1
2π

ρ ρK ko( | |)

3-Dimensional −
− ′

1
4π( )r r

−
− ′

− ′
exp( | |)

| |
jk r r

r r4π
−

− − ′
− ′

exp( | |)
| |
k r r
r r4π

a	 The wave equation has the time factor ejωt so that k = ω µε.
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can be written in series form as

	

F

j
H k e

j
H

n

n

n
jn

n

n

=

− ′ < ′

−

=−∞

∞
− − ′

=−∞

∞

∑

∑

4

4

1

1

( ) ( )

( )

( ) ( ) ,

(

ρ ρ ρ ρφ φJ k

kρρ ρ ρ ρφ φ) ( ) ,( )J kn
jne′ > ′











− − ′

	

(5.43)

This is obtained from addition theorem for Hankel functions [14]. It should be noted that 
Green’s functions are very difficult to construct in an explicit form except for the simplest 
shapes of domain.

With the aid of Green’s function, we can construct the IE corresponding to Poisson’s 
equation in three dimensions

	
∇ = −2V vρ

ε 	
(5.44)

as

	
V G dvv= ′ ′∫ ρ

ε
( )r r,

or

	
V

dv
r

v=
′

∫ ρ
π4 ε 	

(5.45)

Similarly, the IE corresponding to Helmholtz’s equation in three dimensions

	 ∇ 2Φ + k2Φ = g	 (5.46)

as

	
Φ = ′ ′∫ gG dv( , )r r

or

	
Φ =

′
∫ ge dv

r

jkr

4π 	
(5.47)

where an outgoing wave is assumed.
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5.4.2  For Domain with Conducting Boundaries

Green’s functions derived so far are useful if the domain is free space. When the domain is 
bounded by one or more grounded planes, there are two ways to obtain Green’s function:

	 a.	The method of images [12,15–22] and
	 b.	The eigenfunction expansion [12,16,17,22–30].

5.4.2.1  Method of Images

The method of images is a powerful technique for obtaining the field due to one or more 
sources with conducting boundary planes. If a point charge q is at some distance h from a 
grounded conducting plane, the boundary condition imposed by the plane on the resulting 
potential field may be satisfied by replacing the plane with an “image charge” −q located 
at a position which is the mirror location of q. Using this idea to obtain Green’s function is 
perhaps best illustrated with an example.

Consider the region between the ground planes at y = 0 and y = h as shown in Figure 
5.2. Green’s function G(x, y; x′, y′) is the potential at the point (x, y), which results when a 
unit line charge of 1 C/m is placed at the point (x′, y′). If no ground planes were present, 
the potential at distance ρ from a unit line charge would be

	
V( ) lnρ

π
ρ=

1
4

2

ε 	
(5.48)

In order to satisfy the boundary conditions on the ground planes, an infinite set of images 
is derived as shown in Figure 5.2. The potential due to such a sequence of line charges 
(including the original) within the strip is the superposition of an infinite series of images:

FIGURE 5.2
A single charge placed between two conducting planes produces the same potential as does the system of image 
charges when no conducting planes are present.



294 Computational Electromagnetics with MATLAB®

	

G x y x y x x y y x x y y( , ; , ) ln[( ) ( ) ] ln[( ) ( ) ]′ ′ = − ′ + + ′ − − ′ + − ′



1

4
2 2 2 2

πε


+ − − ′ + + ′−

− − ′ + − ′−
=

∞

∑( ) {ln[( ) ( ) ]

ln[( ) (

1 22 2

1

2

n

n

x x y y nh

x x y y 22

2

2

2

2 2

2 2

nh

x x y y nh

x x y y nh

) ]

ln[( ) ( ) ]

ln[( ) ( ) ]}

+ − ′ + + ′−

− − ′ + − ′−





=
− ′ + + ′−
− ′ + − ′−



=−∞

∞

∑1
4

2
2

2 2

2 2πε
ln

( ) ( )
( ) ( )

n

x x y y nh
x x y y nh










	
(5.49)

This series converges slowly and is awkward for numerical computation. It can be 
summed to give [15]

	

G x y x y

x x
h

y y
h

( , ; , ) ln
sinh

( )
sin

( )

′ ′ =

− ′







+

+ ′
1

4
2 2

2 2

π

π π

ε











− ′







+

− ′







sinh

( )
sin

( )2 2

2 2
π πx x

h
y y
h
























	

(5.50)

This expression can be shown to satisfy the appropriate boundary conditions along 
the ground plane, that is, G(x, y; x′, y′) = 0 at y = 0 or y = h. Note that G has exactly one 
singularity at x = x′, y = y′ in the region 0 ≤ y ≤ h.

In order to evaluate an integral involving G(x, y; x′, y′) in Equation 5.50, it is convenient 
to take out the singular portion of the unit source function. We rewrite Equation 5.50 as

	
G x y x y x x y y g x y x y( , ; , ) ln[( ) ( ) ] ( , ; , )′ ′ = − − ′ + + ′ + ′ ′1

4
2 2

πε 	
(5.51)

where

	

g x y x y
x x y y

x x
h

( , ; , ) ln
[( ) ( ) ] sinh

( )

′ ′ =
− ′ − ′ − ′









1
4

2
2 2 2

π

π

ε

+
− ′





















− ′









sin
( )

sinh
( )

2

2

2

2

π

π

y y
h

x x
h

+
− ′








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












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( )2

2
π y y

h
	

(5.52)

Note that g(x, y; x′, y′) is finite everywhere in 0 ≤ y ≤ h. The integral involving g is 
evaluated numerically, while the one involving the singular logarithmic term is evaluated 
analytically with the aid of integral tables.

The method of images has been applied in deriving Green’s functions for multiconductor 
transmission lines [18–20] and planar microwave circuits [16,17,21]. The method is restricted 
to the shapes enclosed by boundaries that are straight conductors.
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5.4.2.2  Eigenfunction Expansion

This method is suitable for deriving Green’s function for differential equations whose 
homogeneous solution is known. Green’s function is represented in terms of a series of 
orthonormal functions that satisfy the boundary conditions associated with the differential 
equation. To illustrate the eigenfunction expansion procedure, suppose we are interested 
in Green’s function for the wave equation

	

∂
∂

+
∂
∂

+ =
2

2

2

2
2 0

Ψ Ψ
Ψ

x y
k

	
(5.53)

subject to

	
∂
∂

= =
Ψ

Ψ
n

0 0or
	

(5.54)

Let the eigenfunctions and eigenvalues of Equation 5.53 that satisfy Equation 5.54 be Ψj 
and kj, respectively, that is,

	 ∇ + =2 2 0Ψ Ψj j jk 	 (5.55)

Assuming that Ψj form a complete set of orthonormal functions,

	
Ψ Ψj i

S

dx dy
j i

j i
* ,

,
=

=
≠




∫

1
0

	
(5.56)

where the asterisk (*) denotes complex conjugation. G(x, y; x′, y′) can be expanded in terms 
of Ψj, that is,

	
G x y x y a x yj j

j

( , ; , ) ( , )′ ′ =
=

∞

∑ Ψ
1 	

(5.57)

Since Green’s function must satisfy

	 ( ) ) ( ) ( )∇ + ′ ′ = − ′ − ′2 2k x y x y x x y yG( , ; , ,δ δ 	 (5.58)

substituting Equations 5.55 and 5.57 into Equation 5.58, we obtain

	
a k k x x y yj j j

j

( ) ( ) ( )2 2

1

− = − ′ − ′
=

∞

∑ Ψ δ δ
	

(5.59)

Multiplying both sides by Ψi
* and integrating over the region S gives

	
a k k dxdy x yj j

Sj

i ij( ) ( , )* *2 2

1

− = ′ ′∫∑
=

∞

Ψ Ψ Ψ
	

(5.60)
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Imposing the orthonormal property in Equation 5.56 leads to

	 a k k x yi i i( ) ( , )*2 2− = ′ ′Ψ

or

	
a

x y
k k

i
i

i
=

′ ′
−

Ψ*( , )
( )2 2

	
(5.61)

Thus,

	
G x y x y

x y x y
k k

j j

jj

( , ; , )
( , ) ( , )

( )

*

′ ′ =
′ ′

−
=

∞

∑ Ψ Ψ
2 2

1 	
(5.62)

The eigenfunction expansion approach has been applied to derive Green’s functions for 
plane conducting boundaries such as rectangular box and prism [22], planar microwave 
circuits [16,17,25], multilayered dielectric structures [23,24], waveguides [28], and surfaces of 
revolution [27]. The approach is limited to separable coordinate systems since the requisite 
eigenfunctions can be determined for only these cases.

EXAMPLE 5.4

Construct a Green’s function for

	 ∇2V = 0

subject to V (a, φ) = f (φ) within a circular disk ρ ≤ a.

Solution

Since g = 0, the solution is obtained from Equation 5.21 as

	

V f
G
n
dl

C

=
∂
∂∫

	
(5.63)

where the circle C is the boundary of the disk as shown in Figure 5.3. Let

	 G = F + U,

where F is already found to be

	
F = − ′1

2π
ρ ρln ,

that is,

	
F( , ; , ) ln cos( )ρ φ ρ φ

π
ρ ρ ρρ φ φ2 2 21

4
2′ ′ = + ′ − ′ − ′



 	

(5.64)
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The major problem is finding U. But

	 ∇2U = 0 in R	 (5.65a)

with

	 U = −F on C

or

	
U a a a( , ; , ) ln[ cos( )]φ ρ φ

π
ρ ρ φ φ′ ′ = − + ′ − ′ − ′1

4
22 2

	
(5.65b)

Thus, U can be found by solving the PDE in Equation 5.65a subject to the condition in 
Equation 5.65b. Applying the separation of variables method,

	
U

A
A n B nn

n n

n

= + +
=

∞

∑0

1
2

ρ φ φ[ cos sin ]
	

(5.66)

The term ρ−n is not included since U must be bounded at ρ = 0. To impose the boundary 
condition in Equation 5.65b on the solution in Equation 5.66, we first express Equation 
5.65b in Fourier series using the identity

	

z
n

n d z z
n

n

z

=

∞

∑ ∫=
−

+ −
= − + −

1
2

0

2

1 2
1
2

1cos
cos

cos
ln[θ

θ λ
λ λ

λ θ2 cos ]

	

(5.67)

FIGURE 5.3
A disk of radius a.
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Hence, Equation 5.65b becomes

	

U a a a
a

( , ; , ) ln ( ) cos( )

l

φ ρ φ
π

ρ
ρ

φ φ

π

′ ′ = − + ′ −
′

− ′












= −

1
4

1
2

1
2

2 2/

nn
cos ( )
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a
a

n
n

a
a

n

n

+
′











− ′

= − +
′











=

∞

∑1
2

1
2

1
2

1
π

ρ φ φ

π π
ρ

nn

n

n n n n
n

=

∞

∑
′ + ′

1

.

(cos cos sin sinφ φ φ φ
	

(5.68)

Comparing Equation 5.66 with Equation 5.68 at ρ = a, we obtain the coefficients An 
and Bn as

	

A
a

a A
n a

n

a B
n a

n
n

n

n
n

0

2
1

2

1
2

1
2

= −

=
′











′

=
′











π

π
ρ

φ

π
ρ

ln

cos

nn

nsin ′φ

Thus, Equation 5.66 becomes

	

U a
a a

n

n

n n

( , ; , ) ln
cos (

ρ φ ρ φ
π π

ρ ρ φ′ ′ = − +
′








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


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







=
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∑1
2

1
2

1
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= − − +
′









 −

′
− ′











φ

π π
ρρ ρρ

φ φ

)

ln ln cos( )

n

a
a a

1
2

1
4

1
2

2

2

2
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

 	

(5.69)

From Equations 5.64 and 5.69, we obtain Green’s function as

	

G

a
a

= + ′ − ′ − ′

− +
′

− ′ − ′

1
4

2

1
4

2

2 2

2
2 2

2

π
ρ ρ ρρ φ φ

π
ρ ρ

ρρ φ φ

ln[ cos( )]

ln cos( ))











	

(5.70)

An alternative means of constructing Green’s function is the method of images. Let us 
obtain Equation 5.70 using the method of images. Let

	
G P P r U( , ) ln′ = +

1
2π

The problem reduces to finding the induced field U, which is harmonic within the disk 
and is equal to −(1/2π) ln r on C. Let P′ be the singular point of Green’s function and let 
Po be the image of P′ with respect to the circle C as shown in Figure 5.4. The triangles 
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O Q P′ and O Q Po are similar because the angle at O is common and the sides adjacent 
to it are proportional. Thus,

	

′
= → ′ =

ρ
ρ

ρ ρ
a

a
a

o
o

2

	
(5.71)

That is, the product of O P′ and O Po is equal to the square of the radius O Q. At a point 
Q on C, it is evident from Figure 5.4 that

	
r

a
rQP QPo′ =

′ρ

Therefore,

	
U

r
a
PPo= −

′1
2π

ρ
ln

	
(5.72)

and

	
G r

a
rPP PPo= −

′
′

1
2

1
2π π

ρ
ln ln

	
(5.73)

Since rPP′ is the distance between P(ρ, φ) and P′(ρ′, φ′) while rPPo is the distance between 
P(ρ, φ) and Po( ′ρo, φ) = Po(a2/ρ′, φ),

	

r

r
a a

PP

PPo

′ = + ′ − ′ − ′

= +
′

−
′

− ′

2 2 2

2 2
4

2

2

2

2

ρ ρ ρρ φ φ

ρ
ρ

ρ
ρ

φ φ

cos( ),

cos( )

FIGURE 5.4
Image point Po of P′ with respect to circle C so that O P′ × O Po = O Q = a2 and O Q P′ and O Po Q are similar 
triangles.
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Substituting these into Equation 5.73, we obtain

	

G

a
a

= + ′ − ′ − ′

− +
′

− ′ − ′

1
4

2

1
4

2

2 2

2
2 2

2

π
ρ ρ ρρ φ φ

π
ρ ρ

ρρ φ φ

ln[ cos( )]

ln cos( ))











	

(5.74)

which is the same as Equation 5.70. From Equation 5.70 or Equation 5.74, the directional 
derivative ∂G/∂n = (∇G ⋅ an) on C is given by

	

∂
∂ ′

=
− − ′

+ − − ′

−
−

′=

G a

a

a
ρ

ρ φ φ
π ρ ρ φ φ

ρ
ρ

ρ

2 2
4 2

2
2

2 2

2

cos( )
[ cos( )]

cos(

a a

φφ φ

π ρ ρ φ φ

ρ
π ρ ρ φ φ

− ′

+ − − ′

=
−

+ − − ′

)

[ cos( )]
,

[ cos( )]

4 2

2 2

2 2

2 2

2 2

a a

a
a a a

Hence, the solution in Equation 5.63 becomes (with dl = adφ′)

	

V
a f d

a a
( , )

( ) ( )
[ cos( )]

ρ φ
π

ρ φ φ
ρ ρ φ φ

π

=
− ′ ′

+ − − ′∫1
2 2

2 2

2 2

0

2

	

(5.75)

which is known as Poisson’s integral formula.

EXAMPLE 5.5

Obtain the solution for the Laplace operator on unbounded half-space, z ≤ 0, with the 
condition V(z = 0) = f.

Solution

Again the solution is

	

V f
G
n
dS

S

=
∂
∂∫

where S is the plane z = 0. We let

	
G U=

− ′
+

1
4π| |

,
r r

so that the major problem is reduced to finding U. Using the method of images, it is easy 
to see that the image point of P′(x′, y′, z′) is Po(x′, y′, −z′) as shown in Figure 5.5. Hence,

	
U

o
= −

−
1

4π| |r r
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and

	
G

o
=

− ′
−

−
1

4
1

4π π| | | |
,

r r r r

where

	

| [( ) ( ) ( ) ]

| [( ) ( )

/r r

r r

− ′ − ′ + − ′ + − ′

− − ′ + − ′

|

|

=

=

x x y y z z

x x y yo

2 2 2 1 2

2 2 ++ + ′( ) ] /z z 2 1 2

Notice that G reduces to zero at z = 0 and has the required singularity at P′(x′, y′, z′). 
The directional derivative ∂G/∂n on plane z = 0 is

	

∂
∂ ′

=
− ′
− ′

+
+ ′
−













=

′= ′=

G
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z z z z
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z o
z0 0

1
4
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π

π

( )
|

( )
|
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r r r r| |3 3

xx x y y z− ′ + − ′ +) ( ) ] /2 2 2 3 2

Hence,

	

V x y z
zf x y dx dy

x x y y z
( , , )

,
[ ( ) /=

′ ′ ′ ′
− ′ + − ′ +

−∞

∞

−∞

∞

∫∫1
2 2 2 2 3 2π

( )
( ) ]

EXAMPLE 5.6

Using Green’s function, construct the solution for Poisson’s equation

	

∂
∂

+
∂
∂

=
2

2

2

2

V
x

V
y

f x y( , )

FIGURE 5.5
Half-space problem of Example 5.5.
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subject to the boundary conditions

	 V y V a y V x V x b( , ) ( , ) ( , ) ( , )0 0 0= = = =

Solution

According to Equation 5.21, the solution is

	

V x y f x y G x y x y dx dy

b a

( , ) ( , ) ( , ; , )= ′ ′ ′ ′ ′ ′∫ ∫
0 0 	

(5.76)

so that our problem is essentially that of obtaining Green’s function G(x, y; x′, y′). Green’s 
function satisfies

	

∂
∂

+
∂
∂

= − ′ − ′
2

2

2

2

G
x

G
y

x x y yδ δ( ) ( )
	

(5.77)

To apply the series expansion method of finding G, we must first determine 
eigenfunctions Ψ(x, y) of Laplace’s equation, that is,

	 ∇2Ψ = λΨ

where Ψ satisfies the boundary conditions. It is evident that the normalized eigenfunctions 
are

	
Ψmn

ab
m x
a

n y
b

=
2

sin sin
π π

with the corresponding eigenvalues

	
λ

π π
mn

m
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n
b

= − +









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2
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n y
b
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=

∞

∑∑2

11

π π

	
(5.78)

The expansion coefficients, Amn, are determined by substituting Equation 5.78 into 
Equation 5.77, multiplying both sides by sin(mπ x/a) sin(nπ y/b), and integrating over 
0 < x < a, 0 < y < b. Using the orthonormality property of the eigenfunctions and the 
shifting property of the delta function results in

	
− +











=
′ ′m

a
n
b

A
ab

m x
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n y
b

mn

2 2

2

2 2

2

2π π π π
sin sin
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Obtaining Amn from this and substituting into Equation 5.78 gives

	
G x y x y

ab

m x
a

m x
a

n y
b

n y
b

m a n
( , ; , )

sin sin sin sin

/
′ ′ = −

′ ′

+
4

2 2 2 2

π π π π

π π22 2
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/b
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∞

=

∞

∑∑
	

(5.79)

Another way of obtaining Green’s function is by means of a single series rather than 
a double summation in Equation 5.79. It can be shown that [28,29]
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n a
b

x x
n

π
=

∞

∑ > ′










1

	

(5.80)

By Fourier series expansion, it can be verified that the expressions in Equations 5.79 and 
5.80 are identical. Besides the factor 1/ε, Green’s function in Equation 5.79 or Equation 
5.80 gives the potential V due to a unit line source at (x′, y′) in the region 0 < x < a, 
0 < y < b as shown in Figure 5.6.

EXAMPLE 5.7

An infinite line source Iz is located at (ρ′, φ′) in a wedge waveguide shown in Figure 5.7. 
Derive the electric field due to the line.

Solution

Assuming the time factor ejωt, the z-component of E for the TE mode satisfies the wave 
equation

	 ∇ + =2 2E k E j Iz z zωµ 	 (5.81)

with

	
∂
∂

=
E
n
z 0

FIGURE 5.6
Line source in a rectangular region.
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where k = ω µε  and n is the outward unit normal at any point on the periphery of the 
cross section. Green’s function for this problem satisfies

	 ∇ + = − ′2 2G k G jωµδ ρ ρ( )	 (5.82)

with

	
∂
∂

=
G
n

0

so that the solution to Equation 5.81 is

	

E j I G dSz z

S

= ′ ′ ′ ′∫ωµ ρ φ ρ φ ρ φ( , ) ( , ; , )

	
(5.83)

To determine Green’s function G(ρ, φ; ρ′, φ′), we find Ψi so that Equation 5.62 can be 
applied. The boundary condition ∂G/∂n = 0 implies that

	

1
0

1

0ρ φ ρ φ ρφ φ α ρ

∂
∂

= =
∂
∂

=
∂
∂= = =

G G G

a	
(5.84)

The set of functions which satisfy the boundary conditions are

	 Ψmv v mvJ k v( , ) ( )cosρ φ ρ φ= 	 (5.85)

where

	 v = nπ/α,  n = 0, 1, 2, …,	 (5.86a)

kmv are chosen to satisfy

	

∂
∂

=
=

ρ
ρ

ρ

J kv mv

a

( ) ,0
	

(5.86b)

FIGURE 5.7
Line source in a waveguide.
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and the subscript m is used to denote the mth root of Equation 5.86b; m can take the 
value zero for n = 0. The functions Ψmv are orthogonal if and only if v is an integer which 
implies that v is an integral multiple of α. Let α = n/, where  is a positive integer, so 
that Φmv are mutually orthogonal. To obtain Green’s function using Equation 5.62, these 
eigenfunctions must be normalized over the region, that is,

	 0
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2

2 2 2 2

2
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2
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v mv
mv v mv
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a m v
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(5.87a)
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(5.87b)

where v = n. Using the normalized eigenfunctions, we obtain
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(5.88)

where

	
εv

v

v
=

=
≠






2 0
1 0

,
, 	

(5.89)

We have employed the fact that ωµ/k2 = 1/ωε to obtain the first term on the right-hand 
side of Equation 5.88.

5.5  Applications I: Quasi-Static Problems

The MoM has been applied to so many EM problems that covering all of them is practically 
impossible. We will consider only the relatively easy ones to illustrate the techniques 
involved. Once the basic approach has been mastered, it will be easy for the reader to 
extend the idea to attack more complicated problems.

We will apply MoM to a static problem in this section; more involved application will 
be considered in the sections to follow. We will consider the problem of determining the 
characteristic impedance Zo of a strip transmission line [31].

Consider the strip transmission of Figure 5.8a. If the line is assumed to be infinitely long, 
the problem is reduced to a two-dimensional TEM problem of line sources in a plane as in 
Figure 5.8b. Let the potential difference of the strips be Vd = 2V so that strip 1 is maintained 
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at +1V while strip 2 is at −1V. Our objective is to find the surface charge density ρ(x, y) on 
the strips so that the total charge per unit length on one strip can be found as

	
Q dl = ∫ ρ

	
(5.90)

(Q is charge per unit length as distinct from the total charge on the strip because we are 
treating a three-dimensional problem as a two-dimensional one.) Once Q is known, the 
capacitance per unit length C can be found from

	
C

Q
Vd


=
	

(5.91)

Finally, the line characteristic impedance is obtained:

	
Z

C uC
o = =

( ) /µε 1 2 1

  	
(5.92)

where u = 1/ µε  is the speed of the wave in the (lossless) dielectric medium between the 
strips. Everything is straightforward once the charge density ρ(x, y) in Equation 5.90 is 
known. To find ρ using MoM, we divide each strip into n subareas of equal width Δ so 

FIGURE 5.8
(a) Strip transmission line. (b) The two-dimensional view.
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that subareas in strip 1 are numbered 1, 2, …, n, while those in strip 2 are numbered n + 1, 
n + 2, n + 3, …, 2n. The potential at an arbitrary field point is

	
V x y x y

R
r
dx dy

o
( , ) ( , )ln= ′ ′ ′ ′∫1

2π
ρ

ε 	
(5.93)

where R is the distance between source and field points, that is,

	 R x x y y= − ′ + − ′[( ) ( ) ] /2 2 1 2
	 (5.94)

Since the integral in Equation 5.93 may be regarded as rectangular subareas in a numerical 
sense, the potential at the center of a typical subarea Si is
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(5.95)

where
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(5.96)

Rij is the distance between ith and jth subareas, and Aij ρj represents the potential at point 
i due to subarea j. In Equation 5.95, we have assumed that the charge density ρ is constant 
within each subarea. For all the subareas Si, i = 1, 2, …, 2n we have
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Thus, we obtain a set of 2n simultaneous equations with 2n unknown charge densities 
ρi. In matrix form,
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or simply

	 [A][ρ] = [B]	 (5.97)

It can be shown that [32] the elements of matrix [A] expressed in Equation 5.96 can be 
reduced to
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(5.98)

where ro is a constant scale factor (commonly taken as unity). From Equation 5.97, we obtain 
[ρ] either by solving the simultaneous equation or by matrix inversion, that is,

	 [ρ] = [A]−1[B]	 (5.99)

Once [ρ] is known, we determine C from Equations 5.90 and 5.91 as

	
C Vj d

j

n

 = ∆
=

∑ρ /
1 	

(5.100)

where Vd = 2 V. Obtaining Zo follows from Equations 5.92 and 5.100.

EXAMPLE 5.8

Write a program to find the characteristic impedance Zo of a strip line with H = 2 m, 
W = 5 m, ε = εo, µo = µo, and Vd = 2 V.

Solution

The MATLAB program is shown in Figure 5.9. With the given data, the program 
calculates the elements of matrices [A] and [B] and determines [ρ] by matrix inversion. 
With the computed charge densities the capacitance per unit length is calculated using 
Equation 5.100 and the characteristic impedance from Equation 5.92. Table 5.2 presents 
the computed values of Zo for a different number of segments per strip, n. The results 
agree well with Zo = 50 Ω from Wheeler’s curve [33].
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FIGURE 5.9
MATLAB program for Example 5.8.� (Continued)
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5.6  Applications II: Scattering Problems

The purpose of this section is to illustrate, with two examples, how the MoM can be applied 
to solve electromagnetic scattering problems. The first example is on scattering of a plane 

FIGURE 5.9 (Continued)
MATLAB program for Example 5.8..

TABLE 5.2

Characteristic Impedance of 
a Strip Transmission Line

n Zo (in Ω)

3 94.382
7 96.755
11 97.366
18 97.755
39 98.163
59 98.3011
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wave by a perfectly conducting cylinder [3], while the second is on scattering of a plane 
wave by an arbitrary array of parallel wires [34].

5.6.1  Scattering by Conducting Cylinder

Consider an infinitely long, perfectly conducting cylinder located at a far distance from a 
radiating source. Assuming a time-harmonic field with time factor ejωt, Maxwell’s equations 
can be written in phasor form as

	 ∇⋅ =Es 0	 (5.101a)

	 ∇⋅ =Hs 0	 (5.101b)

	 ∇× = −E Hs sjωµ 	 (5.101c)

	 ∇× = +H J Es s sjωε 	 (5.101d)

where the subscript s denotes phasor or complex quantities. Henceforth, we will drop 
subscript s for simplicity and use the same symbols for the frequency-domain quantities 
and time-domain quantities. It is assumed that the reader can differentiate between 
the two quantities. Taking the curl of Equation 5.101c and applying Equation 5.101d, we 
obtain

	 ∇×∇× = − ∇× = − +E H J Ej j jωµ ωµ ω( )ε 	 (5.102)

Introducing the vector identity

	 ∇ × ∇ × A = ∇(∇ ⋅ A) − ∇2A

into Equation 5.102 gives

	 ∇(∇ ⋅ E) − ∇ 2E = −jωµ(J + jωεE)

In view of Equation 5.101a, ∇(∇ ⋅ E) = 0 so that

	 ∇ 2E + k2E = jωµJ	 (5.103)

where k = ω(µε)1/2 = 2π/λ is the wave number and λ is the wavelength. Equation 5.103 is 
the vector form of the Helmholtz wave equation. If we assume a TM wave (Hz = 0) with 
E = Ez(x, y)az, the vector equation (5.103) becomes a scalar equation, namely,

	 ∇ 2Ez + k2Ez = jωµJz	 (5.104)

where J = Jzaz is the source current density. The integral solution to Equation 5.104 is

	
E x y E

k
k dSz z

o
z

S

( , ) ( ) ( ) ( | |)( )= = − ′ − ′ ′∫ρ η ρ ρ ρ
4 0

2J H

	
(5.105)
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where ρ = xax + yay is the field point, ρ′ = x′ax + y′ay is the source point, ηo = (µo/εo)½ ≃ 377 Ω 
is the intrinsic impedance of free space, and H0

2( ) = Hankel function of the second kind of 
zero order since an outward-traveling wave is assumed. The integration in Equation 5.105 
is over the cross section of the cylinder shown in Figure 5.10.

If field Ez
i  is incident on a perfectly conducting cylinder, it induces surface current Jz on 

the conducting cylinder, which in turn produces a scattered field Ez
s. The scattered field Ez

s 
due to Jz is expressed by Equation 5.105. On the boundary C, the tangential component of 
the total field must vanish. Thus,

	 E E Cz
i

z
s+ =   0 on 	 (5.106)

Substitution of Equation 5.105 into Equation 5.106 yields

	
E

k
H k dlz

i o
z

C

( ) ( ) ( | |)( )ρ η ρ ρ ρ= ′ − ′ ′∫4 0
2J

	
(5.107)

In IE (5.107), the induced surface current density Jz is the only unknown. We determine 
Jz using the moment method.

We divide the boundary C into N segments and apply the point matching technique. On 
a segment ΔCn, Equation 5.107 becomes

	
E

k
H k Cz

i
n

o
z

m

N

m n m m( ) ( ) ( | |)( )ρ η ρ ρ ρ= − ∆
=

∑4
1

0
2J

	
(5.108)

where the integration in Equation 5.107 has been replaced by summation. On applying 
Equation 5.108 to all segments, a system of simultaneous equations results. The system of 
equations can be cast in matrix form as
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(5.109a)

FIGURE 5.10
Cross section of the cylinder.
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or

	 [E] = [A][J]	 (5.109b)

Hence,

	 [J] = [A]−1[E]	 (5.110)

To determine the exact values of elements of matrix [A] may be difficult. Approximately [6],
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k
C H k x x y y m n

k
j
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(5.111)

where (xn, yn) is the midpoint of ΔCn, e = 2.718 …, and γ = 1.781 … . Thus for a given cross 
section and specified incident field Ez

i  the induced surface current density Jz can be found 
from Equation 5.110. To be specific, assume the propagation vector k is directed as shown 
in Figure 5.11 so that

	 E E ez
i

o
j= ⋅k r

where r = xax + yay, k = k(cos φiax + sin φiay), k = 2π/λ, and φi is the incidence angle. Taking 
Eo = 1 so that | |Ez

i  = 1,

	 E ez
i x yjk i i= +( )cos sinφ φ

	 (5.112)

FIGURE 5.11
Typical propagation of vector k.
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Given any C (dictated by the cross section of the cylinder), we can substitute Equations 5.111 
and 5.112 into Equation 5.109 and determine [J] from Equation 5.110. Once Jz, the induced 
current density, is known, we calculate the scattering cross section σ defined by

	

σ φ φ πρ φ
φ

η φ

( , )
( )
( )

( , ) ( cos sin

i
z
s

z
s

i

o
z
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jk x y

E
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J x y e
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= ′ ′∫ ′ + ′

2

4

2

2
φφ)dl′

2

	
(5.113)

where φ is the angle at the observation point, the point at which σ is evaluated. In matrix 
form,

	
σ φ φ η

( , ) |[ ][ ] [ ]|i n
s

nm m
ik

V Z V= −
2

1 2

4 	
(5.114)

where

	 V C em
i

m
jk x ym i m i= ∆ +( cos cos ) ,φ φ

	 (5.115a)

	 V C en
s

n
jk x yn n= ∆ +( cos cos ) ,φ φ

	 (5.115b)

and

	 Zmn = ΔCm Amn	 (5.115c)

5.6.2  Scattering by an Arbitrary Array of Parallel Wires

This problem is of more general nature than the one just described. As a matter of fact, 
any infinitely long, perfectly conducting, thin metal can be modeled as an array of parallel 
wires. It will be shown that the scattering pattern due to an arbitrary array of line sources 
approaches that of a solid conducting cylinder of the same cross-sectional geometry if 
a sufficiently large number of wires are present and they are arrayed on a closed curve. 
Hence, the problem of scattering by a conducting cylinder presented above can also be 
modeled with the techniques to be described here.

Consider an arbitrary array of N parallel, infinitely long wires placed parallel to the 
z-axis [34]. Three of such wires are illustrated in Figure 5.12. Let a harmonic TM wave 
be incident on the wires. Assuming a time factor ejωt, the incident wave in phasor form 
is given by

	
E E x y ez
i

i
jhz= −( , )

	 (5.116)

where

	 E x y E ei o
jk x yi i i i( , ) ( sin cos sin sin )= − +θ φ θ φ

	 (5.117a)
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	 h k i= cos ,θ 	 (5.117b)

	
k = =

2 1 2π
λ

ω µ( ) ,/ε
	

(5.117c)

and θi and φi define the axis of propagation as illustrated in Figure 5.13. The incident wave 
induces current on the surface of wire n. The induced current density has only z component.

It can be shown that the field due to a harmonic current In uniformly distributed on a 
circular cylinder of radius an has a z component given by

	 E I H e an n n
jhz

n n= − ′ >−
0
2( )( ) ,gρ ρ 	 (5.118)

where

	
′ =I

g
k

I J gan n n
ωµ 2

2 0
4

( ),
	

(5.119)

	 g2 + h2 = k2,	 (5.120)

FIGURE 5.12
An array of three wires parallel to the z-axis.

FIGURE 5.13
Propagation vector k.
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J0 is Bessel function of order zero, and H0 is Hankel function of the second kind of order 
zero. By induction theorem, if In is regarded as the induced current, Equation 5.118 may be 
considered as the scattered field, that is,

	
E I H g ez
s

n

n

N

n
jhz= − ′

=

−∑ 0
2

1

( )( )ρ
	

(5.121)

where the summation is taken over all the N wires. On the surface of each wire (assumed 
perfectly conducting),

	 E Ez
i

z
s+ = 0

or

	 E Ez
i

z
s

n= − =, ρ ρ 	 (5.122)

Substitution of Equations 5.116 and 5.121 into Equation 5.122 leads to
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(5.123)

where
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(5.124)

and am is the radius of the mth wire. In matrix form, Equation 5.123 can be written as

	 [A][I] = [B]

or

	 [I] = [A]−1[B]	 (5.125)

where

	 I In n= ′ ,	 (5.126a)

	 A H gmn mn= 0
2( )( ),ρ 	 (5.126b)

	 B E em o
jk x ym i i m i i= − +( sin cos sin sin )θ φ θ φ

	 (5.126c)

Once ′In  is calculated from Equation 5.125, the scattered field can be obtained as

	

E I H g ez
s

n

n

N

n
jhz= − ′

=

−∑
1

0
2( )( )ρ

	
(5.127)
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Finally, we may calculate the “distant scattering pattern,” defined as

	
E I en

jg x y

n

N
n n( ) ( cos sin )φ φ φ= ′ +

=
∑

1 	
(5.128)

The following example, taken from Richmond’s work [34], will be used to illustrate the 
techniques discussed in the latter half of this section.

EXAMPLE 5.9

Consider the two arrays shown in Figure 5.14. For Figure 5.14a, take

Number of wires, N = 15
Wire radius, ka = 0.05
Wire spacing, ks = 1.0
θo = 90°, φo = 40°, 270° < φ < 90°

and for Figure 5.14b, take

Number of wires, N = 30
Wire radius, ka = 0.05
Cylinder radius, R = 1.12λ

θo = 90°, φo = 0, 0 < φ < 180°

For the two arrays, calculate and plot the scattering pattern as a function of φ.

FIGURE 5.14
For Example 5.8: (a) A plane array of 15 parallel wires, (b) a semicircular array of 30 parallel wires.
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Solution

The MATLAB code for calculating the scattering pattern E(φ) based on Equation 5.128 is 
shown in Figure 5.15. The same program can be used for the two arrays in Figure 5.14, 
except that the input data on N, ka, ks and the locations (xn, yn), n = 1, 2, …, N of the wires 
are different. The program essentially calculates In required in Equation 5.128 using 
Equations 5.125 and 5.126. The plots of E(φ) against φ are portrayed in Figures 5.16 and 
5.17 for the arrays in Figure 5.14a and b, respectively.

FIGURE 5.15
Computer program for Example 5.9.� (Continued)
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FIGURE 5.15 (Continued)
Computer program for Example 5.9.

FIGURE 5.16
Scattering pattern for the plane array of Figure 5.14a.
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5.7  Applications III: Radiation Problems

In this section, we consider the application of MoM to wires or cylindrical antennas. The 
distinction between scatterers considered in the previous section and antennas to be treated 
here is primarily that of the location of the source. An object acts as a scatterer if it is far 
from the source; it acts as an antenna if the source is on it [3].

Consider a perfectly conducting cylindrical antenna of radius a, extending from z = −/2 
to z = /2 as shown in Figure 5.18. Let the antenna be situated in a lossless homogeneous 
dielectric medium (σ = 0). Assuming a z-directed current on the cylinder (J = Jzaz), only 
axial electric field Ez is produced due to axial symmetry. The electric field can be expressed 
in terms of the retarded potentials of Equation 1.38 as

	
E j A

V
z

z z= − −
∂
∂

ω
	

(5.129)

Applying the Lorentz condition of Equation 1.41, namely,

	
∂
∂

= −
A
z

j Vz ωµε ,
	

(5.130)

FIGURE 5.17
Scattering pattern for the semicircular array of Figure 5.14b.



321Moment Methods

Equation 5.129 becomes
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(5.131)

where k = ω(µε)1/2 = 2π/λ, ω is the angular frequency of the suppressed harmonic time 
variation ejωt. From Equation 1.44
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where G(x, y, z; x′, y′, z′) is the free space Greens’ function, that is,

	
G x y z x y z

e
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jkR

( , , ; , , )′ ′ ′ =
−

4π 	
(5.133)

and R is the distance between observation point (x, y, z) and source point (x′, y′, z′) or

	 R x x y y z z= − ′ + − ′ + − ′[( ) ( ) ( ) ] /2 2 2 1 2
	 (5.134)

Combining Equations 5.131 and 5.132 gives
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(5.135)

This integro-differential equation is not convenient for numerical analysis because it 
requires evaluation of the second derivative with respect to z of the integral. We will now 
consider two types of modification of Equation 5.135 leading to Hallen’s (magnetic vector 

FIGURE 5.18
Cylindrical antenna of length l and radius a.
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potential) and Pocklington’s (electric field) IEs. Either of these IEs can be used to determine 
the current distribution on a cylindrical antenna or scatterer and subsequently calculate all 
other quantities of interest.

5.7.1  Hallen’s IE

We can rewrite Equation 5.135 in a compact form as

	

d
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k F z k S z z
2

2
2 2 2 2+
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(5.136)

where
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(5.137a)

	
S z

E
j

z( ) = −
ωµ 	

(5.137b)

Equation 5.136 is a second-order linear ordinary differential equation. The general 
solution to the homogeneous equation
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which is consistent with the boundary condition that the current must be zero at the wire 
ends (z = ±/2), is

	 F z c kz c kzh( ) cos sin= +1 2 	 (5.138)

where c1 and c2 are integration constants. The particular solution of Equation 5.136 can be 
obtained, for example, by the Lagrange method of varying constants [35] as
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(5.139)

Thus from Equations 5.137 through 5.139, the solution to Equation 5.136 is
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(5.140)

where η µ= /ε  is the intrinsic impedance of the surrounding medium. Equation 5.140 is 
referred to as Hallen’s integral equation [36] for a perfectly conducting cylindrical antenna or 
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scatterer. The equation has been generalized by Mei [37] to perfectly conducting wires of 
arbitrary shape. Hallen’s IE is computationally convenient since its kernel contains only /r 
terms. Its major advantage is the ease with which a converged solution may be obtained, 
while its major drawback lies in the additional work required in finding the integration 
constants c1 and c2 [35,38].

5.7.2  Pocklington’s IE

We can also rewrite Equation 5.135 by introducing the operator in parentheses under the 
integral sign so that
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(5.141)

This is known as Pocklington’s integral equation [39]. Note that Pocklington’s IE has Ez, 
which represents the field from the source on the right-hand side. Both Pocklington’s and 
Hallen’s IEs can be used to treat wire antennas. The third type of IE derivable from Equation 
5.135 is the Schelkunoff’s IE, found in Reference 35.

5.7.3  Expansion and Weighting Functions

Having derived suitable IEs, we can now find solutions for a variety of wire antennas or 
scatterers. This usually entails reducing the IEs to a set of simultaneous linear equations 
using the MoM. The unknown current I (z) along the wire is approximated by a finite set 
un(z) of basis (or expansion) functions with unknown amplitudes as discussed in the last 
chapter. That is, we let

	
I z I u zn n

n

N

( ) ( ),=
=

∑
1 	

(5.142)

where N is the number of basis functions needed to cover the wire and the expansion 
coefficients In are to be determined. The functions un are chosen to be linearly independent. 
The basis functions commonly used in solving antenna or scattering problems are of 
two types: entire domain functions and subdomain functions. The entire domain basis 
functions exist over the full domain −/2 < z < /2. Typical examples are [8,40]

	 1.	Fourier:

	 u z n vn( ) cos( ) / ,= −1 2 	 (5.143a)

	 2.	Chebychev:

	 u z T vn n( ) ( ),= −2 2 	 (5.143b)

	 3.	Maclaurin:

	 un(z) = v2n−2,	 (5.143c)
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	 4.	Legendre:

	 un(z) = P2n−2(v),	 (5.143d)

	 5.	Hermite:

	 un(z) = H2n−2(v),	 (5.143e)

where v = 2z/ and n = 1, 2, …, N. The subdomain basis functions exist only on one of 
the N nonoverlapping segments into which the domain is divided. Typical examples are 
[41,42]

	 1.	Piecewise constant (pulse) function:
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	 2.	Piecewise linear (triangular) function:
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(5.144b)

	 3.	Piecewise sinusoidal function:

	

u z
k z z z

k
z z z

n

n
n n

( )
sin ( | )

sin
,

, otherwise,
=

− −
∆

< <








− +
|

1 1

0 	

(5.144c)

where Δ = /N, assuming equal subintervals although this is unnecessary. Figure 5.19 
illustrates these subdomain functions. The entire domain basis functions are of limited 
applications since they require a prior knowledge of the nature of the function to be 
represented. The subdomain functions are the most commonly used, particularly in 
developing general-purpose user-oriented computer codes for treating wire problems. For 
this reason, we will focus on using subdomain functions as basis functions.

Substitution of the approximate representation of current I(z) in Equation 5.142 into 
Pocklington’s IE of Equation 5.141 gives
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is the kernel, z = zm on segment m is the point on the wire at which the IE is being enforced. 
Equation 5.145 may be written as

	

I K z z u z dz E zn

n

N

m n

z

z m

n
=

∑ ∫ ′ ′ ′
1

( , ) ( ) ( )
∆



or

	
I g E zn m z m

n

N

=
=

∑ ( )
1 	

(5.146)

where

	

g K z z u z dzm m n

zn

= ′ ′ ′

∆ ′
∫ ( , ) ( )

	
(5.147)

In order to solve for the unknown current amplitudes In (n = 1, 2, …, N), N equations 
need to be derived from Equation 5.146. We achieve this by multiplying Equation 5.146 by 
weighting (or testing) functions wn (n = 1, 2, … , n) and integrating over the wire length. In 
other words, we let Equation 5.146 be satisfied in an average sense over the entire domain. 
This leads to forming the inner product between each of the weighting functions and gm 
so that Equation 5.146 is reduced to

	
I g E m Nn n m

n

N

n z〈 〉=〈 〉 =
=

∑ ω ω, , , , , ,
1

1 2 …
	

(5.148)

FIGURE 5.19
Typical subdomain weighting functions: (a) piecewise uniform function, (b) piecewise linear function, 
(c) piecewise sinusoidal function.
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Thus, we have a set of N simultaneous equations which can be written in matrix form as
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or

	 [Z][I] = [V]	 (5.149)

where zmn = 〈ωn, gm〉 and Vm = 〈ωm, Ez〉. The desired solution for the current is then obtained 
by solving the simultaneous equations (5.149) or by matrix inversion, that is,

	 [I] = [Z]−1[V]	 (5.150)

Because of the similarity of Equation 5.149 to the network equations, the matrices [Z], [V], 
and [I] are referred to as generalized impedance, voltage, and current matrices, respectively 
[6]. Once the current distribution I(z′) is determined from Equation 5.149 or Equation 5.150, 
parameters of practical interest such as input impedance and radiation patterns are readily 
obtained.

The weighting functions {wn} must be chosen so that each Equation 5.148 is linearly 
independent and computation of the necessary numerical integration is minimized. 
Evaluation of the integrals in Equation 5.149 is often the most time-consuming portion of 
scattering or radiation problems. Sometimes we select similar types of functions for both 
weighting and expansion. As discussed in the previous chapter, choosing wn = un leads to 
Galerkin’s method, while choosing wn = δ(z − zn) results in point matching (or colocation) 
method. The point matching method is simpler than Galerkin’s method and is sufficiently 
adequate for many EM problems. However, it tends to be a slower converging method. The 
general rules that should be followed in selecting the weighting functions are addressed in 
Reference 43. The following examples are taken from References 41,44–46.

EXAMPLE 5.10

Solve the Hallen’s IE

	

I z G z z dz
j
A kz B k z

o
( ) ( , ) ( cos sin ||)

/

/

′ ′ ′ = − +
−

∫ η




2

2

where k = 2n/λ is the phase constant and ηo = 377 Ω is the intrinsic impedance of free 
space. Consider a straight wire dipole with length L = 0.5 λ and radius a = 0.005λ.

Solution

The IE has the form

	

I z K z z dz D z( ) ( , ) ( )
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∫
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2

2

	

(5.151)
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which is a Fredholm IE of the first kind. In Equation 5.151,

	
K z z G z z

e
R

jkR
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(5.152a)

	 R a z z= + − ′2 2( ) ,	
(5.152b)

and

	
D z

j
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o
( ) [ cos( ) sin( ||)]= − +

η 	
(5.152c)

If the terminal voltage of the wire antenna is VT, the constant B = VT/2. The absolute 
value in sin k|z| expresses the assumption of antenna symmetry, that is, I (−z′) = I(z′). 
Thus,
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(5.153)

If we let

	
I z I u zn n
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(5.154)

Equation 5.153 will contain N unknown variables In and the unknown constant A. To 
determine the N + 1 unknowns, we divide the wire into N segments. For the sake of 
simplicity, we choose segments of equal lengths Δz = /N and select N + 1 matching 
points such as

	 z z z= − − + ∆ −∆� � … … � �/ / / /2 2 0 2 2, , , , , ,

At each match point z = zm,
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(5.155)

Taking the inner products (moments) by multiplying either side with a weighting 
function wm(z) and integrating both sides,
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(5.156)
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By reversing the order of the summation and integration,
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(5.157)

The integration on either side of Equation 5.157 can be carried out numerically or 
analytically if possible. If we use the point matching method by selecting the weighting 
function as delta function, then

	 wm(z) = δ(z − zm)

Since the integral of any function multiplied by δ(z − zm) gives the value of the function 
at z = zm, Equation 5.157 becomes
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(5.158)

where m = 1, 2, …, N + 1. Also, if we choose pulse function as the basis or expansion 
function,
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and Equation 5.158 yields

	

I K z z dz D zn

n

N

m m

z z

z z

n

n

= −∆

+∆

∑ ∫ ′ ′ =
1 2

2

( , ) ( )
/

/

	

(5.159)

Substitution of Equation 5.152 into Equation 5.159 gives
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(5.160)

where m = 1, 2, …, N + 1 and Rm = [a2 + (zm − z′)2]1/2. Thus, we have a set of N + 1 
simultaneous equations, which can be cast in matrix form as

	

F F F
j

kz

F F F
j

kz

F F F

N

N

N N

11 12 1 1

21 22 2 2

1 1 1 2

�

�

� �

�

,

,

, ,

cos( )

cos( )

η

η

+ + NN N N
j

kz

I

I

A
+ +












































1 1

1

2

, cos( )
η

�

















329Moment Methods

	

=

−

−

−
















+

j
V k z

j
V k z

j
V k z

T

T

T N

2

2

2

1

2

1

η

η

η

sin | |

sin | |

sin | |






















	

(5.161a)

or

	 [F][X] = [Q]	 (5.161b)

where
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The N + 1 unknowns are determined by solving Equation 5.161 in the usual manner. 
To evaluate Fmn analytically rather than numerically, let the integrand in Equation 5.162 
be separated into its real (RE) and imaginary (IM) parts,
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IM as a function of z′ is a smooth curve so that
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The approximation is accurate as long as Δz < 0.05λ. On the other hand, RE changes 
rapidly as z′ → zm due to Rm. Hence,

	

z z

z z

z z

z z

m

n

n

n

n

RE z dz
k a z z

−

+

−

+

∫ ∫′ ′
′

= −
+ −

∆

∆

∆

∆

/

/

/

/

( )
cos [ ( ) ]

2

2

2

2
2 2 11 2

2 2 1 2

2 2 1 2

2

2

/

/

/

/

/

[ ( ) ]

cos [ ( ) ]

a z z
dz

k a z z

m

m n

z z

z z

n

n

+ −

+ −

′
′

−

+


∆

∆

∫∫
′

′+ −

= + −

+ − +

dz
a z z

k a z z

z z z a

m

m n

m n

[ ( ) ]

cos [ ( ) ]

ln
[

/

/

2 2 1 2

2 2 1 2

22∆ / ++ − +
− − + + − −










( ) ]

[ ( ) ]

/

/
z z z

z z z a z z z
m n

m n m n

∆
∆ ∆

/
/ /

2
2 2

2 1 2

2 2 1 2 
	

(5.165)



330 Computational Electromagnetics with MATLAB®

Thus,
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A typical example of the current distribution obtained for  = λ, a = 0.01λ is shown 
in Figure 5.20, where the sinusoidal distribution commonly assumed for wire antennas 
is also shown for comparison. Notice the remarkable difference between the two near 
the dipole center.

EXAMPLE 5.11

Consider a perfectly conducting scatterer or antenna of a cylindrical nature shown in 
Figure 5.21. Determine the axial current I(z) on the structure by solving the electric field 
integral equation (EFIE)
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(5.167)

where
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FIGURE 5.20
Current distribution of straight center-fed dipole.
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Solution

If the radius a ≪ λ (the wavelength) and a ≪ 2 h (the length of the wire), the structure 
can be regarded as a “thin-wire” antenna or scatterer. As a scatterer, we may consider a 
plane wave excitation

	 E z E ez
i

o
jkz( ) sin cos= θ θ

	 (5.168a)

where θ is the angle of incidence. As an antenna, we may assume a delta-gap generator

	 E V z zz
i

g= −δ( )	 (5.168b)

where V is the generator voltage and z = zg is the location of the generator.
In order to apply the MoM to the given IE (5.167), we expand the currents in terms of 

pulse basis function as
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FIGURE 5.21
Cylindrical scatterer or antenna.
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Substituting Equation 5.169 into Equation 5.167 and weighting the result with triangular 
functions
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(5.170)

where Δ = 2 h/N, leads to
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Figure 5.22 illustrates un(z) and wm(z). Equation 5.171 can be cast in matrix form as

	 [Z][I] = [V]	 (5.172)

where [I] can be solved using any standard method. For the impedance matrix [Z], the 
elements are given by
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(5.173)

FIGURE 5.22
For Example 5.10: (a) Pulse basis function, (b) triangular weighting function.
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where
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To obtain Equation 5.173, we have used the approximation
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For the plane wave excitation, the elements of the forcing vector [V] are

	 V E em
jkzm= ∆ 0

cosθ
	 (5.175a)

For delta-gap generator,

	 Vm = Vδmg	 (5.175b)

where g is the index of the feed zone pulse.
Solving Equation 5.172 requires that we incorporate a method to perform numerically 

the integration in Equation 5.174. The kernel G(z, z′) exhibits a logarithmic singularity 
as |z − z′| → 0, and therefore care must be exercised. To circumvent the difficulty, 
we let
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where
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and
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We note that

	
G z z

a
z z
a

o

z z
a( , ) ln

| |( )

′  → −
− ′− ′

→
2

0 1
8π

and hence we replace Go(z, z′) by

	
G z z

a
z z
a a

z z
a

o( , ) ln
| |

ln
| |′ +

− ′









 −

− ′1
8

1
8π π 	

(5.179)



334 Computational Electromagnetics with MATLAB®

The term G1(z, z′) is nonsingular, while the singularity of Go(z, z′) can be avoided by 
using Equation 5.179. Thus, the double integral involved in evaluating Zmn is easily done 
numerically. It is interesting to note that Zmn would remain the same if we had chosen 
the triangular basis function and pulse weighting function [46].

5.8  Applications IV: EM Absorption in the Human Body

The interest in hyperthermia (or electromagnetic heating of deep-seated tumors) and in the 
assessment of possible health hazards due to EM radiation have prompted the development 
of analytical and numerical techniques for evaluating EM power deposition in the interior 
of the human body or a biological system [47]. The overall need is to provide a scientific basis 
for the establishment of an EM radiation safety standard. Since human experimentation is 
not possible, irradiation experiments must be performed on animals. Theoretical models 
are required to interpret and confirm the experiment, develop an extrapolation process, 
and thereby develop a radiation safety standard for humans [48].

The mathematical complexity of the problem has led researchers to investigate simple 
models of tissue structures such as plane slab, dielectric cylinder homogeneous and layered 
spheres, and prolate spheroid. A review of these earlier efforts is given in References 49,50. 
Although spherical models are still being used to study the power deposition characteristics 
of the head of humans and animals, realistic block model composed of cubical cells is being 
used to simulate the whole body.

The key issue in this bioelectromagnetic effort is how much EM energy is absorbed by a 
biological body and where is it deposited. This is usually quantified in terms of the specific 
absorption rate (SAR), which is the mass normalized rate of energy absorbed by the body. 
At a specific location, SAR may be defined by

	
SAR =

σ
ρ

| |E 2

	
(5.180)

where σ = tissue conductivity, ρ = tissue mass density, E = rms value of the internal field 
strength. Thus, the localized SAR is directly related to the internal electric field and the 
major effort involves the determination of the electric field distribution within the biological 
body. The MoM has been extensively utilized to calculate localized SARs in block model 
representation of humans and animals.

As mentioned in Section 5.1, an application of MoM to EM problems usually involves 
four steps:

•	 Deriving the appropriate IE,
•	 Transforming the IE into a matrix equation (discretization),
•	 Evaluating the matrix elements, and
•	 Solving the resulting set of simultaneous equations.

We will apply these steps for calculating the electric field induced in an arbitrary human 
body or a biological system illuminated by an incident EM wave.
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5.8.1  Derivation of IEs

In general, the induced electric field inside a biological body was found to be quite 
complicated even for the simple case of assuming the plane wave as the incident field. The 
complexity is due to the irregularity of the body geometry, and the fact that the body is 
finitely conducting. To handle the complexity, the so-called tensor integral-equation (TIE) 
was developed by Livesay and Chen [51]. Only the essential steps will be provided here; 
the interested reader is referred to References 51–53.

Consider a biological body of an arbitrary shape, with constitutive parameters ε, µ, σ 
illuminated by an incident (or impressed) plane EM wave as shown in Figure 5.23. The 
induced current in the body gives rise to a scattered field Es, which may be accounted 
for by replacing the body with an equivalent free-space current density Jeq given by

	 J r r r E r r E req oj( [ ( ])) ( ( ) ) ( ) ( ) ( )= σ ω τ+ − =ε ε 	 (5.181)

where a time factor ejωt is assumed. The first term in Equation 5.181 is the conduction current 
density, while the second term is the polarization current density. With the equivalent 
current density Jeq, we can obtain the scattered fields Es and Hs by solving Maxwell’s 
equations

	 ∇× = − −E J Hs
eq

sjω 	 (5.182a)

	 ∇× =H Es sjω 	 (5.182b)

where Es, Hs, and Jeq are all in phasor (complex) form. Elimination of Es or Hs in Equation 
5.182 leads to

	 ∇×∇× − = −E E Js
o

s
o eqk j2 ωµ 	 (5.183a)

	 ∇×∇× − = ∇×H H Js
o

s
eqk2

	 (5.183b)

FIGURE 5.23
A biological body illuminated by a plane EM wave.



336 Computational Electromagnetics with MATLAB®

where ko o o
2 2= ω µ ε . The solutions to Equations 5.183a and 5.183b are

	
E As
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j

k
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ω 1
1
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(5.184a)

	
H As

o
= ∇×

1
µ 	

(5.184b)

where

	
A r r J r= µo o

v
eqG dv( ( )∫ ′ ′ ′, )

	
(5.185)

and
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e
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| |
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=
4π 	
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is the free-space scalar Green’s function. By the operator ∇∇⋅, we mean that ∇∇ ⋅ A = ∇(∇ ⋅ A). 
It is evident from Equations 5.184 through 5.186 that Es and Hs depend on Jeq. Suppose Jeq is 
an infinitesimal, elementary source at r′ pointed in the x direction so that

	 J r r aeq x= − ′δ( ) ,	 (5.187)

the corresponding vector potential is obtained from Equation 5.185 as

	 A r r a= ′µo o xG ( , ) 	 (5.188)

If Gox(r, r′) is the electric field produced by the elementary source, then Gox(r, r′) must satisfy

	 ∇×∇× ′ − ′ = − ′G r,r G r,r r, rox o ox ok j( ) ( ) ( )2 ωµ δ 	 (5.189)

with solution

	
G r,r r, rox o oj

k
G( ( )′ − + ∇∇⋅







 ′) = ωµ 1

1
2

	
(5.190)

Gox(r, r′) is referred to as a free-space vector Green’s function with a source pointed in 
the x direction. We could also have Goy(r, r′) and Goz(r, r′) corresponding to infinitesimal, 
elementary sources pointed in the y and z direction, respectively. We now introduce a 
dyadic function* which can store the three vector Green functions Gox(r, r′), Goy(r, r′), and 
Goz(r, r′), that is,

	 G r r G r r a G r r a G r r ao ox x oy y oz z( , , ,, ′ = ′ + ′ + ′) ( ) ( ) ( ) 	 (5.191)

*	 A dyad is a group of two or a pair of quantities. A dyadic function, denoted by D, is formed by two functions, 
that is, D = AB. See Tai [53] or Balanis [28] for an exposition on dyadic functions.
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This is called free-space dyadic Green’s function [53]. It is a solution to the dyadic 
differential equation

	 ∇×∇× ′ − ′ = − ′G r r G r, r r ro o ok I( , ( () ) )2 δ 	 (5.192)

where I  denotes the unit dyad (or idem factor) defined by

	
I x x y y z z= + +a a a a aa 	 (5.193)

The physical meaning of Go(r, r′) is rather obvious. Go(r, r′) is the electric field at a field 
point r due to an infinitesimal source at r′.

From Equations 5.184a and 5.192, the solution of E is

	
E r G r r J rs

o o eqj dv( ) )= − ′ ⋅ ′ ′∫ωµ ( , ( )
	

(5.194)

Since Go(r, r′) has a singularity of the order |r − r′|3, the integral in Equation 5.194 
diverges if the field point r is inside the volume v of the body (or source region). 
This difficulty is overcome by excluding a small volume surrounding the field point 
first and then letting the small volume approach zero. The process entails defining 
the principal value (PV) and adding a correction term needed to yield the correct 
solution. Thus,

	
E r J r G r, r E rs

eq

v

sV dv( ) ) correction= P ∫ ⋅ ′ ′ +( ) ( ) [ ( ]
	

(5.195)

The correction term has been evaluated [51,52] to be −Jeq/j3ωεo so that

	
E r J r G(r r

J rs
eq

v

eq
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dv

j
( ) ( ) , )

( )
= ⋅ ′ ′−∫PV

3ωε
	

(5.196)

The total electric field inside the body is the sum of the incident field Ei and scattered 
field Es, that is,

	 E r E r E r( ) ( ) ( )= +i s
	 (5.197)

Combining Equations 5.181, 5.196, and 5.197 gives the desired tensor IE for E(r):
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(5.198)

In Equation 5.198, τ(r) = σ(r) + jω[ε(r) − εo] and the incident electric field Ei are known 
quantities; the total electric field E inside the body is unknown and is to be determined 
by MoM.
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5.8.2  Transformation to Matrix Equation (Discretization)

The inner product E(r) ⋅ G(r, r′) in Equation 5.198 may be represented as
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(5.199)

showing that G(r, r′) is a symmetric dyad. If we let

	 x1 = x,  x2 = y,  x3 = z,

then Gx xp q  (r, r′) can be written as
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(5.200)

We now apply MoM to transform Equation 5.198 into a matrix equation. We partition the 
body into N subvolumes or cells, each denoted by vm (m = 1, 2, …, N), and assume that E(r) 
and τ(r) are constant within each cell. If rm is the center of the mth cell, requiring that each 
scalar component of Equation 5.198 be satisfied at rm this leads to
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(5.201)

If we let [Gx xp q] be an N × N matrix with elements
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(5.202)

where m, n = 1, 2, …, N, p, q = 1, 2, 3, and let [Exp] and [Exp
i ] be column matrices with 

elements
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(5.203)

then from Equations 5.198 and 5.201, we obtain 3N simultaneous equations for Ex, Ey, and 
Ez at the centers of N cells by the point matching technique. These simultaneous equations 
can be written in matrix form as
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or simply

	 [G][E] = −[Ei]	 (5.204b)

where [G] is 3N × 3N matrix and [E] and [Ei] are 3N column matrices.

5.8.3  Evaluation of Matrix Elements

Although the matrix [Ei] in Equation 5.204 is known, while the matrix [E] is to be 
determined, the elements of the matrix [G], defined in Equation 5.202, are yet to be 
calculated. For the off-diagonal elements of [ ],Gx x mp q r  is not in the nth cell (rm is not in vn) 
so that Gx x mp q ( , )r r′  is continuous in vn and the principal value operation can be dropped. 
Equation 5.202 becomes

	

G G dv m nx x
mn

n x x m
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p q p q
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= ′ ′ ≠∫τ( ) ( , ) ,r r r

	
(5.205)

As a first approximation,

	 G G v m nx x
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n x x m np q p q= ′ ≠τ( ) ( , ) ,r r r ∆ 	 (5.206)

where Δvn is the volume of cell vn. Incorporating Equations 5.190 and 5.200 into Equation 
5.206 yields
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The approximation in Equation 5.207 yields adequate results provided N is large. If 
greater accuracy is desired, the integral in Equation 5.205 must be evaluated numerically.

For the diagonal terms (m = n), Equation 5.202 becomes
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(5.208)

To evaluate this integral, we approximate cell νn by an equivolumic sphere of radius an 
centered at rn, that is,

	
∆ =v an

4
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3π
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or
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After a lengthy calculation, we obtain [51]
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In case the shape of cell vn differs considerably from that of a sphere, the approximation 
in Equation 5.210 may yield poor results. To have a greater accuracy, a small cube, cylinder, 
or sphere is created around rn to evaluate the correction term, and the integration through 
the remainder of vn is performed numerically.

5.8.4  Solution of the Matrix Equation

Once the elements of matrix [G] are evaluated, we are ready to solve Equation 5.204, namely,

	 [G][E] = −[Ei]	 (5.204)

With the known incident electric field represented by [Ei], the total induced electric field 
represented by [E] can be obtained from Equation 5.204 by inverting [G] or by employing 
a Gauss–Jordan elimination method. If matrix inversion is used, the total induced electric 
field inside the biological body is obtained from

	 [E] = −[G]−1[Ei]	 (5.211)

Guru and Chen [54] have developed computer programs that yield accurate results on 
the induced electric field and the absorption power density in various biological bodies 
irradiated by various EM waves. The validity and accuracy of their numerical results were 
verified by experiments.

In the following examples, we illustrate the accuracy of the numerical procedure with 
one simple elementary shape and one advanced shape of biological bodies. The examples 
are taken from the works of Chen and others [52,55–57].

EXAMPLE 5.12

Determine the distribution of the energy absorption rate or EM heating induced by plane 
EM waves of 918 MHz in spherical models of animal brain having radius 3 cm. Assume 
the Ei field expressed as

	 E a ai
o

jk z
x x o o oE e E k z j k zo= − = −(cos sin )V/m	 (5.212)

where ko = 2π/λ = 2π f/c, E Po o i= 2η , Pi is the incident power in mW/cm2 and ηo = 377 Ω 
is the intrinsic impedance of free space. Take Pi = 1 mW/cm2 (Eo = 86.83 V/m), εr = 35, 
σ = 0.7 s/m.
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Solution

In order to apply MoM, we first approximate the spherical model by a “cubic sphere.” 
Figure 5.24 portrays an example in which one eighth of a sphere is approximated by 
40 or 73 cubic cells. The center of each cell, for the case of 40 cells, is determined from 
Figure 5.25. Ei at the center of each cell can be calculated using Equation 5.212. With the 
computed Ei and the elements of the matrix [ ]Gx xp q  calculated using Equations 5.207 and 

FIGURE 5.24
For Example 5.12: (a) One eighth of a sphere, (b) a “cubic sphere” constructed from 73 cubic cells.

FIGURE 5.25
Geometry and dimensions of one half of the spherical model of the brain constructed from 40 cells. The cell 
numbering is used in the program of Figure 5.26.
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5.210, the induced electric field E in each cell is computed from Equation 5.211. Once E is 
obtained, the absorption rate of the EM energy is determined using

	
P =

σ
2

2| |E
	

(5.213)

The average heating is obtained by averaging P in the brain. The curve showing 
relative heating as a function of location is obtained by normalizing the distribution of 
P with respect to the maximum value of P at a certain location in the brain.

The computer program for the computation is shown in Figure 5.26. It is a modified version 
of the one developed by Jongakiem [57]. The numerical results are shown in Figure 5.27a, 
where relative heating along the x-, y-, and z-axis in the brain is plotted. The three curves 
identified by X, Y, and Z correspond with the distributions of the relative heating along x-, 
y-, and z-axis, respectively. Observe the strong standing wave patterns with peak heating 
located somewhere near the center of the brain. The average and maximum heating are 
found to be 0.3202 and 0.885 in mW/cm3. The exact solution obtained from Mie theory 
(see Section 2.8) is shown in Figure 5.27b. The average and maximum heating from exact 
solution are 0.295 and 0.814 mW/cm3, respectively. A comparison of Figure 5.27a and b 
confirms the accuracy of the numerical procedure.

FIGURE 5.26
Computer program for Example 5.12.� (Continued)
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FIGURE 5.26 (Continued)
Computer program for Example 5.12.� (Continued)
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FIGURE 5.26 (Continued)
Computer program for Example 5.12.� (Continued)
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FIGURE 5.26 (Continued)
Computer program for Example 5.12.� (Continued)
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FIGURE 5.26 (Continued)
Computer program for Example 5.12.
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FIGURE 5.27
Distributions of heating along the x-, y-, and z-axis of a spherical model of an animal brain: (a) MoM solution, 
(b) exact solution. (From R. Rukspollmuang and K.M. Chen, Radio Sci., vol. 14, no. 6S, Nov.–Dec. 1979, pp. 51–62.)
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EXAMPLE 5.13

Having validated the accuracy of the tensor-integral-equation (TIE) method, determine 
the induced electric field and SAR of EM energy inside a model of typical human body 
irradiation (Figure 5.28), by EM wave at 80 MHz with vertical polarization, that is,

	 E = ax V/m

at normal incidence. Assume the body at 80 MHz is that of a high-water content tissue 
with ε = 80εo, µ = µo, σ = 0.84 s/m.

Solution

The body is partitioned into 108 cubic cells of various sizes ranging from 5 to 12 cm3. 
To ensure accurate results, the cell size is kept smaller than a quarter-wavelength 
(of the medium). With the coordinates of the center of each cell figured out from 
Figure  5.28, the program in Figure 5.26 can be used to find induced electric field 
components Ex, Ey, and Ez at the centers of the cells due to an incident electric field 
1 V/m (maximum value) at normal incidence. The SAR is calculated from (σ/2) 
(E E Ex y z

2 2 2+ + ). Figures 5.29 through 5.31 illustrate Ex, Ey, and Ez at the center of each 
cell. Observe that Ey and Ez are much smaller than Ex at this frequency due to the 
polarization of the incident wave.

As mentioned earlier, the model of the human body shown in Figure 5.28 is due to 
Chen and Guru [55]. An improved, more realistic model due to Gandhi et al. [58–60] is 
shown in Figure 5.32.

FIGURE 5.28
Geometry and dimensions of a model of typical human body of height 1.77 m. (Adapted from J.A. Kong (ed.), 
Research Topics in Electromagnetic Theory. New York: John Wiley, 1981, pp. 290–355.)
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FIGURE 5.29

Induced Ex (in mV/m) at the center of each cell due to Ex
i  of 1 V/m. (Adapted from J.A. Kong (ed.), Research Topics 

in Electromagnetic Theory. New York: John Wiley, 1981, pp. 290–355.)

FIGURE 5.30
Induced Ey (in mV/m) at the center of each cell due to Ex

i  of 1 V/m. (Adapted from J.A. Kong (ed.), Research Topics 
in Electromagnetic Theory. New York: John Wiley, 1981, pp. 290–355.)
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FIGURE 5.31
Induced Ez (in mV/m) at the center of each cell due to Ex

i  of 1 V/m. (Adapted from J.A. Kong (ed.), Research Topics 
in Electromagnetic Theory. New York: John Wiley, 1981, pp. 290–355.)

 

FIGURE 5.32
A more realistic block model of the human body: (a) In three dimensions, (b) front and side views. (Adapted from 
O.P. Gandhi, Bioelectromagnetics, vol. 3, 1982, pp. 81–90.)
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5.9  Concluding Remarks

The MoM is a powerful numerical method capable of applying weighted residual techniques 
to reduce an IE to a matrix equation. The solution of the matrix equation is usually carried 
out via inversion, elimination, or iterative techniques. Although MoM is commonly applied 
to open problems such as those involving radiation and scattering, it has been successfully 
applied to closed problems such as waveguides and cavities.

Needless to say, the issues on MoM covered in this chapter have been carefully 
selected. We have only attempted to cover the background and reference material upon 
which the reader can easily build. The interested reader is referred to the literature 
for more in-depth treatment of each subject. General concepts on MoM are covered in 
References 3,61. Clear and elementary discussions on IEs and Green’s functions may be 
found in References 10–12,28–30,61,62. For further study on the theory of the MoM, one 
should see References 6,9,10,28,40. The error analysis of MoM solutions is provided in 
References 63,64.

The number of problems that can be treated by MoM is endless, and the examples given 
in this chapter just scratch the surface. The following problems represent typical EM-related 
application areas:

•	 Electrostatic problems [31,65–68]
•	 Wire antennas and scatterers [34,37,42,44,69,70]
•	 Scattering and radiation from bodies of revolution [71,72]
•	 Scattering and radiation from bodies of arbitrary shapes [38,73,74]
•	 Transmission lines [18–20,23,24,75–78]
•	 Aperture problems [79–81]
•	 Biomagnetic problems [47–52,82–84].

A number of user-oriented computer programs have evolved over the years 
to solve electromagnetic IEs by the MoM. These codes can handle radiation and 
scattering problems in both the frequency and time domains. Reviews of the codes 
may be found in References 38,85. The most popular of these codes is the Numerical 
Electromagnetic Code (NEC) developed at the Lawrence Livermore National Laboratory 
[7,86]. NEC is a frequency domain antenna modeling FORTRAN code applying the MoM 
to IEs for wire and surface structures. Its most notable features are probably that it is 
user friendly, includes documentation, and is available; for these reasons, it is being 
used in public and private institutions. A compact version of NEC is the mini-numerical 
electromagnetic code (MININEC) [87], which is intended to be used in personal 
computers.

It is important that we recognize the fact that MoM is limited in application to radiation 
and scattering from bodies that are electrically large. The size of the scatterer or radiator 
must be of the order λ3. This is because the cost of storing, inverting, and computing matrix 
elements becomes prohibitively large. At high frequencies, asymptotic techniques such as 
the geometrical theory of diffraction (GTD) are usually employed to derive approximate 
but accurate solutions [46,88,89]. Some hybrid techniques have been developed to improve 
the accuracy of MoM [98–100].
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PROBLEMS

5.1	 Show that in Example 5.1,
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	5.2	 Repeat Example 5.1 for
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		  subject to U(0) = 0 = U(1).
	5.3	 Classify the following IEs and show that they have the stated solutions:
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	5.4	 Classify the following IEs:
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d.

	
u x x x y u y dy

x

( ) sin cos( ) ( )= + −∫2
0
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	5.5	 Solve the following Volterra IEs:

	
a.

	
Φ Φ( ) ( ) ,x t dt

x

= + ∫5 2
0

t

	
b.

	
Φ Φ( ) ( ) ( )x x t x t dt

x

= + −∫
0

	5.6	 Find the IE corresponding to each of the following differential equations:
	 a.	 y″ = −y,  y(0) = 0,  y′(1) = 1,
	 b.	 y″ + y = cos x,  y(0) = 0,  y′(0) = 1
	5.7	 Show that Green’s function,

	
G

e
r

jkr

=
−

4π

		  where r x y z= + +2 2 2 , satisfies Helmholtz equation

	 ∇ + = −2 2G k G rδ( )

	5.8	 Find Green’s function for the scalar one-dimensional Helmholtz equation

	
d U
dx

k U x x
2

2
2 0 1+ = < <δ( ),

		  subject to a homogenous Dirichlet boundary condition.
	5.9	 Obtain Green’s function for the Helmholtz equation

	
d G x x

dx
k G x x x x L x Lo

o o

2

2
2( | )

( | ) ( ),+ = − − < <δ

		  subject to Neumann and mixed boundary condition

	
G L x

dG
dx x Lo( | )− = =

=
0

	5.10	 Show that

	
G x z x z

j
a

n x a n x a
k

e
n

jk z z

n

n( , ; , )
/ /′ ′ =

′ − ′

=

∞

∑ sin( )sin( )
,( )π π

1 	

		  where k kn
2 2=  − (nπ/a)2 is Green’s function for Helmholtz’s equation.
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	5.11	 Derive Green’s function for

	 ∇ 2Φ = f,  0 < x,  y < 1

		  subject to zero boundary conditions.
	5.12	 Find Green’s function satisfying

	 G G G x x y y x a y bxx yy x+ + = − ′ − ′ < < < <2 0 0δ δ( ) ( ), ,

		  and

	 G(0, y) = G(a, y) = G(x, 0) = G(x, b) = 0

	5.13	 a.	� Verify by Fourier expansion that Equations 5.79 and 5.80 in Example 5.5 are 
equivalent.

	 b.	 Show that another form of expressing Equation 5.79 is

	

G x y x y

m b y
a

m y
a

m x
a

m x
a

y y
m( , ; , )′ ′ =

−
− ′ ′

< ′

−

=

∞

∑2

2

1
π

π π π π

π

sinh
( )

sin ,

ssinh sin
( )

,
m y
a

m b y
a

m x
a

m x
a

y y
m

π π π π′ − ′
> ′









 =

∞

∑
1

	5.14	 The two-dimensional delta function expressed in cylindrical coordinates reads

	
δ ρ ρ

ρ
δ ρ ρ δ φ φ( ) ( ) ( )− ′ = − ′ − ′1

		  Obtain Green’s function for the potential problem

	
∇ = − ′ − ′2 1

G
ρ

δ ρ ρ δ φ φ( ) ( )

		  with the region defined in Figure 5.33. Assume homogeneous Dirichlet boundary 
conditions.

FIGURE 5.33
For Problem 5.14.
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	5.15	 Consider the transmission line with cross section as shown in Figure 5.34. In a 
TEM wave approximation, the potential distribution satisfies Poisson’s equation

	
∇ = −2V sρ

ε

		  subject to the following continuity and boundary conditions:

	

∂
∂

− =
∂
∂

+

∂
∂

+ − =
∂
∂

+ +

x
V x h

x
V x h

x
V x h h

x
V x h h

( , ) ( , )

( , ) ( , )

1 1

1 2 1 2

1

0 0

0 0

ε
∂∂

∂
− =

∂
∂

+

∂
∂

+ − =
∂

∂
+

y
V x h

y
V x h

y
V x h h

y
V x h

( , ) ( , )

( , ) ( ,

1 2 1

2 1 2 3 1

0 0

0

ε

ε ε hh x h h

V y V a y V x V x b

s2 1 20

0 0 0

+ − +

= = = =

) ( , )

( , ) ( , ) ( , ) ( , )

ρ

		  Using series expansion method, evaluate Green’s function at y = h1 + h2, that is, 
G(x, y; x′, h1 + h2).

	5.16	 Show that the free-space Green’s function for L = ∇2 + k2 in two-dimensional 
space is − j H k4 0

1( )( ).ρ
	5.17	 The spherical Green’s function h0

2( )(| |)r r− ′  can be expanded in terms of spherical 
Bessel functions and Legendre polynomials. Show that

	

h

n h j r P r r

n h

n n n

n

n

0
2

2

0

2 1

2 1

( )(| |

( ) ( ) ( ) (cos ),

( )

r r

r

− ′ =

+ ′ < ′

+

=

∞

∑
)

α

22

0

( ) ( ) (cos ),r j r P r rn n

n

′ < ′









 =

∞

∑ α

FIGURE 5.34
For Problem 5.15.
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		  where cos α = cos θ cos θ′ + sin θ sin θ′ cos (φ − φ′). From this, derive the plane 
wave expansion

	
e j n j kr Pj n

n

n

n
− ⋅

=

∞

= − +∑k r ( ) ( ) ( ) (cos )2 1
0

α

	5.18	 Given the kernel

	
K x y

x y y x

y x x y
( , )

( ) ,
( ) ,

=
− ≤ ≤ ≤
− ≤ ≤ ≤






1 0 1
1 0 1

		  Show that

	
K x y( , ) 2=

sin sinn x n y
n

n

π π
π2 2

1=

∞

∑

		  and that

	

π2

2
1

4
1

=
=

∞

∑ n
n

	5.19	 Derive the closed-form solution for Poisson’s equation

	 ∇ 2V = g

		  in the quarter-plane shown in Figure 5.35 with

	
V f x y

V
x

h y x= =
∂
∂

= =( ), , ( ),0 0

FIGURE 5.35
For Problem 5.19.
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	5.20	 Consider the cross section of a microstrip transmission line shown in Figure 
5.36. Let Gij ρj be the potential at the field point i on the center conductor due to 
the charge on subsection j. (It is assumed that the charge is concentrated in the 
filament along the center of the subsection.) Gij is Green’s function for this problem 
and is given by

	
G k

A n
A n

k
A n

ij
r

n ij

ij

n ij=
+ −
+ −

+
+− −1

4
4 2
4 4

42 1
2 2

2 2
2 1

2

πε
( ) ln

( )
( )

ln
( −−
+











=

∞

∑ 2
4

2

2 2
1

)
( )A nijn

		  where

	
A

H
i j kij

r

r
=

∆
− − − − =

−
+

| ( ) ( ) |, ,2 1 2 1 1
1
1

ε
ε

		  Δ = W/N, and N is the number of equal subsections into which the center conductor 
is divided. By setting the potential equal to unity on the center conductor, one can 
find

	
C j

j

=
=

∞

∑ρ
1

(F m)/

		  and

	
Z

c C C
o

o

=
1

		  where c = 3 × 108 m/s and Co is the capacitance per unit length for an air-filled 
transmission line (i.e., set k = 1 in Gij). Find Zo for N = 30 and

	 a.	 εr = 6.0,    W = 4 cm,  H = 4 cm
	 b.	 εr = 16.0,  W = 8 cm,  H = 4 cm.

FIGURE 5.36
For Problem 5.20.
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	5.21	 Consider the three-charge model shown in Figure 5.37. The radius of each charged 
sphere is a and the separation distances are equal; that is, d1 = d2 = d. The potential 
system results in

	

+

−



















=



















V

V

a d d

d a d

a d a

o
0

1
4

1 1 1
2

1 1 1

1
2

1 1
π ε





























Q

Q

Q

1

2

3

		  Let V = 1, a/d = 1/10. Use MATLAB to compute Q1, Q2, and Q3 in terms of 4πεod.
	5.22	 Consider the sheet model for representing the p-n junction as shown in Figure 

5.38. In matrix form,

	

V d

V d

V

V d

V d

d

( )
( )
( )
( )
( )

−
−

+
+





























=
−

2

0

2

2

0 1 2 3 2

ε

11 2 0 1 2 3 2
1 1 0 1 1

3 2 2 1 0 1 2
2 3 2 1 0

1

2

3

/ /

/ /





























σ
σ
σ
σ44

5σ





























		  Let V(−2d) = −2, V(−d) = −1.5, V(0) = 0, V(+d) = 1.5, V(+2d) = 2. Using MATLAB, 
obtain the charges σ1, σ2, σ3, σ4, and σ5.

FIGURE 5.37
For Problem 5.21.

FIGURE 5.38
For Problem 5.22.
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	5.23	 A rectangular section of microstrip transmission line of length L, width W, and 
height H above the ground plane is shown in Figure 5.39. The section is subdivided 
into N subsections. A typical subsection ΔSj, of sides Δxj and Δyj, is assumed to 
bear a uniform surface charge density ρj. The potential Vi at ΔSi due to a uniform 
charge density ρj on ΔSj(j = 1, 2, …, N) is

	
V Gi ij j

j

N

=
=

∑ ρ
1

		  where

	
G

k
ij

n n

o rn

=
−

+

− +

=

∞

∑
1 1

1

1
2 1

( )
( )πε ε

	

( )ln
( ) ( ) ( ) ( )

( ) (
x x

y y x x y y n H

y y y x
j i

j i j i j i

j j i

−
− + − + − + −

+∆ − +

2 2 2 22 2

jj i j j i

j j i

j j

x y y y n H

x x x

y y y

− + +∆ − + −









+ +∆ −

+∆ −

) ( ) ( )

( )
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(

2 2 2 22 2

ii j j i j j i

j i j j i

x x x y y y n H

y y x x x

) ( ) ( ) ( )
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+ +∆ − + +∆ − + −
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2 2 2 22 2
22 2 2 2

2 2

2 2+ − + −
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( ) ( ) ( ) (
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x x x x y y
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j i
j i j i j i 22 2

2 2

2 2

2 2 2 2

n H

x x x x x x y y n H

y
j j i j j i j i

j

−

+∆ − + +∆ − + − + −
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)

( ) ( ) ( ) ( )

( yy y
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x
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		  and k = (εr − 1)/(εr + 1). If the ground plane is assumed to be at zero potential 
while the conducting strip at 1 V potential, we can find

	
C j

j

N

=
=

∑ρ
1
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		  Find C for
	 a.	 εr = 9.6,  W = L = H = 2 cm,
	 b.	 εr = 9.6,  W = H = 2 cm,  L = 1 cm.
	5.24	 For a conducting elliptic cylinder with cross section in Figure 5.40a, write a 

program to determine the scattering cross section σ(φi, φ) due to a plane TM wave. 

FIGURE 5.39
For Problem 5.23.

FIGURE 5.40
For Problem 5.24.
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Consider φ = 0°, 10°, …, 180° and cases φi = 0°, 30°, and 90°. Plot σ(φi, φ) against φ 
for each φi. Take λ = 1 m, 2a = λ/2, 2b = λ, N = 18.

		    Hint: Due to symmetry, consider only one half of the cross section as in Figure 
5.40b. An ellipse is described by

	
x
a

y
b

2

2

2

2 1+ =

		  With x = r cos φ, y = r sin φ, it is readily shown that

	
r

a

v
v=

+
=

cos sin
, , .

2 2 2φ φ
φa b dl rd/ =

	5.25	 Use the program in Figure 5.15 (or develop your own program) to calculate the 
scattering pattern for each array of parallel wires shown in Figure 5.41.

	5.26	 Repeat Problem 5.24 using the techniques of Section 5.6.2. That is, consider the 
cylinder in Figure 5.41a as an array of parallel wires.

	5.27	 Consider the scattering problem of a dielectric cylinder with cross section shown 
in Figure 5.42. It is illuminated by a TM wave. To obtain the field [E] inside the 
dielectric cylinder, MoM formulation leads to the matrix equation

	 [A][E] = [Ei]

		  where

	

A
j ka H ka m n

j ka J ka H
mn

m m n m

m n n

=
+ − =

−

ε ε

ε

π

π
2

1

2
1

1
2

1 0
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( ) kk m n

E e

x x
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m
i jk x y

mn m n

m i m i

ρ

ρ

φ φ

),
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( cos sin )

≠




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


=

= −

+

22 2 1 2+ − =( ) , , , , ,y y m n Nm n …

FIGURE 5.41
Arrays of parallel wires: (a) cylinder, (b) square, (c) I-beam, for Problem 5.25.
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		  N is the number of cells the cylinder is divided into, εm is the average dielectric 
constant of cell m, am is the radius of the equivalent circular cell which has the 
same cross section as cell m. Solve the above matrix equation and obtain En, n = 1, 
2, …, N. Use En to obtain the echo width of the dielectric cylinder, that is,

	
W

k
E

E a J ka ei n n n n
jk x y

n

N
n n( )

| |
( ) ( ) ( cos sin )φ π φ φ= − +

=
∑

2

2 1

1

2

1ε

		  for φ = 0°, 5°, 10°, …, 180°. Plot W(φ) versus φ. For the dielectric cylinder, take 
µ = µo, ε = 4εo, inner radius is 0.25λ, outer radius is 0.4λ, and λ = 1 m.

	5.28	 The IE

	
− ′ − ′ ′ = − < <

−

∫1
2π

I z z z dz f z w z w
w

w

( )ln| | ( ),

		  can be cast into matrix equation

	 [S][I] = [F]

		  using pulse basis function and delta expansion function (point matching).
	 a.	 Show that

	

S m n m n
m n
m n

mn =
∆

− ∆− − − − −
− +
− −









2
1

1
2

1
4

1 2
1 2

2

π
ln ln ( ) ( )ln

| |
| |

/
/




=F f zn n( )

		  where zn = −w + Δ(n − 1/2), n = 1, 2, …, N, Δ = 2w/N. Note that [S] is a Toepliz 
matrix having only N distinct elements.

FIGURE 5.42
For Problem 5.27.
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	 b.	 Determine the unknowns {Im} with f (z) = 1, N = 10, 2w = 1.
	 c.	 Repeat part (b) with f (z) = z, N = 10, 2w = 1.
	5.29	 For a dipole antenna [Z] [I] = [V] or
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.

.

		  Obtain the current vector.
	5.30	 Derive Equation 5.141 from Equation 5.135.
	5.31	 A two-term representation of the current distribution on a thin, center-fed half-

wavelength dipole antenna is given by

	
I z B

n
zn

n

( ) sin ( ||)= −








=
∑ 2

1

2
π
λ

λ/4

		  Substituting this into Hallen’s IE gives
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j
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		  where ηo = 120 π, ko = 2π/λ = 2πf/c, and G(z, z′) is given by Equation 5.152. 
Taking VT = 1 V, λ = 1 m, a/λ = 7.022 × 10−3, and match points at z = 0, λ/8, λ/4, 
determine the constants B1, B2, and C1. Plot the real and imaginary parts of I(z) 
against z.

	5.32	 Using Hallen’s IE, determine the current distribution I(z) on a straight dipole 
of length . Plot |I| = |Ir + j Ii| against z. Assume excitation by a unit voltage, 

N = 51, Ω = 2 ln 

a

= 12 5. , and consider cases (a)  = λ/2, (b)  = 1.5λ.

	5.33	 a.	 Show that Pocklington’s IE (5.141) can be written as
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	 b.	 By changing variables, z′ − z = a tan θ, show that
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		  where

	
θ θ1

1
2

12 2
= −

+
=

+− −tan , tan .
 / /z

a
z

a

	5.34	 Using the program in Figure 5.26 (or your own self-developed program), calculate 
the electric field inside a thin conducting layer (µ = µo, ε = 70εo, σ = 1 mho/m) 
shown in Figure 5.43. Assume plane wave with electric field perpendicular to the 
plane of the layer, that is,

	 Ei = e−jkozax V/m

		  where ko = 2π f/c. Consider only one half of the layer. Calculate |Ex|/|Ei| and 
neglect Ey and Ez at the center of the cells since they are very small compared with 
Ex. Take a = 0.5 cm, b = 4 cm, c = 6 cm.

	5.35	 Consider an adult torso with a height 1.7 m and a shape shown in Figure 
5.44. If the torso is illuminated by a vertically polarized EM wave of 80 MHz 
with an incident electric field of 1 V/m, calculate the absorbed power density 
given by

	
σ
2

2 2 2E E Ex y z+ +( )

		  at the center of each cell. Take µ = µo, ε = 80εo, σ = 0.84 mhos/m.
	5.36	 Suppose the dielectric cylinder in Problem 5.23 is a biological body modeled 

by a cylinder of cross-section 75 × 50 cm2, shown in Figure 5.45. A TM wave 
of frequency f = 300 MHz is normally incident on the body. Compute the fields 
inside the body using the MoM formulation of Problem 5.23. In this case, take εm 
as complex permittivity of cell m, that is,

	 εm = εrm − j (σm/ωεo),  m = 1, 2, …, N = 150

		  To make the body inhomogeneous, take εrm = 8 and σm = 0.03 for cells 65, 66, 75, 
85, and 86; take εrm = 7 and σm = 0.04 for cells 64, 67, 74, 77, 84, and 87; and take 
εrm = 5 and σm = 0.02 for all the other cells. Compute En.

FIGURE 5.43
For Problem 5.34.
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FIGURE 5.44
An adult torso: for Problem 5.35.

FIGURE 5.45
For Problem 5.36.
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6
Finite Element Method

Prayer without action is hypocrisy and action without prayer is arrogance.

—Unknown

6.1  Introduction

The finite element method (FEM) has its origin in the field of structural analysis. 
Although the earlier mathematical treatment of the method was provided by Courant 
[1] in 1943, the method was not applied to electromagnetic (EM) problems until 1968. 
Since then the method has been employed in diverse areas such as waveguide problems, 
electric machines, semiconductor devices, microstrips, and absorption of EM radiation 
by biological bodies.

Although the finite difference method (FDM) and the method of moments (MoM) 
are conceptually simpler and easier to program than the FEM, FEM is a more powerful 
and versatile numerical technique for handling problems involving complex geometries 
and inhomogeneous media. The systematic generality of the method makes it possible 
to construct general-purpose computer programs for solving a wide range of problems. 
Consequently, programs developed for a particular discipline have been applied successfully 
to solve problems in a different field with little or no modification. A brief history of the 
beginning of FEM is provided in Reference 2.

The finite element analysis of any problem involves basically four steps [3]:

•	 Discretizing the solution region into a finite number of nonoverlap subregions or 
elements,

•	 Deriving governing equations for a typical element,
•	 Assembling of all elements in the solution region, and
•	 Solving the system of equations obtained.

Discretization of the continuum involves dividing the solution region into sub-
domains, called finite elements. Figure 6.1 shows some typical elements for one-, two-, 
and three-dimensional problems. The problem of discretization will be fully treated in 
Sections 6.5 and 6.6. The other three steps will be described in detail in the subsequent 
sections.
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6.2  Solution of Laplace’s Equation

As an application of FEM to electrostatic problems, let us apply the four steps mentioned 
above to solve Laplace’s equation, ∇ 2V = 0. For the purpose of illustration, we will strictly 
follow the four steps mentioned above.

6.2.1  Finite Element Discretization

To find the potential distribution V(x, y) for the two-dimensional solution region shown in 
Figure 6.2a, we divide the region into a number of finite elements as illustrated in Figure 
6.2b. In Figure 6.2b, the solution region is subdivided into nine nonoverlapping finite 
elements; elements 6, 8, and 9 are four-node quadrilaterals, while other elements are three-
node triangles. In practical situations, however, it is preferred, for ease of computation, to 
have elements of the same type throughout the region. That is, in Figure 6.2b, we could have 
split each quadrilateral into two triangles so that we would have 12 triangular elements 
altogether. The subdivision of the solution region into elements is usually done by hand, 
but in situations where a large number of elements is required, automatic schemes to be 
discussed in Sections 6.5 and 6.6 are used.

We seek an approximation for the potential Ve within an element e and then interrelate 
the potential distribution in various elements such that the potential is continuous across 
interelement boundaries. The approximate solution for the whole region is

	
V x y V x ye

e

N

( , ) ( , ),
=

∑
1 	

(6.1)

FIGURE 6.1
Typical finite elements: (a) one-dimensional, (b) two-dimensional, (c) three-dimensional.
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where N is the number of triangular elements into which the solution region is divided. The 
most common form of approximation for Ve within an element is polynomial approximation, 
namely,

	 Ve(x, y) = a + bx + cy	 (6.2)

for a triangular element and

	 Ve(x, y) = a + bx + cy + dxy	 (6.3)

for a quadrilateral element. The constants a, b, c, and d are to be determined. The potential 
Ve in general is nonzero within element e but zero outside e. In view of the fact that 
quadrilateral elements do not conform to curved boundary as easily as triangular elements, 
we prefer to use triangular elements throughout our analysis in this chapter. Notice that 
our assumption of linear variation of potential within the triangular element as in Equation 
6.2 is the same as assuming that the electric field is uniform within the element, that is,

	 Ee = −∇Ve = −(bax + cay)	 (6.4)

6.2.2  Element Governing Equations

Consider a typical triangular element shown in Figure 6.3. The potential Ve1, Ve2, and Ve3 at 
nodes 1, 2, and 3, respectively, are obtained using Equation 6.2, that is,
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(6.5)

FIGURE 6.2
(a) The solution region; (b) its finite element discretization.
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The coefficients a, b, and c are determined from Equation 6.5 as
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(6.6)

Substituting this into Equation 6.2 gives
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(6.7)

where

	
α1 2 3 3 2 2 3 3 2

1
2

= − + − + −
A

x y x y y y x x x y[( ) ( ) ( ) ],
	

(6.8a)

	
α2 3 1 1 3 3 1 1 3

1
2

= − + − + −
A

x y x y y y x x x y[( ) ( ) ( ) ],
	

(6.8b)

	
α3 1 2 2 1 1 2 2 1

1
2

= − + − + −
A

x y x y y y x x x y[( ) ( ) ( ) ],
	

(6.8c)

and A is the area of the element e, that is,

	

2
1
1
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1 1

2 2

3 3

1 2 2 1 3 1 1 3 2 3 3 2
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x y

x y

x y

x y x y x y x y x y x y

=

= − + − + −( ) ( ) ( )

FIGURE 6.3
Typical triangular element; local node numbering 1-2-3 must proceed counterclockwise as indicated by the 
arrow.
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or

	
A x x y y x x y y= − − − − −

1
2

2 1 3 1 3 1 2 1[( )( ) ( )( )]
	

(6.9)

The value of A is positive if the nodes are numbered counterclockwise (starting from any 
node) as shown by the arrow in Figure 6.3. Note that Equation 6.7 gives the potential at any 
point (x, y) within the element provided that the potentials at the vertices are known. This is 
unlike finite difference analysis, where the potential is known at the grid points only. Also 
note that αi are linear interpolation functions. They are called the element shape functions 
and they have the following properties [4]:

	
αi

i j

i j
( , )

,
,

x yj i =
=
≠






1
0 	

(6.10a)

	
αi

i

x y( , ) 1=
=

∑
1

3

	
(6.10b)

The shape functions α1, α2, and α3 are illustrated in Figure 6.4.
The functional corresponding to Laplace’s equation, ∇ 2V = 0, is given by

	
W dS V dSe e e= = ∇∫∫1

2
1
2

2 2ε ε| | | |E
	

(6.11)

(Physically, the functional We is the energy per unit length associated with the 
element e.) From Equation 6.7,

	
∇ = ∇

=
∑V Ve ei i

i

α
1

3

	
(6.12)

Substituting Equation 6.12 into Equation 6.11 gives

	
W V dS Ve ei i j

ji

ej= ∇ ⋅ ∇










∫∑∑

==

1
2

1

3

1

3

ε α α
	

(6.13)

FIGURE 6.4
Shape functions α1, α2, and α3 for a triangular element.
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If we define the term in brackets as

	
C dSij

e
i j

( ) ,= ∇ ⋅ ∇∫ α α
	

(6.14)

we may write Equation 6.13 in matrix form as

	
W Ce e

t e
e=

1
2
ε[ ] [ ][ ]( )V V

	
(6.15)

where the superscript t denotes the transpose of the matrix,

	

[ ]V

V

V

V
e

e

e

e

=



















1

2

3 	

(6.16a)

and

	

[ ]( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

C e

e e e

e e e

e e

=
C C C

C C C

C C C

11 12 13

21 22 23

31 32 33
(( )e



















 	

(6.16b)

The matrix [C(e)] is usually called the element coefficient matrix (or “stiffness matrix” in 
structural analysis). The element Cij

( )e  of the coefficient matrix may be regarded as the 
coupling between nodes i and j; its value is obtained from Equations 6.8 and 6.14. For 
example,

	

C dS

A
y y y y x x x x dS

e
12 1 2

2 2 3 3 1 3 2 1 3
1

4
1

( )

[( )( ) ( )( )]

= ∇ ⋅∇

= − − + − −

=

∫
∫

α α

44
2 3 3 1 3 2 1 3

A
y y y y x x x x[( )( ) ( )( )]− − + − −

	
(6.17a)

Similarly,

	
C

A
y y y y x x x xe

13 2 3 1 2 3 2 2 1
1

4
( ) [( )( ) ( )( )],= − − + − −

	
(6.17b)

	
C

A
y y y y x x x xe

23 3 1 1 2 1 3 2 1
1

4
( ) [( )( ) ( )( )],= − − + − −

	
(6.17c)

	
C

A
y y x xe

11 2 3
2

3 2
21

4
( ) [( ) ( ) ],= − + −

	
(6.17d)

	
C

A
y y x xe

22 3 1
2

1 3
21

4
( ) [( ) ( ) ],= − + −

	
(6.17e)

	
C

A
y y x xe

33 1 2
2

2 1
21

4
( ) [( ) ( ) ],= − + −

	
(6.17f)
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Also

	 C C C C C C21 12 31 13 32 23
( ) ( ) ( ) ( ) ( ) ( ), ,e e e e e e= = = 	 (6.18)

6.2.3  Assembling of All Elements

Having considered a typical element, the next step is to assemble all such elements in the 
solution region. The energy associated with the assemblage of elements is

	
W We

t

e

N

= =
=

∑ 1
2

1

ε[ ] [ ][ ]V C V
	

(6.19)

where

	

[ ] ,V =





























V

V

V

Vn

1

2

3



	

(6.20)

n is the number of nodes, N is the number of elements, and [C] is called the overall or global 
coefficient matrix, which is the assemblage of individual element coefficient matrices. Notice 
that to obtain Equation 6.19, we have assumed that the whole solution region is homogeneous 
so that ε is constant. For an inhomogeneous solution region such as shown in Figure 6.5, 
for example, the region is discretized such that each finite element is homogeneous. In this 
case, Equation 6.11 still holds, but Equation 6.19 does not apply since ε(=εrεo) or simply εr 
varies from element to element. To apply Equation 6.19, we may replace ε by εo and multiply 
the integrand in Equation 6.14 by εr.

The process by which individual element coefficient matrices are assembled to obtain 
the global coefficient matrix is best illustrated with an example. Consider the finite element 
mesh consisting of three finite elements as shown in Figure 6.6. Observe the numberings of 
the mesh. The numbering of nodes 1, 2, 3, 4, and 5 is called global numbering. The numbering 

FIGURE 6.5
Discretization of an inhomogeneous solution region.
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i-j-k is called local numbering, and it corresponds with 1-2-3 of the element in Figure 6.3. For 
example, for element 3 in Figure 6.6, the global numbering 3-5-4 corresponds with local 
numbering 1-2-3 of the element in Figure 6.3. (Note that the local numbering must be in 
counterclockwise sequence starting from any node of the element.) For element 3, we could 
choose 4-3-5 instead of 3-5-4 to correspond with 1-2-3 of the element in Figure 6.3. Thus, 
the numbering in Figure 6.6 is not unique. But whichever numbering is used, the global 
coefficient matrix remains the same. Assuming the particular numbering in Figure 6.6, the 
global coefficient matrix is expected to have the form

	

[ ]C =

C C C C C

C C C C C

C C C C C

C C C

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 CC C

C C C C C
44 45

51 52 53 54 55



























 	

(6.21)

which is a 5 × 5 matrix since five nodes (n = 5) are involved. Again, Cij is the coupling 
between nodes i and j. We obtain Cij by using the fact that the potential distribution must 
be continuous across interelement boundaries. The contribution to the i, j position in [C] 
comes from all elements containing nodes i and j. For example, in Figure 6.6, elements 1 
and 2 have global node 1 in common; hence,

	 C C C11 11
1

11
2= +( ) ( )

	 (6.22a)

Node 2 belongs to element 1 only; hence,

	 C C22 33
1= ( )
	 (6.22b)

Node 4 belongs to elements 1, 2, and 3; consequently

	 C C C C44 22
1

33
2

33
3= + +( ) ( ) ( )

	 (6.22c)

Nodes 1 and 4 belong simultaneously to elements 1 and 2; hence,

	 C C C C14 41 12
1

13
2= = +( ) ( )

	 (6.22d)

Since there is no coupling (or direct link) between nodes 2 and 3,

	 C23 = C32 = 0	 (6.22e)

FIGURE 6.6
Assembly of three elements; i- j-k corresponds to local numbering (1-2-3) of the element in Figure 6.3.



379Finite Element Method

Continuing in this manner, we obtain all the terms in the global coefficient matrix by 
inspection of Figure 6.6 as

	

C C C C C C

C C C
11
1

11
2

13
1

12
2

12
1

13
2

31
1

33
1

32
2
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0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

+ +
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021
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23
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3
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31
2

23

C C C C C C

C C C
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( ) ( ) (

+ +
+ 11

32
2

31
3

22
1

33
2

33
3

32
3

21
3

23
3

20 0

) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

C C C C C C

C C C

+ + +

22
3( )



























	

(6.23)

Note that element coefficient matrices overlap at nodes shared by elements and that there 
are 27 terms (nine for each of the three elements) in the global coefficient matrix [C]. Also 
note the following properties of the matrix [C]:

	 1.	 It is symmetric (Cij = Cji) just as the element coefficient matrix.
	 2.	Since Cij = 0 if no coupling exists between nodes i and j, it is expected that for a 

large number of elements [C] becomes sparse. Matrix [C] is also banded if the nodes 
are carefully numbered. It can be shown using Equation 6.17 that

	
C Cij

i

ij

j

( ) ( )e e

= =
∑ ∑= =

1

3

1

3

0

	 3.	 It is singular. Although this is not so obvious, it can be shown using the element 
coefficient matrix of Equation 6.16b.

6.2.4  Solving the Resulting Equations

Using the concepts developed in Chapter 4, it can be shown that Laplace’s equation is 
satisfied when the total energy in the solution region is minimum. Thus, we require that 
the partial derivatives of W with respect to each nodal value of the potential be zero, that is,

	

∂
∂

=
∂
∂

= ⋅⋅⋅ =
∂
∂

=
W
V

W
V

W
Vn1 2

0

or

	

∂
∂

= =
W
V

k n
k

0 1 2, , ,…
	

(6.24)

For example, to get ∂W/∂V1 = 0 for the finite element mesh of Figure 6.6, we substitute 
Equation 6.21 into Equation 6.19 and take the partial derivative of W with respect to V1. We 
obtain

	

0 2
1

1 11 2 12 3 13 4 14 5 15

2 21 3 31 4 41

=
∂
∂

= + + + +

+ + + +

W
V

VC V C V C V C V C

V C V C V C V55 51C
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or

	 0 = V1C11 + V2C12 + V3C13 + V4C14 + V5C15	 (6.25)

In general, ∂W/∂Vk = 0 leads to

	
0

1

=
=

∑VCi ik

i

n

	
(6.26)

where n is the number of nodes in the mesh. By writing Equation 6.26 for all nodes 
k = 1, 2, …, n, we obtain a set of simultaneous equations from which the solution of 
[V]t = [V1, V2, …, Vn] can be found. This can be done in two ways similar to those used in 
solving finite difference equations obtained from Laplace’s equation in Section 3.5.

	 1.	 Iteration Method: Suppose node 1 in Figure 6.6, for example, is a free node. A free 
node is when the potential is unknown, whereas a fixed node is when the potential 
is prescribed. From Equation 6.25,

	
V

C
VCi i

i

1
11

1

2

5
1

= −
=

∑
	

(6.27)

		    Thus, in general, at node k in a mesh with n nodes

	

V
C

VCk
kk

i ki

i i k

n

= −
= ≠
∑1

1, 	
(6.28)

		  where node k is a free node. Since Cki = 0 if node k is not directly connected to node 
i, only nodes that are directly linked to node k contribute to Vk in Equation 6.28. 
Equation 6.28 can be applied iteratively to all the free nodes. The iteration process 
begins by setting the potentials of fixed nodes (where the potentials are prescribed 
or known) to their prescribed values and the potentials at the free nodes (where 
the potentials are unknown) equal to zero or to the average potential [5]

	
V V Vave = +

1
2

( )min max
	

(6.29)

		  where Vmin and Vmax are the minimum and maximum values of V at the fixed 
nodes. With these initial values, the potentials at the free nodes are calculated 
using Equation 6.28. At the end of the first iteration, when the new values have 
been calculated for all the free nodes, they become the old values for the second 
iteration. The procedure is repeated until the change between subsequent iterations 
is negligible enough.

	 2.	Band Matrix Method: If all free nodes are numbered first and the fixed nodes last, 
Equation 6.19 can be written such that [4]

	
W V V

C C

C C

V

Vf p
ff fp

pf pp

f

p
=
























1
2
ε[ ]

	
(6.30)



381Finite Element Method

		  where subscripts f and p, respectively, refer to nodes with free and fixed (or 
prescribed) potentials. Since Vp is constant (it consists of known, fixed values), we 
differentiate only with respect to Vf so that applying Equations 6.24 through 6.30 
yields

	
[ ]C C

V

Vff fp
f

p











 = 0

		  or

	 [ ][ ] [ ][ ]C V C Vff f fp p= − 	 (6.31)

		    This equation can be written as

	 [A][V] = [B]	 (6.32a)

		  or

	 [V] = [A]−1[B]	 (6.32b)

		  where [V] = [Vf], [A] = [Cff], [B] = −[Cfp][Vp]. Since [A] is, in general, nonsingular, the 
potential at the free nodes can be found using Equation 6.32. We can solve for [V] 
in Equation 6.32a using Gaussian elimination technique. We can also solve for [V] 
in Equation 6.32b using matrix inversion if the size of the matrix to be inverted is 
not large.

		    It is sometimes necessary to impose Neumann condition (∂V/∂n = 0) as a boundary 
condition or at the line of symmetry when we take advantage of the symmetry of the 
problem. Suppose, for concreteness, that a solution region is symmetric along the 
y-axis as in Figure 6.7. We impose condition (∂V/∂x = 0) along the y-axis by making

	 V1 = V2,  V4 = V5,  V7 = V8	 (6.33)

FIGURE 6.7
A solution region that is symmetric along the y-axis.
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Notice that as from Equation 6.11 onward, the solution has been restricted to a two-
dimensional problem involving Laplace’s equation, ∇ 2V = 0. The basic concepts developed 
in this section will be extended to finite element analysis of problems involving Poisson’s 
equation (∇ 2V = −ρv/ε, ∇ 2A = −µJ) or wave equation (∇ 2Φ − γ2Φ = 0) in the next sections.

The following two examples were solved in Reference 3 using the band matrix method; 
here they are solved using the iterative method.

EXAMPLE 6.1

Consider the two-element mesh shown in Figure 6.8a. Using the FEM, determine the 
potentials within the mesh.

Solution

The element coefficient matrices can be calculated using Equations 6.17 and 6.18. 
However, our calculations will be easier if we define

	 P1 = (y2 − y3),	 P2 = (y3 − y1),	  P3 = (y1 − y2),	 (6.34)
	 Q1 = (x3 − x2),	 Q2 = (x1 − x3),	 Q3 = (x2 − x1)

With Pi and Qi (i = 1, 2, 3 are the local node numbers), each term in the element 
coefficient matrix is found as

	
C

A
PP QQij i j i j

( ) ( )e = +
1

4 	
(6.35)

where A = 1/2(P2Q3 − P3Q2). It is evident that Equation 6.35 is more convenient to use 
than Equations 6.17 and 6.18. For element 1 consisting of global nodes 1-2-4 corresponding 
to the local numbering 1-2-3 as in Figure 6.8b,

FIGURE 6.8
For Example 6.1: (a) Two-element mesh, (b) local and global numbering at the elements.
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	   P1 = −1.3,	 P2  = 0.9,	 P3   = 0.4,

	  Q1 = −0.2,	 Q2 = −0.4,	 Q3 = 0.6,

	
A = + =

1
2

0 54 0 16 0 35( . . ) .

Substituting all of these into Equation 6.35 gives

	

[ ]
. . .
. . .
. .

( )C 1

1 2357 0 7786 0 4571
0 7786 0 6929 0 0857
0 4571 0 085

=

− −
−
− 77 0 3714.

















	

(6.36)

Similarly, for element 2 consisting of nodes global 2-3-4 corresponding to local 
numbering 1-2-3 as in Figure 6.8b,

	 P1  = −0.6,	 P2   = 1.3,	 P3   = −0.7,

	 Q1 = −0.9,	 Q2 = 0.2,	 Q3 = 0.7,

	
A = + =

1
2

0 91 0 14 0 525( . . ) .

Hence,

	

[ ]
. . .
. . .
. . .

( )C 2

0 5571 0 4571 0 1
0 4571 0 8238 0 3667
0 1 0 3667 0 4

=
− −

− −
− − 6667








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






	

(6.37)

The terms of the global coefficient matrix are obtained as follows:

	

C C C

C C C

22 22
1

11
2

24 23
1

13
2

0 6929 0 5571 1 25

0 08

= + = + =

= + =

( ) ( )

( ) ( )

. . .
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C C221
1
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1

43 32

0 7786

0 4571

0 4571

( )
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( )

(

.

.

.

= −

= = −

= = −

=

C C

C C

C C 22 0 3667) .= −

Note that we follow local numbering for the element coefficient matrix and global 
numbering for the global coefficient matrix. Thus,

	

[ ]

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

C =
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C C C

C C C C C C
11
1

12
1

13
1

21
1

22
1

11
2

12
2

23
1

12

0
(( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

21
2

22
2

23
2

31
1

32
1

31
2

32
2

33
1

33

0 C C C

C C C C C C+ + (( )

. . .
. . .

2

1 2357 0 7786 0 0 4571
0 7786 1 25 0

























=

− −
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0 0 4571 0 8238 0 3667
0 4571 0 0143 0 3667 0 83
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− −

− − −
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. . . . 881
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
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











	

(6.38)
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Note that ∑ = = ∑= =i ij j ijC C1
4

1
40 . This may be used to check if C is properly obtained.

We now apply Equation 6.28 to the free nodes 2 and 4, that is,

	

V
C

VC V C V C

V
C

VC V C V C

2
22

1 12 3 32 4 42

4
44

1 14 3 24 3 34

1

1

= − + +

= − + +

( )

( )

or

	
V V2 4

1
1 25

4 571 0 0143= − − −
.

( . . )
	

(6.39a)

	
V V4 2

1
0 8381

0 143 3 667= − − −
.

( . . )
	

(6.39b)

By initially setting V2 = 0 = V4, we apply Equations 6.39a and 6.39b iteratively. The 
first iteration gives V2 = 3.6568, V4 = 4.4378 and at the second iteration V2 = 3.7075, 
V4 = 4.4386. Just after two iterations, we obtain the same results as those from the band 
matrix method [3]. Thus, the iterative technique is faster and is usually preferred for a 
large number of nodes. Once the values of the potentials at the nodes are known, the 
potential at any point within the mesh can be determined using Equation 6.7.

EXAMPLE 6.2

Write a MATLAB program to solve Laplace’s equation using the FEM. Apply the program 
to the two-dimensional problem shown in Figure 6.9a.

Solution

The solution region is divided into 25 three-node triangular elements with total number 
of nodes being 21 as shown in Figure 6.9b. This is a necessary step in order to have 
input data defining the geometry of the problem. Based on the discussions in Section 
6.2, a general program for solving problems involving Laplace’s equation using three-
node triangular elements is developed as shown in Figure 6.10. The development of the 
program basically involves four steps indicated in the program and explained as follows.

Step 1: This involves inputting the necessary data defining the problem. This is the 
only step that depends on the geometry of the problem at hand. We input the number 
of elements, the number of nodes, the number of fixed nodes, the prescribed values 
of the potentials at the free nodes, the x and y coordinates of all nodes, and a list 
identifying the nodes belonging to each element in the order of the local numbering 
1-2-3. For the problem in Figure 6.9, the three sets of data for coordinates, element–node 
relationship, and prescribed potentials at fixed nodes are shown in Tables 6.1 through 
6.3, respectively.

Step 2: This step entails finding the element coefficient matrix [C(e)] for each element 
and using the terms to form the global matrix [C].

Step 3: At this stage, we first find the list of free nodes using the given list of prescribed 
nodes. We now apply Equation 6.28 iteratively to all the free nodes. The solution converges 
at 50 iterations or less since only six nodes are involved in this case. The solution obtained 
is exactly the same as those obtained using the band matrix method [3].

Step 4: This involves outputting the result of the computation. The output data for the 
problem in Figure 6.9 is presented in Table 6.4. The validity of the result in Table 6.4 is 
checked using the FDM. From the finite difference analysis, the potentials at the free 
nodes are obtained as.
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V8 = 15.41, V9 = 26.74, V10 = 56.69,

V13 = 34.88, V14 = 65.41, V17 = 58.72V

Although the result obtained using finite difference is considered more accurate in 
this problem, increased accuracy of finite element analysis can be obtained by dividing 
the solution region into a greater number of triangular elements, or using higher-order 
elements to be discussed in Section 6.8. As alluded to earlier, the FEM has two major 
advantages over the FDM. Field quantities are obtained only at discrete positions in the 
solution region using FDM; they can be obtained at any point in the solution region in 
FEM. Also, it is easier to handle complex geometries using FEM than using FDM.

6.3  Solution of Poisson’s Equation

To solve the two-dimensional Poisson’s equation,

	
∇ = −2V vρ

ε 	
(6.40)

using FEM, we take the same steps as in Section 6.2. Since the steps are essentially the same 
as in Section 6.2 except that we must include the source term, only the major differences 
will be highlighted here.

FIGURE 6.9
For Example 6.2: (a) Two-dimensional electrostatic problem, (b) solution region divided into 25 triangular 
elements.
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FIGURE 6.10
Computer program for Example 6.2.� (Continued)
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6.3.1  Deriving Element-Governing Equations

After the solution region is divided into triangular elements, we approximate the potential 
distribution Ve(x, y) and the source term ρve (for two-dimensional problems) over each 
triangular element by linear combinations of the local interpolation polynomial αi, that is,

	
V V x ye ei i

i

=
=

∑ α ( , )
1

3

	
(6.41)

FIGURE 6.10 (Continued)
Computer program for Example 6.2.

TABLE 6.1

Nodal Coordinates of the Finite Element Mesh in Figure 6.9

Node x y Node x y

1 0.0 0.0 12 0.0 0.4
2 0.2 0.0 13 0.2 0.4
3 0.4 0.0 14 0.4 0.4
4 0.6 0.0 15 0.6 0.4
5 0.8 0.0 16 0.0 0.6
6 1.0 0.0 17 0.2 0.6
7 0.0 0.2 18 0.4 0.6
8 0.2 0.2 19 0.0 0.8
9 0.4 0.2 20 0.2 0.8
10 0.6 0.2 21 0.0 1.0
11 0.8 0.2
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ρ ρ αve ei i

i

x y=
=

∑ ( , )
1

3

	
(6.42)

The coefficients Vei and ρei, respectively, represent the values of V and ρv at node i of 
element e as in Figure 6.3. The values of ρei are known since ρv (x, y) is prescribed, while the 
values of Vei are to be determined.

From Table 4.1, an energy functional whose associated Euler equation is Equation 6.40 is

	
F V V V dSe e ve e

S

( ) [ | | ]= ∇ −∫1
2

22ε ρ
	

(6.43)

F(Ve) represents the total energy per length within element e. The first term under the 

integral sign, 
1
2

1
2

2D E⋅ = ∇ε| | ,Ve  is the energy density in the electrostatic system, while the 

TABLE 6.2

Element–Node Identification

Element
Local

1
Node

2
No.

3 Element
Local

1
Node

2
No.

3

1 1 2 7 14 9 10 14
2 2 8 7 15 10 15 14
3 2 3 8 16 10 11 15
4 3 9 8 17 12 13 16
5 3 4 9 18 13 17 16
6 4 10 9 19 13 14 17
7 4 5 10 20 14 18 17
8 5 11 10 21 14 15 18
9 5 6 11 22 16 17 19
10 7 8 12 23 17 20 19
11 8 13 12 24 17 18 20
12 8 9 13 25 19 20 21
13 9 14 13

TABLE 6.3

Prescribed Potentials at Fixed Nodes

Node
Prescribed 
Potential Node

Prescribed 
Potential

1 0.0 18 100.0
2 0.0 20 100.0
3 0.0 21 50.0
4 0.0 19 0.0
5 0.0 16 0.0
6 50.0 12 0.0
11 100.0 7 0.0
15 100.0
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second term, ρseVe dS, is the work done in moving the charge ρse dS to its location at potential 
Ve. Substitution of Equations 6.41 and 6.42 into Equation 6.43 yields
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This can be written in matrix form as

	
F V V C V Ve e

t
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t
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(6.44)

where

	
C dSij i j

( )e = ∇ ⋅∇∫ α α
	

(6.45)

TABLE 6.4

Output Data of the Program in Figure 6.10

Node X Y Potential

1 0.00 0.00 0.000
2 0.20 0.00 0.000
3 0.40 0.00 0.000
4 0.60 0.00 0.000
5 0.80 0.00 0.000
6 1.00 0.00 50.000
7 0.00 0.20 0.000
8 0.20 0.20 18.182
9 0.40 0.20 36.364
10 0.60 0.20 59.091
11 0.80 0.20 100.000
12 0.00 0.40 0.000
13 0.20 0.40 36.364
14 0.40 0.40 68.182
15 0.60 0.40 100.000
16 0.00 0.60 0.000
17 0.20 0.60 59.091
18 0.40 0.60 100.000
19 0.00 0.80 0.000
20 0.20 0.80 100.000
21 0.00 1.00 50.00

Number of nodes = 21, number of elements = 25, number 
of fixed nodes = 15.
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which is already defined in Equation 6.17 and

	
T dSij i j

( )e = ∫ α α
	

(6.46)

It will be shown in Section 6.8 that
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(6.47)

where A is the area of the triangular element.
Equation 6.44 can be applied to every element in the solution region. We obtain the 

discretized functional for the whole solution region (with N elements and n nodes) as the 
sum of the functionals for the individual elements, that is, from Equation 6.44,

	
F V F Ve

t t

e
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( ) ( ) [ ] [ ][ ] [ ] [ ][ ]= = −
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∑ 1
2

1

ε V C V V T ρ
	

(6.48)

where t denotes transposition. In Equation 6.48, the column matrix [V] consists of the values 
of Vei, while the column matrix [ρ] contains n values of the source function ρv at the nodes. 
The functional in Equation 6.48 is now minimized by differentiating with respect to Vei 
and setting the result equal to zero.

6.3.2  Solving the Resulting Equations

The resulting equations can be solved by either the iteration method or the band matrix 
method as discussed in Section 6.2.4.

Iteration Method: Consider a solution region in Figure 6.6 having five nodes so that n = 5. 
From Equation 6.48,
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(6.49)

We minimize the energy by applying

	

∂
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= =
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k n
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(6.50)
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From Equation 6.49, we get ∂F/∂V1 = 0, for example, as
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(6.51)

Thus, in general, for a mesh with n nodes
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(6.52)

where node k is assumed to be a free node.
By fixing the potential at the prescribed nodes and setting the potential at the free nodes 

initially equal to zero, we apply Equation 6.52 iteratively to all free nodes until convergence 
is reached.

Band Matrix Method: If we choose to solve the problem using the band matrix method, we 
let the free nodes be numbered first and the prescribed nodes last. By doing so, Equation 
6.48 can be written as
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(6.53)

Minimizing F(V) with respect to Vf, that is,

	

∂
∂

=
F
Vf

0

gives

	 0 = + − +ε( ) ( )C V C V T Tff f pf p ff f fp pρ ρ

or

	
[ ][ ] [ ][ ] [ ][ ] [ ][ ]Cff f fp p ff f fp pV C V T T= − + +

1 1
ε ερ ρ

	
(6.54)

This can be written as

	 [A][V] = [B]	 (6.55)

where [A] = [Cff], [V] = [Vf ], and [B] is the right-hand side of Equation 6.54. Equation 6.55 
can be solved to determine [V] either by matrix inversion or Gaussian elimination technique 
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discussed in Appendix C. There is little point in giving examples on applying FEM to 
Poisson’s problems, especially when it is noted that the difference between Equations 6.28 
and 6.52 or Equations 6.54 and 6.31 is slight. See Reference 6 for an example.

6.4  Solution of the Wave Equation

A typical wave equation is the inhomogeneous scalar Helmholtz’s equation

	 ∇ 2Φ + k2Φ = g	 (6.56)

where Φ is the field quantity (for waveguide problem, Φ = Hz for TE mode or Ez for TM 
mode) to be determined, g is the source function, and k = ω µε  is the wave number of 
the medium. The following three distinct special cases of Equation 6.56 should be noted:

	 i.	k = 0 = g: Laplace’s equation;
	 ii.	k = 0: Poisson’s equation; and
	 iii.	k is an unknown, g = 0: homogeneous, scalar Helmholtz’s equation.

We know from Chapter 4 that the variational solution to the operator equation

	 LΦ = g	 (6.57)

is obtained by extremizing the functional

	 I(Φ) = 〈L, Φ〉 −2 〈Φ, g〉	 (6.58)

Hence, the solution of Equation 6.56 is equivalent to satisfying the boundary conditions 
and minimizing the functional

	
I k g dS( )Φ Φ Φ Φ= ∇ − +∫∫1

2
22 2 2[| | ]

	
(6.59)

If other than the natural boundary conditions (i.e., Dirichlet or homogeneous Neumann 
conditions) must be satisfied, appropriate terms must be added to the functional as 
discussed in Chapter 4.

We now express potential Φ and source function g in terms of the shape functions αi over 
a triangular element as

	
Φ Φe i ei
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x y( , ) =
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1

3

	
(6.60)

	
g x y ge i ei

i

( , ) =
=
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1

3

	
(6.61)

where Φei and gei are, respectively, the values of Φ and g at nodal point i of element e.



393Finite Element Method

Substituting Equations 6.60 and 6.61 into Equation 6.59 gives
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(6.62)

where [Φe] = [Φe1, Φe2, Φe3]t, [Ge] = [ge1, ge2, ge3]t, and [C(e)] and [T(e)] are defined in Equations 
6.17 and 6.47, respectively.

Equation 6.62, derived for a single element, can be applied for all N elements in the 
solution region. Thus,
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(6.63)

From Equations 6.62 and 6.63, I(Φ) can be expressed in matrix form as
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where

	 [ ] [ , , , ] ,Φ Φ Φ Φ= 1 2 … N
t

	 (6.65a)

	 [ ] [ , , , ] ,G g g gN t= 1 2 … 	 (6.65b)

and [C] and [T] are global matrices consisting of local matrices [C(e)] and [T(e)], respectively.
Consider the special case in which the source function g = 0. Again, if free nodes are 

numbered first and the prescribed nodes last, we may write Equation 6.64 as
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Setting ∂I/∂Φf equal to zero gives
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For TM modes, Φp = 0 and hence

	 [ ]C k Tff ff f− =2 0Φ 	 (6.68)

Premultiplying by Tff
−1 gives

	 [ ]T C k Iff ff f
− −1 2 0Φ = 	 (6.69)

Letting

	 A T C k Xff ff f= = =−1 2, ,λ Φ 	 (6.70a)

we obtain the standard eigenproblem

	 (A − λI)X = 0	 (6.70b)

where I is a unit matrix. Any standard procedure [7] may be used to obtain some or all of 
the eigenvalues λ1, λ2, …, λnf  and eigenvectors X1, X2, …, Xnf, where nf is the number of free 
nodes. The eigenvalues are always real since C and T are symmetric.

Solution of the algebraic eigenvalue problems in Equation 6.70 furnishes eigenvalues and 
eigenvectors, which form good approximations to the eigenvalues and eigenfunctions of 
the Helmholtz problem, that is, the cuttoff wavelengths and field distribution patterns of 
the various modes possible in a given waveguide.

The solution of the problem presented in this section, as summarized in Equation 6.69, 
can be viewed as the finite element solution of homogeneous waveguides. The idea can be 
extended to handle inhomogeneous waveguide problems [8–11]. However, in applying FEM 
to inhomogeneous problems, a serious difficulty is the appearance of spurious, nonphysical 
solutions. Several techniques have been proposed to overcome the difficulty [12–18].

EXAMPLE 6.3

To apply the ideas presented in this section, we use the finite element analysis to determine 
the lowest (or dominant) cutoff wavenumber kc of the TM11 mode in waveguides with 
square (a × a) and rectangular (a × b) cross sections for which the exact results are 
already known as
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where m = n = 1.
It may be instructive to try with hand calculation the case of a square waveguide with 

two divisions in the x and y directions. In this case, there are nine nodes, eight triangular 
elements, and one free node (nf = 1). Equation 6.68 becomes

	 C k T11
2

11 0− =

where C11 and T11 are obtained from Equations 6.34, 6.35, and 6.47 as
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Hence,

	
k

a
A a

2
2

2 22
32

= =

or

	 ka = 5.656

which is about 27% off the exact solution. To improve the accuracy, we must use more 
elements.

The computer program in Figure 6.11 applies the ideas in this section to find kc. The 
main program calls function GRID (to be discussed in Section 6.5) to generate the 
necessary input data from a given geometry. If nx and ny are the number of divisions 
in the x and y directions, the total number of elements ne = 2nxny. By simply specifying 
the values of a, b, nx, and ny, the program determines kc. The results for the square (a = b) 
and rectangular (b = 2a) waveguides are presented in Tables 6.5 and 6.6, respectively.

6.5  Automatic Mesh Generation I: Rectangular Domains

One of the major difficulties encountered in the finite element analysis of continuum 
problems is the tedious and time-consuming effort required in data preparation. Efficient 
finite element programs must have node and element generating schemes, referred to 
collectively as mesh generators. Automatic mesh generation minimizes the input data required 
to specify a problem. It not only reduces the time involved in data preparation, it eliminates 
human errors introduced when data preparation is performed manually. Combining the 
automatic mesh generation program with computer graphics is particularly valuable since 
the output can be monitored visually. Since some applications of the FEM to EM problems 
involve simple rectangular domains, we consider the generation of simple meshes [6] here; 
automatic mesh generator for arbitrary domains will be discussed in Section 6.6.

Consider a rectangular solution region of size a × b as in Figure 6.12. Our goal is to divide 
the region into rectangular elements, each of which is later divided into two triangular 
elements. Suppose nx and ny are the number of divisions in x and y directions, the total 
number of elements and nodes are, respectively, given by

	 ne = 2nxny

	 nd = (nx + 1)(ny + 1)	
(6.71)

Thus it is easy to figure out from Figure 6.12 a systematic way of numbering the elements 
and nodes. To obtain the global coordinates (x, y) for each node, we need an array containing 
Δxi, i = 1, 2, …, nx and Δyj, j = 1, 2, …, ny, which are the distances between nodes in the x 
and y directions, respectively. If the order of node numbering is from left to right along 
horizontal rows and from bottom to top along the vertical rows, then the first node is the 
origin (0,0). The next node is obtained as x → x + Δx1 while y = 0 remains unchanged. 
The following node has x → x + Δx2, y = 0, and so on until Δxi are exhausted. We start the 
second horizontal row by starting with x = 0, y → y + Δy1 and increasing x until Δxi are 
exhausted. We repeat the process until the last node (nx + 1)(ny + 1) is reached, that is, when 
Δxi and Δyi are exhausted simultaneously.
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FIGURE 6.11
Computer program for Example 6.3.� (Continued)
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The procedure presented here allows for generating uniform and nonuniform meshes. 
A mesh is uniform if all Δxi are equal and all Δyi are equal; it is nonuniform otherwise. 
A nonuniform mesh is preferred if it is known in advance that the parameter of interest 
varies rapidly in some parts of the solution domain. This allows a concentration of relatively 
small elements in the regions where the parameter changes rapidly, particularly since these 

FIGURE 6.11 (Continued)
Computer program for Example 6.3.

TABLE 6.5

Lowest Wavenumber for a Square Waveguide (b = a)

nx ne kca % Error

2 8 5.656 27.3
3 18 5.030 13.2
5 50 4.657 4.82
7 98 4.553 2.47
10 200 4.497 1.22

Exact: kca = 4.4429, ny = nx.
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regions are often of greatest interest in the solution. Without the preknowledge of the rapid 
change in the unknown parameter, a uniform mesh can be used. In that case, we set

	 Δx1 = Δx2 = ⋯ = hx

	 Δy1 = Δy2 = ⋯ = hy	
(6.72)

where hx = a/nx and hy = b/ny.
In some cases, we also need a list of prescribed nodes. If we assume that all boundary 

points have prescribed potentials, the number np of prescribed node is given by

	 np = 2(nx + ny)	 (6.73)

A simple way to obtain the list of boundary points is to enumerate points on the bottom, 
right, top, and left sides of the rectangular region in that order.

The ideas presented here are implemented in the function GRID in Figure 6.13. The 
subroutine can be used for generating a uniform or nonuniform mesh out of a given 
rectangular region. If a uniform mesh is desired, the required input parameters are a, b, nx, 
and ny. If, on the other hand, a nonuniform mesh is required, we need to supply nx, ny, Δxi, 
i = 1,2, …, nx, and Δyj, j = 1,2, …, ny. The output parameters are ne, nd, np, connectivity list, 
the global coordinates (x, y) of each node, and the list of prescribed nodes. It is needless to 
say that the subroutine GRID is not useful for a nonrectangular solution region. See the 
program in Figure 6.11 as an example on how to use subroutine GRID. A more general 
program for discretizing a solution region of any shape will be presented in the next section.

FIGURE 6.12
Discretization of a rectangular region into a nonuniform mesh.

TABLE 6.6

Lowest Wavenumber for a Rectangular Waveguide (b = 2a)

nx ne kca % Error

2 16 4.092 16.5
4 64 3.659 4.17
6 144 3.578 1.87
8 256 3.549 1.04

Exact: kca = 3.5124, ny = 2nx.
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6.6  Automatic Mesh Generation II: Arbitrary Domains

As the solution regions become more complex than the ones considered in Section 6.5, the 
task of developing mesh generators becomes more tedious. A number of mesh generation 
algorithms (e.g., [19–31]) of varying degrees of automation have been proposed for arbitrary 
solution domains. Reviews of various mesh generation techniques can be found in 
Reference 32.

FIGURE 6.13
Program GRID.
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The basic steps involved in a mesh generation are as follows [33,34]:

•	 Subdivide solution region into a few quadrilateral blocks,
•	 Separately subdivide each block into elements,
•	 Connect individual blocks.

Each step is explained as follows.

6.6.1  Definition of Blocks

The solution region is subdivided into quadrilateral blocks. Subdomains with different 
constitutive parameters (σ, µ, ε) must be represented by separate blocks. As input data, 
we specify block topologies and the coordinates at eight points describing each block. 
Each block is represented by an eight-node quadratic isoparametric element. With natural 
coordinate system (ζ, η), the x and y coordinates are represented as
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(6.74)
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(6.75)

where αi(ζ, η) is a shape function associated with node i, and (xi, yi) are the coordinates 
of node i defining the boundary of the quadrilateral block as shown in Figure 6.14. The 
shape functions are expressed in terms of the quadratic or parabolic isoparametric elements 
shown in Figure 6.15. They are given by
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for corner nodes,
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(6.77)

FIGURE 6.14
Typical quadrilateral block.
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for midside nodes. Note the following properties of the shape functions:

	 1.	They satisfy the conditions
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	 2.	They become quadratic along element edges (ζ = ±1, η = ±1).

6.6.2  Subdivision of Each Block

For each block, we specify N DIV X and N DIV Y, the number of element subdivisions to 
be made in the ζ and η directions, respectively. Also, we specify the weighting factors (Wζ)i 
and (Wη)i allowing for graded mesh within a block. In specifying N DIV X, N DIV Y, Wζ, 
and Wη care must be taken to ensure that the subdivision along block interfaces (for adjacent 
blocks) are compatible. We initialize ζ and η to a value of −1 so that the natural coordinates 
are incremented according to

	
ζ ζ ζ

ζ
i i

i
T

W
W F

= +
⋅

2( )

	
(6.79)

	
η η η

η
i i

i
T

W
W F

= +
⋅

2( )

	
(6.80)

where

	
W WT

j

j

NDIVX

ζ ζ=
=

∑ ( )
1 	

(6.81a)

FIGURE 6.15
Eight-node serendipity element.
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W WT

j

j

NDIVX

η η=
=

∑ ( )
1 	

(6.81b)

and

	
F =






1
2
,
,

for linear elements
for quadratic elements

Three element types are permitted: (a) linear four-node quadrilateral elements, (b) linear 
three-node triangular elements, and (c) quadratic eight-node isoparametric elements.

6.6.3  Connection of Individual Blocks

After subdividing each block and numbering its nodal points separately, it is necessary 
to connect the blocks and have each node numbered uniquely. This is accomplished by 
comparing the coordinates of all nodal points and assigning the same number to all nodes 
having identical coordinates. That is, we compare the coordinates of node 1 with all other 
nodes, and then node 2 with other nodes, etc., until all repeated nodes are eliminated. The 
listing of the MATLAB code for automatic mesh generation is shown in Figure 6.16. The 
following example taken from Reference 34 illustrates the application of the code.

EXAMPLE 6.4

Utilize the distmesh2d function by Persson and Strang [34] in Figure 6.16 to discretize 
the geometry shown in Figure 6.17. This geometry is composed of the union of two 
rectangles whose bottom left and top right coordinates (x1, y1), (x2, y2) are (0, 0), (5, 10) and 
(5, 5), (8, 10), and a circle void centered at (2.5, 7.5) with a radius of 1.5.

Solution

The code in Figure 6.16 describes the basic geometry of the structure with a signed 
distance function “fd” which is a MATLAB inline function composed of the union of 
two rectangles and a circular void. The parameter “box” defines the limit of the solution 
space of the mesh and the parameter “fix” contains the pre-determined nodes in the 
mesh. Distmesh2d uses an iterative mesh generation technique based on the physical 
analogy between a simplex mesh and a truss structure. Meshpoints are the nodes of 
the truss. The main program in Figure 6.16a needs the functions ddiff.m, dunion.m, 
dcirc.m, and drectangle.m all provided in Figure 6.16b. The completed mesh is shown 
in Figure 6.18.

6.7  Bandwidth Reduction

Since most of the matrices involved in FEM are symmetric, sparse, and banded, we can 
minimize the storage requirements and the solution time by storing only the elements 
involved in half bandwidth instead of storing the whole matrix. To take the fullest advantage 
of the benefits from using a banded matrix solution technique, we must make sure that the 
matrix bandwidth is as narrow as possible.
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If we let d be the maximum difference between the lowest and the highest node numbers 
of any single element in the mesh, we define the semi-bandwidth B (which includes the 
diagonal term) of the coefficient matrix [C] as

	 B = (d + 1) f	 (6.82)

FIGURE 6.16
MATLAB code for automatic mesh generation: (a) main program, (b) functions that the main function will need.
� (Continued)
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where f is the number of degrees of freedom (or number of parameters) at each node. 
If, for example, we are interested in calculating the electric field intensity E for a three-
dimensional problem, then we need Ex, Ey, and Ez at each node, and f = 3 in this case. 
Assuming that there is only one parameter per node,

	 B = d + 1	 (6.83)

FIGURE 6.16 (Continued)
MATLAB code for automatic mesh generation: (a) main program, (b) functions that the main function will need.
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The semi-bandwidth, which does not include the diagonal term, is obtained from 
Equation 6.82 or 6.83 by subtracting one from the right-hand side, that is, for f = 1,

	 B = d	 (6.84)

Throughout our discussion in this section, we will stick to the definition of semi-
bandwidth in Equation 6.84. The total bandwidth may be obtained from Equation 6.84 as 
2B + 1.

FIGURE 6.18
Generated mesh for Example 6.4.

FIGURE 6.17
Solution region of Example 6.4.
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The bandwidth of the global coefficient matrix depends on the node numbering. 
Hence, to minimize the bandwidth, the node numbering should be selected to minimize 
d. Good node numbering is usually such that nodes with widely different numbers are 
widely separated. To minimize d, we must number nodes across the narrowest part of 
the region.

Consider, for the purpose of illustration, the mesh shown in Figure 6.19. If the mesh is 
numbered originally as in Figure 6.19, we obtain de for each element e as

	 d1 = 2,  d2 = 3,  d3 = 4,  d4 = 5,  d5 = 6,  d6 = 7	 (6.85)

From this, we obtain

	 d = maximum de = 7

or

	 B = 7	 (6.86)

Alternatively, the semi-bandwidth may be determined from the coefficient matrix, which 
is obtained by mere inspection of Figure 6.19 as

	

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

7� ����������������������������������B=

=[ ]C

xx x x

x x x x x

x x x x

x x x x

x x x

x x x x x

x x x x

x x x







































 	

(6.87)

FIGURE 6.19
Original mesh with B = 7.
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where x indicates a possible nonzero term and blanks are zeros (i.e., Cij = 0, indicating no 
coupling between nodes i and j). If the mesh is renumbered as in Figure 6.20a,

	 d1 = 4 = d2 = d3 = d4 = d5 = d6	 (6.88)

and hence

	 d = maximum de = 4

or

	 B = 4	 (6.89)

Finally, we may renumber the mesh as in Figure 6.20b. In this case

	 d1 = 2 = d2 = d3 = d4 = d5 = d6	 (6.90)

and

	 d = maximum de = 2	 (6.91)

or

	 B = 2	 (6.92)

The value B = 2 may also be obtained from the coefficient matrix for the mesh in Figure 
6.20b, namely,

	

B

x x x

x x x x

x x x x x

x x x x

x x x x x

x x x x x

x x

=← →

=

2

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

P Q

[ ]C

xx x

x x x









































R

S 	

(6.93)

FIGURE 6.20
Renumbered nodes: (a) B = 4, (b) B = 2.
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From Equation 6.93, one immediately notices that [C] is symmetric and that terms are 
clustered in a band about the diagonal. Hence, [C] is sparse and banded so that only the 
data within the area PQRS of the matrix need to be stored—a total of 33 terms out of 64. 
This illustrates the savings in storage by a careful nodal numbering.

For a simple mesh, hand-labeling coupled with a careful inspection of the mesh (as 
we have done so far) can lead to a minimum bandwidth. However, for a large mesh, a 
hand-labeling technique becomes a tedious, time-consuming task, which in most cases 
may not be successful. It is particularly desirable that an automatic relabeling scheme 
is implemented within a mesh generation program. A number of algorithms have been 
proposed for bandwidth reduction by automatic mesh renumbering [35–38]. A simple, 
efficient algorithm is found in Collins [35].

6.8  Higher-Order Elements

The finite elements we have used so far have been the linear type in that the shape function is 
of the order one. A higher-order element is one in which the shape function or interpolation 
polynomial is of the order two or more.

The accuracy of a finite element solution can be improved by using finer mesh or using 
higher-order elements or both. In general, fewer higher-order elements are needed to 
achieve the same degree of accuracy in the final results. The higher-order elements are 
particularly useful when the gradient of the field variable is expected to vary rapidly. They 
have been applied with great success in solving EM-related problems [4,39–44].

6.8.1  Pascal Triangle

Higher-order triangular elements can be systematically developed with the aid of the 
so-called Pascal triangle given in Figure 6.21. The family of finite elements generated 
in this manner with the distribution of nodes illustrated in Figure 6.22. Note that in 
higher-order elements, some secondary (side and/or interior) nodes are introduced in 
addition to the primary (corner) nodes so as to produce exactly the right number of 
nodes required to define the shape function of that order. The Pascal triangle contains 
terms of the basis functions of various degrees in variables x and y. An arbitrary 

FIGURE 6.21
The Pascal triangle. The first row is (constant, n = 0), the second (linear, n = 1), the third (quadratic, n = 2), the 
fourth (cubic, n = 3), and the fifth (quartic, n = 4).
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function Φi(x, y) can be approximated in an element in terms of a complete nth-order 
polynomial as

	
Φ Φ( , )x y i i

i

m

=
=

∑α
1 	

(6.94)

where

	
m= + +

1
2

1 2( )( )
	

(6.95)

is the number of terms in complete polynomials (also the number of nodes in the triangle). 
For example, for second order (n = 2) or quadratic (six-node) triangular elements,

	 Φe(x, y) = a1 + a2x + a3y + a4xy + a5x2 + a6y2	 (6.96)

This equation has six coefficients, and hence the element must have six nodes. It is also 
complete through the second-order terms. A systematic derivation of the interpolation 
function a for the higher-order elements involves the use of the local coordinates.

6.8.2  Local Coordinates

The triangular local coordinates (ξ1, ξ2, ξ3) are related to Cartesian coordinates (x, y) as

	 x = ξ1x1 + ξ2x2 + ξ3x3	 (6.97)

	 y = ξ1y1 + ξ2y2 + ξ3y3	 (6.98)

The local coordinates are dimensionless with values ranging from 0 to 1. By definition, 
ξi at any point within the triangle is the ratio of the perpendicular distance from the point 
to the side opposite to vertex i to the length of the altitude drawn from vertex i. Thus, 

FIGURE 6.22
Pascal triangle and the associated polynomial basis function for degree n = 1–4.
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from Figure 6.23 the value of ξ1 at P, for example, is given by the ratio of the perpendicular 
distance d from the side opposite vertex 1 to the altitude h of that side, that is,

	
ξ1 =

d
h 	

(6.99)

Alternatively, from Figure 6.23, ξi at P can be defined as

	
ξi iA

A
=

	
(6.100)

so that

	 ξ1 + ξ2 + ξ3 = 1	 (6.101)

since A1 + A2 + A3 = A. In view of Equation 6.100, the local coordinates ξi are also called area 
coordinates. The variation of (ξ1, ξ2, ξ3) inside an element is shown in Figure 6.24. Although 
the coordinates ξ1, ξ2, and ξ3 are used to define a point P, only two are independent since 
they must satisfy Equation 6.101. The inverted form of Equations 6.97 and 6.98 is

	
ξi i i i

A
c b x a y= + +

1
2

[ ]
	

(6.102)

where
ai = xk − xj,
bi = yj − yk,
ci = xj yk − xkyj

	
A b a b a= = −area of the tria gle

1
2

1 2 2 1( ),
	

(6.103)

FIGURE 6.23
Definition of local coordinates.
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and (i, j, k) is an even permutation of (1, 2, 3). (Notice that ai and bi are the same as Qi and Pi 
in Equation 6.34.) The differentiation and integration in local coordinates are carried out 
using [45]:
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∂

−
∂
∂
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f
x

b
f
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(6.104a)
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∂
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∂
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(6.104d)
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(6.104e)

	
ξ ξ ξ1 2 3

2
2i j kdS

i j k
i j k

A∫∫ =
+ + +

! ! !
( )! 	

(6.104f)

	 dS = 2A dξ1 dξ2	 (6.104g)

6.8.3  Shape Functions

We may now express the shape function for higher-order elements in terms of local 
coordinates. Sometimes, it is convenient to label each point in the finite elements in 

FIGURE 6.24
Variation of local coordinates.
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Figure 6.22 with three integers i, j, and k from which its local coordinates (ξ1, ξ2, ξ3) can be 
found or vice versa. At each point Pijk

	
( , , ) , ,ξ ξ ξ1 2 3 =









i
n

j
n

k
n 	

(6.105)

Hence if a value of Φ, say Φijk, is prescribed at each point Pijk, Equation 6.94 can be written 
as

	
Φ Φ( , , ) ( , , )ξ ξ ξ α ξ ξ ξ1 2 3

11

1 2 3=
=

−

=
∑∑ ijk

j

m i

i

m

ijk

	
(6.106)

where

	 αℓ = αijk = pi (ξ1) pj (ξ2) pk (ξ3), ℓ = 1, 2, …	 (6.107)
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(6.108)

and r ∈ (i, j, k). pr(ξ) may also be written as

	
p

n r
r

p rr r( )
( )

( ).ξ ξ ξ=
− +

>−
1

01
	

(6.109)

where p0(ξ) = 1.
The relationships between the subscripts q ∈ {1, 2, 3} on ξq,ℓ ∈ {1, 2, …, m} on αℓ, and r 

∈ (i, j, k) on pr and Pijk in Equations 6.107 through 6.109 are illustrated in Figure 6.25 for n 
ranging from 1 to 4. Henceforth, point Pijk will be written as Pn for conciseness.

Notice from Equation 6.108 or Equation 6.109 that
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(6.110)

Substituting Equation 6.110 into Equation 6.107 gives the shape functions αℓ for nodes 
ℓ = 1, 2, …, m, as shown in Table 6.7 for n = 1–4. Observe that each αℓ takes the value of 1 at 
node ℓ and value of 0 at all other nodes in the triangle. This is easily verified using Equation 
6.105 in conjunction with Figure 6.25.
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6.8.4  Fundamental Matrices

The fundamental matrices [T] and [Q] for triangular elements can be derived using the 
shape functions in Table 6.7. (For simplicity, the brackets [ ] denoting a matrix quantity 
will be dropped in the remaining part of this section.) In Equation 6.46, the T matrix is 
defined as

	
T dSij i j= ∫∫ α α

	
(6.46)

From Table 6.7, we substitute αℓ in Equation 6.46 and apply Equations 6.104e and 6.104f to 
obtain elements of T. For example, for n = 1,

	
T A d dij i j=

−

∫∫2 1

0

1

2

0

1 2

ξ ξ ξ ξ

ξ

when i ≠ j,
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A A
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2 1 1 0
4 12

( !)( !)( !)
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(6.111a)

when i = j,

	
T

A A
ij = =

2 2
4 6
( !)
! 	

(6.111b)

FIGURE 6.25
Distribution of nodes over triangles for n = 1–4. The triangles are in standard position.



414 Computational Electromagnetics with MATLAB®

Hence,
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(6.112)

By following the same procedure, higher-order T matrices can be obtained. The T 
matrices for orders up to n = 4 are tabulated in Table 6.8, where the factor A, the area of 
the element, has been suppressed. The actual matrix elements are obtained from Table 
6.8 by multiplying the tabulated numbers by A and dividing by the indicated common 
denominator. The following properties of the T matrix are noteworthy:

	 a.	T is symmetric with positive elements;
	 b.	Elements of T all add up to the area of the triangle, that is, ∑ ∑ =i

m
j
m

ijT A, since by 
definition ∑ == 1 1m α  at any point within the element;

TABLE 6.7

Polynomial Basis Function αℓ(ξ1, ξ2, ξ3, ξ4) for First-, Second-, Third-, and Fourth Order

n = 1 n = 2 n = 3 n = 4

α1 = ξ1 α1 = ξ1(2ξ1 − 1) α ξ ξ ξ1 1 1 1
1
2

3 2 3 1= − −( )( ) α ξ ξ ξ ξ1 1 1 1 1
1
6

4 3 4 2 4 1= − − −( )( )( )

α2 = ξ2 α2 = 4ξ1ξ2 α ξ ξ ξ2 1 1 2
9
2

3 1= −( ) α ξ ξ ξ ξ2 1 1 1 2
8
3

4 2 4 1= − −( )( )

α3 = ξ3 α3 = 4ξ1ξ3 α ξ ξ ξ3 1 1 3
9
2

3 1= −( ) α ξ ξ ξ ξ3 1 1 1 3
8
3

4 2 4 1= − −( )( )

α4 = ξ2(2ξ2 − 1) α ξ ξ ξ4 1 2 2
9
2

3 1= −( ) α ξ ξ ξ ξ4 1 1 2 24 4 1 4 1= − −( )( )

α5 = 4ξ2ξ3 α5 = 27ξ1ξ2ξ3 α ξ ξ ξ ξ5 1 1 2 332 4 1= −( )

α6 = ξ3(2ξ3 − 1) α ξ ξ ξ6 1 3 3
9
2

3 1= −( ) α ξ ξ ξ ξ6 1 1 3 34 4 1 4 1= − −( )( )

α ξ ξ ξ7 2 2 2
1
2

3 2 3 1= − −( )( ) α ξ ξ ξ ξ7 1 2 2 2
8
3

4 2 4 1= − −( )( )

α ξ ξ ξ8 2 2 3
9
2

3 1= −( ) α ξ ξ ξ ξ8 1 2 2 332 4 1= −( )

α ξ ξ ξ9 2 3 3
9
2

3 1= −( ) α ξ ξ ξ ξ9 1 2 3 332 4 1= −( )

α ξ ξ ξ10 3 3 3
1
2

3 2 3 1= − −( )( ) α ξ ξ ξ ξ10 1 3 3 3
8
3

4 2 4 1= − −( )( )

α ξ ξ ξ ξ11 2 2 2 2
1
6

4 3 4 2 4 1= − − −( )( )( )

α ξ ξ ξ ξ12 2 2 2 3
8
3

4 2 4 1= − −( )( )

α ξ ξ ξ ξ13 2 2 3 34 4 1 4 1= − −( )( )

α ξ ξ ξ ξ14 2 3 3 3
8
3

4 2 4 1= − −( )( )

α ξ ξ ξ ξ15 3 3 3 3
1
6

4 3 4 2 4 1= − − −( )( )( )
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TABLE 6.8

Table of T Matrices for n = 1–4

n = 1 Common denominator: 12

2 1 1

1 2 1

1 1 2













n = 2 Common denominator: 180

6 0 0 1 4 1

0 32 16 0 16 4

0 16 32 4 16 0

1 0 4 6 0 1

4 16 16 0 32 0

1 4 0 1 0 6

− − −

−

−

− − −

−

− − −













n = 3 Common denominator: 6720

76 18 18 0 36 0 11 27 27 11

18 540 270 189 162 135 0 135 54 27

18 270 540 13

− − − −

− 55 162 189 27 54 135 0

0 189 135 540 162 54 18 270 135 27

36 162 162 16

− − −

− − − −

22 1944 162 36 162 162 36

0 135 189 54 162 540 27 135 270 18

11 0 27 18 36 2

− − − −

77 76 18 0 11

27 135 54 270 162 135 18 540 189 0

27 54 135 135 162 270 0

− − − −

− − − −−







189 540 18

11 27 0 27 36 18 11 0 18 76









n = 4 Common denominator: 56,700

290 160 160 −80 160 80 0 −160 −160 0 −27 −112 −12 −112 −27

160 2560 1280 −1280 1280 −960 768 256 −256 512 0 512 64 256 −112

160 1280 2560 −960 1280 −1280 512 −256 256 768 −112 256 64 512 0

−80 −1280 −960 3168 384 48 −1280 384 −768 64 −80 −960 48 64 −12

160 1280 1280 384 10752 384 256 −1536 −1536 256 −160 −256 −768 −256 −160

−80 −960 −1280 48 384 3168 64 −768 384 −1280 −12 64 48 −960 −80

0 768 512 −1280 256 64 2560 1280 −256 256 160 1280 −960 512 −112

−160 256 −256 384 −1536 −768 1280 10752 −1536 −256 160 1280 384 256 −160

−160 −256 256 −768 −1536 384 −256 −1536 10,752 1280 −160 256 384 1280 160

0 512 768 64 256 −1280 256 −256 1280 2560 −112 512 −960 1280 160

−27 0 −112 −80 −160 −12 160 160 −160 −112 290 160 −80 0 −27

−112 512 256 −960 −256 64 1280 1280 256 512 160 2560 −1280 768 0

−12 64 64 48 −768 48 −960 384 384 −960 −80 −1280 3168 −1280 −80

−112 256 512 64 −256 −960 512 256 1280 1280 0 768 −1280 2560 160

−27 −112 0 −12 −160 −80 −112 −160 160 160 −27 0 −80 160 290
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	 c.	Elements for which the two triple subscripts form similar permutations are equal, 
that is, Tijk,prq = Tikj,prq = Tkij,rpq = Tkji,rqp = Tjki,qrp = Tjik,qpr; this should be obvious from 
Equations 6.46 and 6.107.

These properties are not only useful in checking the matrix, they have proved useful 
in saving computer time and storage. It is interesting to know that the properties are 
independent of coordinate system [44].

In Equation 6.14 or Equation 6.45, elements of [C] matrix are defined by

	
C

x x y y
dSij

i j i j=
∂
∂

∂
∂

+
∂
∂

∂
∂









∫∫ α α α α

	
(6.113)

By applying Equations 6.104a through 6.104d to Equation 6.113, it can be shown that [4,41]

	
C

A
ij q

q

i

q

i

q

j

q
=

∂
∂

−
∂

∂











∂
∂

−
∂

= + − +
∑1

2
1

3

1 1 1
cotθ α

ξ
α

ξ
α

ξ
αjj

q
dS

∂









−∫∫ ξ 1

or

	

C Qij ij
q

q

q

=
=

∑ ( ) cotθ
1

3

	
(6.114)

where θq is the included angle of vertex q ∈ {1, 2, 3} of the triangle and

	
Qij

q i

q

i

q

j

q

j

q

( ) =
∂

∂
−

∂
∂











∂
∂

−
∂

∂






+ − + −

α
ξ

α
ξ

α
ξ

α
ξ1 1 1 1






∫∫ d dξ ξ1 2

	
(6.115)

We notice that matrix C depends on the triangle shape, whereas the matrices Q(q) do 
not. The Q(1) matrices for n = 1–4 are tabulated in Table 6.9. The following properties of Q 
matrices should be noted:

	 a.	They are symmetric;
	 b.	The row and column sums of any Q matrix are zero, that is, ∑ = = ∑= =i

m
ij
q

j
m

ij
qQ Q1 10( ) ( ) 

so that the C matrix is singular.

Q(2) and Q(3) are easily obtained from Q(1) by row and column permutations so that the 
matrix C for any triangular element is constructed easily if Q(1) is known. One approach 
[45] involves using a rotation matrix R similar to that in Silvester and Ferrari [4], which is 
essentially a unit matrix with elements rearranged to correspond to one rotation of the 
triangle about its centroid in a counterclockwise direction. For example, for n = 1, the 
rotation matrix is basically derived from Figure 6.26 as

	

R =



















0 0 1
1 0 0
0 1 0 	

(6.116)

where Rij = 1 if node i is replaced by node j after one counter clockwise rotation, or Rij = 0 
otherwise. Table 6.10 presents the R matrices for n = 1–4. Note that each row or column 
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TABLE 6.9

Table of Q Matrices for n = 1–4

n = 1 Common denominator: 2

0 0 0

0 1 1

0 1 1

−

−













n = 2 Common denominator: 6

0 0 0 0 0 0

0 8 8 0 0 0

0 8 8 0 0 0

0 0 0 3 4 1

0 0 0 4 8 4

0 0 0 1 4 3

−

−

−

− −

−













n = 3 Common denominator: 80

0 0 0 0 0 0 0 0 0 0

0 135 135 27 0 27 3 0 0 3

0 135 135 27 0 27 3 0 0 3

0 27 27 135

− − −

− − −

− −1162 27 3 0 0 3

0 0 0 162 324 162 0 0 0 0

0 27 27 27 162 135 3 0 0 3

0 3 3 3 0 3 3

−

− −

− − −

− − 44 54 27 7

0 0 0 0 0 0 54 135 108 27

0 0 0 0 0 0 27 108 135 54

0 3 3 3 0 3 7 27

− −

− −

− −

− − − −554 34













n = 4 Common denominator: 1890

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 3968 −3968 −1440 0 1440 640 0 0 −640 −80 0 0 0 80

0 −3968 3968 1440 0 −1440 −640 0 0 640 80 0 0 0 −80

0 −1440 1440 4632 −5376 744 −1248 768 768 −288 80 −128 96 −128 80

0 0 0 −5376 10,752 −5376 1536 −1536 −1536 1536 −160 256 −192 256 −160

0 1440 −1440 744 −5376 4632 −288 768 768 −1248 80 −128 96 −128 80

0 640 −640 −1248 1536 −288 3456 −4608 1536 −384 240 −256 192 −256 80

0 0 0 768 −1536 768 −4608 10,752 −7680 1536 −160 256 −192 256 −160

0 0 0 768 −1536 768 1536 −7680 10,752 −4608 −160 256 −192 256 −160

0 −640 640 −288 1536 −1248 −384 1536 −4608 3456 80 −256 192 −256 240

0 −80 80 80 −160 80 240 −160 −160 80 705 −1232 884 −464 107

0 0 0 −128 256 −128 −256 256 256 −256 −1232 3456 −3680 1920 −464

0 0 0 96 −192 96 192 −192 −192 192 884 −3680 5592 −3680 884

0 0 0 −128 256 −128 −256 256 256 −256 −464 1920 −3680 3456 −1232

0 80 −80 80 −160 80 80 −160 −160 240 107 −464 884 −1232 705
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TABLE 6.10

R Matrix for n = 1–4, n = 1

n = 1

 

0 0 1
1 0 0
0 1 0





















n = 2

 

0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

































n = 3

 

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 00 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0















































n = 4

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 00 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 00 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 00 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0





































































FIGURE 6.26
One counterclockwise rotation of the triangle in (a) gives the triangle in (b).
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of R has only one nonzero element since R is essentially a unit matrix with rearranged 
elements.

Once the R is known, we obtain

	 Q RQ Rt( ) ( )2 1= 	 (6.117a)

	 Q RQ Rt( ) ( )3 2= 	 (6.117b)

where Rt is the transpose of R.

EXAMPLE 6.5

For n = 2, calculate Q(1) and obtain Q(2) from Q(1) using Equation 6.117a.

Solution

By definition,

	
Q dij

i i j j( )1

2 3 2 3
=

∂
∂

−
∂
∂











∂
∂

−
∂
∂











α
ξ

α
ξ

α
ξ

α
ξ

ξξ ξ1 2d∫∫
For n = 2, i, j = 1, 2, …, 6, and αi are given in terms of the local coordinates in Table 6.7. 

Since Q(1) is symmetric, only some of the elements need to be calculated. Substituting for 
αℓ from Table 6.7 and applying Equations 6.104e and 6.104f, we obtain

	

Q j
Q i

Q
A

d

Q
A

j

i

1

1

22 1
2

1 2

23

0 1 6
0 1 6

1
2

4
8
6

1
2

= =
= =

= =

=

∫∫

, to ,
, to ,

( ) ,

(

ξ ξ ξ

44 4
8
6

1
2

4 4 1 0

1 1 1 2

24 1 1 1 2 26

2

ξ ξ ξ ξ

ξ ξ ξ ξ

)( ) ,

( )( ) ,

− = −

= − = =

∫∫
∫∫

d

Q
A

d Q

Q 55 1 3 2 1 2

33 1
2

1 2

34

1
2

4 4 4 0

1
2

4
8
6

= − =

= − =

∫∫
∫∫

A
d

Q
A

d

Q

( )( ) ,

( ) ,

ξ ξ ξ ξ ξ

ξ ξ ξ

== − − = =

= − −

∫∫
∫∫

1
2

4 4 1 0

1
2

4 4 4

1 2 1 2 36

35 1 3 2

A
d Q

Q
A

d

( )( ) ,

( )( )

ξ ξ ξ ξ

ξ ξ ξ ξ11 2

44 2
2

1 2

45 2 3 2

0

1
2

4 1
3
6

1
2

4 1 4 4

ξ

ξ ξ ξ

ξ ξ ξ

=

= − =

= − −

∫∫
∫∫

,

( ) ,

( )( )

Q
A

d

Q
A

dd

Q
A

d

Q
A

ξ ξ

ξ ξ ξ ξ

ξ

1 2

46 2 3 1 2

55 3

4
6

1
2

4 1 4 1 1
1
6

1
2

4

= −

= − − − =

=

∫∫

,

( )( )( ) ,

( −− =

= − − − = −

∫∫
∫∫

4
8
6

1
2

4 4 1 4 1
4
6

2
2

1 2

56 3 2 3 1 2

ξ ξ ξ

ξ ξ ξ ξ ξ

) ,

( )( )( ) ,

d

Q
A

d

Q666 3
2

1 2
1

2
1 4 1

3
6

= − − =∫∫A
d( )( )ξ ξ ξ
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Hence,

	

Q( )1 1
6

0 0 0 0 0 0
0 8 8 0 0 0
0 8 8 0 0 0
0 0 0 3 4 1
0 0 0 4 8 4
0 0 0 1 4 3

=

−
−

−
− −

−

































We now obtain Q(2) from

	

Q RQ R

R

t( ) ( )2 1

1
6

0 0 0 0 0 0
0 8 8 0 0 0
0 8 8 0 0 0
0 0 0 3 4 1
0 0 0 4 8 4
0 0 0 1 4 3

=

=

−
−

−
− −

−

































0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
1 00 0 0 0 0

1
6

0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0

































=
00

0 1 0 0 0 0
0 0 0 1 0 0

0 0 0 0 0 0
0 8 0 0 8 0
0 8 0 0

































−
−88 0

1 0 4 0 0 3
4 0 8 0 0 4
3 0 4 0 0 1

1
6

3

2

−
− −

































=Q( )

00 4 0 0 1
0 8 0 0 8 0
4 0 8 0 0 4
0 0 0 0 0 0
0 8 0 0 8 0
1 0 4 0 0 3

−
−

− −

−
−

































6.9  Three-Dimensional Elements

The finite element techniques developed in the previous sections for two-dimensional 
elements can be extended to three-dimensional elements. One would expect three-
dimensional problems to require a large total number of elements to achieve an accurate 
result and demand a large storage capacity and computational time. For the sake of 
completeness, we will discuss the finite element analysis of Helmholtz’s equation in three 
dimensions, namely,

	 ∇ 2Φ + k2Φ = g	 (6.118)
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We first divide the solution region into tetrahedral or hexahedral (rectangular prism) 
elements as in Figure 6.27. Assuming a four-node tetrahedral element, the function Φ is 
represented within the element by

	 Φe = a + bx + cy + dz	 (6.119)

The same applies to the function g. Since Equation 6.119 must be satisfied at the four nodes 
of the tetrahedral elements,

	 Φei = a + bxi + cyi + dzi,  i = 1, …, 4	 (6.120)

Thus, we have four simultaneous equations (similar to Equation 6.5) from which the 
coefficients a, b, c, and d can be determined. The determinant of the system of equations is

	

det ,= =

1
1
1
1

6

1 1 1

2 2 2

3 3 3

4 4 4

x y z

x y z

x y z

x y z

v

	

(6.121)

where v is the volume of the tetrahedron. By finding a, b, c, and d, we can write

	
Φ Φe i

i

eix y=
=

∑α ( , )
1

4

	
(6.122)

where

	

α1
2 2 2

3 3 3

4 4 4

1
6

1
1
1
1

=
v

x y z

x y z

x y z

x y z

,

	

(6.123a)

	

α2

1 1 1

3 3 3

4 4 4

1
6

1
1
1
1

=
v

x y z

x y z

x y z

x y z

,

	

(6.123b)

FIGURE 6.27
Three-dimensional elements: (a) Four-node or linear-order tetrahedral, (b) eight-node or linear-order hexahedral.



422 Computational Electromagnetics with MATLAB®

with α3 and α4 having similar expressions. For higher-order approximation, the matrices 
for as become large in size and we resort to local coordinates. Another motivation for using 
local coordinates is the existence of integration equations which simplify the evaluation of 
the fundamental matrices T and Q.

For the tetrahedral element, the local coordinates are ξ1, ξ2, ξ3, and ξ4, each perpendicular 
to a side. They are defined at a given point as the ratio of the distance from that point to the 
appropriate apex to the perpendicular distance from the side to the opposite apex. They 
can also be interpreted as volume ratios, that is, at a point P

	
ξi iv

v
=

	
(6.124)

where vi is the volume bound by P and face i. It is evident that

	
ξi

i

=
=

∑ 1
1

4

	
(6.125a)

or

	 ξ4 = 1 − ξ1 − ξ2 − ξ3	 (6.125b)

The following properties are useful in evaluating integration involving local 
coordinates [46]:

	 dv = 6v dξ1 dξ2 dξ3,	 (6.126a)

	

f d f d dv v=






























− −−

∫∫6 1

0

1

2

0

1

0

2 33

ξ ξ

ξ ξξ11

3∫∫∫∫ dξ ,

	

(6.126b)

	
ξ ξ ξ ξ1 2 3 4

3
6i j k d

i j k
i j k

 
∫∫∫ =

+ + + +
v v

! ! ! !
( )! 	

(6.126c)

In terms of the local coordinates, an arbitrary function Φ(x, y, z) can be approximated 
within an element in terms of a complete nth-order polynomial as

	
Φ Φe i

i

m

eix y z x y z( , , ) ( , , )=
=

∑α
1 	

(6.127)

where m = 1/6 (n + 1)(n + 2)(n + 3) is the number of nodes in the tetrahedron or the number 
of terms in the polynomial. The terms in a complete three-dimensional polynomial may be 
arrayed as shown in Figure 6.28.

Each point in the tetrahedral element is represented by four integers i, j, k, and ℓ which 
can be used to determine the local coordinates (ξ1, ξ2, ξ3, ξ4). That is at Pijkℓ,

	
( , , , ) , , ,ξ ξ ξ ξ1 2 3 4 =









i
n

j
n

k
n n



	
(6.128)
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Hence at each node,

	 αq = αijkℓ = pi (ξ1) pj (ξ2) pk(ξ3) pℓ (ξ4),	 (6.129)

where q = 1, 2, …, m and pr is defined in Equation 6.108 or Equation 6.109. The relationship 
between the node numbers q and ijkℓ is illustrated in Figure 6.29 for the second-order 
tetrahedron (n = 2). The shape functions obtained by substituting Equation 6.108 into 
Equation 6.129 are presented in Table 6.11 for n = 1–3.

The expressions derived from the variational principle for the two-dimensional problems 
in Sections 6.2 through 6.4 still hold except that the fundamental matrices [T] and [Q] now 
involve triple integration. For Helmholtz equation (6.56), for example, Equation 6.68 applies, 
namely,

	 [ ]C k Tff ff f− =2 0Φ 	 (6.130)

FIGURE 6.28
Pascal tetrahedron and associated array of terms.

FIGURE 6.29
Numbering scheme for second-order tetrahedron.
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except that
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TABLE 6.11

Shape Functions αq(ξ1, ξ2, ξ3, ξ4) for n = 1–3

n = 1 n = 2 n = 3

α1 = ξ1 α1 = ξ1(2ξ1 − 1) α ξ ξ ξ1 1 1 1
1
2

3 2 3 1= − −( )( )

α2 = ξ2 α2 = 4ξ1ξ2 α ξ ξ ξ2 1 1 2
9
2

3 1= −( )

α3 = ξ3 α3 = 4ξ1ξ3 α ξ ξ ξ3 1 1 3
9
2

3 1= −( )

α4 = ξ4 α4 = 4ξ1ξ4 α ξ ξ ξ4 1 1 4
9
2

3 1= −( )

α5 = ξ2(2ξ2 − 1) α ξ ξ ξ5 1 3 2
9
2

3 1= −( )

α6 = 4ξ2ξ3 α ξ ξ ξ6 1 2 327=

α7 = 4ξ2ξ4 α ξ ξ ξ7 1 2 427=

α8 = ξ2(2ξ3 − 1) α ξ ξ ξ8 1 3 3
9
2

3 1= −( )

α9 = 4ξ3ξ4 α ξ ξ ξ9 1 3 427=

α10 = ξ4(2ξ4 − 1) α ξ ξ ξ10 1 4 4
9
2

3 1= −( )

α ξ ξ ξ11 2 2 2
1
2

3 1 3 2= − −( )( )

α ξ ξ ξ12 2 2 3
9
2

3 1= −( )

α ξ ξ ξ13 2 2 4
9
2

3 1= −( )

α ξ ξ ξ14 2 3 3
9
2

3 1= −( )

α ξ ξ ξ15 2 3 427=

α ξ ξ ξ16 2 3 3
9
2

3 1= −( )

α ξ ξ ξ17 3 3 3
1
2

3 1 3 2= − −( )( )

α ξ ξ ξ18 3 3 4
9
2

3 1= −( )

α ξ ξ ξ19 3 4 4
9
2

3 1= −( )

α ξ ξ ξ20 4 4 4
1
2

3 1 3 2= − −( )( )
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For further discussion on three-dimensional elements, one should consult Silvester and 
Ferrari [4]. Applications of three-dimensional elements to EM-related problems can be 
found in References 47–51.

6.10  FEMs for Exterior Problems

Thus far in this chapter, the FEM has been presented for solving interior problems. To apply 
the FEM to exterior or unbounded problems such as open-type transmission lines (e.g., 
microstrip), scattering, and radiation problems poses certain difficulties. To overcome these 
difficulties, several approaches [52–80] have been proposed, all of which have strengths and 
weaknesses. We will consider three common approaches: the infinite element method, the 
boundary element method (BEM), and absorbing boundary condition.

6.10.1  Infinite Element Method

Consider the solution region shown in Figure 6.30a. We divide the entire domain into a 
near-field (n.f.) region, which is bounded, and a far-field (f.f.) region, which is unbounded. 
The n.f. region is divided into finite triangular elements as usual, while the f.f. region is 
divided into infinite elements. Each infinite element shares two nodes with a finite element. 
Here, we are mainly concerned with the infinite elements.

FIGURE 6.30
(a) Division of solution region into finite and infinite elements; (b) typical infinite element.
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Consider the infinite element in Figure 6.30b with nodes 1 and 2 and radial sides 
intersecting at point (xo, yo). We relate triangular polar coordinates (ρ, ξ) to the global 
Cartesian coordinates (x, y) as [60]

	

x x x x x x

y y y y y y
o o
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= + − + −
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ρ ξ

[( ) ( )]
[( ) ( )]

1 2 1

1 2 1 	
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where 1 ≤ ρ < ∞, 0 ≤ ξ ≤ 1. The potential distribution within the element is approximated 
by a linear variation as
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where V1 and V2 are potentials at nodes 1 and 2 of the infinite elements, α1 and α2 are the 
interpolation or shape functions, that is,
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(6.135)

The infinite element is compatible with the ordinary first-order finite element and 
satisfies the boundary condition at infinity. With the shape functions in Equation 6.135, we 
can obtain the [C(e)] and [T(e)] matrices. We obtain solution for the exterior problem by using 
a standard finite element program with the [C(e)] and [T(e)] matrices of the infinite elements 
added to the [C] and [T] matrices of the n.f. region.

6.10.2  Boundary Element Method

A comparison between FEM and MoM is shown in Table 6.12. From the table, it is evident 
that the two methods have properties that complement each other. In view of this, hybrid 

TABLE 6.12

Comparison between MoM and FEM [81]

MoM FEM

Conceptually easy Conceptually involved
Requires problem-dependent Green’s functions Avoids difficulties associated with singularity of Green’s 

functions
Few equations; O(n) for 2-D, O(n2) for 3-D Many equations; O(n2) for 2-D, O(n3) for 3-D
Only boundary is discretized Entire domain is discretized
Open boundary easy Open boundary difficult
Fields by integration Fields by differentiation
Good representation of far-field condition Good representation of boundary conditions
Full matrices result Sparse matrices result
Nonlinearity, inhomogeneity difficult Nonlinearity, inhomogeneity easy
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methods have been proposed. These methods allow the use of both MoM and FEM with 
the aim of exploiting the strong points in each method.

One of these hybrid methods is the so-called BEM. It is a finite element approach for 
handling exterior problems [66–78]. It basically involves obtaining the integral equation 
formulation of the boundary value problem [82] and solving this by a discretization 
procedure similar to that used in regular finite element analysis. Since the BEM is based 
on the boundary integral equivalent to the governing differential equation, only the surface 
of the problem domain needs to be modeled. Thus, the dimension of the problem is reduced 
by one as in MoM. For 2-D problems, the boundary elements are taken to be straight line 
segments, whereas for 3-D problems, they are taken as triangular elements. Thus the shape 
or interpolation functions corresponding to sub-sectional bases in the MoM are used in 
the finite element analysis.

6.10.3  Absorbing Boundary Condition

To apply the finite element approach to open region problems, such as for scattering or 
radiation, an artificial boundary is introduced in order to bound the region and limit 
the number of unknowns to a manageable size. The artificial boundary is set far from 
the guided region. One would expect that as the boundary approaches infinity, the 
approximate solution tends to the exact one. But the closer the boundary to the radiating 
or scattering object, the less computer memory is required. To avoid the error caused 
by this truncation, an absorbing boundary condition (ABC) is imposed on the artificial 
boundary S, as typically portrayed in Figure 6.31. The ABC minimizes the nonphysical 
reflections from the boundary. Several ABCs have been proposed [83–89]. The major 
challenge of these ABCs is to bring the truncation boundary as close as possible to the 
object without sacrificing accuracy and to absorb the outgoing waves with little or no 
reflection. A popular approach is the PML-based ABC discussed in Section 3.8.3 for 
FDTD. The finite element technique is used in enforcing the condition as a tool for mesh 
truncation [85].

FIGURE 6.31
A radiating (or scattering) object surrounded by an absorbing boundary.
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Another popular ABC by derived Bayliss, Gunzburger, and Turkel (BGT) employs asymptotic 
analysis [89]. For example, for the solution of a 3-D problem, an expansion of the scalar 
Helmholtz equation is [88]
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The sequence of BGT operators is obtained by the recursion relation
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Since Φ satisfies the higher-order radiation condition
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imposing the mth-order boundary condition

	 Bm Φ = 0 on S	 (6.139)

will compel the solution Φ to match the first 2m terms of the expansion in Equation 6.136. 
Equation 6.139 along with other appropriate equations is solved for Φ using the FEM.

6.11  Finite-Element Time-Domain Method

Traditionally, frequency-domain methods have dominated computational electromagnetics, 
while time-domain computation is a novelty. The trend is to solve Maxwell’s equations 
directly in the time domain. (It is much easier to get frequency-domain results from time-
domain data than the other way around.) To date, finite-difference time-domain (FDTD) 
techniques have received the greatest attention due to their algorithmic simplicity. In recent 
years, finite-element time-domain (FETD) algorithms have increased in popularity because 
of their ability to approximate physical boundaries. The FDTD method is the method 
of choice when modeling geometries of low complexity, while FETD methods are most 
appropriate when complicated geometries need to be modeled. Since FETD formulations 
have not received as much attention as FDTD schemes, they are lacking in both maturity 
and variety of applications.

Numerous FETD methods have been proposed for EM computation [89–97]. These 
methods can be classified into two categories. One class of approaches directly solves 
Maxwell’s equations and operates in a leapfrog fashion similar to the FDTD technique. 
The approaches are conditionally stable. Another class of FETD methods tackles the 
second-order vector wave equation obtained by eliminating one of the field variables from 
Maxwell’s equations. We follow the approach in Reference 89.
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Consider Maxwell’s equations in space–time:
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where E and H are electric field intensity and magnetic field intensity, respectively, and J is 
the current density. From Equation 6.140, we can derive an initial value problem in terms 
of the magnetic field H.
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where σ is the conductivity, ε = εrεo and µ = µrµo are, respectively, the permittivity and 
permeability of the medium. For 2-D region, the scalar wave equation for the longitudinal 
component of the magnetic field is
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By defining the carrier frequency ωc, the field component and the current density can be 
written as
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where V(t) is the time-varying complex envelope of the field at the carrier frequency. The 
application of Galerkin’s process (global weak formulation) produces a set of ordinary 
differential equations
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where v is the coefficient vector of V. Matrices [T], [B], and [G] are time-independent and 
are given by
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where c is the speed of light in free space, α = σ/εrεo is a constant, Wj are 2-D FEM basis 
functions, and S is a 2-D area bounded by the boundary Γ.

In order to solve Equation 6.144, the time derivatives must be discretized.
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	 v(n) = βv(n + 1) + (1 − 2β)v(n) + βv(n − 1)	 (6.146c)

where v(n) = v(nΔt) is the discrete-time version of v(t) and β is a constant that determines 
the stability and the accuracy of the scheme. It is recommended that β = 1/4 which results 
in an unconditionally stable scheme. Thus, Equation 6.144 becomes
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To solve these equations, we need to invert the matrix on the left-hand side. Since this 
matrix is time independent, it needs to be filled and solved only once.

6.12  Applications: Microstrip Lines

The reader will benefit from the numerous finite element software packages that are freely 
or commercially available. These include:

•	 COMSOL ( www.comsol.com)
•	 Quickfield ( www.quickfield.com/free_soft.htm)
•	 FEMM ( femm.foster-millercom/index.htm)
•	 NASTRAN (https://www.autodesk.com/education/free-software/nastran)
•	 Abaqus (https://academy.3ds.com/en/software/abaqus-student-edition)
•	 ANSYS ( www.ansys.com/Products/Electronics/ANSYS-HFSS)
•	 MaxFem (http://downloads.informer.com/maxfem/0.3/)

An extensive description of some of these codes and their capabilities can be found in 
References 98,99.

Although some of the codes were developed for one field of engineering or another, 
they can be applied to problems in a different field with little or no modification. Here, we 
illustrate solving microstrip problems using COMSOL multiphysics package.

www.comsol.com
www.quickfield.com/free_soft.htm
http://femm.foster-millercom/index.htm
https://www.autodesk.com/education/free-software/nastran
https://academy.3ds.com/en/software/abaqus-student-edition
www.ansys.com/Products/Electronics/ANSYS-HFSS
http://downloads.informer.com/maxfem/0.3/
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The microstrip transmission lines have received a lot of attention in microwave circuit 
design. In this section, we briefly illustrate how to use COMSOL to determine the capacitance, 
inductance, and characteristic impedance of an open microstrip line [97]. Figure 6.32 shows 
the cross section of the open single-strip microstrip line with the following parameters:

t	 = thickness of the conducting strip = 0.01 mm
w = width of the conductor (variable)
h	 = height of the dielectric material = 1 mm
εr	= dielectric constant = 6

The simulation is done twice: one to get the capacitance per unit length C of the microstrip 
when the dielectric material is in place and the other to get Co when the dielectric material 
is removed. The inductance per unit length L is given by

	
L

C
o o

o
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and the characteristic impedance is
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We now are using COMSOL to determine Co and C by taking the following steps:

	 1.	Construct the geometry of the line, as shown in Figure 6.32 with the microstrip 
surrounded by a 30w × 14h shield.

	 2.	Take the difference between the conductor and air. Consider two cases—one for 
air and the other for dielectric material.

	 3.	For the dielectric region, specify the relative permittivity.
	 4.	For the boundary, select the outer conductor (shield) as ground and the single strip 

as port.
	 5.	Generate the finite element mesh and solve the model.
	 6.	As post-processing, select Point Evaluation and choose capacitance elements to find 

the capacitance per unit length of the line.

Table 6.13 shows the finite element results for the capacitance per unit length and 
inductance per unit length. These results are used in obtaining Table 6.14 for the 
characteristic impedance of the line.

t w

Ground

h
εr εo

εo

FIGURE 6.32
Cross-section of a single-strip microstrip line.
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6.13  Concluding Remarks

An introduction to the basic concepts and applications of the FEM has been presented. 
It is by no means an exhaustive exposition of the subject. However, we have given the 
flavor of the way in which the ideas may be developed; the interested reader may build on 
this by consulting the references. Several introductory texts have been published on FEM. 
Although most of these texts are written for civil or mechanical engineers, the texts by 
Silvester and Ferrari [4], Chari and Silvester [39], Steele [100], Hoole [101], Itoh [102], and Jin 
[103] are for electrical engineers. More texts and monographs have been published on FEM 
than any other numerical technique.

The FEM has the following advantages [104]:

	 1.	 It is flexible and versatile in modeling complex or inhomogeneous solution regions
	 2.	 It can handle a wide variety of engineering problems such as in EM, solid mechanics, 

fluid mechanics, dynamics, and heat
	 3.	 It produces accurate and stable solutions
	 4.	Boundary conditions are incorporated in the functional formulation
	 5.	 It can handle nonlinear problems

The limitations or disadvantages include:

	 1.	 Its sparsity patterns are highly unstructured and this makes it very difficult to 
efficiently parallelize a FEM code.

TABLE 6.13

Capacitance and Inductance of the Microstrip Line

w/h Co (pF/m) C (pF/m) L (mh/m)

0.4 18.976 73.785 585.53
0.7 23.203 92.681 478.90
1.0 26.946 110.041 412.35
2.0 37.919 166.78 293.02
4.0 59.785 278.4 185.85
10.0 117.085 600.697 94.90

TABLE 6.14

Characteristic Impedance of the Microstrip Line

w/h
Present 
Work MoM

Conformal 
Mapping

0.4 89.085 91.172 89.909
0.7 71.885 73.613 71.995
1.0 61.215 62.713 60.970
2.0 41.916 43.149 41.510
4.0 25.837 27.301 26.027
10.0 12.569 13.341 12.485
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	 2.	Due to inherent errors, the FEM produces only approximate solutions.
	 3.	 It produces spurious or extraneous nonphysical modes for some vector formulations 

(6.123b).
	 4.	 It is more directly suited for closed problems, but can be extended to open problems 

using ABCs.

To address the limitations and increase the accuracy of FEM, some hybrid methods have 
been proposed [98,105–110]. Due to its flexibility and versatility, the FEM has become a 
powerful tool throughout engineering disciplines. It has been applied with great success 
to numerous EM-related problems. Such applications include the following:

•	 Transmission line problems [103,111,112],
•	 Optical and microwave waveguide problems [8–17,113–118],
•	 Electric machines [39,119–121],
•	 Scattering problems [69,70,73,122],
•	 Human exposition to EM radiation [123–126], and
•	 Others [127–130].

For other issues on FEM not covered in this chapter, one is referred to introductory texts 
on FEM such as [2,4,34,39,46,90–92,99,131–139]. The issues of edge elements and absorbing 
boundary are covered in Reference 106. Estimating error in finite element solution is 
discussed in References 50,131,132. The reader may benefit from the numerous finite element 
codes that are commercially available. An extensive description of these systems and their 
capabilities can be found in References 133,140–142. Although the codes were developed 
for one field of engineering or another, they can be applied to problems in a different field 
with little or no modification.

PROBLEMS

	 6.1	 For the triangular elements in Figure 6.33, determine the element coefficient 
matrices.

	 6.2	 Obtain the global coefficient matrix for the three-element mesh shown in 
Figure 6.34.

FIGURE 6.33
For Problem 6.1.
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	 6.3	 The triangular element shown in Figure 6.35 is part of a finite element mesh. If 
V1 = 8 V, V2 = 12, and V3 = 10 V, find the potential at: (a) (1,2), (b) the center of 
the element.

	 6.4	 Find the coefficient matrix for the two-element mesh of Figure 6.36. Given that 
V2 = 10 and V4 = −10, determine V1 and V3.

	 6.5	 Determine the shape functions α1, α2, and α3 for the element in Figure 6.37.

(1, 4)

(0, 0)
(2, –1)

2

3
1

FIGURE 6.35
For Problems 6.3.

41

2
2 5

31 1

1

3

3

23 1 2

3

2

FIGURE 6.34
For Problem 6.2.

FIGURE 6.36
For Problem 6.4.
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	 6.6	 A triangular element has nodes at (0,1), (1,0), and (0,1). Construct the shape 
function α1.

	 6.7	 Show that the shape function α1 evaluates to unity at node 1 and to zero at all 
other nodes for the first-order elements.

	 6.8	 Consider the mesh shown in Figure 6.38. The shaded region is conducting and 
has no finite elements. Calculate the global elements C3,10 and C3,3.

	 6.9	 With reference to the finite element in Figure 6.39, calculate the energy per unit 
length associated with the element.

FIGURE 6.37
For Problem 6.5.

FIGURE 6.38
For Problem 6.8.
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	 6.10	 Consider the element whose sides are parallel to the x and y axis, as shown in 
Figure 6.40. Verify that the potential distribution within the elements can be 
expressed as

	 V(x, y) = α1V1 + α2V2 + α3V3 + α4V4

		  where Vi are the nodal potentials and αi are local interpolating functions 
defined as
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FIGURE 6.40
For Problem 6.10.

FIGURE 6.39
For Problem 6.9.
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	 6.11	 The cross section of an infinitely long rectangular trough is shown in 
Figure 6.41; develop a program using FEM to find the potential at the center 
of the cross section. Take εr = 4.5.

	 6.12	 Solve the problem in Example 3.3 using the FEM.
	 6.13	 Once the potential distribution is obtained, the electric field intensity can be 

obtained from

	 E(x, y) = Exax + Eyay = −∇V(x, y)

		  For each triangular element, show that
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		  where A is the area of the element and Vi,j,k represent the electric potentials of 
three nodes (i, j, k) of each element.

	 6.14	 A potential field is defined over a triangular three-node element by

Node i Vi (V) xi (cm) yi (cm)

1 40 4 6
2 −10 2 2

3 20 6 2

		  Calculate the potential and potential gradient at (4,4) cm.
	 6.15	 Modify the program in Figure 6.10 to calculate the electric field intensity E at 

any point in the solution region.
	 6.16	 The program in Figure 6.10 applies the iteration method to determine the 

potential at the free nodes. Modify the program and use the band matrix method 
to determine the potential. Test the program using the data in Example 6.2.

FIGURE 6.41
For Problem 6.11.
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	 6.17	 A grounded rectangular pipe with the cross section in Figure 6.42 is half-
filled with hydrocarbons (ε = 2.5 εo, ρo = 10−5 C/m3). Use FEM to determine the 
potential along the liquid–air interface. Plot the potential versus x.

	 6.18	 Solve the problem in Example 3.4 using the FEM.
	 6.19	 The cross section of an isosceles right-triangular waveguide is discretized as in 

Figure 6.43. Determine the first 10 TM cutoff wavelengths of the guide.
	 6.20	 Using FEM, determine the first 10 cutoff wavelengths of a rectangular waveguide 

of cross section 2 cm × 1 cm. Compare your results with the exact solution. 
Assume the guide is air-filled.

FIGURE 6.42
For Problem 6.17.

FIGURE 6.43
For Problem 6.19.
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	 6.21	 Use the mesh generation program in Figure 6.16 to subdivide the solution regions 
in Figure 6.44. Subdivide into as many triangular elements as you choose.

	 6.22	 Determine the semi-bandwidth of the mesh shown in Figure 6.45. Renumber the 
mesh so as to minimize the bandwidth.

	 6.23	 Find the semi-bandwidth B of the mesh in Figure 6.46. Renumber the mesh to 
minimize B and determine the new value of B.

FIGURE 6.44
For Problem 6.21.

FIGURE 6.45
For Problem 6.22.
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	 6.24	 Rework Problem 3.22 using the FEM.
		  Hint: After calculating V at all free nodes with ε lumped with Cij, use Equation 

6.19 to calculate W, that is,

	
W V C Vt=

1
2

[ ] [ ][ ]

		  Then find the capacitance from

	
C

W
Vd

=
2

2

		  where Vd is the potential difference between inner and outer conductors.
	 6.25	 Using the area coordinates (ξ1, ξ2, ξ3) for the triangular element in Figure 6.3, 

evaluate
	 a.	 ∫S x dS

	 b.	 ∫S x dS

	 c.	 ∫S xy dS

	 6.26	 Evaluate the following integrals:
	 a.	 ∫ S dSα2

2

	 b.	 ∫S α1α5 dS

	 c.	 ∫S α1α2α3 dS

	 6.27	 Evaluate the shape functions α1, …, α6 for the second-order elements in 
Figure 6.47.

	 6.28	 Derive matrix T for n = 2.

FIGURE 6.46
For Problem 6.23.
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	 6.29	 By hand calculation, obtain Q(2) and Q(3) for n = 1 and n = 2.
	 6.30	 The D(q) matrix is an auxilliary matrix used along with the T matrix to derive 

other fundamental matrices. An element of D is defined in Reference 41 as the 
partial derivative of αi with respect to ξq evaluated at node Pj, that is,

	
D i j mij

q i

q Pi

( ) , , , , ,=
∂
∂

=
α
ξ

1 2 …

		  where q ∈ {1, 2, 3}. For n = 1 and 2, derive D(1). From D(1), derive D(2) and D(3).
6.31 	 a. The matrix K(pq) can be defined as

	
K dSij

pq i

p

j

q

( ) =
∂
∂

∂
∂∫∫ α

ξ
α
ξ

		  where p, q = 1, 2, 3. Using the D(q) matrix of the previous problem, show that

	 K(pq) = D(p)T D(q)t

		  where t denotes transposition.
	 b.	 Show that the Q(q) matrix can be written as

	 Q D D D Dq q q q t( ) ( ) ( ) ( ) ( )[ ] [ ]q T= − −+ − + −1 1 1 1

		  Use this formula to derive Q(1) for n = 1 and 2.
	 6.32	 Verify the interpolation function for the 10-node tetrahedral element.
	 6.33	 The (x, y, z) coordinates of nodes 1, 2, 3, and 4 of a three-dimensional simplex 

element are (0, 0, 0), (2, 4, 2), (4, 0, 0), and (2, 0, 6), respectively. Determine the 
shape functions of the element.

FIGURE 6.47
For Problem 6.27.
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	 6.34	 Using the volume coordinates for a tetrahedron, evaluate

	
z dv2∫

		  Assume that the origin is located at the centroid of the tetrahedron.
	 6.35	 Obtain the T matrix for the first-order tetrahedral element.
	 6.36	 Use Equation 6.104f to show that if

	
M dSij

i j= ∫∫ ξ ξ1 2

		  then

	

M
A

=



















12

2 1 1
1 2 1
1 1 2

	 6.37	 For the two-dimensional problem, the BGI sequence of operators are defined by 
the recurrence relation

	
B jk

m
Bm m=

∂
∂

+ +
−







 −

ρ ρ
4 3

2
1

		  where Bo = 1. Obtain B1 and B2.
	 6.38	 Figure 6.48 shows the cross-section of an open double-strip microstrip line. Let
		  t   = thickness of strip = 1 mm
		  w = width of the strip = 3 mm
		  h   = height of dielectric material = 1 mm
		  d   = distance between the two strips = 3 mm
		  εr = dielectric constant = 2
		    Use any finite element software to calculate the capacitance values of the line.

t tww d

0
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εr εo

εo

h

x

y

FIGURE 6.48
For Problem 6.38.
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	 6.39	 Use any finite element package to determine the characteristic impedance of 
the shielded microstrip line whose cross-section is shown in Figure 6.49. Let 
a = 2.02, b = 7.0, h = 1.0 = w, t = 0.01.

	 6.40	 Consider the cross-section of a double-strip shielded microstrip line shown in 
Figure 6.50. Use any finite element package to compute the capacitance matrix of 
the line. Take w = 3 mm, t = 1 mm, s = 2 mm, h = 1 mm, a = 11 mm, b = 2.7 mm, 
for the dielectric εr = 2.

	 6.41	 For the shielded broadside-coupled suspended microstrip line shown in Figure 
6.51, use a finite element software to find the capacitance matrix. Consider the 
following parameters:

		  a   = width of the shield = 40 mm
		  b   = height of the shield = 20 mm
		  t   = thickness of the strip = 0.01 mm
		  h   = thickness of the dielectric material = 2 mm
		  w = width of the strip = 2 h, 4 h, and 8 h
		  εr   = dielectric constant = 2.22

		  that is, consider three cases with w = 2 h, 4 h, and 8 h

y

0
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tt

ww
s

b

h

x

FIGURE 6.50
For Problem 6.40.
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FIGURE 6.49
For Problem 6.39.
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7
Transmission-Line-Matrix Method

Excuses are the most important tools of non-achievers.

—Unknown

7.1  Introduction

The link between field and circuit theories has been exploited in developing numerical 
techniques to solve certain types of partial differential equations (PDEs) arising in field 
problems with the aid of equivalent electrical networks [1]. There are three ranges in the 
frequency spectrum for which numerical techniques for field problems in general have 
been developed. In terms of the wavelength λ and the approximate dimension  of the 
apparatus, these ranges are [2]:

	

λ
λ
λ

>>

<<







≈

In the first range, the special analysis techniques are known as circuit theory; in the second, 
as microwave theory; and in the third, as geometric optics (frequency independent). Hence, the 
fundamental laws of circuit theory can be obtained from Maxwell’s equations by applying 
an approximation valid when λ >> . However, it should be noted that circuit theory was not 
developed by approximating Maxwell’s equations, but rather was developed independently 
from experimentally obtained laws. The connection between circuit theory and Maxwell 
equations (summarizing field theory) is important; it adds to the comprehension of 
the fundamentals of electromagnetics. According to Silvester and Ferrari, circuits are 
mathematical abstractions of physically real fields; nevertheless, electrical engineers at 
times feel they understand circuit theory more clearly than fields [3].

The idea of replacing a complicated electrical system by a simple equivalent circuit goes 
back to Kirchhoff and Helmholtz. As a result of Park’s [4], Kron’s [5,6] and Schwinger’s [7,8] 
works, the power and flexibility of equivalent circuits become more obvious to engineers. 
The recent applications of this idea to scattering problems, originally due to Johns and 
Beurle [9], have made the method more popular and attractive.

Transmission-line modeling (TLM), otherwise known as the transmission-line-matrix 
method, is a numerical technique time-domain for solving field problems using circuit 
equivalent. It is based on the equivalence between Maxwell’s equations and the equations 
for voltages and currents on a mesh of continuous two-wire transmission lines. The 
main feature of this method is the simplicity of formulation and programming for a 
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wide range of applications [10,11]. As compared with the lumped network model, the 
transmission-line model is more general and performs better at high frequencies where 
the transmission and reflection properties of geometrical discontinuities cannot be 
regarded as lumped [7].

Like other numerical techniques, the TLM method is a discretization process. Unlike 
other methods such as finite difference and finite element methods, which are mathematical 
discretization approaches, the TLM is a physical discretization approach. In the TLM, the 
discretization of a field involves replacing a continuous system by a network or array of 
lumped elements. For example, consider the one-dimensional (1-D) system (a conducting 
wire) with no energy storage as in Figure 7.1a. The wire can be replaced by a number of 
lumped resistors providing a discretized equivalent in Figure 7.1b. The discretization of 
the two-dimensional (2-D), distributed field is shown in Figure 7.2. More general systems 
containing energy-reservoir elements as well as dissipative elements will be considered 
later.

The TLM method involves dividing the solution region into a rectangular mesh of 
transmission lines. Junctions are formed where the lines cross forming impedance 
discontinuities. A comparison between the transmission-line equations and Maxwell’s 

FIGURE 7.1
(a) 1-D conducting system, (b) discretized equivalent.

FIGURE 7.2
(a) 2-D conductive sheet, (b) partially discretized equivalent, (c) fully discretized equivalent.
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equations allows equivalences to be drawn between voltages and currents on the lines 
and electromagnetic fields in the solution region. Thus, the TLM method involves two 
basic steps [12]:

•	 Replacing the field problem by the equivalent network and deriving analogy 
between the field and network quantities and

•	 Solving the equivalent network by iterative methods.

Before we apply the method, it seems fit to briefly review the basic concepts of transmission 
lines and then show how the TLM method can be applied to a wide range of EM-related 
problems.

7.2  Transmission-Line Equations

Consider an elemental portion of length Δ of a two-conductor transmission line. We intend 
to find an equivalent circuit for this line and derive the line equations. An equivalent circuit 
of a portion of the line is shown in Figure 7.3, where the line parameters R, L, G, and C are 
resistance per unit length, inductance per unit length, conductance per unit length, and 
capacitance per unit length of the line, respectively. The model in Figure 7.3 may represent 
any two-conductor line. The model is called the T-type equivalent circuit; other types of 
equivalent circuits are possible, but we end up with the same set of equations. In the model 
of Figure 7.3, we assume without loss of generality that wave propagates in the +z direction, 
from the generator to the load.

By applying Kirchhoff’s voltage law to the left loop of the circuit in Figure 7.3, we obtain
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(7.1)

FIGURE 7.3
T-type equivalent circuit model of a differential length of a two-conductor transmission line.



454 Computational Electromagnetics with MATLAB®

Taking the limit of Equation 7.1 as Δ → 0 leads to
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(7.2)

Similarly, applying Kirchhoff’s current law to the main node of the circuit in Figure 7.3 
gives
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(7.3)

As Δ → 0, Equation 7.3 becomes
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(7.4)

Differentiating Equation 7.2 with respect to z and Equation 7.4 with respect to t, the two 
equations become
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Substituting Equations 7.4 and 7.4a into Equation 7.2a gives

	
∂
∂

=
∂
∂

+ +
∂
∂

+
2

2

2

2

V
z

LC
V
t

RC GL
V
t

RGV( )
	

(7.5)

Similarly, we obtain the equation for current I as
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(7.6)

Equations 7.5 and 7.6 have the same mathematical form, which in general may be 
written as
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where Ф(z, t) has replaced either V(z, t) or I(z, t).
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Ignoring certain transmission-line parameters in Equation 7.7 leads to the following 
special cases [13]:
	 a.	 L = C = 0 yields

	
∂
∂

=
2

2 1
Φ

Φ
z

k
	

(7.8)

		  where k1 = RG. Equation 7.8 is the 1-D elliptic PDE called Poisson’s equation.
	 b.	 R = C = 0 or G = L = 0 yields
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		  where k2 = GL or RC. Equation 7.9 is the 1-D parabolic PDE called the diffusion 
equation.

	 c.	 R = G = 0 (lossless line) yields
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		  where k3 = LC. This is the 1-D hyperbolic PDE called the Helmholtz equation, or 
simply the wave equation. Thus, under certain conditions, the 1-D transmission 
line can be used to model problems involving an elliptic, parabolic, or hyperbolic 
partial differential equation (PDE). The transmission line of Figure 7.3 reduces 
to those in Figure 7.4 for these three special cases.

Apart from the equivalent models, other transmission-line parameters are of interest. A 
detailed explanation of these parameters can be found in standard field theory texts, for 
example, Reference 14. We briefly present these important parameters. For the lossless line 
in Figure 7.4c, the characteristic resistance
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(7.11a)

the wave velocity
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LC
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(7.11b)

and the reflection coefficient at the load
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−
+

R R
R R
L o

L o
,
	

(7.11c)

where RL is the load resistance.
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The generality of the TLM method has been demonstrated in this section. In the following 
sections, the method is applied specifically to diffusion [15,16] and wave propagation 
problems [10–13,17,18].

7.3  Solution of Diffusion Equation

We now apply the TLM method to the diffusion problem arising from current density 
distribution within a wire [15]. If the wire has a circular cross section with radius a and 
is infinitely long, then the problem becomes 1-D. We will assume sinusoidal source or 
harmonic fields (with time factor ejωt).

The analytical solution of the problem has been treated in Example 2.3. For the 
TLM solution, consider the equivalent network of the cylindrical problem in Figure 7.5, 

FIGURE 7.5
RC equivalent network.

FIGURE 7.4
Transmission-line equivalent models for: (a) elliptic PDE, Poisson’s equation, (b) parabolic PDE, diffusion 
equation, (c) hyperbolic PDE, wave equation.
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where Δ is the distance between nodes or the mesh size. Applying Kirchhoff’s laws to the 
network in Figure 7.5 gives
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∂
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(7.12a)
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where R and C are the resistance and capacitance per unit length.
Within the conductor, Maxwell’s curl equations (σ >> ωε) are

	 ∇ × E = – jωµH	 (7.13a)

	 ∇ × H = σE          	  (7.13b)

where E and H are assumed to be in phasor forms. In cylindrical coordinates, Equation 7.13 
becomes
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These equations can be written as
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Comparing Equation 7.12 with Equation 7.14 leads to the following analogy between the 
network and field quantities:

	 I Ezρ ≡ − 	 (7.15a)

	 V Hφ φρ≡  	 (7.15b)

	 C ≡ µ ρ/ 	 (7.15c)

	 R ≡ σρ   	 (7.15d)

Therefore, solving the impedance network is equivalent to solving Maxwell’s equations.
We can solve the overall impedance network in Figure 7.6 by an iterative method. Since 

the network in Figure 7.6 is in the form of a ladder, we apply the ladder method. By applying 
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Kirchhoff’s current law, the Nth nodal voltage (N > 2) is related to (N − 1)th and (N − 2)th 
voltages according to
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where the resistance r and susceptance B are given by

	 r N R N( ) ( ) ( . )( ) ,= = −∆ ∆ σ 0 5 2
	 (7.17a)

	
B N C

N N
( )

( )
= =

−
=

−
ω ωµ ωµ

∆
∆

∆



1 1	

(7.17b)

We note that V(1) = 0 because the magnetic field at the center of the conductor (ρ = 0) is 
zero. Also V(2) = I(1) ⋅ r(1), where I(1) can be arbitrarily chosen, say I(1) = 1. Once V(1) and 
V(2) are known, we can use Equation 7.16 to scan all nodes in Figure 7.6 once from left to 
right to determine all nodal voltages (≡ρHφ) and currents (≡Ez = Jz/σ).

EXAMPLE 7.1

Develop a computer program to determine the relative (or normalized) current density 
Jz(ρ)/Jz(a) in a round copper wire operated at 1 GHz. Plot the relative current density 
against the radical position ρ/a for cases a/δ = 1, 2, and 4. Take Δ/δ = 0.1, µ = µ0, 
σ = 5.8 × 107 S/m.

Solution

The computer program is presented in Figure 7.7. It calculates the voltage at each node 
using Equations 7.16 and 7.17. The current on each r(N) is found from Figure 7.7 as

	
I N

V N V N
r N

( )
( ) ( )

( )
− =

− −
−

1
1

1

Since J = σ E, we obtain Jz(ρ)/Jz(a) as the ratio of I(N) and I(N MAX), where I (N MAX) is 
the current at ρ = a.
	 To verify the accuracy of the TLM solution, we also calculate the exact Jz(ρ)/Jz(a) using 
Equation 2.120. (For further details, see Example 2.3.) Table 7.1 shows a comparison 
between TLM results and exact results for the case a/δ = 4.0. It is noticed that the 
percentage error is maximum (about 8%) at the center of the wire and diminishes to 
zero as we approach the surface of the wire. Figure 7.8 portrays the plot of the relative 
current density versus the radial position for cases a/δ = 1, 2, and 4.

FIGURE 7.6
The overall equivalent network.
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FIGURE 7.7
Computer program for Example 7.1.
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7.4  Solution of Wave Equations

In order to show how Maxwell’s equations may be represented by the transmission-line 
equations, the differential length of the lossless transmission line between two nodes of the 
mesh is represented by lumped inductors and capacitors as shown in Figure 7.9 for 2-D wave 
propagation problems [17,18]. At the nodes, pairs of transmission lines form impedance 

FIGURE 7.8
Relative current density versus radial position.

TABLE 7.1

Comparison of Relative Current Density 
Obtained from TLM and Exact Solutions 
(a/δ = 4.0)

Radial 
Position (ρ/a) TLM Result Exact Result

0.1 0.11581 0.10768
0.2 0.11765 0.11023
0.3 0.12644 0.12077
0.4 0.14953 0.14612
0.5 0.19301 0.19138
0.6 0.26150 0.26082
0.7 0.36147 0.36115
0.8 0.50423 0.50403
0.9 0.70796 0.70786
1.0 1.0 1.0
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discontinuity. The complete network of transmission-line matrix is made up of a large 
number of such building blocks as depicted in Figure 7.10. Notice that in Figure 7.10 single 
lines are used to represent a transmission-line pair. Also, a uniform internodal distance of 
Δ is assumed throughout the matrix (i.e., Δ = Δx = Δz). We shall first derive equivalences 
between network and field quantities.

7.4.1  Equivalence between Network and Field Parameters

We refer to Figure 7.9 and apply Kirchhoff’s current law at node O to obtain

	
I x I x I z I z C
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x x z z
y( ) ( ) ( ) ( )− − + + − − + =

∂
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∆ ∆ ∆ ∆ ∆    / / / /2 2 2 2 2

FIGURE 7.9
Equivalent network of a 2-D TLM shunt node.

FIGURE 7.10
TLM and boundaries.
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Dividing through by Δ gives
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Taking the limit as Δ → 0 results in
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Applying Kirchhoff’s voltage law around the loop in the x − y plane gives
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Upon rearranging and dividing by Δ, we have
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Again, taking the limit as Δ → 0 gives

	
∂
∂

= −
∂
∂

V
x

L
I
t

y x

	
(7.18b)

Taking similar steps on the loop in the y − z plane yields
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These equations will now be combined to form a wave equation. Differentiating Equation 
7.18a with respect to t, Equation 7.18b with respect to x, and Equation 7.18c with respect to 
z, we have
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Substituting Equations 7.19b and 7.19c into Equation 7.19a leads to
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Equation 7.20 is the Helmholtz wave equation in 2-D space.
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In order to show the field theory equivalence of Equations 7.19 and 7.20, consider Maxwell’s 
equations

	
∇× = −

∂
∂

E
Hµ
t 	

(7.21a)

and
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Expansion of Equation 7.21 in the rectangular coordinate system yields
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Consider the situation for which Ex = Ez = Hy = 0, ∂ ∂ =/ y 0. It is noticed at once that 
this mode is a transverse electric (TE) mode with respect to the z-axis but a transverse 
magnetic (TM) mode with respect to the y-axis. Thus by the principle of duality, the 
network in Figure 7.9 can be used for Ey, Hx, Hz fields as well as for Ex, Ez, Hy fields. A 
network capable of reproducing TE waves is also capable of reproducing TM waves. For 
TE waves, Equation 7.22 reduces to
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Taking similar steps on Equations 7.23a through 7.23c as were taken for Equations 7.18a 
through 7.18c results in another Helmholtz equation
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Comparing Equations 7.23 and 7.24 with Equations 7.18 and 7.20 yields the following 
equivalence between the parameters
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(7.25)

Thus in the equivalent circuit:

•	 The voltage at shunt node is Ey,
•	 The current in the z direction is −Hx,
•	 The current in the x direction is Hz,
•	 The inductance per unit length represents the permeability of the medium,
•	 Twice the capacitance per unit length represents the permittivity of the medium.

7.4.2  Dispersion Relation of Propagation Velocity

For the basic transmission line in the TLM which has µr = εr = 1, the inductance and 
capacitance per unit length are related by Reference 8

	

1 1

0 0( ) ( )LC
c= =

µ ε 	
(7.26)

where c = 3 × 108 m/s is the speed of light in vacuum. Notice from Equation 7.26 that for 
the equivalence made in Equation 7.25, if voltage and current waves on each transmission 
line component propagate at the speed of light c, the complete network of intersecting 
transmission lines represents a medium of relative permittivity twice that of free space. This 
implies that as long as the equivalent circuit in Figure 7.9 is valid, the propagation velocity 
in the TLM mesh is 1 2/  of the velocity of light. The manner in which wave propagates on 
the mesh is now derived.

If the ratio of the length of the transmission-line element to the free-space wavelength of 
the wave is θ/2π = Δ/λ (θ is called the electrical length of the line), the voltage and current 
at node i are related to those at node i + 1 by the transfer-matrix equation (see Problem 7.2) 
given as [19]
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If the waves on the periodic structure have a propagation constant γn = αn + jβn, then

	

V

I
e

e

V

I
i

i

i

i

n

n











 =

























+

+

γ

γ

∆

∆





0
0

1

1 	
(7.28)

Solution of Equations 7.27 and 7.28 gives

	 cosh(γnΔ) = cos(θ) − tan(θ/2)sin(θ)	 (7.29)

This equation describes the range of frequencies over which propagation can take place 
(passbands), that is,

	 |cos(θ) − tan(θ/2)sin(θ)| < 1,	 (7.30a)

and the range of frequencies over which propagation cannot occur (stop-bands), that is,

	 |cos(θ) – tan(θ/2)sin(θ)| > 1,	 (7.30b)

For the lowest frequency propagation region,

	 γn = jβn	 (7.31a)

and
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Introducing Equation 7.31 in Equation 7.29, we obtain
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Applying trigonometric identities

	 sin(2A) = 2sin(A)cos(A)

and

	 cos(2A) = 1 − 2 sin2(A)

to Equation 7.32 results in
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which is a transcendental equation. If we let r be the ratio of the velocity un of the waves on 
the network to the free-space wave velocity c, then
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or

	
β π

λ
n

r
=

2
	

(7.34b)

Substituting Equations 7.34 into Equation 7.33, the transcendental equation becomes
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By selecting different values of Δ/λ, the corresponding values of r = un/c can be obtained 
numerically as in Figure 7.11 for 2-D problems. From Figure 7.11, we conclude that the TLM 
can represent Maxwell’s equations only over the range of frequencies from zero to the first 
network cutoff frequency, which occurs at ωΔ/c = π/2 or Δ/λ = 1/4. Over this range, the 
velocity of the waves behaves according to the characteristic of Figure 7.11. For frequencies 
much smaller than the network cutoff frequency, the propagation velocity approximates 
to 1 2/  of the free-space velocity.

Following the same procedure, the dispersion relation for three-dimensional (3-D) 
problems can be derived as
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Thus for low frequencies (Δ/λ < 0.1), the network propagation velocity in 3-D space may 
be considered constant and equal to c/2.

7.4.3  Scattering Matrix

If k n
iV  and k n

rV  are the voltage impulses incident upon and reflected from terminal n of a 
node at time t = kΔ/c, we derive the relationship between the two quantities as follows. 
Let us assume that a voltage impulse function of unit magnitude is launched into terminal 
1 of a node, as shown in Figure 7.12a, and that the characteristic resistance of the line is 
normalized. A unit-magnitude delta function of voltage and current will then travel toward 
the junction with unit energy (Si = 1). Since line 1 has three other lines joined to it, its 

FIGURE 7.11
Dispersion of the velocity of waves in a 2-D TLM network.
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effective terminal resistance is 1/3. With the knowledge of its reflection coefficient, both the 
reflected and transmitted voltage impulses can be calculated. The reflection coefficient is
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(7.37)

so that the reflected and transmitted energies are
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where subscripts i, r, and t indicate incident, reflected, and transmitted quantities, 
respectively. Thus, a voltage impulse of −1/2 is reflected back in terminal 1, while a voltage 
impulse of 1 2 33

4
1 2/ = ÷[ ] /  will be launched into each of the other three terminals as shown 

in Figure 7.12b.
The more general case of four impulses being incident on four branches of a node can 

be obtained by applying the superposition principle to the previous case of a single pulse. 
Hence, if at time t = kΔ/c, voltage impulses k i

k
i

k
iV V V1 2 3, , , and k iV4  are incident on lines 1–4, 

respectively, at any node as in Figure 7.12c, the combined voltage reflected along line 1 at 
time t = (k + 1)Δ/c will be [9,10]
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In general, the total voltage impulse reflected along line n at time t = (k + 1)Δ/c will be
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This idea is conveniently described by a scattering matrix equation relating the reflected 
voltages at time (k + 1)Δ/c to the incident voltages at the previous time step kΔ/c:
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(7.41a)

FIGURE 7.12
Impulse response of a node in a matrix.
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or
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Also an impulse emerging from a node at position (z, x) in the mesh (reflected impulse) 
becomes automatically an incident impulse at the neighboring node. Hence,
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Thus by applying Equations 7.41 and 7.42, the magnitudes, positions, and directions 
of all impulses at time (k + 1)Δ/c can be obtained at each node in the network provided 
that their corresponding values at time kΔ/c are known. The impulse response may, 
therefore, be found by initially fixing the magnitude, position, and direction of travel of 
impulse voltages at time t = 0, and then calculating the state of the network at successive 
time intervals. The scattering process forms the basic algorithm of the TLM method 
[10,17].

The propagation of pulses in the TLM model is illustrated in Figure 7.13, where the 
first two iterations following an initial excitation pulse in a 2-D shunt-connected TLM are 
shown. We have assumed free-space propagation for the sake of simplicity.

7.4.4  Boundary Representation

Boundaries are usually placed halfway between two nodes in order to ensure synchronism. 
In practice, this is achieved by making the mesh size Δ an integer fraction of the structure’s 
dimensions.

Any resistive load at boundary C (see Figure 7.10) may be simulated by introducing a 
reflection coefficient Γ
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and Rs is the surface resistance of the boundary normalized by the line characteristic 
impedance. If, for example, a perfectly conducting wall (Rs = 0) is to be simulated along 
boundary C, Equation 7.44 gives Γ = −1, which represents a short circuit, and

	 k
i

k
rV p q V p q+ = −1 4 4( , ) ( , )	 (7.45)

is used in the simulation. For waves striking the boundary at arbitrary angles of incidence, 
a method for modeling free-space boundaries is discussed in Reference 20.

7.4.5  Computation of Fields and Frequency Response

We continue with the TE mode of Equation 7.23 as our example and calculate Ey, Hx, and 
Hz. Ey at any point corresponds to the node voltage at the point, Hz corresponds to the net 
current entering the node in the x direction (see Equation 7.25), while Hx is the net current 
in the negative z direction. For any point (z = m, x = n) on the grid of Figure 7.10, we have 
for each kth transient time
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and

	 k z k
i

k
iH m n V m n V m n( , ) ( , ) ( , )= −3 1 	 (7.48)

Thus, a series of discrete delta function of magnitudes Ey, Hx, and Hz corresponding to 
time intervals of Δ/c are obtained by the iteration of Equations 7.41 and 7.42. (Notice that 

FIGURE 7.13
Scattering in a 2-D TLM network excited by a Dirac impulse.
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reflections at the boundaries A and B in Figure 7.10 will cancel out, thus Hz = 0.) Any point 
in the mesh can serve as an output or observation point. Equations 7.46 through 7.48 provide 
the output-impulse functions for the point representing the response of the system to an 
impulsive excitation. These output functions may be used to obtain the output waveform. 
For example, the output waveform corresponding to a pulse input may be obtained by 
convolving the output-impulse function with the shape of the input pulse.

Sometimes we are interested in the response to a sinusoidal excitation. This is obtained 
by taking the Fourier transform of the impulse response. Since the response is a series of 
delta functions, the Fourier transform integral becomes a summation, and the real and 
imaginary parts of the output spectrum are given by References 9,10
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where F(Δ/λ) is the frequency response, kI is the value of the output-impulse response at 
time t = kΔ/c, and N is the total number of time intervals for which the calculation is made. 
Henceforth, N will be referred to as the number of iterations.

7.4.6  Output Response and Accuracy of Results

The output-impulse function, in terms of voltage or current, may be taken from any point 
in the TLM mesh. It consists of a train of impulses of varying magnitude in the time 
domain separated by a time interval Δ/c. Thus, the frequency response obtained by taking 
the Fourier transform of the output response consists of series of delta functions in the 
frequency domain corresponding to the discrete modal frequencies for which a solution 
exists. For practical reasons, the output response has to be truncated, and this results in a 
spreading of the solution delta function sin x/x type of curves.

To investigate the accuracy of the result, let the output response be truncated after N 
iterations. Let Vout(t) be the output-impulse function taken within 0 < t < N Δ/c. We may 
regard Vout(t) as an impulse function V∞(t), taken within 0 < t < ∞, multiplied by a unit 
pulse function Vp(t) of width NΔ/c, that is,

	 Vout(t) = V∞(t) × Vp(t)	 (7.50)

where
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Let Sout(  f  ), S∞(  f  ), and Sp(  f  ) be the Fourier transform of Vout(t), V∞(t), and Vp(t), respectively. 
The Fourier transform of Equation 7.50 is the convolution of S∞(  f  ) and Sp(  f  ). Hence,
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where
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which is of the form sin x/x. Equations 7.52 and 7.53 show that Sp(  f  ) is placed in each of 
the positions of the exact response S∞(  f  ). Since the greater the number of iterations N the 
sharper the maximum peak of the curve, the accuracy of the result depends on N. Thus, the 
solution of a wave equation by TLM method involves the following four steps [21]:

	 1.	Space discretization: The solution region is divided into a number of blocks to fit 
the geometrical and frequency requirements. Each block is replaced by a network 
of transmission lines interconnected to form a “node.” Transmission lines from 
adjacent nodes are connected to form a mesh describing the entire solution region.

	 2.	Excitation: This involves imposing the initial conditions and source terms.
	 3.	Scattering: With the use of the scattering matrix, pulses propagate along transmission 

lines toward each node. At each new time step, a multiple of propagation time δt, 
scattered pulses from each node become incident on adjacent nodes. The scattering 
and connection processes may be repeated to simulate propagation for any desired 
length of time.

	 4.	Output: At any time step, voltages and currents on transmission lines are available. These 
represent the electric and magnetic fields corresponding to the particular problem 
and excitation. The quantities available at each time step are the solution in the time 
domain—there is no need for an iterative solution procedure. If desired, frequency-
domain information may be obtained by using Fourier transform techniques.

The following examples are taken from Johns’s work [9,18].

EXAMPLE 7.2

The MATLAB program in Figure 7.14 is for the numerical calculations of 1-D TEM wave 
problems. It should be mentioned that the computer program in this example and the 
following ones are modified versions of those in Agba [22]. The calculations were carried 
out on a 25 × 11 rectangular matrix. TEM field-continuation boundaries were fixed along 
x = 2 and x = 10, producing boundaries, in effect, along the lines x = 1.5 and x = 10.5. 
The initial impulse excitation was on all points along the line z = 4, and the field along 
this line was set to zero at all subsequent time intervals. In this way, interference from 
boundaries to the left of the excitation line was avoided. Calculations in the z direction 
were terminated at z = 24, so that no reflections were received from points at z = 25 
in the matrix, and the boundary C in Figure 7.10, situated at z = 24.5, was therefore 
matched to free space. The output-impulse response for Ey and Hx was taken at the point 
z = 14, x = 6, which is 10.5 mesh points away from the boundary C, for 100, 150, and 200 
iterations.
	 Since the velocity of waves on the matrix is less than that in free space by a factor un/c 
(see Figure 7.11), the effective intrinsic impedance presented by the network matrix is less 
by the same factor. The magnitude of the wave impedance on the matrix, normalized 
to the intrinsic impedance of free space, is given by Z = |Ey|/|Hx| and is tabulated in 
Table 7.2, together with Arg(Z), for the various numbers of iterations made. A comparison 
is made with the exact impedance values [14].
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FIGURE 7.14
Computer program for Example 7.2.� (Continued)
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EXAMPLE 7.3

The second example was on a rectangular waveguide with a simple load. The MATLAB 
program used for the numerical analysis was basically similar to that of 1-D simulation. 
A 25 × 11 matrix was used for the numerical analysis of the waveguide. Short-circuit 
boundaries were placed at x = 2 and x = 10, the width between the waveguide walls 

FIGURE 7.14 (Continued)
Computer program for Example 7.2.
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thus being 9 mesh points. The system was excited at all points along the line z = 2, 
and the impulse function of the output was taken from the point (x = 6, z = 12). The 
C boundary at z = 24 represented an abrupt change to the intrinsic impedance of free 
space. The minor changes in the program of Figure 7.14 are shown in Figure 7.15. The 
cutoff frequency for the waveguide occurs [19] at Δ/λn = 1/18, λn is the network-matrix 
wavelength, which corresponds to ∆/ /λ = 2 18 since
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TABLE 7.2

Normalized Impedance of a TEM Wave with Free-Space Discontinuity

TLM Results Exact Results

Δℓ/λ |Z| Arg(Z) |Z| Arg(Z) |Z| Arg(Z) |Z| Arg(Z)

Number of 
Iterations 100 150 200

0.002 0.9789 −0.1368 0.9730 −0.1396 0.9781 −0.1253 0.9747 −0.1282
0.004 0.9028 −0.2432 0.8980 −0.2322 0.9072 −0.2400 0.9077 −0.2356
0.006 0.8114 −0.3068 0.8229 −0.2979 0.8170 −0.3046 0.8185 −0.3081
0.008 0.7238 −0.3307 0.7328 −0.3457 0.7287 −0.3404 0.7256 −0.3390
0.010 0.6455 −0.3201 0.6367 −0.3350 0.6396 −0.3281 0.6414 −0.3263
0.012 0.5783 −0.2730 0.5694 −0.2619 0.5742 −0.2680 0.5731 −0.2707
0.014 0.5272 −0.1850 0.5313 −0.1712 0.5266 −0.1797 0.5255 −0.1765
0.016 0.4993 −0.0609 0.5043 −0.0657 0.5009 −0.0538 0.5018 −0.0545
0.018 0.5002 −0.0790 0.4987 −0.0748 0.5057 −0.0785 0.5057 0.0768

FIGURE 7.15
Modification in the program in Figure 7.14 for simulating waveguide problem in Example 7.3.
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A comparison between the results for the normalized guide impedance using this 
method is made with exact results in Table 7.3.

7.5  Inhomogeneous and Lossy Media in TLM

In our discussion on the transmission-line-matrix (TLM) method in the last section, it was 
assumed that the medium in which wave propagates was homogeneous and lossless. In this 
section, we consider media that are inhomogeneous or lossy or both. This necessitates that 
we modify the equivalent network of Figure 7.9 and the corresponding TLM of Figure 7.10. 
Also, we need to draw the corresponding equivalence between the network and Maxwell’s 
equations and derive the scattering matrix. We will finally consider how lossy boundaries 
are represented.

7.5.1  General 2-D Shunt Node

To account for the inhomogeneity of a medium (where ε is not constant), we introduce 
additional capacitance at nodes to represent an increase in permittivity [17,23–25]. We 
achieve this by introducing an additional length of line or stub to the node as shown 
in Figure 7.16a. The stub of length Δ/2 is open circuited at the end and is of variable 
characteristic admittance Yo relative to the unity characteristic admittance assumed for the 
main transmission line. At low frequencies, the effect of the stub is to add to each node an 
additional lumped shunt capacitance CYoΔ/2, where C is the shunt capacitance per unit 
length of the main lines that are of unity characteristic admittance. Thus at each node, the 
total shunt capacitance becomes

	 C′ = 2CΔ + CYoΔ/2

or

	 C′ = 2CΔ(1 + Yo/4)	 (7.54)

TABLE 7.3

Normalized Impedance of a Rectangular Waveguide with Simple Load

TLM Results Exact Results

Δℓ/λ |Z| Arg(Z) |Z| Arg(Z)

0.020 1.9391 0.8936 1.9325 0.9131
0.021 2.0594 0.6175 2.0964 0.6415
0.022 1.9697 0.3553 2.0250 0.3603
0.023 1.7556 0.1530 1.7800 0.1438
0.024 1.5173 0.0189 1.5132 0.0163
0.025 1.3036 –0.0518 1.2989 –0.0388
0.026 1.1370 –0.0648 1.1471 –0.0457
0.027 1.0297 –0.0350 1.0482 –0.0249
0.028 0.9776 0.0088 0.9900 0.0075
0.029 0.9620 0.0416 0.9622 0.0396
0.030 0.9623 0.0554 0.9556 0.0632
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To account for the loss in the medium, we introduce a power-absorbing line at each node, 
lumped into a single resistor, and this is simulated by an infinite or matched line of 
characteristic admittance Go normalized to the characteristic impedance of the main lines 
as illustrated in Figure 7.16b.

Due to these additional lines, the equivalent network now becomes that shown in Figure 
7.17 (cf. Figure 7.17 with Figure 7.9). Applying Kirchhoff’s current law to shunt node O in 
the x − z plane in Figure 7.17 and taking limits as Δ → 0 results in
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Expanding Maxwell’s equations ∇× = −
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FIGURE 7.16
A 2-D node with: (a) permittivity stub, (b) permittivity and loss stub.

FIGURE 7.17
General 2-D shunt node.
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This may be considered as denoting TEm0 modes with field components Hz, Hx, and Ey. 
From Equations 7.55 and 7.56, the following equivalence between the TLM equations and 
Maxwell’s equations can be drawn:
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where Zo =  L C/ . From Equation 7.57, the normalized characteristic admittance Go of the 
loss stub is related to the conductivity of the medium by

	 Go = σΔZo	 (7.58)

Thus losses on the matrix can be varied by altering the value of Go. Also from Equation 
7.57, the variable characteristic admittance Yo of the permittivity stub is related to the 
relative permittivity of the medium as

	 Yo = 4(εr − 1)	 (7.59)

7.5.2  Scattering Matrix

We now derive the impulse response of the network comprising the interconnection of 
many generalized nodes such as that in Figure 7.17. As in the previous section, if kVn(z, x) 
is unit voltage impulse reflected from the node at (z, x) into the nth coordinate direction 
(n = 1,2, … , 5) at time kΔ/c, then at node (z, x),
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(7.60)

where [S] is the scattering matrix given by
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(7.61)

[I] is a unit matrix and Y = 4 + Yo + Go. The coordinate directions 1, 2, 3, and 4 correspond 
to −x, −z, +x, and +z, respectively (as in the last section), and 5 refers to the permittivity 
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stub. Notice that the voltage V6 (see Figure 7.16) scattered into the loss stub is dropped across 
Go and not returned to the matrix. We apply Equation 7.60 just as Equation 7.41.

As in the last section, the output-impulse function at a particular node in the mesh can 
be obtained by recording the amplitude and the time of the stream of pulses as they pass 
through the node. By taking the Fourier transform of the output-impulse function using 
Equation 7.49, the required information can be extracted.

The dispersion relation can be derived in the same manner as in the last section. If 
γn = αn + jβn is the network propagation constant and γ = α + jβ is the propagation constant 
of the medium, the two propagation constants are related as
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where θ = 2πΔ/λ and
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In arriving at Equation 7.62, we have assumed that αnΔ << 1. For low frequencies, the 
attenuation constant αn and phase constant βn of the network are fairly constant so that 
Equation 7.62 reduces to

	 γ γn oY= +2 1 4( )/ 	 (7.64)

From this, the network velocity un(=ω/βn = βc/βn) of waves on the matrix is readily 
obtained as
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where c is the free-space velocity of waves.

7.5.3  Representation of Lossy Boundaries

The above analysis has incorporated conductivity σ of the medium in the TLM formulation. 
To account for a lossy boundary [25–27], we define the reflection coefficient
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(7.66)

where Zo o o= µ /ε  is the characteristic impedance of the main lines and Zs is the surface 
impedance of the lossy boundary given by

	
Z js

c
= +

µω
σ2

1( )
	

(7.67)



479Transmission-Line-Matrix Method

where µ and σc are the permeability and conductivity of the boundary. It is evident 
from Equations 7.66 and 7.67 that the reflection coefficient Γ is in general complex. 
However, complex Γ implies that the shape of the pulse functions is altered on reflection 
at the conducting boundary, and this cannot be accounted for in the TLM method [22]. 
Therefore, assuming that Zs is small compared with Zo and that the imaginary part of 
Γ is negligible,

	
Γ  − +1

2εo
c

ω
σ 	

(7.68)

where µ = µo is assumed. We notice that Γ is slightly less than −1. Also, we notice that Γ 
depends on the frequency ω and hence calculations involving lossy boundaries are only 
accurate for the specific frequency; calculations must be repeated for a different value of 
Δ/λ. The following example is taken from Akhtarzad and Johns [24].

EXAMPLE 7.4

Consider the lossy homogeneous filled waveguide shown in Figure 7.18. The guide is 
6 cm wide and 13 cm long. It is filled with a dielectric of relative permittivity εr = 4.9 
and conductivity σ = 0.05 mhos/m and terminated in an open-circuit discontinuity. 
Calculate the normalized wave impedance.

Solution

The computer program for this problem is in Figure 7.19. It is an extension of the program 
in Figure 7.14 with the incorporation of new concepts developed in this section. Enough 
comments are added to make it self-explanatory. The program is suitable for a 2-D TEm0 
mode.

The waveguide geometry shown in Figure 7.18 is simulated on a matrix of 12 × 26 
nodes. The matrix is excited at all points along line z = 1 with impulses corresponding 
to Ey. The impulse function of the output at point (z, x) = (6, 6) is taken after 700 iterations. 
Table 7.4 presents both the TLM and theoretical values of the normalized wave impedance 
and shows a good agreement between the two.

FIGURE 7.18
A lossy homogeneously filled waveguide.
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FIGURE 7.19
Computer program for Example 7.4.� (Continued)
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FIGURE 7.19 (Continued)
Computer program for Example 7.4.� (Continued)
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TABLE 7.4

Impedance of a Homogeneously Filled Waveguide with Losses

TLM Results Exact Results

Δ/λ |Z| Arg(Z) |Z| Arg(Z)

0.003 0.0725 1.5591 0.0729 1.5575

0.006 0.1511 1.5446 0.1518 1.5420

0.009 0.2446 1.5243 0.2453 1.5205

0.012 0.3706 1.4890 0.3712 1.4840

0.015 0.5803 1.4032 0.5792 1.3977

0.018 1.0000 1.0056 0.9979 1.0065

0.021 1.1735 0.5156 1.1676 0.5121

0.024 0.5032 –0.1901 0.5093 –0.2141

0.027 0.6766 0.6917 0.6609 0.6853

0.030 0.8921 –0.3869 0.8921 –0.4185

FIGURE 7.19 (Continued)
Computer program for Example 7.4.
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7.6  3-D TLM Mesh

The TLM mesh considered in Sections 7.4 and 7.5 is 2-D. The choice of shunt-connected 
nodes to represent the 2-D wave propagation was quite arbitrary; the TLM mesh could 
have equally been made up of series-connected nodes. To represent a 3-D space, however, 
we must apply a hybrid TLM mesh consisting of three shunt and three series nodes to 
simultaneously describe all the six field components. First of all, we need to understand 
what a series-connected node is.

7.6.1  Series Nodes

Figure 7.20 portrays a lossless series-connected node that is equipped with a short-circuited 
stub called the permeability stub. The corresponding network representation is illustrated 
in Figure 7.21. The input impedance of the short-circuited stub is
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where Equation 7.26 has been applied. This represents an impedance with inductance
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Hence, the total inductance on the side in which the stub is inserted is LΔ(1 + Zo)/2 as in 
Figure 7.21. We now apply Kirchhoff’s voltage law around the series node of Figure 7.21 
and obtain
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FIGURE 7.20
A lossless series connected node with permeability stub.
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Dividing through by Δ and rearranging terms leads to
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Note that the series node is oriented in the y − z plane. Equations for series nodes in the 
x − y and x − z planes can be obtained in a similar manner as
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and
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respectively.
Comparing Equations 7.71 through 7.73 with Maxwell’s equations in Equation 7.22, the 

following equivalences can be identified:
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A series-connected 2-D TLM mesh is shown in Figure 7.22a, while the equivalent 1-D mesh 
is in Figure 7.22b. A voltage impulse incident on a series node is scattered in accordance 
with Equation 7.60, where the scattering matrix is now

FIGURE 7.21
Network representation of a series node.
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(7.75)

where Z = 4 + Zo, and [I] is the unit matrix. The velocity characteristic for the 2-D series 
matrix is the same as for the shunt node [24]. For low frequencies (∆/λ < 0 1. ) the velocity of 
the waves on the matrix is approximately 1 2/  of the free-space velocity. This is due to the 
fact that the stubs have twice the inductance per unit length, while the capacitance per unit 
length remains unchanged. This is the dual of the 2-D shunt case in which the capacitance 
was doubled and the inductance was unchanged.

7.6.2  3-D Node

A 3-D TLM node [27] consists of three shunt nodes in conjunction with three series nodes. 
The voltages at the three shunt nodes represent the three components of the E field, while 
the currents of the series nodes represent the three components of the H field. In the x − z 
plane, for example, the voltage–current equations for the shunt node are
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FIGURE 7.22
(a) A 2-D series-connected TLM mesh. (b) A 1-D series-connected TLM mesh.
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and for the series node in the x − z plane, the equations are
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and

	
∂
∂

−
∂
∂

= −
∂
∂

E
z

E
x

H
t

x z yµ
	

(7.79a)

	     
∂
∂

= −
∂
∂

H
x

E
t

y xε
	

(7.79b)

	                
∂
∂

= −
∂
∂

H
z

E
t

y zε
	

(7.79c)

A similar analysis for shunt and series nodes in the x − y and y − z planes will yield 
the voltage–current equations and the corresponding Maxwell’s equations. The three sets 
of 2-D shunt and series nodes oriented in the x − y, y − z, and z − x planes form a 3-D 
model. The 2-D nodes must be connected in such a way as to correctly describe Maxwell’s 
equations at each 3-D node. Each of the shunt and series nodes has a spacing of Δ/2 so that 
like nodes are spaced Δ apart.

Figure 7.23 illustrates a 3-D node representing a cubical volume of space Δ/2 long in 
each direction. A close examination shows that if the voltage between lines represents the 
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E field and the current in the lines represents the H field, then the following Maxwell’s 
equations are satisfied:
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In the upper half of the node in Figure 7.23, we have a shunt node in the x − z plane 
(representing Equation 7.80a) connected to a series node in the y − z plane (representing 
Equation 7.80b) and a series node in the x − y plane (representing Equation 7.80c). In the 
lower half of the node, a series node in the x − z plane (representing Equation 7.80d) is 
connected to a shunt node in the y − z plane (representing Equation 7.80e) and a shunt node 
in the x − y plane (representing Equation 7.80f). Thus Maxwell’s equations are completely 
satisfied at the 3-D node. A 3-D TLM mesh is obtained by stacking similar nodes in x, y, 
and z directions (see Figure 7.25, for example).

FIGURE 7.23
A 3-D node consisting of three shunt nodes and three series nodes.
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The wave characteristics of the 3-D mesh are similar to those of the 2-D mesh with the 
difference that low-frequency velocity is now c/2 instead of c/ 2 .

Figure 7.24 illustrates a schematic diagram of a 3-D node using single lines to represent 
pairs of transmission lines. It is more general than the representation in Figure 7.23 in that 
it includes the permittivity, permeability, and loss stubs. Note that the dotted lines making 
up the corners of the cube are guidelines and do not represent transmission lines or stubs. 
It can be shown that for the general node the following equivalences apply [28]:
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FIGURE 7.24
A general 3-D node.
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where Yo, Zo, and Go remain as defined in Sections 7.4 and 7.5. Interconnection of many 
of such 3-D nodes forms a TLM mesh representing any inhomogeneous media. The 
TLM method for 3-D problems is therefore concerned with applying Equation 7.60 in 
conjunction with Equations 7.61 and 7.75 and obtaining the impulse response. Any of the 
field components may be excited initially by specifying initial impulses at the appropriate 
nodes. Also, the response at any node may be monitored by recording the pulses that 
pass through the node.

7.6.3  Boundary Conditions

Boundary conditions are simulated by short-circuiting shunt nodes (electric wall) or open-
circuiting series nodes (magnetic wall) situated on a boundary. The tangential components 
of E must vanish in the plane of an electric wall, while the tangential components of H 
must be zero in the plane of a magnetic wall. For example, to set Ex and Ey equal to zero 
in a particular plane, all shunt nodes Ex and Ey lying in that plane are shorted. Similarly, 
to set Hy and Hz equal to zero in some plane, the series nodes Hy and Hz in that plane are 
simply open-circuited.

The continuity of the tangential components of E and H fields across a dielectric/
dielectric boundary is automatically satisfied in the TLM mesh. For example, for a 
dielectric/dielectric boundary in the x − z plane such as shown in Figure 7.25, the following 
equations valid for a transmission-line element joining the nodes on either side of the 
boundaries are applicable:

FIGURE 7.25
A dielectric/dielectric boundary in TLM mesh.
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(7.82)

Finally, wall losses are included by introducing imperfect reflection coefficients as 
discussed in Section 7.5. The 3-D TLM mesh will be applied in solving the 3-D problems 
of resonant cavities in the following examples, taken from Akhtarzad and Johns [27].

EXAMPLE 7.5

Determine the resonant frequency of an a × b × d empty rectangular cavity using the 
TLM method. Take a = 12Δ, b = 8Δ, and d = 6Δ.

Solution

The exact solution [13,14] for TEmnp or TMmnp mode is

	
f

c
m a n b p dr = + +

2
2 2 2( ) ( ) ( )/ / /

from which we readily obtain

	
k

w
c

f
c

m a n b p dc
r r= = = + +

2 2 2 2π
π ( ) ( ) ( )/ / /

The TLM program, the modified version of the program in Reference 22, is shown in 
Figure 7.26. The program initializes all field components by setting them equal to zero 
at all nodes in the 12Δ × 6Δ × 6Δ TLM mesh and exciting one field component. With 
subroutine COMPUTE, it applies Equation 7.60 in conjunction with Equations 7.61 and 7.75 
to calculate the reflected E and H field components at all nodes. It applies the boundary 
conditions and calculates the impulse response at a particular node in the mesh.

The results of the computation along with the exact analytical values for the first few 
modes in the cavity are shown in Table 7.5.

EXAMPLE 7.6

Modify the TLM program in Figure 7.26 to calculate the resonant wavenumber kca of 
the inhomogeneous cavities in Figure 7.27. Take εr = 16, a = Δ, b = 3a/10, d = 4a/10, 
s = 7a/12.

Solution

The main program in Figure 7.26 can be used to solve this example. Only the subroutine 
COMPUTE requires slight modification to take care of the inhomogeneity of the cavity. 
The modifications in the subprogram for the cavities in Figure 7.27a and b are shown in 
Figure 7.28a and b, respectively. For each modification, the few lines in Figure 7.28 are 
inserted in between lines 15 and 17 in subroutine COMPUTE of Figure 7.26. The results 
are shown in Table 7.6 for TE101 mode.
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FIGURE 7.26
Computer program for Example 7.5.� (Continued)
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FIGURE 7.26 (Continued)
Computer program for Example 7.5.� (Continued)
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FIGURE 7.26 (Continued)
Computer program for Example 7.5.� (Continued)
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FIGURE 7.26 (Continued)
Computer program for Example 7.5.� (Continued)
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FIGURE 7.26 (Continued)
Computer program for Example 7.5.

TABLE 7.5

Resonant Wavenumber (kca) of an Empty Rectangular Cavity

Modes Exact Results TLM Results Error %

TM110 5.6636 5.6400 0.42
TE101 7.0249 6.9819 0.61
TM210, TE011 7.8540 7.8112 0.54

Where kca = 4πa/c and λ is the free-space wavelength.
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FIGURE 7.28
(a) Modification in subroutine COMPUTE for the inhomogeneous cavity of Figure 7.27a.� (Continued)

FIGURE 7.27
Rectangular cavity loaded with dielectric slab.
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7.7  Error Sources and Correction

As in all approximate solutions such as the TLM technique, it is important that the error 
in the final result be minimal. In the TLM method, four principal sources of error can be 
identified [10,28,29]:

•	 Truncation error
•	 Coarseness error
•	 Velocity error
•	 Misalignment error

Each of these sources of error and ways of minimizing it will be discussed.

TABLE 7.6

Resonant Wavenumber (kca) for TE101 Mode of 
Inhomogeneous Rectangular Cavities

Modes Exact Results TLM Results Error %

Figure 7.27a 2.589 2.5761 0.26
Figure 7.27b (none) 3.5387

Where kca = 4πa/c, and λ is the free-space wavelength.

FIGURE 7.28 (Continued)
(b) Modification in subroutine COMPUTE for the inhomogeneous cavity of Figure 7.27b.
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7.7.1  Truncation Error

The truncation error is due to the need to truncate the impulse response in time. As a result 
of the finite duration of the impulse response, its Fourier transform is not a line spectrum 
but rather a superposition of sin x/x functions, which may interfere with each other and 
cause a slight shift in their maxima. The maximum truncation error is given by

	
e

S
c SN

T
c= =

∆
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λ
π

3
2 2 	

(7.83)

where λc is the cutoff wavelength to be calculated, ΔS is the absolute error in Δ/λc, S is 
the frequency separation (expressed in terms of Δ/λc, λc being the free-space wavelength) 
between two neighboring peaks as shown in Figure 7.29, and N is the number of iterations. 
Equation 7.83 indicates that eT decreases with increasing N and increasing S. It is therefore 
desirable to make N large and suppress all unwanted modes close to the desired mode by 
carefully selecting the input and output points in the TLM mesh. An alternative way of 
reducing the truncation error is to use a Hanning window in the Fourier transform. For 
further details on this, one should consult [10,30].

7.7.2  Coarseness Error

This occurs when the TLM mesh is too coarse to resolve highly nonuniform fields as can 
be found at corners and edges. An obvious solution is to use a finer mesh (Δ → 0), but 
this would lead to large memory requirements and there are limits to this refinement. A 
better approach is to use variable mesh size so that a higher resolution can be obtained in 
the nonuniform field region [31]. This approach requires more complicated programming.

7.7.3  Velocity Error

This stems from the assumption that propagation velocity in the TLM mesh is the same in 
all directions and equal to u un = / 2 , where u is the propagation velocity in the medium 
filling the structure. The assumption is only valid if the wavelength λn in the TLM mesh 
is large compared with the mesh size Δ(Δ/λn < 0.1). Thus, the cutoff frequency fcn in the 
TLM mesh is related to the cutoff frequency fc of the real structure according to f fc cn= 2 . 
If Δ is comparable with λn, the velocity of propagation depends on the direction and the 

FIGURE 7.29
Source of truncation error: (a) Truncated output-impulse, (b) resulting truncation error in the frequency domain.
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assumption of constant velocity results in a velocity error in fc. Fortunately, a measure to 
reduce the coarseness error takes care of the velocity error as well.

7.7.4  Misalignment Error

This error occurs in dielectric interfaces in 3-D inhomogeneous structures such as 
microstrip or fin line. It is due to the manner in which boundaries are simulated in a 
3-D TLM mesh; dielectric interfaces appear halfway between nodes, while electric and 
magnetic boundaries appear across such nodes. If the resulting error is not acceptable, one 
must make two computations, one with recessed and one with protruding dielectric, and 
take the average of the results.

7.8  Absorbing Boundary Conditions

Just like FDTD and FEM, the TLM method requires absorbing boundary conditions (ABCs) 
at the limit of the solution region. Several ABCs have been proposed for TLM simulations 
[32–37]. It has been recognized that the perfectly matched-layer (PML) technique, discussed 
for FDTD in Section 3.9, has excellent absorbing performances that are significantly superior 
to other techniques. So, only PML will be discussed here.

Consider the PML region and the governing Maxwell’s equations. Each field component 
is split into two. For example, Ex = Exy + Exz. In 3-D, Maxwell’s equations become 12 [38]:
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in which (σi, σi
∗) where i ∈ {x, y, z} are, respectively, the electric and magnetic conductivities 

of the PML region and they satisfy
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Using the usual Yees’s notation, the field samples are expressed as
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where δ = Δx = Δy = Δz = Δ. Without loss of generality, we set δt = δ/2c. Since we want 
to interface the FDTD algorithm with the TLM, we express the fields in terms of voltages. 
For a cubic cell,
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where the subscripts e and m denote electric and magnetic, respectively. By applying the 
central-difference scheme to Equation 7.84, we obtain, after some algebraic manipulations,
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where Ges = δσs(i, j, k) µo oε  with s ∈ {y, z}. Applying this TLM FDTD-PML algorithm has 
been found to yield excellent performance with reflection level below −55 dB [37].

7.9  Concluding Remarks

This chapter has described the TLM method which is a modeling process rather than 
a numerical method for solving differential equations. The flexibility, versatility, and 
generality of the time-domain method have been demonstrated. Our discussion in 
this chapter has been introductory, and one is advised to consult [10,39–41] for a more 
in-depth treatment. A generalized treatment of TLM in the curvilinear coordinate system 
is presented in Reference 42, while a theoretical basis of TLM is derived in Reference 43. 
Further developments in TLM can be found in References 44–50.

Although the application of the TLM method in this chapter has been limited to diffusion 
and wave propagation problems, the method has a wide range of applications. The technique 
has been applied to other problems including:

•	 Cutoff frequencies in fin lines [29,51]
•	 Transient analysis of striplines [52,53]
•	 Linear and nonlinear lumped networks [54–59]
•	 Microstrip lines and resonators [17,60,61]
•	 Diffusion problems [62–64]
•	 Electromagnetic compatibility problems [21,65–68]
•	 Antenna problems [43,54,69,70]
•	 Induced currents in biological bodies exposed to EM fields [71]
•	 Cylindrical and spherical waves [31,54,72]
•	 Thin wires [73–75]
•	 Metamaterials [76]
•	 Bio-heat transfer [77,78], and
•	 Others [79–92].

A major advantage of the TLM method, as compared with other numerical techniques, is the 
ease with which even the most complicated structures can be analyzed. The great flexibility 
and versatility of the method reside in the fact that the TLM mesh incorporates the properties 
of EM fields and their interaction with the boundaries and material media. Hence, the EM 
problem need not be formulated for every new structure. Thus a general-purpose program 



502 Computational Electromagnetics with MATLAB®

such as in Reference 79 can be developed such that only the parameters of the structure need 
be entered for computation. Another advantage of using the TLM method is that certain 
stability properties can be deduced by inspection of the circuit. There are no problems with 
convergence, stability, or spurious solutions. The method is limited only by the amount of 
memory storage required, which depends on the complexity of the TLM mesh. Also, being 
an explicit numerical solution, the TLM method is suitable for nonlinear or inhomogeneous 
problems since any variation of material properties may be updated at each time step.

Perhaps the best way to conclude this chapter is to compare the TLM method with the 
finite difference method, especially FDTD [80–86]. While TLM is a physical model based on 
Huygens’ principle using interconnected transmission lines, the FDTD is an approximate 
mathematical model directly based on Maxwell’s equations. In the 2-D TLM, the magnetic 
and electric field components are located at the same position with respect to space and 
time, whereas in the corresponding 2-D FDTD cell, the magnetic field components are 
shifted by half an interval in space and time with respect to the electric field components. 
Due to this displacement between electric and magnetic field components in Yee’s FDTD, 
Chen et al. [83] derived a new FDTD and demonstrated that the new FDTD formulation is 
exactly equivalent to the symmetric condensed node model used in the TLM method. This 
implies that the TLM algorithm can be formulated in FDTD form and vice versa. However, 
both algorithms retain their unique advantages. For example, the FDTD model has a 
simpler algorithm where constitutive parameters are directly introduced, while the TLM 
has certain advantages in the modeling of boundaries and the partitioning of the solution 
region. Furthermore, the FDTD requires less than one-half of the CPU time spent by the 
equivalent TLM program under identical conditions. While the TLM scheme requires 22 
real memory stores per node, the FDTD method requires only seven real memory stores per 
3-D node in an isotropic dielectric medium [81]. Although both are time-domain schemes, 
the quantities available at each time step are the solution in TLM model and there is no need 
for an iterative procedure. The dispersion relations for TLM and FDTD are identical for 2-D 
but are different for 3-D problems. The comparison is summarized in Table 7.7. According 
to Johns, the two methods complement each other rather than compete with each other [80]. 
More information on TLM can be found in References 11,93.

PROBLEMS

	 7.1	 A conductor has a uniform resistance R per unit length and leakage conductance 
G per unit length. Show that the potential V at a point distant x from one end 
satisfies the differential equation

	
d V
dx

RGV
2

2 0− =

TABLE 7.7

A Comparison of TLM and FDTD Methods

FDTD TLM

A mathematical model based on Maxwell’s equations A physical model based on Huygen’s principle
E and H are shifted with respect to space and time E and H are calculated at the same time and position
Requires less memory and one-half the CPU time Needs more memory and more CPU time
Provides solution at each time step Requires some iterative procedure
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	 7.2	 For the two-port network in Figure 7.30a, the relation between the input and 
output variables can be written in matrix form as
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		  For the lossy line in Figure 7.30b, show that the ABCD matrix (also called the 
cascaded matrix) is
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	 7.3	 The circuit in Figure 7.31 is used to model diffusion processes and presents a Δz 
section of a lossy transmission line. Show that
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		  where i = Im/Δz, the current density.
	 7.4	 Consider an EM wave propagation in a lossless medium in TEM mode 

(Ey = 0 = Ez = Hz = Hx) along the z direction. Using 1-D TLM mesh, derive the 
equivalencies between network and field quantities.

	 7.5	 Modify the program in Figure 7.14 to calculate the cutoff frequency (expressed 
in terms of Δ/λ) in a square section waveguide of size 10Δ. Perform the 
calculation for the TM11 mode by using open-circuit symmetry boundaries to 

FIGURE 7.30
For Problem 7.2.

FIGURE 7.31
For Problem 7.3.
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suppress even-order modes and by taking the excitation and output points as 
in Figure 7.32 to suppress the TM13, TM33, and TM15 modes. Use N = 500.

	 7.6	 Repeat Problem 7.5 of higher-order modes but take excitation and output points 
as in Figure 7.33.

	 7.7	 For the waveguide with a free space discontinuity considered in Example 7.2, plot 
the variation of the magnitude of the normalized impedance of the guide with 
Δ/λ. The plot should be for frequencies above and below the cutoff frequency, 
that is, including both evanescent and propagating modes.

	 7.8	 Rework Example 7.4, but take the output point at (x = 6, z = 13).
	 7.9	 Verify Equation 7.62.

FIGURE 7.33
Square cross-section waveguide of Problem 7.6.

FIGURE 7.32
Square cross-section waveguide of Problem 7.5.
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	 7.10	 For transverse waves on a stub-loaded TLM, the dispersion relation is given by
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		  Plot the velocity characteristic similar to that in Figure 7.11 for Yo = 0, 1, 2, 10, 
20, 100.

	 7.11	 Verify Equation 7.68.
	 7.12	 The transmission equation for one cell in a stub-loaded 3-D TLM network is
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		  θ = 2π Δ/λ, yo = 4(εr − 1), zo = 4(µr − 1), and g L Co = σ∆ / . Assuming small 
losses αnΔ << 1, show that the transmission equation can be reduced to
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		  where γn = αn + jβn is the propagation constant and
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	 7.13	 In the y − z plane of a symmetric condensed node of the TLM mesh, the 
normalized characteristic impedance of the inductive stub is
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		  Assuming that Δx = Δy = Δz = 0.1 m, determine the stubs required to model 
a medium with εr = 4, µr = 1, uo = c, and the value of Δt for stability.

	 7.14	 Consider the 61 × 8 rectangular matrix with boundaries at x = 0.5 and x = 8.5 
as in Figure 7.34. By making one of the boundaries, say x = 8.5, an open circuit, 
a waveguide of twice the width can be simulated. For the TEm0 family of modes, 
excite the system at all points on line z = 1 with impulses corresponding to 
Ey and take the impulse function of the output at point x = 7, z = 6. Calculate 
the normalized wave impedance Z = Ey/Hx for frequencies above cutoff, that is, 
Δ/λ = 0.023, 0.025, 0.027, … , 0.041. Take σ = 0, εr = 2, µr = 1.
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	 7.15	 Repeat Problem 7.14 for a lossy waveguide with σ = 278 mhos/m, εr = 1, µr = 1.
	 7.16	 Using the TLM method, determine the cutoff frequency (expressed in terms of 

Δ/λ) of the lowest order TE and TM modes for the square waveguide with cross 
section shown in Figure 7.35. Take εr = 2.45.

	 7.17	 For the dielectric ridge waveguide of Figure 7.36, use the TLM method to 
calculate the cutoff wavenumber kc of the dominant mode. Express the result in 
terms of kca(=ωa/c) and try εr = 2 and εr = 8. Take a = 10Δ.

FIGURE 7.36
For Problem 7.17.

FIGURE 7.35
For Problem 7.16.

FIGURE 7.34
The 61 × 8 TLM mesh of Problem 7.14.
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	 7.18	 Rework Example 7.6 for the inhomogeneous cavity of Figure 7.37. Take εr = 16, 
a = 12Δ, b = 3a/10, d = 4a/10, s = 7a/12, u = 3d/8.

	 7.19	 Consider a single microstrip line shown in Figure 7.38. Dispersion analysis of 
the line by the TLM method involves resonating a section of the transmission 
line by placing shorting planes along the axis of propagation (the z-axis in this 
case). Write a TLM computer program and specify the input data as

	 Ex = 0 = Ez along y = 0, y = b,

	 Ex = 0 = Ez along x = 2a,

	 Ex = 0 = Ez for y = H, −W ≤ x ≤ W,

	 Hy = 0 = Hz along x = 0

		  Plot the dispersion curves depicting the phase constant β as a function of 
frequency f for cases when the line is air-filled and dielectric-filled. The distance 
L(=π/β) between the shorting planes is the variable. Assume the dielectric 
substrate and the walls of the enclosure are lossless. Take εr = 4.0, a = 2 mm, 
H = 1.0 mm, W = 1.0 mm, b = 2 mm, Δ = a/8.

	 7.20	 For the cubical cavity of Figure 7.39, use the TLM technique to calculate the 
time taken for the total power in the lossy dielectric cavity to decay to 1/e of its 

FIGURE 7.37
Inhomogeneous cavity of Problem 7.18.

FIGURE 7.38
Microstrip line of Problem 7.19.
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original value. Consider cases when the cavity is completely filled with dielectric 
material and half-filled. Take εr = 2.45, σ = 0.884 mhos/m, µr = 1, Δ = 0.3 cm, 
2a = 7Δ.
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8
Monte Carlo Methods

Written in Chinese the word CRISIS is composed of two characters: danger and opportunity.

—J. F. Kennedy

8.1  Introduction

Unlike the deterministic numerical methods covered in the foregoing chapters, Monte Carlo 
methods (MCMs) are nondeterministic (probabilistic or stochastic) numerical methods 
employed in solving mathematical and physical problems. The Monte Carlo method 
(MCM), also known as the method of statistical trials, is the marriage of two major branches 
of theoretical physics: the probabilistic theory of random process dealing with Brownian 
motion or random-walk experiments and potential theory, which studies the equilibrium 
states of a homogeneous medium [1]. It is a method of approximately solving problems 
using sequences of random numbers. It is a means of treating mathematical problems by 
finding a probabilistic analog and then obtaining approximate answers to this analog by 
some experimental sampling procedure. The solution of a problem by this method is closer 
in spirit to physical experiments than to classical numerical techniques.

It is generally accepted that the development of Monte Carlo techniques as we presently 
use them dates from about 1944, although there are a number of undeveloped instances on 
much earlier occasions. Credit for the development of MCM goes to a group of scientists, 
particularly von Neumann and Ulam, at Los Alamos during the early work on nuclear 
weapons. The groundwork of the Los Alamos group stimulated a vast outpouring of 
literature on the subject and encouraged the use of MCM for a variety of problems [2–4]. 
The name “Monte Carlo” comes from the city in Monaco, famous for its gambling casinos.

MCMs are applied in two ways: simulation and sampling. Simulation refers to methods 
of providing mathematical imitation of real random phenomena. A typical example is the 
simulation of a neutron’s motion into a reactor wall, its zigzag path being imitated by a 
random walk. Sampling refers to methods of deducing properties of a large set of elements 
by studying only a small, random subset. For example, the average value of f(x) over a < x < b 
can be estimated from its average over a finite number of points selected randomly in 
the interval. This amounts to a MCM of numerical integration. MCMs have been applied 
successfully for solving differential and integral equations, for finding eigenvalues, for 
inverting matrices, and particularly for evaluating multiple integrals.

The simulation of any process or system in which there are inherently random components 
requires a method of generating or obtaining numbers that are random. Examples of such 
simulation occur in random collisions of neutrons, in statistics, in queueing models, in 
games of strategy, and in other competitive enterprises. Monte Carlo calculations require 
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having available sequences of numbers which appear to be drawn at random from particular 
probability distributions.

8.2  Generation of Random Numbers and Variables

Various techniques for generating random numbers are discussed fully in [5–12]. The 
almost universally used method of generating random numbers is to select a function g(x) 
that map integers into random numbers. Select x0 somehow, and generate the next random 
number as xk+1 = g(xk). The most common function g(x) takes the form

	 g x ax c m( ) ( )= + mod 	 (8.1)

where

	

x a x

a a

c

0 0 0
0

= >
= ≥
=

starting value or  seed ( )
multiplier 
in

,
( ),

ccrement ( )
the modulus

c

m

≥
=

0 ,

The modulus m is usually 2t for t-digit binary integers. For a 31-bit computer machine, 
for example, m may be 231–1. Here x0, a, and c are integers in the same range as m > a, 
m > c, m > x0. The desired sequence of random numbers {xn} is obtained from

	 x ax c mn n+ = +1 ( )mod 	 (8.2)

This is called a linear congruential sequence. For example, if x0 = a = c = 7 and m = 10, the 
sequence is

	 7 6 9 0 7 6 9 0, , , , , , , ,…	 (8.3)

It is evident that congruential sequences always get into a loop; that is, there is ultimately 
a cycle of numbers that is repeated endlessly. The sequence in Equation 8.3 has a period 
of length 4. A useful sequence will of course have a relatively long period. The terms 
multiplicative congruential method and mixed congruential method are used by many authors to 
denote linear congruential methods with c = 0 and c ≠ 0, respectively. Rules for selecting 
x0, a, c, and m can be found in References 6,10.

Here, we are interested in generating random numbers from the uniform distribution in 
the interval (0,1). These numbers will be designated by the letter U and are obtained from 
Equation 8.2 as

	
U

x
m
n= +1

	
(8.4)

Thus, U can assume values from only the set {0, 1/m, 2/m, …, (m − 1)/m}. (For random 
numbers in the interval (0,1), a quick test of the randomness is that the mean is 0.5. Other 
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tests can be found in References 3,6.) In MATLAB, a command rand generates a random 
number in the interval (0,1). For generating random numbers X uniformly distributed in 
the interval (a, b), we use

	 X a b a U= + −( ) 	 (8.5)

Random numbers produced by a computer code (using Equations 8.2 and 8.4) are not 
truly random; in fact, given the seed of the sequence, all numbers U of the sequence are 
completely predictable. Some authors emphasize this point by calling such computer-
generated sequences pseudorandom numbers. However, with a good choice of a, c, and m, the 
sequences of U appear to be sufficiently random in that they pass a series of statistical tests 
of randomness. They have the advantage over truly random numbers of being generated 
in a fast way and of being reproducible, when desired, especially for program debugging.

It is usually necessary in a Monte Carlo procedure to generate random variable X from 
a given probability distribution F(x). This can be accomplished using several techniques 
[6,13–15] including the direct method and rejection method.

The direct method, otherwise known as inversion or transform method, entails inverting 
the cumulative probability function F(x) = Prob(X ≤ x) associated with the random 
variable X. The fact that 0 ≤ F(x) ≤ 1 intuitively suggests that by generating random 
number U uniformly distributed over (0,1), we can produce a random sample X from the 
distribution of F(x) by inversion. Thus to generate random X with probability distribution 
F(x), we set U = F(x) and obtain

	 X F U= – ( )1
	 (8.6)

where X has the distribution function F(x). For example, if X is a random variable that is 
exponentially distributed with mean µ, then

	 F x e xx( ) ,/= − < < ∞−1 0µ
	 (8.7)

Solving for X in U = F(X) gives

	 X U= – ( – )µ ln 1 	 (8.8)

Since (1 − U) is itself a random number in the interval (0,1), we simply write

	 X U= −µ ln 	 (8.9)

Sometimes the inverse F−1(x) required in Equation 8.6 does not exist or is difficult to 
obtain. This situation can be handled using the rejection method. Let f(x) = dF(x)/dx be the 
probability density function of the random variable X. Let f(x) = 0 for a > x > b, and f(x) is 
bounded by M (i.e., f(x) ≤ M) as shown in Figure 8.1. We generate two random numbers 
(U1, U2) in the interval (0,1). Then

	 X a b a U f U M1 1 1 2= + − =( ) and 	 (8.10)

are two random numbers with uniform distributions in (a, b) and (0, M), respectively. If

	 f f X1 1≤ ( )	 (8.11)
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then X1 is accepted as a choice of X, otherwise X1 is rejected and a new pair (U1, U2) is tried 
again. Thus in the rejection technique all points falling above f(x) are rejected, while those 
points falling on or below f(x) are utilized to generate X1 through X1 = a + (b − a)U1.

EXAMPLE 8.1

Develop a subroutine for generating random number U uniformly distributed between 
0 and 1. Using this subroutine, generate random variable Θ with probability distribution 
given by

	
T( ) ( cos ),θ θ θ π= − < <

1
2

1 0

Solution

The subroutine for generating θ is shown in Figure 8.2. MATLAB uses rand to produce 
random numbers uniformly distributed between 0 and 1.

To generate the random variable Θ, set

	
U T= = −( ) ( cos ),Θ Θ

1
2

1

then

	 Θ = = −T U U– –( ) ( )1 1 1 2cos

Using this, a sequence of random numbers Θ with the given distribution is generated 
in the main program of Figure 8.2.

for k = 1:100   
r = rand;   
theta(k) = acos( 1 – 2*r); 
end; 

FIGURE 8.2
Random number generator; for Example 8.1.

FIGURE 8.1
Rejection method of generating a random variable with probability density function f(x).
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8.3  Evaluation of Error

Monte Carlo procedures give solutions which are averages over a number of tests. For 
this reason, the solutions contain fluctuations about a mean value, and it is impossible to 
ascribe a 100% confidence in the results. To evaluate the statistical uncertainty in Monte 
Carlo calculations, we must resort to various statistical techniques associated with random 
variables. We briefly introduce the concepts of expected value and variance, and utilize the 
central limit theorem to arrive at an error estimate [13,16].

Suppose that X is a random variable. The expected value or mean value x  of X is defined as

	
x xf x dx=

−∞

∞

∫ ( )
	

(8.12)

where f(x) is the probability density distribution of X. If we draw random and independent 
samples, x1, x2, …, xN from f(x), our estimate of x would take the form of the mean of N 
samples, namely,

	
x̂

N
xn

n

N

=
=

∑1

1 	
(8.13)

While x  is the true mean value of X, x̂ is the unbiased estimator of x , an unbiased 
estimator being one with the correct expectation value. Although the expected value of x̂ 
is equal to x , x̂ x≠ . Therefore, we need a measure of the spread in the values of x̂ about x .

To estimate the spread of values of X, and eventually of x̂ about x , we introduce the 
variance of X defined as the expected value of the square of the deviation of X from x , that is,

	
Var( ) ( ) ( ) ( )x x x x x f x dx= = − = −

−∞

∞

∫σ2 2 2

	
(8.14)

But ( )x x x xx x− = − +2 2 22 . Hence,

	
σ2 2 22( ) ( ) ( ) ( )x x f x dx x xf x dx x f x dx= − +

−∞

∞

−∞

∞

−∞

∞

∫ ∫ ∫
	

(8.15)

or

	 σ2 2 2( )x x x= − 	 (8.16)

The square root of the variance is called the standard deviation, that is,

	
σ( )

/
x x x= −( )2 2

1 2

	
(8.17)

The standard deviation provides a measure of the spread of x about the mean value x ; it 
yields the order of magnitude of the error. The relationship between the variance of x̂ and 
the variance of x is

	
σ σ

( )
( )

x̂
x
N

=
	

(8.18)
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This shows that if we use x̂ constructed from N values of xn according to Equation 8.13 to 
estimate x , then the spread in our results of x̂ about x  is proportional to σ(x) and falls off 
as the number of N of samples increases.

In order to estimate the spread in x̂, we define the sample variance

	
S

N
x xn

n

N
2 2

1

1
1

=
−

−
=

∑( )�
	

(8.19)

Again, it can be shown that the expected value of S2 is equal to σ2(x). Therefore, the sample 
variance is an unbiased estimator of σ2(x). Multiplying out the square term in Equation 8.19, 
it is readily shown that the sample standard deviation is

	
S

N N
x xn

n

N

=
−







 −















=

∑1
1

11 2
2 2

1

1 2
/

/

�
	

(8.20)

For large N, the factor N/(N − 1) is set equal to 1.
As a way of arriving at the central limit theorem, a fundamental result in probability theory, 

consider the binomial function

	
B M

N
M N M

p qM N M( )
!

!( )!
=

−
−

	
(8.21)

which is the probability of M successes in N independent trials. In Equation 8.21, p is 
the probability of success in a trial, and q = 1 − p. If M and N − M are large, we may use 
Stirling’s formula

	 n n e nn n!∼ − 2π 	 (8.22)

so that Equation 8.21 is approximated [17] as the normal distribution:

	 �
�

�
�

B M f x
x

x x
x

( ) ( )
( )

exp
( )

( )
 = −

−











1
2 2

2

2σ π σ 	
(8.23)

where x  = Np and σ( )x̂ N pq= . Thus as N → ∞, the central limit theorem states that 
the probability density function which describes the distribution of x̂ that results from N 
Monte Carlo calculations is the normal distribution f x( )�  in Equation 8.23. In other words, 
the sum of a large number of random variables tends to be normally distributed. Inserting 
Equation 8.18 into Equation 8.23 gives

	
� �

f x
N

x
N x x

x
( )

( )
exp

( )
( )

= −
−









2

1
2

2

2π σ σ 	
(8.24)

The normal (or Gaussian) distribution is very useful in various problems in engineering, 
physics, and statistics. The remarkable versatility of the Gaussian model stems from the 
central limit theorem. For this reason, the Gaussian model often applies to situations in 
which the quantity of interest results from the summation of many irregular and fluctuating 
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components. In Example 8.2, we present an algorithm based on central limit theorem for 
generating Gaussian random variables.

Since the number of samples N is finite, absolute certainty in Monte Carlo calculations is 
unattainable. We try to estimate some limit or interval around x  such that we can predict 
with some confidence that x̂ falls within that limit. Suppose we want the probability that x̂ 
lies between x̂ −δ  and x  + δ. By definition,

	
Prob{ }x x x f x dx

x

x

− < < + =
−

+

∫δ δ
δ

δ

ˆ ( ˆ) ˆ

	
(8.25)

By letting

	
λ

σ
=

−( )
/

ˆ

( )
,

x x
N x2

	

Prob{ }x x x e d

N
x

N

− < < +

=










−∫δ δ
π

λ

δ
σ

λ

δ σ

ˆ

erf
( )

( / )( / )

=
2

2

2

0

2

/  	
(8.26a)

or

	
Prob x z

N
x x z

N
− ≤ ≤ +











= −α α
σ σ α/ /2 2 1�

	
(8.26b)

where erf(x) is the error function and zα/2 is the upper α/2 × 100 percentile of the standard 
normal deviation. Equation 8.26 may be interpreted as follows: if the Monte Carlo procedure 
of taking random and independent observations and constructing the associated random 
interval x ±δ is repeated for large N, approximately erf ( ( ))N x/ /2 100δ σ ×  percent of these 
random intervals will contain x�. The random interval x ± δ�  is called a confidence interval 
and erf ( ( ))N x/ /2 δ σ  is the confidence level. Most Monte Carlo calculations use error 
δ σ= ( )x N/ , which implies that x̂ is within one standard deviation of x , the true mean. 
From Equation 8.26, it means that the probability that the sample mean x̂ lies within the 
interval ˆ ( )x x N±σ /  is 0.6826 or 68.3%. If higher confidence levels are desired, two or three 
standard deviations may be used. For example,

	

�Prob
( ) ( )

x M
x
N

x x M
x
N

M

M− < < +








 =

=
=

σ σ
0.6826,
0.954,
0.9

1
2

997, M =








 3	

(8.27)

where M is the number of standard deviations.
In Equations 8.26 and 8.27, it is assumed that the population standard deviation σ is 

known. Since this is rarely the case, σ must be estimated by the sample standard deviation 
S calculated from Equation 8.20 so that the normal distribution is replaced by the Student’s 
t-distribution. It is well known that the t-distribution approaches the normal distribution 
as N becomes large, say N > 30. Equation 8.26 is equivalent to
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�Prob / ; / ;x

St
N

x x
St

N
N N− ≤ ≤ +









 = −− −α α α2 1 2 1 1

	
(8.28)

where tα/2;N–1 is the upper 100 × α/2 percentage point of the Student’s t-distribution with 
(N − 1) degrees of freedom; and its values are listed in any standard statistics text. Thus, 
the upper and lower limits of a confidence interval are given by

	

upper limit

lower limit

= +

= −

−

−

x
St

N

x
St

N

N

N

α

α

/ ;

/ ;

( . )

( .

2 1

2 1

8 29

8 300)

For further discussion on error estimates in Monte Carlo computations, consult References 
18,19.

EXAMPLE 8.2

A random variable X with Gaussian (or normal) distribution is generated using the 
central limit theorem. According to the central limit theorem, the sum of a large number 
of independent random variables about a mean value approaches a Gaussian distribution 
regardless of the distribution of the individual variables. In other words, for any random 
numbers, Yi , i = 1, 2, …, N with mean Y  and variance Var(Y),

	
Z

Y NY

N Y

i

i

N

=

−
=

∑
1

Var( ) 	

(8.31)

converges asymptotically with N to a normal distribution with zero mean and a standard 
deviation of unity. If Yi are uniformly distributed variables (i.e., Yi = Ui), then Y = 1 2/ , 
Var /( )Y = 1 12 , and

	
Z

U N

N

i

i

N

=

−
=

∑ /

/

2

12
1

	

(8.32)

and the variable

	 X Z= +σ µ	 (8.33)

approximates the normal variable with mean µ and variance σ2. A value of N as low as 
3 provides a close approximation to the familiar bell-shaped Gaussian distribution. To 
ease computation, it is a common practice to set N = 12 since this choice eliminates the 
square root term in Equation 8.32. However, this value of N truncates the distribution 
at ±6σ limits and is unable to generate values beyond 3σ. For simulations in which the 
tail of the distribution is important, other schemes for generating Gaussian distribution 
must be used [20–22].
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Thus, to generate a Gaussian variable X with mean µ and standard deviation σ, we 
follow these steps:

	 1.	 Generate 12 uniformly distributed random numbers U1, U2, …, U12.

	 2.	 Obtain Z Ui

i

= −
=

∑ 6
1

12

.

	 3.	 Set X = σZ + µ.

In MATLAB, normal variable X is generated using command randn.

8.4  Numerical Integration

For one-dimensional integration, several quadrature formulas, such as presented in 
Section 3.11, exist. The numbers of such formulas are relatively few for multidimensional 
integration. It is for such multidimensional integrals that a Monte Carlo technique becomes 
valuable for at least two reasons. The quadrature formulas become very complex for multiple 
integrals while the MCM remains almost unchanged. The convergence of Monte Carlo 
integration is independent of dimensionality, which is not true for quadrature formulas. 
The statistical method of integration has been found to be an efficient way to evaluate two- 
or three-dimensional integrals in antenna problems, particularly those involving very large 
structures [23]. Two types of Monte Carlo integration procedures, the crude MCM and the 
MCM with antithetic variates, will be discussed. For other types, such as hit-or-miss and 
control variates, see References 24,25. The application of MCM to improper integrals will 
be covered briefly.

8.4.1  Crude Monte Carlo Integration

Suppose we wish to evaluate the integral

	
I f

R

= ∫
	

(8.34)

where R is an n-dimensional space. Let X = (X1, X2, …, Xn) be a random variable that is 
uniformly distributed in R. Then f(X) is a random variable whose mean value is given by 
[26,27]

	
f

R
f

R
R

( )
| | | |

X = =∫1 1

	
(8.35)

and the variance by

	

Var( ( ))f
R

f
R

f
RR

X = −










∫∫1 12

2

| | | |
	

(8.36)
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where

	
| |R d

R

= ∫ X

	
(8.37)

If we take N independent samples of X, that is, X1, X2, …, XN, all having the same 
distribution as X and form the average

	

f f f
N N

fN
i

i

N
( ) ( ) ( )

( )
X X X

X1 2

1

1+ +⋅ ⋅ ⋅+
=

=
∑

	
(8.38)

we might expect this average to be close to the mean of f(X). Thus, from Equations 8.35 
and 8.38,

	
I

R
N

f i

i

N

=
=

∑| |
( )X

1 	

(8.39)

This Monte Carlo formula applies to any integration over a finite region R. For the 
purpose of illustration, we now apply Equation 8.39 to one- and two-dimensional integrals.

For a one-dimensional integral, suppose

	
I f x dx

a

b

= ∫ ( )
	

(8.40)

Applying Equation 8.39 yields

	
I

b a
N

f Xi

i

N

=
−

=
∑ ( )

1 	

(8.41)

where Xi is a random number in the interval (a, b), that is,

	 X a b a U Ui = + − < <( ) , 0 1	 (8.42)

For a two-dimensional integral

	
I f X X dX dX

c

d

a

b

= ∫∫ ( , ) ,1 2 1 2

	
(8.43)

the corresponding Monte Carlo formula is

	
I

b a d c
N

f X Xi i

i

N

=
− −

=
∑( )( )

( , )1 2

1 	

(8.44)

where

	

X a b a U U

X c d c U U

i

i

1 1 1

2 2 2

0 1

0 1

= + − <

= + − <

( ) ,

( ) ,

  

  

<

< 	
(8.45)
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The convergence behavior of the unbiased estimator I in Equation 8.39 is slow since the 
variance of the estimator is of the order 1/N. Accuracy and convergence is increased by 
reducing the variance of the estimator using an improved method, the method of antithetic 
variates.

8.4.2  Monte Carlo Integration with Antithetic Variates

The term antithetic variates [28] is used to describe any set of estimators which mutually 
compensate each other’s variations. For convenience, we assume that the integral is over 
the interval (0,1). Suppose we want an estimator for the single integral

	
I g U dU= ∫ ( )

0

1

	

(8.46)

We expect the quantity 1/2[g(U) + g(1 − U)] to have smaller variance than g(U). If g(U) 
is too small, then g(1 − U) will have a good chance of being too large and conversely. 
Therefore, we define the estimator

	
I

N
g U g Ui i

i

N

= + −
=

∑1 1
2

1
1

[ ( ) ( )]
	

(8.47)

where Ui are random numbers between 0 and 1. The variance of the estimator is of the 
order 1/N4, a tremendous improvement over Equation 8.39. For two-dimensional integral,

	
I g U U dU dU= ∫∫ ( , ) ,1 2 1 2

0

1

0

1

	

(8.48)

and the corresponding estimator is

	

I
N

g U U g U U

g U U g U

i i i i

i
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2)]	 (8.49)

Following similar lines, the idea can be extended to higher-order integrals. For intervals 
other than (0, 1), transformations such as in Equations 8.41 through 8.45 should be applied. 
For example,

	

f x dx b a g U dU

b a
N

g U g U

a

b

i i

i
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( ) ( ) ( )
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∑
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(8.50)

where g(U) = f(X) and X = a + (b − a)U. It is observed from Equations 8.47 and 8.49 that 
as the number of dimensions increases, the minimum number of antithetic variates per 
dimension required to obtain an increase in efficiency over crude Monte Carlo also increases. 
Thus, the crude MCM becomes preferable in many dimensions. Monte Carlo integration 
technique has been applied in the moment method solution of integral equations [29,30].
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8.4.3  Improper Integrals

The integral

	
I g x dx=

∞

∫ ( )
0 	

(8.51)

may be evaluated using Monte Carlo simulations. For a random variable X having 
probability density function f(x), where f(x) integrates to 1 on interval (0, ∞),

	

g x
f x

dx g x dx
( )
( )

( )
0 0

∞ ∞

∫ ∫=
	

(8.52)

Hence, to compute I in Equation 8.51, we generate N independent random variables 
distributed according to a probability density function f(x) integrating to 1 on the interval 
(0, ∞). The sample mean

	
g x

N
g x
f x

i

ii

N

( )
( )
( )

=
=

∑1

1 	
(8.53)

gives an estimate for I.

EXAMPLE 8.3

Evaluate the integral

	

I e d dj= ∫∫ αρ φ

π

ρ ρ φcos

0

2

0

1

using the MCM.

Solution

This integral represents radiation from a circular aperture-antenna with a constant 
amplitude and phase distribution. It is selected because it forms at least part of every 
radiation integral. The solution is available in the closed form, which can be used to 
assess the accuracy of the Monte Carlo results. In closed form,

	
I

J
( )

( )
α

π α
α

=
2 1

where J1(α) is Bessel’s function of the first order.

A simple program for evaluating the integral employing Equations 8.44 and 8.45, where 
a = 0, b = 1, c = 0, and d = 2π, is shown in Figure 8.3. For different values of N, both the 
crude and antithetic variate MCMs are used in evaluating the radiation integral, and the 
results are compared with the exact value in Table 8.1 for α = 5. In applying Equation 8.49, 
the following correspondences are used:

	

U X U X U b X b a U

U d X d c U

1
1 2 2 1 1 1

2 2 2

1 1

1 1

≡ ≡ − ≡ − = − −

− ≡ − = − −

, , ( )( ),

( )( )
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FIGURE 8.3
MATLAB program for Monte Carlo evaluation of a two-dimensional integral: (a) main program, (b) function 
fun.m kept in a separate file.

TABLE 8.1

Results of Example 8.3 on Monte Carlo Integration 
of Radiation Integral

N Crude MCM
Antithetic 

Variates MCM

500 −0.2892 − j0.0742 −0.2887 − j0.0585
1000 −0.5737 + j0.0808 −0.4982 − j0.0080
2000 −0.4922 − j0.0040 −0.4682 − j0.0082
4000 −0.3999 − j0.0345 −0.4216 − j0.0323
6000 −0.3608 − j0.0270 −0.3787 − j0.0440
8000 −0.4327 − j0.0378 −0.4139 − j0.0241
10,000 −0.4229 − j0.0237 −0.4121 − j0.0240

Exact: −0.4116 + j0.
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8.5  Solution of Potential Problems

The connection between potential theory and Brownian motion (or random walk) was first 
shown in 1944 by Kakutani [31]. Since then the resulting so-called probabilistic potential 
theory has been applied to problems in many disciplines such as heat conduction [32–37], 
electrostatics [38–45], and electrical power engineering [46,47]. An underlying concept of the 
probabilistic or Monte Carlo solution of differential equations is the random walk. Different 
types of random walk lead to different MCMs. The most popular types are the fixed-random 
walk and floating random walk. Other types that are less popular include the Exodus method, 
shrinking boundary method, inscribed figure method, and the surface density method.

8.5.1  Fixed Random Walk

Suppose, for concreteness, that the MCM with fixed random walk is to be applied to solve 
Laplace’s equation

	 ∇ =2 0V R in region 	 (8.54a)

subject to Dirichlet boundary condition

	 V V Bp= on boundary 	 (8.54b)

We begin by dividing R into mesh and replacing ∇ 2 by its finite difference equivalent. 
The finite difference representation of Equation 8.54a in two-dimensional R is given by 
Equation 3.31, namely,

	

V x y p V x y p V x y

p V x y p V x
x x

y y

( , ) ( , ) ( , )
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+ −

+ − yy−∆) 	

(8.55a)

where

	
p p p px x y y+ − + −= = = =

1
4 	

(8.55b)

In Equation 8.55, a square grid of mesh size Δ, such as in Figure 8.4, is assumed. The 
equation may be given a probabilistic interpretation. If a random walking particle is 
instantaneously at the point (x, y), it has probabilities px+, px–, py+, and py– of moving from 
(x, y) to (x + Δ, y), (x − Δ, y), (x, y + Δ), and (x, y − Δ), respectively. A means of determining 
which way the particle should move is to generate a random number U, 0 < U < 1 and 
instruct the particle to walk as follows:
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( , ) ( , ) if . .
( , ) ( ,

x y x y U

x y x y U

x y x y

→ +∆ < <
→ −∆ < <
→
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U

x y x y U 	

(8.56)
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If a rectangular grid rather than a square grid is employed, then px+ = px– and py+ = py–, 
but px ≠ py. Also for a three-dimensional problem in which cubical cells are used, 
px+ = px– = py+ = py– = pz+ = pz– = 1/6. In both cases, the interval 0 < U < 1 is subdivided 
according to the probabilities.

To calculate the potential at (x0, y0), a random-walking particle is instructed to start at 
that point. The particle proceeds to wander from node to node in the grid until it reaches 
the boundary. When it does, the walk is terminated and the prescribed potential Vp at 
that boundary point is recorded. Let the value of Vp at the end of the first walk be denoted 
by Vp(1), as illustrated in Figure 8.4. Then a second particle is released from (x0, y0) and 
allowed to wander until it reaches a boundary point, where the walk is terminated and 
the corresponding value of Vp is recorded as Vp(2). This procedure is repeated for the third, 
fourth, …, and Nth particle released from (x, y), and the corresponding prescribed potential 
Vp(3), Vp(4),  …, Vp(N) are noted. According to Kakutani [31], the expected value of Vp(1), 
VP(2), …, Vp(N) is the solution of the Dirichlet problem at (x, y), that is,
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(8.57)

where N, the total number of walks, is large. The rate of convergence varies as N  so that 
many random walks are required to ensure accurate results.

If it is desired to solve Poisson’s equation

	 ∇ =2V g x y R− ( , ) in 	 (8.58a)

subject to

	 V V Bp=  on ,	 (8.58b)

then the finite difference representation is in Equation 3.30, namely,
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(8.59)

FIGURE 8.4
Configuration for fixed random walks.
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where the probabilities remain as stated in Equation 8.55b. The probabilistic interpretation 
of Equation 8.59 is similar to that for Equation 8.55. However, the term Δ2g/4 in Equation 
8.59 must be recorded at each step of the random walk. If mi steps are required for the ith 
random walk originating at (x0, y0) to reach the boundary, then one records
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(8.60)

Thus, the Monte Carlo result for V(x0, y0) is
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(8.61)

An interesting analogy to the MCM just described is the walking drunk problem [15,34]. 
We regard the random-walking particle as “drunk,” the squares of the mesh as the “blocks 
in a city,” the nodes as “crossroads,” the boundary B as the “city limits,” and the terminus 
on B as the “policeman.” Though the drunk is trying to walk home, he is so intoxicated that 
he wanders randomly throughout the city. The job of the policeman is to seize the drunk 
in his first appearance at the city limits and ask him to pay a fine Vp. What is the expected 
fine the drunk will receive? The answer to this problem is in Equation 8.57.

On the dielectric boundary, the boundary condition D1n = D2n is imposed. Consider the 
interface along y = constant plane as shown in Figure 8.5. According to Equation 3.53, the 
finite difference equivalent of the boundary condition at the interface is

	 V p V p V p V p Vo x x y y= + + ++ +1 2 3 4– – 	 (8.62a)

where
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1
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,

( )
ε
ε ε

ε
ε ε 	

(8.62b)

An interface along x = constant plane can be treated in a similar manner.

FIGURE 8.5
Interface between media of dielectric permittivities ε1 and ε2.
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On a line of symmetry, the condition ∂V/∂n = 0 must be imposed. If the line of symmetry 
is along the y-axis as in Figure 8.6a, according to Equation 3.55.

	 V p V p V p Vo x y y= + ++ +1 3 4– 	 (8.63a)

where

	
p p px y y+ + −= = =

1
2 4

1
,

	
(8.63b)

The line of symmetry along the x-axis, shown in Figure 8.6b, is treated similarly following 
Equation 3.56.

For an axisymmetric solution region such as shown in Figure 8.7, V = V(ρ, z). The finite 
difference equivalent of Equation 8.54a for ρ ≠ 0 is obtained in Section 3.10 as
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where Δρ = Δz = Δ and the random walk probabilities are given by

	

p p

p

p

z z+ −

+

−

= =

= +
∆

= −
∆

1
4

1
4 8
1
4 8

ρ

ρ

ρ

ρ 	

(8.65)

For ρ = 0, the finite difference equivalent of Equation 8.54a is Equation 3.120, namely

	 V z p V z p V z p V zz z( , ) ( , ) , ,0 0 0= + + + −( ) ( )+ + −ρ ∆ ∆ ∆ 	 (8.66)

FIGURE 8.6
Satisfying symmetry conditions: (a) ∂V/∂x = 0, (b) ∂V/∂y = 0.
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so that

	
p p p pz zρ ρ+ − + −= = = =
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0
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1

, ,
	

(8.67)

The random-walking particle is instructed to begin to walk at (ρo, zo). It wanders through 
the mesh according to the probabilities in Equations 8.65 and 8.67 until it reaches the 
boundary where it is absorbed and the prescribed potential Vp(1) is recorded. By sending 
out N particles from (ρo, zo) and recording the potential at the end of each walk, we obtain 
the potential at (ρo, zo) as [48]
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N
V io o p
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N

( , ) ( )ρ =
=

∑1

1 	
(8.68)

This MCM is called fixed random walk type since the step size Δ is fixed and the steps of 
the walks are constrained to lie parallel to the coordinate axes. Unlike in the finite difference 
method (FDM), where the potentials at all mesh points are determined simultaneously, MCM 
is able to solve for the potential at one point at a time. One disadvantage of this MCM is that 
it is slow if potential at many points is required and is therefore recommended for solving 
problems for which only a few potentials are required. It shares a common difficulty with 
FDM in connection with irregularly shaped bodies having Neumann boundary conditions. 
This drawback is fully removed by employing MCM with floating random walk.

8.5.2  Floating Random Walk

The mathematical basis of the floating random walk method is the mean value theorem 
of potential theory. If S is a sphere of radius r, centered at (x, y, z), which lies wholly within 
region R, then

	
V x y z

a
V r dS

S

( , , ) ( )= ′ ′∫1
4 2π

	
(8.69)

FIGURE 8.7
Typical axisymmetric solution region.
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That is, the potential at the center of any sphere within R is equal to the average value of 
the potential taken over its surface. When the potential varies in two dimensions, V(x, y) 
is given by

	
V x y V dl

L

( , ) ( )= ′ ′∫1
2πρ

ρ
	

(8.70)

where the integration is around a circle of radius ρ centered at (x, y). It can be shown that 
Equations 8.69 and 8.70 follow from Laplace’s equation. Also, Equations 8.69 and 8.70 can 
be written as
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where
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(8.73)

and θ and φ are regular spherical coordinate variables. The functions F and T may be 
interpreted as the probability distributions corresponding to φ and θ. While dF/dφ = 
constant, dT/dθ = 1/2 sin θ; that is, all angles φ are equally probable, but the same is not 
true for θ.

The floating random walk MCM depends on the application of Equations (8.69) and (8.70) 
in a statistical sense. For a two-dimensional problem, suppose that a random-walking 
particle is at some point (xj, yj) after j steps in the ith walk. The next (j + 1)th step is taken 
as follows. First, a circle is constructed with center at (xj, yj) and radius ρj, which is equal 
to the shortest distance between (xj, yj) and the boundary. The φ coordinate is generated 
as a random variable uniformly distributed over (0, 2π), that is, φ = 2πU, where 0 < U < 1. 
Thus, the location of the random-walking particle after the (j + 1)th step is illustrated in 
Figure 8.8 and given as
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sin
(8.74a)
(8.74b)

The next random walk is executed by constructing a circle centered at (xj+1, yj+1) and of radius 
ρj+1, which is the shortest distance between (xj+1, yj+1) and the boundary. This procedure 
is repeated several times, and the walk is terminated when the walk approaches some 
prescribed small distance τ of the boundary. The potential Vp(i) at the end of this ith walk is 
recorded as in fixed random walk MCM and the potential at (x, y) is eventually determined 
after N walks using Equation 8.57.
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The floating random walk MCM can be applied to a three-dimensional Laplace problem 
by proceeding along lines similar to those outlined above. A random-walking particle 
at (xj, yj, zj) will step to a new location on the surface of a sphere whose radius rj is equal 
to the shortest distance between point (xj, yj, zj) and the boundary. The φ coordinate is 
selected as a random number U between 0 and 1, multiplied by 2π. The coordinate θ is 
determined by selecting another random number U between 0 and 1 and solving for 
θ = cos−1(1 − 2U) as in Example 8.1. Thus, the location of the particle after its (j + 1)th 
step in the ith walk is
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(8.775a)
(8.75b)
(8.75c)

Finally, we apply Equation 8.57.
Solving Poisson’s equation (8.58) for a two-dimensional problem requires only a slight 

modification. For a three-dimensional problem, V(a, θ, φ) in Equation 8.71 is replaced by 
[V(a, θ, φ) + r2g/6]. This requires that the term grj2 6/  at every jth step of the ith random walk 
be recorded.

FIGURE 8.8
Configuration for floating random walks.
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An approach for handling a discretely inhomogeneous medium is presented in References 
38,42,43,49.

It is evident that in the floating random walk MCM, neither the step sizes nor the 
directions of the walk are fixed in advance. The quantities may be regarded as “floating” 
and hence the designation floating random walk. A floating random walk bypasses many 
intermediate steps of a fixed random walk in favor of a long jump. Fewer steps are 
needed to reach the boundary, and so computation is much more rapid than in fixed 
random walk.

8.5.3  Exodus Method

The Exodus method, first suggested in Reference 50 and developed for electromagnetics 
in References 51,52, does not employ random numbers and is generally faster and more 
accurate than the fixed random walk. It basically consists of dispatching numerous 
walkers (say 106) simultaneously in directions controlled by the random walk probabilities 
of going from one node to its neighbors. As these walkers arrive at new nodes, they are 
dispatched according to the probabilities until a set number (say 99.999%) have reached 
the boundaries. The advantage of the Exodus method is its independence of the random 
number generator.

To implement the Exodus method, we first divide the solution region R into mesh, such 
as in Figure 8.4. Suppose pk is the probability that a random walk starting from point (x, y) 
ends at node k on the boundary with prescribed potential Vp(k). For M boundary nodes 
(excluding the corner points since a random walk never terminates at those points), the 
potential at the starting point (x0, y0) of the random walks is
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If m is the number of different boundary potentials (m = 4 in Figure 8.4), Equation 8.76 
can be simplified to
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where pk in this case is the probability that a random walk terminates on boundary k. Since 
Vp(k) is specified, our problem is reduced to finding pk. We find pk using the Exodus method 
in a manner similar to the iterative process applied in Section 3.5.

Let P(i, j) be the number of particles at point (i, j) in R. We begin by setting P(i, j) = 0 at 
all points (both fixed and free) except at point (x0, y0), where P(i, j) assumes a large number 
N (say, N = 106 or more). By a scanning process, we dispatch the particles at each free node 
to its neighboring nodes according to the probabilities px+, px–, py+, and py– as illustrated in 
Figure 8.9. Note that in Figure 8.9b, new P(i, j) = 0 at that node, while old P(i, j) is shared 
among the neighboring nodes. When all the free nodes in R are scanned as illustrated in 
Figure 8.9, we record the number of particles that have reached the boundary (i.e., the fixed 
nodes). We keep scanning the mesh until a set number of particles (say 99.99% of N) have 
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reached the boundary, where the particles are absorbed. If Nk is the number of particles 
that reached side k, we calculate
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(8.78)

Hence, Equation 8.77 can be written as
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Thus the problem is reduced to just finding Nk using the Exodus method, given N and 
Vp(k). We notice that if N → ∞, Δ → 0, and all the particles were allowed to reach the 
boundary points, the values of pk and consequently V(x, y) would be exact. It is easier to 
approach this exact solution using the Exodus method than any other MCMs or any other 
numerical techniques such as difference and finite element methods.

We now apply the Exodus method to Poisson’s equation (see Equation 8.58a). To compute 
the solution of the problem defined in Equation 8.58, for example, at a specific point (xo, yo), 
we need the transition probability pk and the transient probability q. The transition probability 
pk is already defined as the probability that a random walk starting at the point of interest 
(xo, yo) in R ends at a boundary point (xk, yk), where potential Vp(k) is prescribed, that is,

	 p Prob x y x yk o o k k= →( ), , 	 (8.80)

FIGURE 8.9
(a) Before the particles at (i, j) are dispatched, (b) after the particles at (i, j) are dispatched.
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The transient probability ql is the probability that a random walk starting at point (xo, yo) 
passes through point (x, y) on the way to the boundary, that is,

	 g x y Bo o
x y


 =  →( )Prob , , boundary 	

(8.81)

If there are Mb boundary (or fixed) nodes (excluding the corner points since a random 
walk never terminates at those points) and Mf free nodes in the mesh, the potential at the 
starting point (xo, yo) of the random walks is
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where

	 G g x y  = ∆2 4( , )/

If mb is the number of different boundary potentials, the first term in Equation 8.82 can 
be simplified so that
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where pk in this case is the probability that a random walk terminates on boundary k. 
Since Vp(k) is specified and the source term G is known, our problem is reduced to finding 
the probabilities pk and q. We notice from Equation 8.83 that the value of V (xo, yo) would 
be “exact” if the transition probabilities pk and the transient probabilities q were known 
exactly. These probabilities can be obtained in one of two ways: either analytically or 
numerically. The analytical approach involves using an expansion technique described in 
Reference 53. But this approach is limited to homogeneous rectangular solution regions. For 
inhomogeneous or non-rectangular regions, we must resort to some numerical simulation. 
The Exodus method offers a numerical means of finding pk and q. The fixed random walk 
can also be used to compute the transient and transition probabilities.

To apply the Exodus method, let P(i, j) be the number of particles at point (i, j) in R, while 
Q(i, j) is the number of particles passing through the same point. We begin the application 
of the Exodus method by setting P(i, j) = 0 = Q(i, j) at all nodes (both fixed and free) except 
at free node (xo yo) where both P(i, j) and Q(i, j) are set equal to a large number Np (say 
Np = 106 or more). In other words, we inject a large number of particles at (xo, yo) to start 
with. By scanning the mesh iteratively as is usually done in finite difference analysis, we 
dispatch the particles at each free node to its neighboring nodes according to the random 
walk probabilities px+, px–, py+, and py– as illustrated in Figure 8.9. Note that in Figure 8.9b, 
new P(i, j) = 0 at that node, while old P(i, j) is shared among the neighboring nodes. As 
shown in Figure 8.10, the value of Q(i, j) does not change at that node, while Q at the 
neighboring nodes is increased by the old P(i, j) that is shared by those nodes. While P(i, j) 
keeps records of the number of particles at point (i, j) during each iteration, Q(i, j) tallies the 
number of particles passing through that point.

At the end of each iteration (i.e., scanning of the free nodes in R as illustrated in Figures 
8.9 and 8.10), we record the number of particles that have reached the boundary (i.e., the 
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fixed nodes) where the particles are absorbed. We keep scanning the mesh in a manner 
similar to the iterative process applied in finite difference solution until a set number of 
particles (say 99.99% of Np) have reached the boundary. If Nk is the number of particles that 
reached boundary k, we calculate
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(8.84)

Also, at each free node, we calculate
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where Q = Q(i, j) is now the total number of particles that have passed through that node 
on their way to the boundary. Hence Equation 8.83 can be written as
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(8.86)

Thus the problem is reduced to just finding Nk and Q using the Exodus method, given Np, 
Vp(k), and G. If Np → ∞, Δ → 0, and all the particles were allowed to reach the boundary 
points, the values of pk and q and consequently V(xo, yo) would be exact. It is interesting 
to note that the accuracy of the Exodus method does not really depend on the number of 
particles Np. The accuracy depends on the step size Δ and the number of iteration or the 
tolerance, the number of particles (say 0.001% of Np), which are yet to reach the boundary 

FIGURE 8.10
Number of particles passing through node (i, j) and its neighboring nodes: (a) before the particles at the node are 
dispatched, (b) after the particles at the node are dispatched.
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before the iteration is terminated. However, a large value of Np reduces the truncation error 
in the computation.

EXAMPLE 8.4

Give a probabilistic interpretation using the finite difference form of the energy equation
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Assume a square grid of size Δ.

Solution

Applying a backward difference to the left-hand side and a central difference to the 
right-hand side, we obtain
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Rearranging terms leads to
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Equation 8.88 is given probabilistic interpretation as follows: a walker at point (x, y) 
has probabilities px+, px–, py+, and py– of moving to point (x + Δ, y), (x − Δ, y), (x, y + Δ), 
and (x, y − Δ), respectively. With this interpretation, Equation 8.88 can be used to solve 
the differential equation with fixed random MCM.

EXAMPLE 8.5

Consider a conducting trough of infinite length with square cross section shown in 
Figure 8.11. The trough wall at y = 1 is connected to 100 V, while the other walls are 
grounded as shown. We intend to find the potential within the trough using the fixed 
random walk MCM.
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Solution

The problem is solving Laplace’s equation subject to

	 V y V y V x V x( , ) ( , ) ( , ) , ( , )0 1 0 0 1 100    = = = = 	 (8.90)

The exact solution obtained by the method of separation of variables is given in 
Equation 2.31, namely,
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(8.91)

To apply the fixed random MCM, the flowchart in Figure 8.12 was developed. Based on 
the flowchart, the program of Figure 8.13 was developed. A built-in command rand was 

FIGURE 8.11
For Example 8.5.

FIGURE 8.12
Flowchart for random walk of Example 8.5.
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FIGURE 8.13
MATLAB code for Example 8.5.
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used to generate random numbers U uniformly distributed between 0 and 1. The step 
size Δ was selected as 0.05. The results of the potential computation are listed in Table 
8.2 for three different locations. The average number of random steps m taken to reach 
the boundary is also shown. It is observed from Table 8.2 that it takes a large number of 
random steps for a small step size and that the error in MCM results can be less than 1%.

Rather than using Equation 8.57, an alternative approach of determining V(x0, y0) 
is to calculate the probability of a random walk terminating at a grid point located on 
the boundary. The information is easily extracted from the program used for obtaining the 
results in Table 8.2. To illustrate the validity of this approach, the potential at (0.25, 0.75) 
was calculated. For N = 1000 random walks, the number of walks terminating at x = 0, 
x = 1, y = 0 and y = 1 is 461, 62, 66, and 411, respectively. Hence, according to Equation 8.79

	
V x y( , ) ( ) ( ) ( ) ( ) .0 0
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1000

0
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0
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1000

0
411

1000
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(8.92)

The statistical error in the simulation can be found. In this case, the potential on the 
boundary takes values 0 or Vo = 100 so that V(x0, y0) has a binomial distribution with mean 
V(x0, y0) and variance

TABLE 8.2

Results of Example 8.5

x y N m
Monte Carlo 

Solution
Exact 

Solution

0.25 0.75 250 66.20 42.80 43.20
500 69.65 41.80
750 73.19 41.60

1000 73.95 41.10
1250 73.67 42.48
1500 73.39 42.48
1750 74.08 42.67
2000 74.54 43.35

0.5 0.5 250 118.62 21.60 25.00
500 120.00 23.60
750 120.27 25.89

1000 120.92 25.80
1250 120.92 25.92
1500 120.78 25.27
1750 121.50 25.26
2000 121.74 25.10

0.75 0.25 250 64.82 7.60 6.797
500 68.52 6.60
750 68.56 6.93

1000 70.17 7.50
1250 72.12 8.00
1500 71.78 7.60
1750 72.40 7.43
2000 72.40 7.30
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At point (0.5, 0.5), for example, N = 1000 gives σ = 1.384 so that at 68% confidence interval, 
the error is δ σ= =/ N 0 04375. .

EXAMPLE 8.6

Use the floating random walk MCM to determine the potential at points (1.5, 0.5), (1.0, 1.5), 
and (1.5, 2.0) in the two-dimensional potential system in Figure 8.14.

Solution

To apply the floating random walk, we use the flowchart in Figure 8.12 except that 
we apply Equation 8.74 instead of Equation 8.57 at every step in the random walk. A 
program based on the modified flowchart was developed. The shortest distance ρ from 
(x, y) to the boundary was found by dividing the solution region in Figure 8.14 into three 
rectangles and checking

if {(x, y): 1 < x < 2,0 < y < 1},  ρ = minimum{x − 1,2 − x, y}
if {(x, y): 0 < x < 1,1 < y < 2.5},  ρ = minimum{x, y − 1,2.5 − y}
if {(x, y): 1 < x < 2,1 < y < 2.5},

	
ρ = − − − + −{ }minimum 2 2 5 1 12 2x y x y, . , ( ) ( )

A prescribed tolerance τ = 0.05 was selected so that if the distance between a new point 
in the random walk and the boundary is less than τ, it is assumed that the boundary is 
reached and the potential at the closest boundary point is recorded.

Table 8.3 presents the Monte Carlo result with the average number of random steps m. 
It should be observed that it takes fewer walks to reach the boundary in floating random 
walk than in fixed random walk. Since no analytic solution exists, we compare Monte 
Carlo results with those obtained using finite difference with Δ = 0.05 and 500 iterations. 

FIGURE 8.14
For Example 8.6.
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As evidenced in Table 8.3, the Monte Carlo results agree well with the finite difference 
results even with 1000 walks. Also, by dividing the solution region into 32 elements, 
the finite element results at points (1.5, 0.5), (1.0, 1.5), and (1.5, 2.0) are 11.265, 9.788, and 
21.05 V, respectively.

Unlike the program in Figure 8.13, where the error estimates are not provided for the 
sake of simplicity, the program in Figure 8.15 incorporates evaluation of error estimates 
in the Monte Carlo calculations. Using Equation 8.29, the error is calculated as

	
δ α= −St

n
n/ ;2 1

In the program in Figure 8.15, the number of trials n (the same of N in Section 8.3) 
is taken as 5 so that tα/ 2;n–1 = 2.776. The sample variance S is calculated using Equation 
8.19. The values of δ are also listed in Table 8.3. Notice that unlike in Table 8.2, where 
m and V are the mean values after N walks, m and V in Table 8.3 are the mean values 
of n trials, each of which involves N walks, that is, the “mean of the mean” values. 
Hence, the results in Table 8.3 should be regarded as more accurate than those in 
Table 8.2.

TABLE 8.3

Results of Example 8.6

x y N m
Monte Carlo 

Solution (V ± δ)
Finite Difference 

Solution (V)

1.5 0.5 250 6.738 11.52 ± 0.8973 11.44

500 6.668 11.80 ± 0.9378
750 6.535 11.83 ± 0.4092

1000 6.476 11.82 ± 0.6205
1250 6.483 11.85 ± 0.6683
1500 6.465 11.72 ± 0.7973
1750 6.468 11.70 ± 0.6894
2000 6.460 11.55 ± 0.5956

1.0 1.5 250 8.902 10.74 ± 0.8365 10.44

500 8.984 10.82 ± 0.3709
750 8.937 10.75 ± 0.5032

1000 8.928 10.90 ± 0.7231
1250 8.836 10.84 ± 0.7255
1500 8.791 10.93 ± 0.5983
1750 8.788 10.87 ± 0.4803
2000 8.811 10.84 ± 0.3646

1.5 2.0 250 7.242 21.66 ± 0.7509 21.07

500 7.293 21.57 ± 0.5162
750 7.278 21.53 ± 0.3505

1000 7.316 21.53 ± 0.2601
1250 7.322 21.53 ± 0.3298
1500 7.348 21.51 ± 0.3083
1750 7.372 21.55 ± 0.2592
2000 7.371 21.45 ± 0.2521
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FIGURE 8.15
MATLAB code for Example 8.6.� (Continued)
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EXAMPLE 8.7

Apply the Exodus method to solve the potential problem shown in Figure 8.16. The 
potentials at x = 0, x = a, and y = 0 sides are zero while the potential at y = b sides is Vo. 
Typically, let

	 V a b co o o= = = = = =100 2 25 3 0 2 0 1 01 2, , . , . , . , .ε ε ε ε

Solution

The analytic solution to this problem using series expansion technique discussed in 
Section 2.7 is

	

V

x a y b y y c

c x y c

n n

k

n

k

=

+ ≤ ≤

≤

=

∞

=

∞

∑

∑

sinβ β β

β β

[ sinh cosh ],

sin sinh ,

1

1

0

yy b≤









 	

(24)

where

	
β

π
= = −
n
a

n k, 2 1

FIGURE 8.15 (Continued)
MATLAB code for Example 8.6.
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a V c c d

b V d

c V

n o n

n o n

n o

= −

= −

=

[ ]4

4

4

1 2

2 1

1

ε ε

ε ε

ε

tanh coth /

/

tanh

β β ,

,( )

ββ β β

π β β

c c c d

d n b c

n

n

− + −

= −

[ ]ε ε ε

ε ε

2 2 1

1 2

coth coth /

sinh tanh coth

( ) ,

ββ βc b+ −[ ]( )ε ε2 1 coth 	

(25)

The potentials were calculated at five typical points using the Exodus method, the fixed 
random walk MCM, and the analytic solution. The number of particles, N, was taken as 
107 for the Exodus method and the step size Δ = 0.05 was used. For the fixed random 
walk method, Δ = 0.05 and 2000 walks were used. It was noted that 2000 walks were 
sufficient for the random walk solutions to converge. The results are displayed in Table 
8.4. In the table, δ is the error estimate, which is obtained by repeating each computation 
five times and using statistical formulas provided in Reference 13. It should be noted 
from the table that the results of the Exodus method agree to four significant places with 
the exact solution. Thus, the Exodus method is more accurate than the random walk 
technique. It should also be noted that the Exodus method does not require the use of a 
random number routine and also the need of calculating the error estimate. The Exodus 
method, therefore, takes less computation time than the random walk method.

8.6  Markov Chain Regional MCM

A major limitation inherent with the standard MCMs discussed above is that they only 
permit single-point calculations. In view of this limitation, several techniques have been 

FIGURE 8.16
Potential system for Example 8.7.

TABLE 8.4

Results of Example 8.7

x y
Exodus 

Method V
Fixed Random 
Walk (V ± δ)

Finite 
Difference V

Exact 
Solution V

0.5 1.0 13.41 13.40 ± 1.113 13.16 13.41

1.0 1.0 21.13 20.85 ± 1.612 20.74 21.13

1.5 1.0 23.43 23.58 ± 1.2129 22.99 23.43

1.5 0.5 10.52 10.13 ± 0.8789 10.21 10.52

1.5 1.5 59.36 58.89 ± 2.1382 59.06 59.34
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proposed for using Monte Carlo for whole-field computation. The popular ones are the 
shrinking boundary method [36] and inscribed figure method [37].

The shrinking boundary method is similar to the regular fixed random walk except that 
once the potential at an interior point is calculated, that point is treated as a boundary or 
absorbing point. This way, the random walking particles will have more points to terminate 
their walks and the walking time is reduced.

The inscribed figure method is based on the concept of subregion calculation. It involves 
dividing the solution region into standard shapes or inscribing standard shapes into the 
region. (By standard shapes is meant circles, squares, triangles, rectangles, etc. for which 
Green’s function can be obtained analytically or numerically.) Then, an MCM is used in 
computing potential along the dividing lines between the shapes and the regions that have 
nonstandard shapes. Standard analytical methods are used to compute the potential in the 
subregions.

Both the shrinking boundary method and the inscribed figure method do not make 
MCMs efficient for whole-field calculation. They still require point-by-point calculations 
and a number of large tests as standard Monte Carlo techniques. Therefore, they offer 
no significant advantage over the standard MCMs. Using Markov chains for whole-field 
computations has been found to be more efficient than the shrinking boundary method and 
the inscribed figure method. Markov chains are named after Andrey Markov, a Russian 
mathematician, who invented them. The technique basically calculates the transition 
probabilities using absorbing Markov chains [54,55].

A Markov chain is a sequence of random variables X(0), X(1), …, where the probability 
distribution for X(n) is determined entirely by the probability distribution of X(n–1). A Markov 
process is a type of random process that is characterized by the memoryless property 
[56–59]. It is a process evolving in time that remembers only the most recent past and whose 
conditional distributions are time invariant. Markov chains are mathematical models of 
this kind of process. The Markov chains of interest to us are discrete-state and discrete-time. 
In our case, the Markov chain is the random walk and the states are the grid nodes. The 
transition probability Pij is the probability that a random-walking particle at node i moves 
to node j. It is expressed by the Markov property

	

P P x j x x x

P x j x j n
ij n o n

n n

= =

= = ∈ =
+

+

( | , )

( | ) , , , ,
1 1

1 0 1 2

, ,…

…X 	 (8.94)

The Markov chain is characterized by its transition probability matrix P, defined by

	

P =

























P P P

P P P

P P P

00 01 02

10 11 12

20 21 22

�

�

�

� � � … 	

(8.95)

P is a stochastic matrix, meaning that the sum of the elements in each row is unity, that is,

	
P iij

j

= ∈
∈

∑ 1
X

X
	

(8.96)

We may also use the state transition diagram as a way of representing the evolution of a 
Markov chain. An example for a three-state Markov chain is shown in Figure 8.17.
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If we assume that there are nf free (or nonabsorbing) nodes and np fixed (prescribed or 
absorbing) nodes, the size of the transition matrix P is n, where

	 n n nf p= + 	 (8.97)

If the absorbing nodes are numbered first and the nonabsorbing states are numbered last, 
the n × n transition matrix becomes

	
P

I 0

R Q
=












	

(8.98)

where the nf × np matrix R represents the probabilities of moving from nonabsorbing nodes 
to absorbing ones; the nf × nf matrix Q represents the probabilities of moving from one 
nonabsorbing node to another; I is the identity matrix representing transitions between 
the absorbing nodes (Pii = 1 and Pij = 0); and 0 is the null matrix showing that there are no 
transitions from absorbing to nonabsorbing nodes. For the solution of Laplace’s equation, 
we obtain the elements of Q from Equation 8.55b as

	

Q
i j

i j i
ij =

=

1
4
0

,

,

if  is directly connected to ,

if  or  is nott directly connected to j







 	

(8.99)

The same applies to Rij except that j is an absorbing node.
For any absorbing Markov chain, I–Q has an inverse. This is usually referred to as the 

fundamental matrix

	 N I Q= −( )− 1
	 (8.100)

where Nij is the average number of times the random-walking particle starting from node i 
passes through node j before being absorbed. The absorption probability matrix B is

	 B NR= 	 (8.101)

FIGURE 8.17
State transition diagram for a three-state Markov chain.



548 Computational Electromagnetics with MATLAB®

where Bij is the probability that a random-walking particle originating from a non-absorbing 
node i will end up at the absorbing node j. B is an nf × np matrix and is stochastic like the 
transition probability matrix, that is,

	
B i nij

j

n

f

p

= =
=

∑ 1 1 2
1

, , , ,…
	

(8.102)

If Vf and Vp contain potentials at the free and fixed nodes, respectively, then

	 V BVf p= 	
(8.103)

In terms of the prescribed potentials V1, V2, …, Vnp, Equation 8.103 becomes

	
V B V i ni ij j

j

n

f

p

= =
=

∑ , , , ,
1

1 2 …
	

(8.104)

where Vi is the potential at any free node i. Unlike Equation 8.57, Equation 8.103 or Equation 
8.104 provides the solution at all the free nodes at once.

An alternative way to obtain the solution in Equation 8.103 is to exploit a property of the 
transition probability matrix P. When P is multiplied by itself repeatedly for a large number 
of times, we obtain

	
lim
n

n

→∞
=











P

I

B

0
0 	

(8.105)

Thus,
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(8.106)

Either Equation 8.103 or Equation 8.106 can be used to find Vf but it is evident that Equation 
8.103 will be more efficient and accurate. From Equation 8.103 or Equation 8.104, it should 
be noticed that if N is calculated accurately, the solution is “exact.”

There are several other procedures for whole-field computation [36,37,60–63]. One 
technique involves using Green’s function in the floating random walk [41].

The random walk MCMs and the MCM method applied to elliptic PDEs in this chapter 
can be applied to parabolic PDEs as well [64–70].

The following two examples will corroborate Markov chain MCM. The first example 
requires no computer programming and can be done by hand, while the second one needs 
computer programming.

EXAMPLE 8.8

Rework Example 8.5 using Markov chain. The problem is shown in Figure 8.18. We 
wish to determine the potential at points (a/3, a/3), (a/3, 2a/3), (2a/3, a/3), and (2a/3, 2a/3). 
Although we may assume that a = 1, that is not necessary.
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Solution

In this case, there are four free nodes (nf = 4) and eight fixed nodes (np = 8) as shown in 
Figure 8.18. The transition probability matrix is obtained by inspection as
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Other entries in P shown vacant are zeros.
From P, we obtain
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FIGURE 8.18
For Example 8.8.
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The fundamental matrix N is obtained as
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The absorption probability matrix B is obtained as
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Notice that Equation 8.102 is satisfied. We now use Equation 8.104 to obtain the 
potentials at the free nodes. For example,

	
V V V V V V V V V9 1 2 3 4 5 6 7 8
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= + + + + + + +

Since V1 = V2 = 100 while V3 = V4 =  = V8 = 0,

	
V9

7
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1
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100 37 5= +

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By symmetry, V10 = V9 = 37.5. Similarly,

	
V V11 12

1
24

1
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100 12 5= = +






 = .

Table 8.5 compares these results with the finite difference solution (with 10 iterations) 
and the exact solution using Equation 2.31b or Equation 8.91. It is evident that the Markov 
chain solution compares well.
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EXAMPLE 8.9

Consider the potential problem shown in Figure 8.19. Let

	 Vo o o= = =100 31 2, ,ε ε ε ε

	 a b h w= = = =0 5 1 0. , .

Solution

The Markov chain solution was implemented using MATLAB. The approach involved 
writing code that generated the transition probability matrices using the random walk 
probabilities, computing the appropriate inverse, and manipulating the solution matrix. 
The use of MATLAB significantly reduced the programming complexity by the way 
the software internally handles matrices. The Q-matrix was selected as a timing index 
since the absorbing Markov chain algorithm involves inverting it. In this example, the 
Q-matrix is 361 × 361 and the running time was 90 and 34 seconds on 486DX2 and 
Pentium, respectively. Δ = 0.05 was assumed. At the corner point (x, y) = (a, b), the 
random walk probabilities are

	
p p p px y x y+ + − −= = = =

+
+

+
ε
ε ε

ε ε
ε ε

1

1 2

1 2

1 23 2 3
,

( )

The plot of the potential distribution is portrayed in Figure 8.20. Since the problem 
has no exact solution, the results at five typical points are compared with those from the 

TABLE 8.5

Results of Example 8.8

Node
Finite Difference 

Solution
Markov Chain 

Solution
Exact 

Solution

9 37.499 37.5 38.074
10 37.499 37.5 38.074
11 12.499 12.5 11.926
12 12.499 12.5 11.926

FIGURE 8.19
Potential system for Example 8.9.
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Exodus method and finite difference in Table 8.6. It should be observed that the Markov 
chain approach provides a solution that is close to that obtained by the Exodus method.

8.7  MCMC for Poisson’s Equation

The Monte Carlo Markov chain (MCMC) was applied in the previous section to 
solve Laplace’s equation. This means of calculating the potentials at all grid points 
simultaneously (or whole-field computation) can be extended to problems involving 
Poisson’s equation.

Suppose the MCMC method is to be applied in solving Poisson’s equation

	
∇ = − −2V g x y s( , )    in region R=

ρ
ε 	

(8.107)

FIGURE 8.20
Potential distribution obtained by Markov chains; for Example 8.9.

TABLE 8.6

Results of Example 8.9

Node
Markov 
Chain

Exodus 
Method

Finite 
Differencex y

0.25 0.5 10.2688 10.269 10.166
0.5 0.5 16.6667 16.667 16.576
0.75 0.5 15.9311 15.931 15.887
0.5 0.75 51.0987 51.931 50.928
0.5 0.25 6.2163 6.2163 6.1772



553Monte Carlo Methods

subject to Dirichlet boundary condition

	 V Vp=   on boundary B	 (8.108)

We begin by dividing the solution region R into a mesh and derive the finite difference 
equivalent of Equation 8.107. For V = V(x, y), the problem is reduced to a two-dimensional 
one and Equation 8.107 becomes

	

∂
∂

+
∂
∂

= −
2

2

2

2

V
x

V
y

g x y( , )

Going through the derivation we had in the previous section, we arrive at the solution as

	 V Vf p f= +B NG 	 (8.109)

where Vf and Vp contain potentials at the free and fixed nodes, respectively, G f  is the 
evaluation of the term (Δ2/4)g(x, y), and Δ is the step size. Unlike the classical random walk 
solution in Equation 8.61, the Markov chain solution in Equation 8.109 provides the solution 
at all the free nodes at once. Two simple examples will be used to illustrate the solution to 
Poisson’s equation in Equation 8.109. The examples are done with hand calculation so that 
no computer programming is needed.

EXAMPLE 8.10

Consider an infinitely long conducting trough with square cross-section with the sides 
grounded, as shown in Figure 8.21. Let ρs = x(y−1)nC/m2 and ε = εo Then,

	
g x y

x y
x ys( , )
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π

1 10
10

36

36 1
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In this case [65],

	 Q N I Q I= = − =−0, ( )   1

0 V

0 V

0 V

0 V

3

25

1

4

FIGURE 8.21
For Example 8.10.
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Since Vp = 0, and there is only one free node (node 5), Equation 8.109 becomes

	 Vf f= NG

	
N G G g x yf= = =

∆
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	 V 1.76715 = = −Gf

We can compare this with the finite difference solution. From Equation 3.30,
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(22)

The exact solution, based on series expansion in Chapter 2 is −2.086. The error is due 
to the fact that the step size Δ is large in this example.

EXAMPLE 8.11

This is the same problem as in Example 8.10 except that we now select Δ=1/3. We have 
four free nodes as shown in Figure 8.22. The fundamental matrix is obtained as [65]
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(8.11.1)
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Since Vp = 0,
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(8.11.3)
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We may compare this solution with the finite difference solution. Applying Equation 
8.59 to node 9 in Figure 8.22, we obtain
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(8.11.4)

or

	
V V V9 10 110 25 0 25

9
= + −. .

π
	

(8.11.5)

Similarly, at node 10,
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(8.11.6)

At node 11,
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9
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(8.11.7)

Ar node 12,
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(8.11.8)

Putting Equations 8.11.5 through 8.11.8 in matrix form yields
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(8.11.9)

0 V

0 V

0 V

1 2

9

6

0 V

5

8

7

10

11 12 4

3

FIGURE 8.22
For Example 8.11.
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Matrix A can easily be obtained by inspection using the band matrix method. By 
inverting the matrix A, we obtain
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(8.11.10)

It is not surprising that the finite difference solution is exactly the same as the Markov 
chain. It is easy to see that the inverse of matrix A in Equation 8.11.9 produces matrix N in 
Equaiton 8.11.1. The two solutions may be compared with the exact solution in Chapter 2:
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(33)

The Markov chain solution agrees exactly with the finite difference solution. The two 
solutions differ slightly from the exact solution due to the large step size. By reducing 
the step size and using a computer, the Markov chain solution can be made accurate.

8.8  Time-Dependent Problems

MCM is well known for solving static problems such as Laplace’s or Poisson’s equation 
[1–4]. In this section, we extend the applicability of the conventional MCM to solve time-
dependent (heat) problems [65–67]. We present results in 1-D and 2-D that agree with the 
exact solutions.

We may derive the diffusion equation from Maxwell’s equations in Example 2.3. The 
result is

	
∇ =

∂
∂

2J µσ J
t 	

(8.110)

which is the diffusion equation. We will solve this in 1-D and 2-D both in Cartesian and 
polar cylindrical coordinates.

A.	 One-Dimensional Diffusion Equation

There are five concepts, consider the one-dimensional diffusion’s equation:

	 U U x txx t= < < >, ,0 1 0	 (8.111a)

Boundary conditions:

	 U t U t t( , ) ( , ),0 0 1 0= = > 	 (8.111b)

Initial condition:

	 U x x( , ) , 0 100 0 1= < < 	 (8.111c)

In Equation (8.111a), Uxx indicates second partial derivative with respect to x, while Ut 
indicates partial derivative with respect to t. The problem models temperature distribution 
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in a rod or eddy current in a conducting medium. In order to solve this problem using the 
MCM, we first need to obtain the finite difference equivalent of the partial differential 
equation in Equation 8.111a. Using the central-space and backward-time scheme, we obtain

	

U i n U i n U i n
x

U i n U i n
t

( , ) ( , ) ( , )
( )

( , ) ( , )+ − + −
∆

=
− −
∆

1 2 1 1
2

	
(8.112)

where x = iΔx and t = nΔt. If we let

	
α =

∆
∆

( )x
t

2

Equation 8.112 becomes

	 U i n p U i n p U i n p U i nx x t( , ) ( , ) ( , ) ( , )= + + − + −+ − −1 1 1 	 (8.113)

where

	
p p px x t+ − −= =

+
=

+
1

2 2α
α

α
,

Notice that px+ + px– + pt– = 1. Equation 8.113 can be given a probabilistic interpretation. 
If a random-walking particle is instantaneously at the point (x, y), it has probabilities p+, p–, 
and pt– of moving from (x, t) to (x + Δx, t), (x–Δx, t), and (x, t–Δt) respectively. The particle 
can only move toward the past, never toward the future. A means of determining which 
way the particle should move is to generate a random number r, 0 < r < 1, and instruct the 
particle to walk as follows:
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(8.114)

where it is assumed that α = 2. Most modern software such as MATLAB have a random 
number generator to obtain r.

To calculate U at point (xo, to), we follow the following random walk algorithm:

	 1.	Begin a random walk at (x, t) = (xo, to).
	 2.	Generate a random number 0 < r < 1, and move to the next point using Equation 8.114.
	 3.	 (a) If the next point is not on the boundary, repeat step 2.
		  (b) If the random walk hits the boundary, terminate the random walk. Record Ub 

at the boundary, go to step 1, and begin another random walk.
	 4.	After N random walks, determine

	
U x t

N
U ko o b

k

N

( , ) ( )=
=

∑1

1 	
(8.115)

where N, the number of random walks, is assumed large. A typical random walk is 
illustrated in Figure 8.23.
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As a numerical example, consider the solution of the problem in Equation (8.111a). We select 
a = 2, Δx = 0.1, so that Δt = 0.005 and px+ = px– = 1/4, pt– = 1/2.

We calculate U at x = 0.4, t = 0.01, 0.02, 0.03, …. As shown in Table 8.7, we compare the 
results with the finite different solution and exact solution:

	

U x t
n

n x n t

n k
k

( , ) sin( )exp( ),= −

= +
=

∞
2∑400 1

2 1
0

2

π
π π

	

(8.116)

B. Two-Dimensional Diffusion Equation
Suppose we are interested in the solution of the two-dimensional heat equation in 
cylindrical coordinates:

	
U

U
U U z tzz tρρ

ρ

ρ
ρ+ + = < < < < >, , ,0 1 0 1 0

	
(8.117)

Boundary conditions:

	 U(ρ, 0, t) = 0 = U(ρ, 1, t),  0 < ρ < 1, t > 0	 (8.118a)

	 U(1, z, t) = 0,  0 < z < 1, t > 0	 (8.118b)

Initial condition:

	 U(p, z, 0) = To,  0 < ρ < 1, 0 < z < 1	 (8.118c)

U(1, t) = 0 
U(0, t) = 0 

x = 0 U(x, 0) = 100 x = 1 

FIGURE 8.23
A typical random walk.

TABLE 8.7

Comparing Monte Carlo (MCM) Solution 
with FD and Exact Solution (xo = 0.4)

t Exact MCM FD

0.01 99.53 98.44 100
0.02 95.18 93.96 96.87
0.03 88.32 87.62 89.84
0.04 80.88 81.54 82.03
0.10 45.13 46.36 45.18
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This models the temperature distribution in a solid cylinder of unit height and unit 
radius.

Using the central-space and backward-time scheme, we obtain the finite difference 
equivalent as
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(8.119)

Let Δx = Δz = h and ρ = ih, z = jh, t = nΔt

	

α =
∆
h
t

2

	

(8.120)

Equation 8.119 becomes
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(8.122b)

Note that pρ+ + pρ– + pz+ + pz– + pt– = 1 so that a probabilistic interpretation can be given 
to Equation 8.121. A random walking particle at point (ρ, z, t) moves to (ρ + h, z, t), (ρ − h, z, t), 
(ρ, z + h, t), (ρ, z − h, t), (ρ, z, t − Δt) with probabilities pρ+, pρ–, pz+, pz–, and pt–, respectively. By 
generating a random number 0 < r < 1, we instruct the particle to move as follows:

	    (ρ, z, t) → (ρ + h, z, t)  if (0 < r < prho)

	        (ρ, z, t) → (ρ – h, z, t)  if (prho < r < 0.4)

	    (ρ, z, t) → (ρ, z + h, t)  if (0.4 < r < 0.6)

	 (ρ, z, t) → (ρ, z – h, t)  if (0.6 < r < 0.8)

	 (ρ, z, t) → (ρ, z, t – Δt)  if (0.8 < r < 1)	 (8.123)

assuming that α = 1 and prho = 0.2 * (1 + 1/(2 * i)).
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Equations 8.119 through 8.123 apply only for ρ ≠ 0. For ρ = 0, we apply L’Hopital’s rule 
in Equation 8.117 and obtain

	 2Uρρ + Uzz = Ut	 (8.124)

We now apply central-space and backward-time scheme to Equation 8.124 and noting 
that U(h, z, t) = U(–h, z, t), we obtain
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z z
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where
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(8.126)

A random walking particle that finds itself at ρ = 0 determines the next location by 
generating a random number r, 0 < r < 1, and walking as follows:

	 (0, z, t) → (h, z, t)  if (0 < r < 4 * pp)

	 (0, z, t) → (0, z + h, t)  if (4* pp < r < 5 * pp)

	 (0, z, t) → (0, z − h, t)  if (5* pp < r < 6 * pp)

	 (0, z, t) → (0, z, t − Δt)  if (6* pp < r < 1)	

(8.127)

where pp = 1/(6 + α) and it is assumed that α = 1.
Therefore, we take the following steps to calculate U at point (ρo, zo, to):

	 1.	Begin a random walk at (ρ, z, t) = (ρo, zo, to).
	 2.	Generate a random number 0 < r < 1, and move the next point according to 

Equation 8.123 if ρ ≠ 0 or Equation 8.127 if ρ = 0.
	 3.	 (a) If the next point is not on the boundary, repeat step 2.
		  (b) If the random walk hits the boundary, terminate the random walk. Record Ub 

at the boundary, go to step 1, and begin another random walk.
	 4.	After N random walks, determine

	
U z t

N
U ko o o b

k

N

( , , ) ( )ρ =
=

∑1

1 	
(8.128)

A typical random walk is shown in Figure 8.24. The only difference between 1-D and 2-D 
is that there are three kinds of displacement in 1-D while there are five displacements (four 
spatial ones and one temporal one) in 2-D.

As a numerical example, consider the solution of the problem in Equations 8.117 and 8.118. 
We select α = 1, To = 10, h = 0.1, so that Δt = 0.01, and we calculate U at ρ = 0.5, z = 0.5, 
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t = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3. As shown in Table 8.8, we compare the results from the MCM 
with the finite difference (FD) solution and exact solution [67–69]:

	
U z t

T J k
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(8.129)

where λ πmn mk n2 2 2= + ( )  and km is the mth root of Bessel’s function Jo(km).
Due to the randomness of the Monte Carlo solution, each MCM result in Tables 8.7 and 8.8 

was obtained by running the simulation five times and taking the average.
In this section, the conventional MCM has been shown to be effectively applicable to time-

dependent problems such as the heat equation in Cartesian and cylindrical coordinates. 
For 1-D and 2-D cases, we notice that the Monte Carlo solutions agree well with the finite 
difference solution and the exact analytical solutions and it is easier to understand and 
program than the finite difference method. The MCM does not require the need for solving 
large matrices and is trivially easy to program. The idea can be extended to wave equations.

U(1, t) = 0

U(ρ, 0) = T0
ρ = 1ρ = 0

FIGURE 8.24
A typical random walk.

TABLE 8.8

Comparing Monte Carlo Solution with FD 
and Exact Solution

t Exact MCM FD

0.05 6.2475 6.614 6.3848
0.10 2.8564 3.182 2.9123
0.15 1.3059 1.582 1.2975
0.20 0.5971 0.7760 0.5913
0.25 0.2730 0.4140 0.270
0.30 0.1248 0.156 0.1233
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8.9  Concluding Remarks

The Monte Carlo technique is essentially a means of estimating expected values and hence 
is a form of numerical quadrature. It recasts deterministic problems in probabilistic terms. 
Although the technique can be applied to simple processes and estimating multidimensional 
integrals, the power of the technique rests in the fact that [77]

•	 It is often more efficient than other quadrature formulas for estimating 
multidimensional integrals,

•	 It is adaptable in the sense that variance reduction techniques can be tailored to 
the specific problem, and

•	 It can be applied to highly complex problems for which the definite integral 
formulation is not obvious and standard analytic techniques are ineffective.

MCMs are widely used in engineering, statistical physics, medicine, finance, economics, 
and other disciplines. For rigorous mathematical justification for the methods employed 
in Monte Carlo simulations, one is urged to read [31,71]. As is typical with current MCMs, 
other numerical methods of solutions appear to be preferable when they may be used. 
Monte Carlo techniques often yield numerical answers of limited accuracy and are therefore 
employed as a last resort. However, there are problems for which the solution is not feasible 
using other methods. Problems that are probabilistic and continuous in nature (e.g., neutron 
absorption, charge transport in semiconductors, and scattering of waves by random media) 
are ideally suited to these methods and represent the most logical and efficient use of the 
stochastic methods. Since the recent appearance of vector machines, the importance of the 
MCMs is growing.

It should be emphasized that in any Monte Carlo simulation, it is important to indicate the 
degree of confidence of the estimates or insert error bars in graphs illustrating Monte Carlo 
estimates. Without such information, Monte Carlo results are of questionable significance.

Applications of MCMs to other branches of science and engineering are summarized in 
References 14,15,25,72. EM-related problems, besides those covered in this chapter, to which 
Monte Carlo procedures have been applied include the following:

•	 Diffusion problems [61,63,73],
•	 Transmission lines [39,74–76],
•	 Random periodic arrays [77],
•	 Waveguide structures [78–83],
•	 Scattering of waves by random media [84–91],
•	 Noise in magnetic recording [92,93],
•	 Induced currents in biological bodies [94,95].

We conclude this chapter by referring to two new MCMs. One new MCM, known as the 
equilateral triangular mesh fixed random walk, has been proposed to handle Neumann 
problems [96,97]. Another new MCM, known as Neuro-Monte Carlo solution, is an attempt 
at whole-field computation [98]. It combines an artificial neural network and a MCM as a 
training data source. For further exposition on Monte Carlo techniques, one should consult 
[25,60,99,100,101].
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PROBLEMS

	 8.1	 Write a program to generate 1000 pseudorandom numbers U uniformly 
distributed between 0 and 1. Calculate their mean and compare the calculated 
mean with the expected mean (0.5) as a test of randomness.

	 8.2	 Generate 10,000 random numbers uniformly distributed between 0 and 1. Find the 
percentage of numbers between 0 and 0.1, between 0.1 and 0.2, etc., and compare 
your results with the expected distribution of 10% in each interval.

	 8.3	 a.	� Using the linear congruential scheme, generate 10 pseudorandom numbers 
with a = 1573, c = 19, m = 103, and seed value X0 = 89.

	 b.	 Repeat the generation with c = 0.
	 8.4	 For a = 13, m = 26 = 64, and X0 = 1, 2, 3, and 4, find the period of the random 

number generator using the multiplicative congruential method.
	 8.5	 Develop a program that uses the inverse transformation method to generate a 

random number from a distribution with the probability density function
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0 75 1 1

	 8.6	 It is not easy to apply the inverse transform method to generate normal 
distribution. However, by making use of the approximation

	
e

e
e

xx
kx

kx
−

−

−+
>

2 2
2

2
1

0/

( )
,

		  where k = 8/π , the inverse transform method can be applied. Develop a program 
to generate normal deviates using inverse transform method.

	 8.7	 Using the rejection method, generate a random variable from f(x) = 5x2, 0 ≤ x ≤ 1.
	 8.8	 Use the rejection method to generate Gaussian (or normal) deviates in the 

truncated region −a ≤ X ≤ a.
	 8.9	 Use sample mean Monte Carlo integration to evaluate the following:

	 a.	 4 1 2

0

1

−∫ x dx,

	 b.	 sin ,x dx
0

1

∫

	 c.	 e dxx ,
0

1

∫

	 d.	
1

0

1

x
dx∫

	 8.10	Evaluate the following four-dimensional integrals:

	 a.	 exp( ) ,x x x x dx dx dx dx1 2 3 4 1 2 3 4

0

1

0

1

0

1

0

1

1−∫∫∫∫
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b.

	 sin( )x x x x dx dx dx dx1 2 3 4 1 2 3 4

0

1

0

1

0

1

0

1

+ + +∫∫∫∫
	 8.11	The radiation from a rectangular aperture with constant amplitude and phase 

distribution may be represented by the integral

	

I e dx dyj x y( , ) ( )

/

/

/

/

α β α β= +

−−

∫∫
1 2

1 2

1 2

1 2

		  Evaluate this integral using a Monte Carlo procedure and compare your result 
for α = β = π with the exact solution

	
I( , )

sin( )sin( )α β α β
αβ

=
/ /

/
2 2

4

	 8.12	Consider the differential equation

	

∂
∂
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∂
∂
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W
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k
y
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y

		  where k = constant. By finding its finite difference form, give a probabilistic 
interpretation to the equation.

	 8.13	Given the one-dimensional differential equation

	 y″ = 0,  0 ≤ x ≤ 1

		  subject to y(0) = 0, y(1) = 10, use an MCM to find y(0.25) assuming Δx = 0.25 and 
the following 20 random numbers:

	 0.1306, 0.0422, 0.6597, 0.7905, 0.7695, 0.5106, 0.2961, 0.1428, 0.3666,
	 0.6543, 0.9975, 0.4866, 0.8239, 0.8722, 0.1330, 0.2296, 0.3582, 0.5872,
	 0.1134, 0.1403.

	 8.14	Consider N equal resistors connected in series as in Figure 8.25. By making V(0) = 
0 and V(N) = 10 V, find V(k) using the fixed random walk for the following cases: 
(a) N = 5, k = 2, (b) N = 10, k = 7, (c) N = 20, k = 11.

	 8.15	Consider a parallel-plate geometry with dielectric interface half-way in between 
as shown in Figure 8.26. Fringing effects may be neglected since the lengths of 

FIGURE 8.25
For Problem 8.14.
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the plates are chosen large. The upper electrode is fixed at 10 V, while the lower 
electrode is fixed at 0 V. Take ε1 = εo and ε2 = 3.9εo. Calculate the potential at nine 
different points (y = 1, 2, …, 9) using fixed or floating random walk.

	 8.16	Use a Monte Carlo procedure to determine the potential at points (2, 2), 
(3, 3), and (4, 4) in the problem shown in Figure 8.27a. By virtue of double 
symmetry, it is sufficient to consider a quarter of the solution region as shown 
in Figure 8.27b.

FIGURE 8.26
For Problem 8.15.

FIGURE 8.27
For Problem 8.16.
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	 8.17	In the solution region of Figure 8.28, ρv = x(y − 1)nC/m3. Find the potential at the 
center of the region using an MCM.

	 8.18	Consider the potential system shown in Figure 8.29. Determine the potential at 
the center of the solution region. Take εr = 2.25.

	 8.19	Apply an MCM to solve Laplace’s equation in the three-dimensional region

	 |x| ≤ 1,  |y| ≤ 0.5,  |z| ≤ 0.5

		  subject to the boundary condition

	 V(x, y, z) = x + y + z + 0.5

		  Find the solution at (0.5, 0.1, 0.1).
	 8.20	Consider the interface separating two homogeneous media in Figure 8.30. By 

applying Gauss’s law

	
ε

∂
∂

=∫ V
n
dS

S

0

FIGURE 8.29
For Problem 8.18.

FIGURE 8.28
For Problem 8.17.
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		  show that

	 V(ρ, z) = pρ+V(ρ + Δ, z) + pρ–V(ρ − Δ, z)

	 + pz+V(ρ, z + Δ) + pz–V(ρ, z − Δ)

		  where

	

p p

p p

z z+ −

+ −

= =

= =

+ +
ε
ε ε

ε
ε ε

1

1 2

2

1 22 2
1
4

( )
,

( )

ρ ρ

	 8.21	Consider the finite cylindrical conductor held at V = 100 enclosed in a larger 
grounded cylinder. The axial symmetric problem is portrayed in Figure 8.31 for 
your convenience. Using a Monte Carlo technique, write a program to determine 
the potential at points (ρ, z) = (2,10), (5,10), (8,10), (5,2), and (5,18).

FIGURE 8.30
For Problem 8.20.

FIGURE 8.31
For Problem 8.21.
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	 8.22	Figure 8.32 shows a prototype of an electrostatic particle focusing system 
employed in a recoil-mass time-of-flight spectrometer. It is essentially a finite 
cylindrical conductor that abruptly expands radius by a factor of 2. Write a 
program based on an MCM to calculate the potential at points (ρ, z) = (5,18), (5,10), 
(5,2), (10,2), and (15,2).

	 8.23	Consider the square region shown in Figure 8.33. The transition probability 
p(Q, Si) is defined as the probability that a randomly walking particle leaving 
point Q will arrive at side Si of the square boundary. Using the Exodus method, 
write a program to determine

	 a.	 p(Q1, Si), i = 1, 2, 3, 4,
	 b.	 p(Q2, Si), i = 1, 2, 3, 4.

FIGURE 8.32
For Problem 8.22.

FIGURE 8.33
For Problem 8.23.
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	 8.24	Given the one-dimensional differential equation

	
d
dx

x
2

2 0 0 1
Φ

= ≤ ≤,

		  subject to Φ(0) = 0, Φ(1) = 10, use the Exodus method to find Φ(0.25) by injecting 
256 particles at x = 0.25. You can solve this problem by hand calculation.

	 8.25	Use the Exodus method to find the potential at node 4 in Figure 8.34. Inject 256 
particles at node 4 and scan nodes in the order 1, 2, 3, 4. You can solve this problem 
by hand calculation.

	 8.26	Using the Exodus method, write a program to calculate V(0.25, 0.75) in Example 8.5.
	 8.27	Write a program to calculate V(1.0, 1.5) in Example 8.6 using the Exodus method.
	 8.28	Consider the cross section of an infinitely long trough whose sides are maintained 

as shown in Figure 8.35. Write a MATLAB code using the Exodus method to 
calculate the potential at (0.5, 0.5), (0.8, 0.8), (1.0, 0.5), and (0.8, 0.2). Compare your 
results with exact results in Equations 2.44, 2.53–2.56.

FIGURE 8.34
For Problem 8.25

FIGURE 8.35
For Problem 8.28.
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	 8.29	Write a program that will apply the Exodus method to determine the potential at 
point (0.2, 0.4) in the system shown in Figure 8.36.

	 8.30	Use Markov chain MCM to determine the potential at node 5 in Figure 8.37.
	 8.31	Rework Problem 8.19 using Markov chain.
	 8.32	Rework Problem 8.23 using Markov chain.
	 8.33	Consider the two-dimensional heat equation

	 Uxx + Uyy = Ut,  0 < x < 1, 0 < y < 1, t > 0

		  with boundary conditions

	 U(0, y, t) = 0 = U(1, y, t),  0 < y < 1, t > 0
	 U(x, 0, t) = 0 = U(x, 1, t),  0 < x < 1, t > 0

FIGURE 8.36
For Problem 8.29.

FIGURE 8.37
For Problem 8.30.
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		  and initial condition

	 U(x, y, 0) = 10xy,  0 < x < 1, 0 < y < 1

		  Select Δ = Δx = Δy = 0.1, Δt = 0.01 and calculate U at x = 0.5 = y, t = 0.05, 0.1, 
0.15, 0.2, 0.25, 0.3.

	 8.34	Consider the one-dimension heat equation in cylindrical coordinates

	
∇ =

∂
∂

→ + = < < >2 1
0 1 0U

U
t

U U U ttρρ ρ
ρ

ρ, ,

		  with boundary conditions

	 U(1, t) = 0, t < 0

		  and initial condition

	 U(ρ, 0) = To  (constant)

		  Use fixed random walk MCM to obtain the solution U t( , ).ρ
		  Select To = 10, Δρ = 0.1, and Δt = 0.005. Calculate U at ρ = 0.5, t = 0.1, 0.2, 0.3, …, 1.0.
	 8.35	Rework Problem 8.35 using the Exodus method.
	 8.36	Use the Exodus method to solve the one-dimensional heat equation

	 U U x txx t= < < >, ,0 1 0

		  subject to

	 U(0, t) = 0 = U(1, t), t > 0

	 U(x, 0) = 100,  0 < x < 1

	 Let   ∆ = ∆ = = = =x t x x to0 1 0 005 0 4 0 01 0 02 0 03. , . , . , . , . , . , …

	 8.37	Using the Exodus method, find the solution of the 2D heat equation

	 U U U x y txx yy t+ = < < < < >, , ,0 1 0 1 0

		  subject to

	 U(0, y, t) = 0 = U(1, y, t),  0 < y < 1, t > 0

	 U(x, 0, t) = 0 = U(x, 1, t),  0 < x < 1, t > 0

	 U(x, y, 0) = 10xy,  0 < x < 1, 0 < y < 1

	 Let   ∆ = ∆ = ∆ = ∆ = = = =x y t x y t0 1 0 01 0 5 0 1 0 15 0 2 0 25 0 3. , . , . , . , . , . , . , . , ....
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	 8.38	Apply the Exodus method to determine the solution of the two-dimensional heat 
equation:

	
U

U
U U z tzz tρρ

ρ

ρ
ρ+ + = < < < < >, , ,0 1 0 1 0

		  Boundary conditions:

	

U t U t t

U z t z t

( , , ) ( , , ), ,
( , , ) , ,
ρ ρ ρ0 0 1 0 1 0
1 0 0 1 0

= = < < >
= < < >

		  Initial condition:

	 U z T zo( , , ) , ,ρ ρ0 0 1 0 1= < < < <

	 Let   T z h t z to = ∆ = ∆ = = ∆ = = = =10 0 05 0 0025 0 5 0 05 0 1 0 15, . , . , . , . , . , .ρ ρ ,, . , . , . .0 2 0 25 0 3
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9
Method of Lines

The difficulties of life are intended to make us better, not bitter.

— Unknown

9.1  Introduction

The method of lines (MOL) is a well-established numerical technique (or rather a 
semianalytical method) for the analysis of transmission lines, waveguide structures, and 
scattering problems. The method was originally developed by mathematicians and used 
for boundary value problems in physics and mathematics (e.g., [1–5]). A review of these 
earlier uses (1930–1965) of MOL is found in Liskovets [6]. The method was introduced into 
the EM community around 1980 and further developed by Pregla et al. [7–15] and other 
researchers. Although the formulation of this modern application is different from the 
earlier approach, the basic principles are the same.

The MOL is regarded as a special finite difference method (FDM) but more effective with 
respect to accuracy and computational time than the regular FDM. It basically involves 
discretizing a given differential equation in one or two dimensions while using analytical 
solution in the remaining dimension. MOL has the merits of both the finite difference 
method and analytical method; it does not yield spurious modes nor does it have the 
problem of “relative convergence.”

Besides, the MOL has the following properties that justify its use:

	 a.	Computational efficiency: the semianalytical character of the formulation leads 
to a simple and compact algorithm, which yields accurate results with less 
computational effort than other techniques.

	 b.	Numerical stability: by separating discretization of space and time, it is easy to 
establish stability and convergence for a wide range of problems.

	 c.	Reduced programming effort: by making use of the state-of-the-art, well-
documented, and reliable ordinary differential equations (ODE) solvers, 
programming effort can be substantially reduced.

	 d.	Reduced computational time: since only a small amount of discretization lines is 
necessary in the computation, there is no need to solve a large system of equations; 
hence computing time is small.

To apply MOL usually involves the following five basic steps [18]:

	 1.	Partitioning the solution region into layers
	 2.	Discretization of the differential equation in one coordinate direction
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	 3.	Transformation to obtain decoupled ordinary differential equations
	 4.	 Inverse transformation and introduction of the boundary conditions
	 5.	Solution of the equations

We begin to apply these steps to the problem of solving Laplace’s equation. Since MOL 
involves many matrix manipulations, it is expedient that all computer codes in chapters 
are written in MATLAB.

9.2  Solution of Laplace’s Equation

Although the MOL is commonly used in the EM community for solving hyperbolic (wave 
equation), it can be used to solve parabolic and elliptic equations [1,15–18]. In this section, 
we consider the application of MOL to solve Laplace’s equation (elliptic problem) involving 
two-dimensional rectangular and cylindrical regions.

9.2.1  Rectangular Coordinates

Laplace’s equation in Cartesian system is

	

∂
∂

+
∂
∂

=
2

2

2

2 0
V
x

V
y 	

(9.1)

Consider a two-dimensional solution shown in Figure 9.1. The first step is discretization 
of the x-variable. The region is divided into strips by N dividing straight lines (hence the 
name method of lines) parallel to the y-axis. Since we are discretizing along x, we replace 
the second derivative with respect to x with its finite difference equivalent. We apply the 
three-point central difference scheme,

	
∂
∂

=
− ++ −

2

2
1 1

2

2V
x

V V V
h

i i i i

	
(9.2)

where h is the spacing between discretized lines, that is,

	
h x

a
N

= ∆ =
+1	

(9.3)

Replacing the derivative with respect to x by its finite difference equivalent, Equation 9.1 
becomes

	
∂
∂

+ − + =+ −

2

2 2 1 1
1

2 0
V
x h

V y V y V yi
i i i[ ( ) ( ) ( )]

	
(9.4)

Thus the potential V in Equation 9.1 can be replaced by a vector of size N, namely,

	 [V] = [V1, V2, …, VN]t	 (9.5a)
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where t denotes the transpose,

	 Vi(y) = V(xi, y), i = 1, 2, …, N	 (9.5b)

and xi = iΔx. Substituting Equations 9.4 and 9.5 into Equation 9.1 yields
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1
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V y
y h

P V y
	

(9.6)

where [0] is a zero column vector and [P] is an N × N tridiagonal matrix representing the 
discretized form of the second derivative with respect to x.
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(9.7)

All the elements of matrix [P] are zeros except the tridiagonal terms; the elements of the 
first and the last row of [P] depend on the boundary conditions at x = 0 and x = a. p = 2 
for Dirichlet boundary condition and p = 1 for Neumann boundary condition. The same 
is true of pr.

The next step is to analytically solve the resulting equations along the y coordinate. 
To solve Equation 9.6 analytically, we need to obtain a system of uncoupled ordinary 

FIGURE 9.1
Illustration of discretization in the x-direction.
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differential equations from the coupled Equation 9.6. To achieve this, we define the 
transformed potential [Vi] by letting

	 [V] = [T] [Vi]	 (9.8)

and requiring that

	 [T]t [P][T] = [λ2]	 (9.9)

where [λ2] is a diagonal matrix and [T]t is the transpose of [T]. [λ2] and [T] are eigenvalue 
and eigenvector matrices belonging to [P]. The transformation matrix [T] and the eigenvalue 
matrix [λ2] depend on the boundary conditions and are given in Table 9.1 for various 
combinations of boundaries. It should be noted that the eigenvector matrix [T] has the 
following properties:

	 [T]−1 = [T]t    

	 [T][T]t = [T]t [T] = [I]	
(9.10)

where [I] is an identity matrix. Substituting Equation 9.8 into Equation 9.6 gives
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1
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T V
y h

P T V

Multiplying through by [T]−1 = [T]t yields
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(9.11)

This is an ordinary differential equation with solution

	 Vi = Ai cosh αi y + Bi sinh αi y	 (9.12)

where αi = λi/h.

TABLE 9.1

Elements of Transformation Matrix [T] and Eigenvalues

Left Boundary Right Boundary Tij λi

Dirichlet Dirichlet 2
1 1N

i j
N DDT+ +sin ,[ ]π 2 2 1sin ( )

i
N
π
+

Dirichlet Neumann 2
0 5

0 5
0 5N

i j
N DNT+
−
+.

( . )
.sin ,[ ]π 2 0 5

2 1sin ( . )i
N

−
+

π

Neumann Dirichlet 2
0 5

0 5 0 5
0 5N

i j
N NDT+

− −
+.

( . )( . )
.cos ,[ ]π 2 0 5

2 1sin ( . )i
N

−
+

π

Neumann Neumann 2 0 5 1 1N
i j

N NNj Tcos , ,[ ]( . )( )− − >π

1 1
N

j, =
2 1

2sin ( )i
N

− π

Note:	 Where i, j = 1,2, …, N and subscripts D and N are for Dirichlet and Neumann condi-
tions, respectively.
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Thus, Laplace’s equation is solved numerically using a finite difference scheme in the 
x-direction and analytically in the y-direction. However, we have only demonstrated three 
out of the five basic steps for applying MOL. There remain two more steps to complete the 
solution: imposing the boundary conditions and solving the resulting equations. Imposing 
the boundary conditions is problem dependent and will be illustrated in Example 9.1. The 
resulting equations can be solved using the existing packages for solving ODE or developing 
our own codes in FORTRAN, MATLAB, C, or any other programming language. We will 
take the latter approach in Example 9.1.

EXAMPLE 9.1

For the rectangular region in Figure 9.1, let

	 V(0, y) = V(a, y) = V(x, 0) = 0,  V(x, b) = 100

and a = b = 1. Find the potential at (0.25, 0.75), (0.5, 0.5), (0.75, 0.25).

Solution

In this case, we have Dirichlet boundaries at x = 0 and 1, which are already indirectly 
taken care of in the solution in Equation 9.12. Hence, from Table 9.1,
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2
2 1
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( ) 	

(9.13)

and
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+ +
2

1 1
sin

π

	
(9.14)

Let N = 15 so that h = Δx = 1/16 and x = 0.25, 0.5, 0.75 will correspond to i = 4, 8, 12, 
respectively.

By combining Equations 9.8 and 9.12, we obtain the required solution. To get constants 
Ai and Bi, we apply boundary conditions at y = 0 and y = b to V and perform inverse 
transformation. Imposing V(x, y = 0) = 0 to the combination of Equations 9.8 and 9.12, 
we obtain
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which implies that

	 [A] = 0  or  Ai = 0	 (9.15)

Imposing V(x, y = b) = 100 yields
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If we let
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then

	 Bi = Ci/sinh αi b	 (9.16)

With Ai and Bi found in Equations 9.15 and 9.16, the potential V(x, y) is determined as

	

V y T B yi ij j j

j

N

( ) sinh( )=
=

∑ α
1 	

(9.17)

By applying Equations 9.13 through 9.17, the MATLAB code in Figure 9.2 was developed 
to obtain

FIGURE 9.2
MATLAB code for Example 9.1.
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	 V(0.25, 0.75) = 43.1,  V(0.5, 0.5) = 24.96,  V(0.75, 0.25) = 6.798

The result compares well with the exact solution:

	 V(0.25, 0.75) = 43.2,  V(0.5, 0.5) = 25.0,  V(0.75, 0.25) = 6.797

Notice that it is not necessary to invert the transformation matrix [T] in view of 
Equation 9.10.

EXAMPLE 9.2

For Dirichlet–Neumann conditions, derive the transformation matrix [TDN] and the 
corresponding eigenvalues [λ2].

Solution

Let λk
2 be the elements of eigenvalue matrix [λ2] and [tk] be the column vectors of the 

transformation matrix [TDN] corresponding to matrix [P]. Then, by definition,

	 ([ ] [ ]) [ ] [ ]P I tk k− =λ2 0 	 (9.18)

Substituting [P] for Dirichlet–Neumann (DN) condition in Equation 9.7 into Equation 
9.18 gives a second-order difference equation

	 − + − − =− −t t ti
k

k i
k

i
k

1
2

12 0( ) ( ) ( )( )λ 	 (9.19)

except the first and last equations in Equation 9.18. If we let

	 t A e B ei
k

k
ji

k
jik k( ) = + −φ φ

	 (9.20)

and substitute this into Equation 9.19, we obtain

	 0 2 2 2= + − + −−( )( cos )A e B ek
ji

k
ji

k k
k kφ φ φ λ

from which we obtain the characteristic equation

	
λ φ

φ
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k2 22 1 4
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= − =( cos ) sin
	

(9.21)

or

	
λ

φ
k

k= 2
2

sin
	

(9.22)

This is valid for all types of boundary combinations but φk will depend on the 
boundary conditions. To determine φk, Ak, and Bk, we use the first and the last equations 
in Equation 9.18. For DN conditions,

	 t k
0 0( ) = 	 (9.23a)
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Substituting this into Equation 9.20, we obtain
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(9.24)

For nontrivial solutions,
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(9.25)

Also from Equations 9.23a and 9.20, Ak = −Bk so that

	 t A ii
k

k k
( ) sin( )= φ 	 (9.26)

Thus, for Dirichlet–Neumann conditions, we obtain
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T

N
i k
N

ij =
+

−
+









2
0 5

0 5
0 5
0 5.

sin .
( . )

.
π

	
(9.27b)

9.2.2  Cylindrical Coordinates

Although MOL is not applicable to problems with complex geometry, the method 
can be used to analyze homogeneous and inhomogeneous cylindrical problems. The 
principal steps in applying MOL in cylindrical coordinates are the same as in Cartesian 
coordinates.

Here, we illustrate with the use of MOL to solve Laplace’s equation in cylindrical 
coordinates [18]. We apply discretization procedure in the angular direction. The resulting 
coupled ordinary differential equations are decoupled by matrix transformation and solved 
analytically.

Assume that we are interested in finding the potential distribution in a cylindrical 
transmission line with a uniform but arbitrary cross section. We assume that the inner 
conductor is grounded while the outer conductor is maintained at constant potential 
Vo, as shown in Figure 9.3. In cylindrical coordinates (ρ, φ), Laplace’s equation can be 
expressed as

	
ρ

ρ
ρ

ρ φ
2

2

2

2

2 0
∂
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+
∂
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+
∂
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=
V V V

	
(9.28)
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subject to

	 V(ρ) = 0,  ρ ∈ Γ1	 (9.29a)

	 V(ρ) = Vo,  ρ ∈ Γ2	 (9.29b)

We discretize in the φ-direction by using N radial lines, as shown in Figure 9.3, such that

	 Vi(ρ) = V(ρ, φi),  i = 1,2, …, N	 (9.30)

where

	
φ

π
φ π

i i h
i

N
h

N
= = = ∆ =

2 2
,

	
(9.31)

and h is the angular spacing between the lines. We have subdivided the solution region 
into N subregions with boundaries at Γ1 and Γ2. In each subregion, V(ρ, φ) is approximated 
by Vi = V(ρ, φi), with φi being constant.

Applying the three-point central finite difference scheme yields

	

∂
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= −
2

2 2

[ ] [ ]
[ ]

V P
h

V
φ 	

(9.32)

where

	 [V] = [V1, V2, …, VN]t	 (9.33)

FIGURE 9.3
Discretization along φ-direction.
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and
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(9.34)

Notice that [P] contains an element –1 in the lower left and upper right corners due to its 
angular periodicity. Also, notice that [P] is a quasi-three-band symmetric matrix which is 
independent of the arbitrariness of the cross section as a result of the discretization over a 
finite interval [0, 2π].

Introducing Equation 9.32 into Equation 9.28 leads to the following set of coupled 
differential equations
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∂
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h
V

	
(9.35)

To decouple Equation 9.35, we must diagonalize [P] by an orthogonal matrix [T] such that

	 [λ2] = [T]t [P][T]	 (9.36)

with

	 [T]t = [T] = [T]−1	 (9.37)

where [λ2] is a diagonal matrix of the eigenvalues λn
2 of [P]. The diagonalization is achieved 

using [19]

	
T

N
ij

ij ij
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+
= −

cos sin
, ( cos )

α α
λ α2 2 1

	
(9.38)

where

	 αij = h ⋅ i ⋅ j,  αn = h ⋅ n,  i, j, n = 1, 2, …, N	 (9.39)

If we introduce the transformed potential U that satisfies

	 [U] = [T][V]	 (9.40)

Equation 9.35 becomes
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2
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∂
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+
∂
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[ ][ ]
U U

U
	

(9.41)

where

	 [U] = [U1, U2, …, UN]t	 (9.42)
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is a vector containing the transformed potential function and

	
µ λ αn

n
n

h h
= =

2
2sin( )/

	
(9.43)

Equation 9.41 is the Euler-type and has the analytical solution (see Section 2.4.1)
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This is applied to each subregion. By taking the inverse transform using Equation 9.40, 
we obtain the potential Vi(ρ) as

	
V T Ui ij j

j

N

( )ρ =
=

∑
1 	

(9.45)

where Tij are the elements of matrix [T].
We now impose the boundary conditions in Equation 9.29, which can be rewritten as

	 V (ρ = ri) = 0,  ri ∈ Γ1	 (9.46a)

	 V(ρ = Ri) = Vo,  Ri ∈ Γ2	 (9.46b)

Applying these to Equations 9.44 and 9.45,
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(9.47a)
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(9.47b)

Equation 9.47 is solved to determine the unknown coefficients Ai and Bi. The potential 
distribution is finally obtained from Equations 9.44 and 9.45.

EXAMPLE 9.3

Consider a coaxial cable with inner radius a and outer radius b. Let b = 2a = 2 cm and 
Vo = 100 V. This simple example is selected to be able to compare MOL solution with the 
exact solution.

Solution

From Equation 9.43, it is evident that µn = 0 only when n = N. Hence, we may write U as

	
U

A B n N

A B n N
n

n n

n n

n n

=
+ = −

+ =







−ρ ρ
ρ

µ µ , , , ,
ln ,

1 2 1…

	
(9.48)
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Equation 9.47 can be written as

	
T A a B a T A B a i Nij

j

N

j i j i iN N N
j j

=

−
−∑ +



 + + = =

1

1

0 1 2µ µ [ ln ] , , , ,…
	

(9.49a)

for ρ = a, and

	
T A b B b T A B b V i Nij

j

N

j i j i iN N N o
j j

=

−
−∑ +



 + + = =

1

1

1 2µ µ [ ln ] , , , ,…
	

(9.49b)

for ρ = b. These 2N equations will enable us to find the 2N unknown coefficients Ai and 
Bi. They can be cast into a matrix form as
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(9.50)

This can be written as

	 [D][C] = [F]	 (9.51)

from which we obtain

	 [C] = [D]−1[F]	 (9.52)

where Cj corresponds to Aj when j = 1, 2, …, N and Cj corresponds to Bj when 
j = N + 1, …, 2N.

Once Aj and Bj are known, we substitute them into Equation 9.48 to find Uj. We finally 
apply Equation 9.45 to find V. The exact analytical solution of the problem is

	

V V a
b
a

o( )
ln

ln
ρ

ρ

=

	

(9.53)

For a < ρ < b, we obtain V for both exact and MOL solutions using the MATLAB codes 
in Figure 9.4. The results of the two solutions are shown in Figure 9.5. The two solutions 
agree perfectly.

9.3  Solution of Wave Equation

The MOL is particularly suitable for modeling a wide range of transmission lines and 
planar waveguide structures with multiple layers [8,11,19–29]. This involves discretizing 
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the Helmholtz’s wave equation in one direction while the other direction is treated 
analytically. Here, we consider the general problem of two-layer structures covered 
on the top and bottom with perfectly conducting planes. The conducting strips are 
assumed to be thin. We will illustrate with two-layer planar and cylindrical microstrip 
structures.

FIGURE 9.4
MATLAB code for Example 9.3.� (Continued)
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9.3.1  Planar Microstrip Structures

Typical planar structures are shown in Figure 9.6. The two independent field components 
Ez and Hz in each separate layer must satisfy the Helmholtz’s equation. Assuming the factor 
e
j(ωt−βz) and that wave propagates along z,

	

∂
∂

+
∂
∂

+ − =
2 2

2 2 0
ψ ψ β ψ
x y

k( )
	

(9.54)

where ψ represents either Ez or Hz and

	 k k kr o o o o o
2 2 2= = =ε ε, ω µ π λ/ 	 (9.55)

Applying the MOL, we discretize the fields along the x direction by laying a family of 
straight lines parallel to the y axis and evaluating on the e-lines for Ez and h-lines for Hz, 

FIGURE 9.4 (Continued)
MATLAB code for Example 9.3.
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as shown in Figure 9.7. The lines are evenly spaced although this is not necessary. If h is 
the spacing between adjacent lines, it is expedient to shift the e-lines and the h-lines by h/2 
in order to guarantee a simple fitting of the literal boundary conditions. The potential in 
Equation 9.54 can now be replaced by a set [ψ1, ψ2, …, ψN] at lines

	 xi = x0 + ih,  i = 1, 2, …, N	 (9.56)

and ∂ψi/∂x can be replaced by their finite difference equivalents. Thus, Equation 9.54 
becomes

	

∂
∂

+ − + + = =+ +

2

2 2 1 1
21

2 0 1 2
ψ ψ ψ ψ ψi

i i i c i
y h

y y y k y i N[ ( ) ( ) ( )] ( ) . , , ,…
	

(9.57)

where

	 k kc
2 2 2= − β 	 (9.58)

This is a system of N coupled ordinary differential equations. We cannot solve them in 
their present form because the equations are coupled due to the tridiagonal nature of [P]. 

FIGURE 9.5
Comparison of exact and MOL solutions.

FIGURE 9.6
Typical planar structures.
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We can decouple the equations by several suitable mathematical transformations and then 
analytically solve along the y direction.

If we let

	 [ψ] = [ψ1, ψ2, …, ψN]t	 (9.59)

where t denotes the transpose and

	

[ ]P

p

pr

=

−
− −

− −
−





























�

� � �

1
1 2 1

1 2 1
1 	

(9.60)

which is the same as Equation 9.7, where pℓ and pr are defined. Introducing the column 
vector [ψ] and the matrix [P] into Equation 9.57 leads to

	
h

y
P h k Ic

2
2

2
2 2 0

∂
∂

− −( ) =
[ ]

[ ] [ ] [ ] [ ]
ψ ψ

	
(9.61)

where [I] is the identity matrix and [0] is a zero column vector. Since [P] is a real symmetric 
matrix, we can find an orthogonal matrix [T] such that

	 [T]t [P][T] = [λ2]	 (9.62)

where the elements λi
2 of the diagonal matrix [λ2] are the eigenvalues of [P]. With the 

orthogonal matrix [T], we now introduce a transformed vector [U] such that

	 [T]t[ψ] = [U]	 (9.63)

FIGURE 9.7
Cross-section of planar microstrip structure with discretization lines; — — for Ez and - - - - for Hz.
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We can rewrite Equation 9.61 in terms of [U] and obtain

	
h

U
y

h k U i Ni
i c i

2
2

2
2 2 2 0 1 2

∂
∂

− −( ) = =λ , , , ,…
	

(9.64)

Since Equation 9.64 is uncoupled, it can be solved analytically for each homogeneous 
region. The solution is similar in form to the telegraph equation. It may be expressed as a 
relation between Ui and its normal derivative in a homogeneous dielectric layer from y = y1 
to y = y2, that is,

	

U y

h
y y y y
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i

U y
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i k i

i
i
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
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








∂
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
	

(9.65)

where

	

k h k

k
h

i N

i i c

i
i

= −( )
= =

λ

α

2 2 2 1 2

1 2

/

, , , ,…
	

(9.66)

Equation 9.65 can be applied repeatedly to find the transformed potential [U] from one 
homogeneous layer y1 < y < y2 to another. Keep in mind that each iteration will require that 
we recalculate the transformation matrix [T] and its eigenvalues λi, which are given in Table 
9.1. The field components Ez and Hz are derivable from the scalar potentials ψ(e) and ψ(h) as

	
E

k
j

z
c e=

ω
ψ
ε

( )

	
(9.67a)

	
H

k
j

z
c h=

ω
ψ

µ
( )

	
(9.67b)

To be concrete, consider the shielded microstrip line shown in Figure 9.8. Because of the 
symmetry, only half of the solution region needs to be considered. At the interface y = d, 
the continuity conditions with Equation 9.67 require that

FIGURE 9.8
Half-cross-section of a shielded microstrip line.
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β
ω

ψ ψ ψ ψ
ε εo

e
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e
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∂
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
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(9.68)

	
k ko

e

r
r o

e2 2 2 21
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ε
ε

	
(9.69)

	

∂
∂

−
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∂
=

∂
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−( )−
ψ ψ β

ωµ
ψ ψI II
I II

( ) ( )
( ) ( )

h h
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y y x

J
	

(9.70)

	 k k j Jo
h

r o
h

x
2 2 2 2−( ) = −( ) −β ψ β ψ ωµI II

( ) ( )ε 	 (9.71)

where the subscripts I and II refer to dielectric regions 1 and 2 and Jx and Jz are the current 
densities at the interface y = d.

We replace the partial derivative operator ∂/∂x with the difference operator [D], where

	

[ ]D =
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−
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



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(9.72)

so that
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(9.73)

We replace the normal derivatives of ∂ψ/∂n at the interface y = d with the following 
matrix operators.
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∂
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(9.74)

We can transform this into the diagonal form

	

h
U

n
U k

h
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e
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∂ 
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∂
= 







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∂ 
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


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U kk

h
k
hγ ( ) ( ) , I II,

	

(9.75)

With the aid of Equation 9.65 and the boundary conditions at y = 0 and y = b + d, the 
diagonal matrices [yk] are determined analytically as
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(9.76)

where
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(9.77)

and
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(9.78)

We can discretize Equations 9.68 through 9.71 and eliminate ψII
( )e  and ψII

( )h  using [T(e)] and 
[T(h)] matrices. Equations 9.68 and 9.70 become
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(9.79)
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(9.80)

where

	
τ =

−
−

1 ε
ε ε

eff

effr                    	
(9.81)

	
εeff =

β2

2ko                                 	
(9.82)

	 [ ] [ ] [ ][ ]( ) ( )δ = T D Th t e
	 (9.83)

and [T(e)] = [TND] and [T(h)] = [TDN] as given in Table 9.1. Notice that [δ] is a diagonal matrix 
and is analytically determined as

	
δ πi
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(9.84)

Since Jx is negligibly small compared with Jz, we solve Equations 9.79 and 9.80 to obtain

	 U T Je e t
zI

( ) ( )[ ][ ] [ ]



 = ρ 	 (9.85)
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where
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(9.86)

which is a diagonal matrix. Using Equation 9.63, we now take the inverse transform of 
Equation 9.85 to obtain

	 ψ ρI
( ) ( ) ( )[ ][ ][ ] [ ]e e e t

zT T J



 = 	 (9.87)

We finally impose the boundary condition on the strip, namely,

	 ψI on the strip( ) [ ]e



 = 0 	 (9.88)

which leads to a reduced matrix equation

	
[ ]

[ ]red
J

J
z

z
=






on the strip
elsewhere0 	

(9.89)

and the corresponding characteristic equation

	 [ ][ ][ ] [ ] [ ]( ) ( )

red
redT T Je e t

zρ( ) = 0 	 (9.90)

It is known from mathematics that a homogeneous linear matrix equation shows 
nontrivial solutions only when the determinant of the matrix is equal to zero. Thus, the 
propagation constant is determined by solving the determinant equation

	
det [ ][ ( , )][ ] [ ]( ) ( )

red
T Te e tρ β ω( ) = 0

	
(9.91)

The effective dielectric constant εeff is obtained from Equation 9.82. Notice that only the 
number of points on the strip determines the size of the matrix and that Equation 9.91 
applies to a microstrip with more than one strip. We solve Equation 9.91 using a root-
finding algorithm [28] in FORTRAN, Maple, or MATLAB. Although a microstrip example 
is considered here, the formulation is generally valid for any two-layer structures.

Once we solve Equation 9.91 to determine the effective dielectric constant, the current 
distribution on the strip, the potential functions ψe and ψh, the electric field Ez, and magnetic 
field Hz can be computed. Finally, the characteristic impedance is obtained from

	
Z

P
I

o =
2

2 	
(9.92)

where P is the average power transport along the line

	
P dx dy z= × ⋅∫1

2
( )*E H a

	
(9.93)
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and I is the total current flowing on the strip

	
I J dx dyz= ∫ 	

(9.94)

Since the above analysis applies to multiple strips, the characteristic impedance to the 
mth strip is

	
Z

P
I

om
m

m
=

2
2

	
(9.95)

EXAMPLE 9.4

Consider the shielded microstrip line shown in Figure 9.8. Using the MOL, find the 
effective dielectric constant of the line when εr = 9, w/d = 2, a/d = 7, b/d = 3 and d = 1 mm.

Solution

The number of lines along the x-axis is selected as N = 18 and the number of lines 
crossing the strip is M = 6. These numbers are for only one potential, say [ψe]. Since 
only one half of the structure is considered due to symmetry, only three points on the 
strip are necessary. Hence, the size of the matrix associated with Equation 9.91 is 3 × 3.

Figure 9.9 shows the three MATLAB codes for solving Equation 9.91. The main program 
varies the values of d from 0.01 to 0.15, assuming that λo = 1, the wavelength in free space, 
since β or εeff are frequency-dependent. (Alternatively, we could keep d fixed and vary 
frequency, from, say, 1–50 GHz.) The program plots εeff with d/λo as shown in Figure 9.10.

The second M-file fun.m does the actual computation of the matrices involved using 
Equations 9.76 through 9.91. It eventually finds the determinant of matrix [F], where

	
[ ] [ ][ ( , )][ ]

red
F T Te e

t= ( )ρ β ω
	 (9.96)

The third M-file root.m is a root-finding algorithm based on the secant method [28] 
and is used to determine the value of εeff that will satisfy

	 det [F] = 0	 (9.97)

9.3.2  Cylindrical Microstrip Structures

The MOL can be used to analyze homogeneous and inhomogeneous cylindrical transmission 
structures [19,29–36] and circular and elliptic waveguides [37]. The principal steps involved 
in applying MOL in cylindrical coordinates are the same as in Cartesian coordinates. Here, 
we illustrate with the use of MOL to analyze the dispersion characteristics of the cylindrical 
microstrip transmission line using full-wave analysis.

We introduce the scalar potentials Φ(e) and Φ(h) to represent the electric and magnetic field 
components. In cylindrical coordinates (ρ, φ), the two scalar functions can be expressed as

	 Ψ(e,h) = Φ(e,h)(ρ, φ)e−jβz	 (9.98)

where β is the phase constant and the time-harmonic dependence has been suppressed. 
Substituting Equation 9.98 into the Helmholtz equation for the scalar potential functions 
yields

	
ρ

ρ
ρ

ρ φ
ρ β2

2

2

2

2
2 2 2 0

∂
∂

+
∂
∂

+
∂
∂

+ − =
Φ Φ Φ

Φ( )k
	

(9.99)
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FIGURE 9.9
For Example 9.4: (a) Main MATLAB code, (b) fun M-file for calculating F and its determinant, (c) root M-file for 
finding the roots of fun (x) = 0.� (Continued)
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FIGURE 9.9 (Continued)
For Example 9.4: (a) Main MATLAB code, (b) fun M-file for calculating F and its determinant, (c) root M-file for 
finding the roots of fun (x) = 0.
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where k2 = ω2µε. Discretizing in the φ-direction by using N radial lines, as shown in 
Figure 9.11, such that

	
φ φ π
i o i h

i
N

i N= + − = =( ) , , , ,1
2

1 2 …
	

(9.100)

where h = Δφ = 2π/N is the angular spacing between the lines. The discretization lines for 
the electric potential function Φ(e) are shifted from the magnetic potential function Φ(h) by 
h/2. Applying the central finite difference scheme yields

FIGURE 9.10
For Example 9.4: Effective dielectric constant of the microstrip line.

FIGURE 9.11
Discretization in the φ-direction.
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(9.101)

where

	 [Φ] = [Φ1, Φ2, …, ΦN]t	 (9.102)

and [P] is given in Equation 9.34. Introducing Equation 9.101 into Equation 9.99 leads to N 
coupled differential equations:
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h
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(9.103)

where kc2 = k2 – β2 and [P] is the same as in Equation 9.34 if φ goes from 0 to 2π, otherwise 
[P] is as in Equation 9.7. Here we will assume [P] in Equation 9.7. To decouple Equation 9.103, 
we must diagonalize [P] by an orthogonal matrix [T] given in Equation 9.38 and introduce 
the transformed potential U that satisfies

	 [U] = [T][Φ]	 (9.104)

Thus, Equation 9.103 becomes
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where

	 [U] = [U1, U2, …, UN]t	 (9.106)

is a vector containing the transformed potential function and

	
µ λ
i

i

h
=

	
(9.107)

We notice that Equation 9.105 is essentially a Bessel equation and can be solved for every 
homogeneous region to produce Bessel function of order µn. The solution is

	 Ui(ρ) = Ai Jµi(kcρ) + BiYµi(kcρ),  i = 1, 2, …, N	 (9.108)

where J and Y are Bessel functions of the first and second kind, respectively.
To be concrete, consider the cross section of a cylindrical microstrip line shown in Figure 

9.12. Due to the symmetry of the structure, we need only consider half the cross section as 
in Figure 9.13. We have regions I and II and we apply Equation 9.108 to each region. On the 
boundaries ρ = d and ρ = b (electric walls), we have the boundary conditions

	

U d
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e
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(9.109)
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Enforcing Equation 9.109 on Equation 9.108, we obtain
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i i
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(9.110)

where k kc o= −2 2β  and ′ = −k kc r oε
2 2β , ko = 2π/λo, and λo is the wavelength in free space. 

From Equation 9.110,

FIGURE 9.12
The cross section of a shielded cylindrical microstrip line.

FIGURE 9.13
Half the cross section of the microstrip in Figure 9.12 (— electric wall; - - - magnetic wall).
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For Φ(h), the boundary conditions are
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Enforcing this on Equation 9.108 yields
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which leads to
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At the interface ρ = t, both Φ(e) and Φ(h) are related by the continuity conditions of the 
tangential components of the electric and magnetic fields. Since
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the continuity conditions are
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604 Computational Electromagnetics with MATLAB®

As we did in Section 9.3.1, we replace the derivative operator ∂/∂φ with the difference 
operator [D] and transform the resulting equations into the diagonal matrices. We obtain 
the elements of the diagonal matrices as [30]
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where h = Δφ and

	 S t k S t ko o o o= − ′ = −2 2 2 2β β, ε 	 (9.121)

By ignoring Jφ and reducing Jz to what we have in Equation 9.89, we finally obtain the 
characteristic equation
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(9.123)
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With a root-finding algorithm, Equation 9.122 can be solved to obtain β or εeff. Notice that 
Equation 9.122 is of the same form as Equation 9.90 and only the number of points on the strip 
determines the size of the matrix. However, the expressions for [ ],[ ],[ ], and [ ]( ) ( ) ( ) ( )γ γ γ γI II I II

e e h h  
are given in Equation 9.120.

9.4  Time-Domain Solution

The frequency-domain version of the MOL covered in Section 9.3 can be extended to the 
time domain [38–43]. In fact, MOL can also be used to solve parabolic equations [1,44,45]. 
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However, in this section, we will use MOL to solve hyperbolic Maxwell’s equations in the 
time domain. Essentially, the MOL proceeds by leaving the derivatives along one selected 
axis untouched (usually in time), while all other partial derivatives (usually in space) are 
discretized using well-known techniques such as finite difference and finite element. The 
partial differential equation is reduced to a system of ordinary differential equations that 
can be solved numerically using standard methods.

Consider an empty rectangular waveguide which is infinite in the z-direction [38] and 
with cross-section 0 < x < a, 0 < y < b. We assume that the waveguide is excited by a 
uniform electric field Ez. The problem becomes a two-dimensional one. It corresponds 
to calculating the cutoff frequencies of various modes in the frequency domain. Such 
information can be obtained from the time-domain data.

Due to the excitation, only Ez, Hx, and Hy exist and ∂/∂z = 0. Maxwell’s equations become
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which can be manipulated to yield the wave equation
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Discretizing in the x-direction only leads to
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where [Ez], [Hx], and [Hy] are column vectors representing the fields along each line and 
are functions of y and t. As given in Section 9.3.1, matrices [ ],[ ]( ) ( )D Dx

e
x
h , and [ ]( )Dxx

e  represent 
difference operators in which the boundary conditions at the side walls are incorporated.

Due to the fact that [ ]( )Dxx
e  is a real symmetric matrix, there exists a real orthogonal matrix 

[ ]( )Txe  that transforms [ ]( )Dxx
e  into a diagonal matrix [λ2]. We can transform [Ez] into a transform
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(and similarly [Hx] and [Hy]) so that Equation 9.127d becomes
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This is a set of uncoupled partial differential equations. The solution for the ith line is
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(9.130)

where
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and u = 1/ µε  is the wave velocity. Given the initial conditions for Ez and its time derivative, 
we can find Ani and Bni. The solution at any point at any time can be extracted from Equations 
9.130, 9.127a, 9.127b, and 9.127c and the subsequent inverse transforms such as

	 [ ( , )] [ ]( )E y t T Ez x
e

z= 



 	 (9.132)

This completes the solution process.

9.5  Concluding Remarks

MOL is a differential-difference approach of solving elliptic, parabolic, and hyperbolic 
PDEs. It involves a judicious combination of analysis and computation. Given a partial 
differential equation, all but one of the independent variables are discretized to obtain a 
system of ordinary differential equations.

MOL requires that the structures be at least piecewise uniform in one dimension. Also, 
the eigenmatrices and eigenvalues depend on the boundaries of the solution region. 
These requirements have limited the applications of the method. Although not applicable 
to problems with complex geometries, the MOL has been efficient for the analysis of 
compatible planar structures. Several approaches have been taken to make MOL more 
efficient [46]. Applications of the method include but are not limited to the following 
EM-related problems:

•	 Waveguides including optical types [47–65],
•	 Planar and cylindrical microstrip transmission lines [19–27,66,67],
•	 Scattering from discontinuities in planar structures [39,40,68],
•	 Antennas [32],
•	 Electro-optic modulator structures [17,69,70], and
•	 Other areas [71–75]
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Originally, MOL was developed for problems with closed-solution domain. Recently, 
absorbing boundary conditions appropriate for MOL have been introduced [51,76–78]. With 
these conditions, it is now possible to simulate and model unbounded electromagnetic 
structures. The equivalence between the MOL and variational method is given in 
Reference 79.

PROBLEMS

	9.1	 In Equation 9.7, show that pℓ = 2 for Dirichlet condition and pℓ = 1 for Neumann 
condition.

	9.2	 If the first-order finite difference scheme can be written as
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		  where the equidistance difference matrix [Dx] is an (N−1) × N matrix given by
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		  show that the central finite difference scheme for second-order partial differential 
operator yields
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D Vxx
2

2
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∂
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		  where [Dxx] = –[Dx]
t[Dx] = –[Dx][Dx]

t. Assume Neumann conditions at both side 
walls and obtain Dxx.

	9.3	 Obtain the transformation matrix [T] and its corresponding eigenvalue matrix 
[λ2] for Neumann–Dirichlet boundary conditions. Assume that t tk k

0 1
( ) ( )−  = 0 and 

tN
k
+1

( )  = 0 on the boundaries.
	9.4	 Using MOL, solve Laplace’s equation

	 ∇2Φ = 0

		  in a rectangular domain 0 ≤ x ≤ 1, –1 ≤ y ≤ 1 with the following Dirichlet 
boundary conditions:

	 Φ(0, y) = Φ(1, y) = 0

	 Φ(x, 1) = Φ(x, –1) = sin πx

		  Obtain Φ at (0, 0.5), (0.5, 0.25), (0.5, 0.5), (0.5, 0.75). Compare your solution with the 
exact solution

	
Φ( , )

) )
)

x y
y x

b
=

cosh( sin(
cosh(

π π
π
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	9.5	 Obtain the solution of Problem 2.4(a) using MOL.
	9.6	 Consider the coaxial cable of elliptical cylindrical cross section shown in Figure 9.14. 

Take A = 2 cm, B = 4 cm, a = 1 cm, and b = 2 cm. For the inner ellipse, for example,

	
r

a a
b

=
+

=
sin cos

,
2 2 2φ ν φ

ν

		  By modifying the MOL codes used in Example 9.3, plot the potential for φ = 0, 
a < ρ < b.

	9.7	 Solve Problem 2.10 using MOL and compare your result with the exact solution
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		  Take L = 2a = 1 m and Vo = 10 V.
	9.8	 Rework Example 9.4 for a pair of coupled microstrips shown in Figure 9.15. Let 

εr = 10.2, w = 1.5, s/d = 1.5, a/d = 20, h/d = 19, and d = 1 cm. Plot the effective 
dielectric constant versus d/λo.

FIGURE 9.15
For Problem 9.8.

FIGURE 9.14
For Problem 9.6.
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	9.9	 Given the difference operator
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		  which is Hermitian, that is, [P] = [P*]. Show that [P] has the following eigenvalues
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		  and the eigenvector matrices
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		  where s = ejβh/2, s* is the complex conjugate of s, β is the propagation constant, and 
h is the step size.

	9.10	 Show that for
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		  the eigenvalue matrices remain the same as in the previous problem.
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Appendix A: Vector Relations

A.1  Vector Identities

If A and B are vector fields while U and V are scalar fields, then

	 ∇V(U + V) = ∇U + ∇V

	 ∇(UV) = U∇V + V∇U

	
∇







 =

∇ ∇ − ∇U
V

U U V
V

( ) ( )
2

	 ∇Vn = nVn−1∇V  (n = integer)

	 ∇(A ⋅ B) = (A ⋅ ∇)B + (B ⋅ ∇)A + A × (∇ × B) + B × (∇ × A)

	 ∇ ⋅ (A + B) = ∇ ⋅ A + ∇ ⋅ B

	 ∇ ⋅ (A × B) = B ⋅ (∇ × A) − A ⋅ (∇ × B)

	 ∇ ⋅ (VA) = V∇ ⋅ A + A ⋅ ∇V

	 ∇ ⋅ (∇V) = ∇2V

	 ∇ ⋅ (∇ × A) = 0

	 ∇ × (A + B) = ∇ × A + ∇ × B

	 ∇ × (A × B) = A(∇ ⋅ B) − B(∇ ⋅ A) + (B ⋅ ∇)A − (A ⋅ ∇)B

	 ∇ × (VA) = ∇V × A + V(∇ × A)

	 ∇ × (∇V) = 0

	 ∇ × (∇ × A) = ∇(∇ ⋅ A)–∇2A
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A.2  Vector Theorems

If v is the volume bounded by the closed surface S, and an is a unit normal to S, then

	

A S A

S

⋅ = ∇⋅

= ∇

∫ ∫
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d dv

V d V dv

S v

S v





(Divergence theorem)

(Gradient theeorem)
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 2 (Green first identity)

∇∇ − ∇ ⋅ = ∇ − ∇∫ ∫V V U d U V V U dv
S v

] [ ] S 2 2 (Green second identity)

where dS = d S an.
If S is the area bounded by the closed path L and the positive directions of elements dS 

and dl are related by the right-hand rule, then
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(Stokes theorem)’

A.3  Orthogonal Coordinates

Rectangular coordinates (x, y, z)
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Cylindrical coordinates (ρ, φ, z)
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Spherical coordinates (r, θ, φ)
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Appendix B: Programming in MATLAB

MATLAB has become a powerful tool of technical professionals worldwide. The term 
MATLAB is an abbreviation for MATrix LABoratory implying that MATLAB is a 
computational tool that enables one to perform engineering and scientific calculations and 
employs matrices and vectors/arrays to carry out numerical analysis, signal processing, 
and scientific visualization tasks. One can use MATLAB to graph functions, solve 
equations, perform numerical analysis, and do much more. Since MATLAB uses matrices 
as its fundamental building blocks, one can write mathematical expressions involving 
matrices just as easily as one would on paper. MATLAB is available for Macintosh, Unix, 
and Windows operating systems. A student version of MATLAB is available for PCs. A copy 
of MATLAB can be obtained from

The Mathworks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
Phone: (508) 647-7000
Website: http://www.mathworks.com

A brief introduction to MATLAB is presented in this Appendix. What is presented is 
sufficient for solving problems in this book. Other information on MATLAB required 
in this book is provided on a chapter-to-chapter basis as needed. The best way to learn 
MATLAB is to work with it after you have learned the basics. It will be assumed that you 
are practicing each command while sitting at a computer running MATLAB.

B.1  MATLAB Fundamentals

The Command window is the primary area where you interact with MATLAB. A little later, 
we will learn how to use the text editor to create M-files, which allow executing sequences of 
commands. For now, we focus on how to work in the Command window. We will first learn 
how to use MATLAB as a calculator. We do so by using the algebraic operators in Table B.1.

To begin to use MATLAB, we use these operators. Type commands at the MATLAB 
prompt “>>” in the Command window (correct any mistakes by backspacing) and press 
the <Enter> key. For example,

>> a=2; b=4; c=-6;
>> dat = b^2 - 4*a*c
dat = 64
>> e = sqrt(dat)/10
e = 0.8000

The first command assigns the values 2, 4, and −6 to the variables a, b, and c, respectively. 
MATLAB does not respond because this line ends with a semicolon. The second command 
sets dat to b2 –4ac and MATLAB returns the answer as 64. Finally, the third line sets e equal 

http://www.mathworks.com
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to the square root of dat divided by 10. MATLAB prints the answer as 0.8. As function sqrt is 
used here, other mathematical functions listed in Table B.2 can be used. Table B.2 provides 
just a small sample of MATLAB functions. Others can be obtained from the online help. 
To get help, type

>> help
[a long list of topics come up]

and for a specific topic, type the command name. For example, to get help on log to base 2, type

>> help log2
[a help message on the log function follows]

TABLE B.1

Basic Operations

Operation MATLAB Formula

Addition a + b
Division (right) a/b (means a ÷ b)
Division (left) a\b (means b ÷ a)
Multiplication a*b
Power a^b
Subtraction a – b

TABLE B.2

Typical Elementary Math Functions

Function Remark

abs(x) Absolute value or complex magnitude of x
acos, acosh(x) Inverse cosine and inverse hyperbolic cosine of x in radians
acot, acoth (x) Inverse cotangent and inverse hyperbolic cotangent of x in radians
angle(x) Phase angle (in radian) of a complex number x
asin, asinh(x) Inverse sine and inverse hyperbolic sine of x in radians
atan, atanh(x) Inverse tangent and inverse hyperbolic tangent of x in radians
bessel Bessel functions; besselj(n, x) and bessely(n, x) are of order n
conj(x) Complex conjugate of x
cos, cosh(x) Cosine and hyperbolic cosine of x in radians
cot, coth(x) Cotangent and hyperbolic cotangent of x in radians
exp(x) Exponential of x
fix Round toward zero
gamma Gamma function
imag(x) Imaginary part of a complex number x
log(x) Natural logarithm of x
log2(x) Logarithm of x to base 2
log10(x) Common logarithms (base 10) of x
real(x) Real part of a complex number x
sin, sinh(x) Sine and hyperbolic sine of x in radians
sqrt(x) Square root of x
tan, tanh(x) Tangent and hyperbolic tangent of x in radians
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Note that MATLAB is case sensitive so that sin(a) is not the same as sin(A). MATLAB 
distinguishes between lower and upper case variables.

Try the following examples:

>> 3^(log10(25.6))
>> y=2* sin(pi/3)
>>exp(y+4-1)

In addition to operating on mathematical functions, MATLAB easily allows one to work 
with vectors and matrices. A vector (or array) is a special matrix with one row or one 
column. For example,

>> a = [ 1 -3 6 10 -8 11 14];

is a row vector. Defining a matrix is similar to defining a vector. For example, a 3 × 3 matrix 
can be entered as

>> A = [ 1 2 3; 4 5 6; 7 8 9]
    or as
>> A = [ 1 2 3
	 4 5 6
	 7 8 9]

In addition to the arithmetic operations that can be performed on a matrix, the operations 
in Table B.3 can be implemented.

Using the operations in Table B.3, we can manipulate matrices as follows.

>> B = A’
B =
	 1	 4	 7
	 2	 5	 8
	 3	 6	 9

>> C = A + B
C =
	 2	 6	 10
	 6	 10	 14
	 10	 14	 18

TABLE B.3

Matrix Operations

Operation Remark

A′ Finds the transpose of matrix A

det(A) Evaluates the determinant of matrix A
inv(A) Calculates the inverse of matrix A
eig(A) Determines the eigenvalues of matrix A
diag(A) Finds the diagonal elements of matrix A
expm(A) Exponential of matrix A
rank(A) Determines the rank of matrix A
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>> D = A^3 - B*C
D =
	 372	 432	 492
	 948	 1131	1314
	 1524	1830	2136

>> e = [1 2; 3 4]
e =
	 1	 2
	 3	 4

>> f = det(e)
f =
	 -2

>> g = inv(e)
g =
	 -2.0000	 1.0000
	 1.5000	 -0.5000

>> H = eig(g)
H =
	 -2.6861
	 0.1861

Note that not all matrices can be inverted. A matrix can be inverted if and only if its 
determinant is nonzero. Special matrices, variables, and constants are listed in Table B.4. 
For example, type

>> eye(3)
ans =
	 1	 0	 0
	 0	 1	 0
	 0	 0	 1
to get a 3 × 3 identity matrix.

TABLE B.4

Special Matrices, Variables, and Constants

Matrix/Variable/Constant Remark

eye Identity matrix
ones An array of ones
zeros An array of zeros
i or j Imaginary unit or sqrt(–1)
pi 3.142
NaN Not a number
inf Infinity
eps A very small number, 2.2e–16
rand Generates random values between 0 and 1
randn Generates random values from a normal distribution
num2str Converts number to string
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Note that MATLAB cannot have negative or zero index such as x(-5) or A(0); index must 
be a positive integer.

B.2  Using MATLAB to Plot

To plot using MATLAB is easy. For a two-dimensional plot, use the plot command with 
two arguments as

>> plot(xdata,ydata)

where xdata and ydata are vectors of the same length containing the data to be plotted.
For example, suppose we want to plot y = 10*sin(2*pi*x) from 0 to 5*pi, we will proceed 

with the following commands:

>> x = 0:pi/100:5*pi; % x is a vector, 0 <= x <= 5*pi, 
increments of pi/100

>> y = 10*sin(2*pi*x); % create a vector y

>> plot(x,y); % create the plot

With this, MATLAB responds with the plot in Figure B.1 MATLAB will let you graph 
multiple plots together and distinguish with different colors. This is obtained with the 
command plot(xdata, ydata, ‘color’), where the color is indicated by using a character string 
from the options listed in Table B.5.

For example,

>> plot(x1, y1, ’r’, x2,y2, ’b’, x3,y3, ’--’);

will graph data (x1,y1) in red, data (x2,y2) in blue, and data (x3,y3) in dashed line all on the 
same plot.

FIGURE B.1

MATLAB plot of y = 10*sin(2*pi*x).
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MATLAB also allows for logarithm scaling. Rather than the plot command, we use

loglog		 log(y) versus log(x)
semilogx	 y versus log(x)
semilogy	 log(y) versus x

Three-dimensional plots are drawn using the functions mesh and meshdom (mesh domain). 
For example, to draw the graph of z = x*exp(–x2 –y2) over the domain –1 < x, y < 1, we type 
the following commands:

>> xx = -1:.1:1;
>> yy = xx;
>> [x,y] = meshgrid(xx,yy);
>> z = x.*exp(-x.^2 -y.^2);
>> mesh(z);

(The dot symbol used in x. and y. allows element-by-element multiplication.) The result 
is shown in Figure B.2.

TABLE B.5

Various Color and Line Types

y yellow . point
m magenta o circle
c cyan x x-mark
r red + plus

g green – solid
b blue * star
w white : dotted
k black -. dashdot

– dashed

FIGURE B.2
A three-dimensional plot.
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Other plotting commands in MATLAB are listed in Table B.6. The help command can be 
used to find out how each of these is used.

B.3  Programming with MATLAB

So far, MATLAB has been used as a calculator, you can also use MATLAB to create your 
own program. The command line editing in MATLAB can be inconvenient if you have 
several lines to execute. To avoid this problem, you create a program which is a sequence 
of statements to be executed. If you are in Command window, click File/New/M-files to 
open a new file in the MATLAB Editor/Debugger or text editor. Type the program and 
save the program in a file with an extension.m, that is, filename.m; it is for this reason it is 
called an M-file. Once the program is saved as an M-file, exit the Debugger window. You 
are now back in the Command window. Type the file without the extension.m to get results. 
For example, the plot that was made above can be improved by adding title and labels and 
typing as an M-files called example1.m

x = 0:pi/100:5*pi; % x is a vector, 0 <= x
<= 5*pi, increments of pi/100

y = 10*sin(2*pi*x); % create a vector y

plot(x,y); % create the plot
xlabel(’x (in radians)’); % label the x-axis
ylabel(’10*sin(2*pi*x)’); % label the y-axis
title(’A sine functions’); % title the plot
grid % add grid

Once it is saved as example1.m and you exit text editor, type

>> example1

in the Command window and hit <Enter> to obtain the result shown in Figure B.3.
To allow flow control in a program, certain relational and logical operators are necessary. 

They are shown in Table B.7. Perhaps the most commonly used flow control statements are 

TABLE B.6

Other Plotting Commands

Command Comments

bar(x,y) A bar graph
contour(z) A contour plot
errorbar(x,y,l,u) A plot with error bars
hist(x) A histogram of the data
plot3(x,y,z) A three-dimensional version of plot()
polar(r, angle) A polar coordinate plot
stairs(x,y) A stairstep plot
stem(x) Plots the data sequence as stems
subplot(m,n,p) Multiple (m-by-n) plots per window
surf(x,y,x,c) A plot of 3-D colored surface.
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for, if, and while. The for statement is used to create a loop or a repetitive procedure and has 
the general form

for x = array
  [commands]
end

The if statement is used when certain conditions need to be met before an expression is 
executed. It has the general form

if expression
  [commands if expression is True]
else
  [commands if expression is False]
end

FIGURE B.3

MATLAB plot of y = 10*sin(2*pi*x) with title and labels.

TABLE B.7

Relational and Logical Operators

Operator Remark

< less than

<= less than or equal

> greater than

>= greater than or equal

== equal

∼= not equal

& and
| or

∼ not
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A while loop consists of statements that are repeated indefinitely as long as some condition 
is met. The while loop has the form

while expression
  [statements]
end

A while loop may be terminated with the break statement, which passes control to the 
statement that follows the corresponding end. Consider the following example:

x = 2;
while x<1
  y=cos(x)
  if x==0, break, end
end
z=1;

For example, suppose we have an array y(x) and we want to determine the minimum 
value of y and its corresponding index x. This can be done by creating an M-file as shown 
below.

% example2.m
% This program finds the minimum y value and its corresponding x index
x = [1 2 3 4 5 6 7 8 9 10]; %the nth term in y
y = [3 9 15 8 1 0 -2 4 12 5];
min1 = y(1);
for k=1:10
  min2=y(k);
  if (min2 < min1)
    min1 = min2;
    xo = x(k);
  else
    min1 = min1;
  end
end
diary
min1, xo
diary off

Note the use of for and if statements. When this program is saved as example2.m, we 
execute it in the Command window and obtain the minimum value of y as −2 and the 
corresponding value of x as 7, as expected.

>> example2
min1 =
-2
xo =
7

If we are not interested in the corresponding index, we could do the same thing using 
the command

>> min(y)
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To display output, use the disp or input command. While disp displays text or array, input 
prompts for user input.

>> disp(’This will print without quotes.’)
>> x = input(’starting value:’)

The command disp is often combined with num2str (convert a number to a string)

>> x = 2*cos(x);
.>> str = [’disp: x = ’, num3str(x)];
>> disp(str);

Sometimes you want to label a plot with Greek letters, you can simply use \beta for β. 
Other selected Greek and mathematical symbols are shown in Table B.8. For example, you 
may label the title of a plot as follows:

>> title(’Gain versus angle \theta’);

The following tips are helpful in working effectively with MATLAB:

•	 Comment your M-file by adding lines beginning with a % character.
•	 To suppress output, end each command with a semi-colon (;), you may remove the 

semi-colon when debugging the file.
•	 Press up and down arrow keys to retrieve previously executed commands.
•	 If your expression does not fit on one line, use an ellipse (…) at the end of the line 

and continue on the next line. For example, MATLAB considers

	 y = sin (x + log10(2x + 3)) + cos(x + …
	 log10(2x + 3));

		  as one line of expression
•	 Keep in mind that variable and function names are case sensitive.

TABLE B.8

Selected Greek and Mathematical Symbols

Character Symbol Character Symbol

\alpha α \Gamma Γ
\beta β \Delta Δ
\gamma γ \Lamdba Λ
\delta δ \Pi Π
\epsilon ε \Sigma Σ
\eta η \Omega Ω
\theta θ \int ∫
\lambda λ \sim ∼
\nu ν \infty ∞
\pi π \pm ±
\phi φ \eq ≤
\rho ρ \geq ≥
\sigma σ \neq ≠
\tau τ \div ÷
\omega ω
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B.4  Functions

All of the M-files we have seen thus far are known as script files. A script file is a collection 
of MATLAB statements; it has no input argument and returns no results. In contrast, a 
MATLAB function is a special M-file that runs in its own independent workspace. It accepts 
some input data, performs some calculation, and returns results to the caller. It has the 
following general form:

function [outarg1, outarg2, ... ]
  = filename(inarg1, inarg2, ... )
[statements]
end

The function statement begins the function, and it is terminated by an end statement. The 
function name in the calling program must match the function statement name. Consider 
the function M-file, called root.m:

function z = root(x)
% root(x) returns the square root of x
z = sqrt(x)
end

Typing root(16) gives 4. As an example of a function that has multiple input and output 
arguments, consider function polar1.m.

function [rho, theta] = polar1(x,y)
% Given the rectangular coordinates (x,y), calculate the
% polar coordinates (rho, theta)
rho = sqrt(x^2 + y^2);
theta = atan2(y,x);
end

This function must be saved as polar1.m You can now use this function in a script or in 
another function. For example,

>> x = 3; y = -4;
>> [rho1,theta1] = polar1(x,y);
>> z = rho1*cos(theta1);

B.5  Solving Equations

Consider the general system of n simultaneous equations as

	

a x a x a x b

a x a x a x b

a x a x

n n

n n

n n

11 1 12 2 1 1

21 1 22 2 2

1 1 2 2

+ + + =
+ + + =
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2
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or in matrix form

	 AX = B

where
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A is a square matrix and is known as the coefficient matrix, while X and B are vectors. X is 
the solution vector we are seeking to obtain. There are two ways to solve for X in MATLAB. 
First, we can use the backslash operator (\) so that

	 X = A\B

Second, we can solve for X as

	 X = A−1B

which in MATLAB is the same as

	 X = inv(A) ∗ B

We can also solve equations using the command solve. For example, given the quadratic 
equation x2 + 2x – 3 = 0, we obtain the solution using the following MATLAB command:

>> [x]=solve(’x^2 + 2*x - 3 =0’)
x =
[ -3]
[ 1]

indicating that the solutions are x = –3 and x = 1. Of course, we can use the command 
solve for a case involving two or more variables. We will see this in the following 
example.

EXAMPLE B.1

Use MATLAB to solve the following simultaneous equations:

	 25x1 − 5x2 − 20x3 = 50

	 –5x1 + 10x2 − 4x3 = 0

	 –5x1 − 4x2 + 9x3 = 0

Solution

We can use MATLAB to solve this in two ways.
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Method 1:

The given set of simultaneous equations could be written as
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We obtain matrix A and vector B and enter them in MATLAB as follows.

>> A = [25 -5 -20; -5 10 -4; -5 -4 9]
A =
25	 -5	 -20
-5	 10	 -4
-5	 -4	 9

>> B = [50 0 0]’
B =
50
0
0

>> X = inv(A)*B
X =
29.6000
26.0000
28.0000

>> X = A\B
X =
29.6000
26.0000
28.0000

Thus, x1 = 29.6, x2 = 26, and x3 = 28.

Method 2:

Since the equations are not many in this case, we can use the command solve to obtain 
the solution of the simultaneous equations as follows:

[x1,x2,x3]=solve(’25*x1 - 5*x2 - 20*x3=50’,
’-5*x1 + 10*x2 - 4*x3 =0’, ’-5*x1 - …
4*x2 + 9*x3=0’)

x1 =
148/5
x2 =
26
x3 =
28

which is the same as before.

B.6  Programming Hints

A good program should be well documented, of reasonable size, and capable of performing 
some computation with reasonable accuracy within a reasonable amount of time. The 
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following are some helpful hints that may make writing and running MATLAB programs 
easier:

•	 Use the minimum number of commands possible and avoid execution of extra 
commands. This is particularly true of loops.

•	 Use matrix operations directly as much as possible and avoid for, do, and/or while 
loops if possible.

•	 Make effective use of functions for executing a series of commands over several 
times in a program.

•	 When unsure about a command, take advantage of the help capabilities of the 
software.

•	 It takes much less time running a program using files on the hard disk than on an 
external drive.

•	 Start each file with comments to help you remember what it is all about later.
•	 When writing a long program, save frequently. If possible, avoid a long program; 

break it down into smaller functions.

B.7  Other Useful MATLAB Commands

Some common useful MATLAB commands which may be used in this book are provided 
in Table B.9.

TABLE B.9

Other Useful MATLAB Commands

Command Explanation

clear Clears items from workspace
diary Saves screen display output in text format
ezplot Easy plot command for symbolic expressions
mean Mean value of a vector
min(max) Minimum (maximum) of a vector
grid Adds a grid mark to the graphic window
poly Converts a collection of roots into a polynomial
roots Finds the roots of a polynomial
sort Sort the elements of a vector
sound Play vector as sound
std Standard deviation of a data collection
sum Sum of elements of a vector
exit, quit Terminate a MATLAB session
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Appendix C: Solution of Simultaneous 
Equations

Application of some numerical methods to EM problems often results in a set of simultaneous 
equations
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(C.1a)

or

	 [A][X] = [B]	 (C.1b)

where [A] is the coefficient matrix, [X] is the column matrix of the unknowns to be 
determined, and [B] is the column matrix of constants. Familiarity with the various 
techniques for solving Equation C.1 is therefore vital. In this appendix, we provide a 
brief coverage of direct and iterative procedures for solving Equation C.1; direct methods 
are more versatile for linear problems, while iterative methods are suitable for non-
linear problems. We also consider various techniques for solving eigenvalue systems [A]
[X] = λ[X].

C.1  Elimination Methods

Elimination methods constitute the simplest direct approach to the solution of a set of 
simultaneous equations. They usually involve successive elimination of the unknowns 
by combining equations. Such methods include Gauss’s method, Gauss–Jordan method, 
Cholesky’s or Crout’s method, and the square-root method. Only Gauss’s and Cholesky’s 
methods will be discussed. The reader should consult References 1–4 for the treatment of 
other methods.

C.1.1  Gauss’s Method

This simple method involves eliminating one unknown at a time and proceeding with 
the remaining equations. This leads to a set of simultaneous equations in triangular form 
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from which each unknown is determined by back substitution. To describe this method, 
consider Equation C.1, that is,

	 a11x1 + a12x2 + … + a1nxn = b1	 (C.2a)

	 a21x1 + a22x2 + … + a2nxn = b2	 (C.2b)

	 ⋮

	 an1x1 + an2x2 + … + annxn = bn	 (C.2c)

We divide Equation C.2a by a11 to give

	 x a x a x bn n1 12 2 1 1+ ′ + + ′ = ′ 	 (C.3)

where the primes denote that the coefficients are new. We multiply Equation C.3 by −ai1 for 
i = 2, 3, …, n and add Equation C.3 to the ith equation in Equation C.2 to eliminate x1 from 
other equations so that Equation C.2 becomes

	 x a x a x bn n1 12 2 1 1+ ′ + + ′ = ′ 	 (C.4a)

	 ′ + + ′ = ′a x a x bn n22 2 2 2 	 (C.4b)

	 ⋮

	 ′ + + ′ = ′a x a x bn nn n n2 2  	 (C.4c)

Equation C.2a used to eliminate x1 from other equations is called the pivot equation 
and a11 is called the pivot coefficient. We now use Equation C.4b as the pivot equation and 
we take similar steps to eliminate x2 from all equations following the pivot equation. 
Continuing this reduction procedure eventually leads to an equivalent triangular set of 
equations:
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(C.5)

This completes the first phase known as forward elimination in the Gauss algorithm, and 
the system in Equation C.5 is said to be in upper triangular form. The second phase known 
as back substitution involves solving for the unknowns in Equation C.5 by starting at the 
bottom. That is,
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In summary, this algorithm can be stated as follows:
Forward elimination:
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(C.7a)

Backward substitution:
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(C.7b)

Based on the idea outlined above, a general MATLAB code for solving a set of simultaneous 
equations by Gaussian elimination is shown in Figure C.1.

FIGURE C.1
Gauss elimination method of solving [A][X] = [B].
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C.1.2  Cholesky’s Method

This method, also known as Crout’s method or the method of matrix decomposition, 
involves determining a lower triangular matrix that will reduce the original system in 
Equation C.1 to a unit upper triangular matrix. If the original system

	 [A][X] = [B]	 (C.1a)

or
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(C.1b)

can be redefined in the upper unit triangular matrix [T] such that

	 [T][X] = [C]	 (C.8a)

or
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(C.8b)

the unknown xi can be obtained by back substitution. Let [A] be a product of an upper unit 
triangular matrix [T] and a lower triangular matrix [L], that is,

	 [L][T] = [A]	 (C.9)

Since

	 [L][TX–C] = 0 = [AX–B],	 (C.10)

it follows that

	 [L][C] = [B]	 (C.11)

For computational reasons, it is convenient to work with the augmented form of the 
matrices. The augmented matrix is obtained by adding the column vector of constants to 
the square coefficient matrix. Equations C.8 and C.11 may be combined to give
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or

	 [ ] [ ][ ]A B L T C = 	 (C.12b)

The elements of [L], [T], and [C] can be defined in terms of [A] and [B] as follows [1,2,5]:
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(C.13)

The unknown xi are obtained by back substitution as follows:
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(C.14)

Cholesky’s method can easily be applied in calculating the determinant of [A]. Since

	 det [A] = det [L] det [T]	 (C.15)

and det [T] = 1 due to the fact that Tii = 1, it follows that

	 det [A] = det [L] = L11L22 … Lnn

or

	
det[ ]A Lii

i

n

=
=

∏
1 	

(C.16)

Figure C.2 shows a subroutine based on Cholesky’s method of solving a set of simultaneous 
equations.

C.2  Iterative Methods

The direct or elimination method for solving a system of simultaneous equations can be 
used for n = 25–60. This number can be greater if the system is well conditioned or the 
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matrix is sparse. For very large systems, say n = 100 or even 1000, elimination methods 
become time consuming and prove inadequate due to roundoff error. For these types of 
problems, indirect or iterative methods provide an alternative.

C.2.1  Jacobi’s Method

This is the simplest iterative method. If the system in Equation C.1 is rearranged so that the 
ith equation is explicit in xi, we obtain

FIGURE C.2
Cholesky’s elimination method of solving [A][X] = [B].
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assuming that the diagonal elements are all nonzero. We start the solution process by using 
guesses for the x’s, say x1 = x2 = … = xn = 0. The first equation can be solved for x1, the 
second for x2, and so on. If we denote the estimates after the kth iteration as x x xk k

n
k

1 2, , , ,…  
the estimates after (k + 1)th iteration can be obtained from Equation C.16 as
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(C.17)

The iteration process is continued until values of xi at two successive iterations are within 
an allowable prescribed deviation.

Convergence is measured in terms of the change in xi from the kth iteration to the next. 
If we compute
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for each xi, convergence can be checked using the criterion

	 di < εs	 (C.19)

where εs is a specified small quantity. A better test would be to compute
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(C.20)

and require that d < εs.

C.2.2  Gauss–Seidel Method

This is the most commonly used iterative method. In Jacobi’s method, the entire set of 
xi from the kth iteration is used in calculating the new set during the (k + 1)th iteration, 
whereas the most recently calculated value of each variable is used at each step in the 
Gauss–Seidel method. This makes the Gauss–Seidel method converge more rapidly than 
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(about twice as) Jacobi’s method and is always used in preference to it. Instead of Equation 
C.17, we use

	
x

a
b a x a x ii

k

ii
i ij j

k

j

i

ij j
k

j i

n
+ +

=

−

= +

= − −
















=∑ ∑1 1

1

1

1

1
1 2, , ,, ,… n

	
(C.21)

A computer program based on this method is displayed in Figure C.3.

C.2.3  Relaxation Method

This is a slight modification of the Gauss–Seidel method and is designed to enhance 
convergence. If xik is added to the right-hand side of Equation C.21 and ( )a x aii i

k
ii/  is subtracted 

from it, we obtain
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(C.22)

FIGURE C.3
Gauss–Seidel iterative method of solving [A][X] = [B].
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The second term on the right-hand side can be regarded as a correction term. The 
correction term tends to zero as convergence is approached. If this term is multiplied by 
ω, Equation C.22 becomes
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(C.23)

The relaxation factor ω is selected such that 1 < ω < 2. The choice of a proper value of ω is 
problem dependent and is often determined by trial and error. The added weight of ω is 
intended to improve the estimate by pushing it closer to the exact value.

C.2.4  Gradient Methods

The iterative methods considered above may be broadly classified as stationary while 
the ones to be presented now are gradient (or nonstationary) methods. The two common 
gradient methods are the steepest method and conjugate gradients method [6–8]. A major 
advantage gradient methods have over stationary methods is that convergence is faster; 
hence, gradient methods are particularly useful when the number of simultaneous 
equations is very large.

A set of n simultaneous equations may be solved by finding the position of the minimum 
of an error function defined over an n-dimensional space. In each step of a gradient method, 
a trial set of values for the variables is used to generate a new set corresponding to a lower 
value of the error function. If X  is the trial vector, the vector residual is

	 R B AX= − 	 (C.24)

where A is real, symmetric, and positive definite. If we define the error function as

	 e = RtA−1R,	 (C.25)

then

	 e X AX B X B A Bt t t= − + −2 1 	 (C.26)

showing that e is quadratic in X .
Starting from an arbitrary point Xo, we locate a sequence of points

	 Xk+1 = Xk + αkDk	 (C.27)

which are successively closer to X, where X minimizes e in Equation C.26. The parameter αk 
is proportional to the distance between Xi and Xi+1 along the direction vector Dk. Substituting 
Equation C.27 into Equation C.26 and setting ∂e/∂αk equal to zero gives
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Both the methods of steepest descent and conjugate gradients use Equation C.28 but 
differ in the choice of Dk.
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In the method of descent, Dk is taken as the direction of maximum gradient of e at Xk. This 
direction is proportional to Xk so that the iterative algorithm has the form

	 i.	Select an arbitrary X0

	 ii.	Compute R0 = B − AX0

	 iii.	Determine successively
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	 iv.	Repeat step (iii) until residual vector (RT R) becomes sufficiently small.

In the method of conjugate gradients, Dk are selected as n vectors Pk which are mutually 
conjugate. The vectors Pk are conjugate or orthogonal to A, that is,
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Thus, the conjugate gradients algorithm is as follows:

	 i.	Select an arbitrary X0

	 ii.	Set P0 = R0 = B − AX0

	 iii.	Determine successively
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(C.31)

	 iv.	Repeat step (iii) until k = n − 1 or the residual vector (RT R) becomes sufficiently small.

This algorithm is guaranteed to yield the true solution in no more than n iterations—a 
condition known as quadratic convergence. Because of this, the conjugate gradients method 
has the advantage of an iterative scheme in that the roundoff error is limited to only the 
final step of the solution and also the advantage of a direct method in that it converges to 
the exact solution in a finite number of steps.

The MATLAB program in Figure C.4 applies the conjugate gradients method to solve a 
given set of simultaneous equations. Typical areas where the conjugate gradient methods 
have been applied in EM can be found in References 9–12.
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C.3  Matrix Inversion

If [A] is a square matrix, there is another matrix [A]−1, called the inverse of [A], such that

	 [A][A]−1 = [A]−1[A] = [I]	 (C.32)

FIGURE C.4
The program applies the conjugate gradients method to solve [A][X] = [B].
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where I is the identity or unit matrix. Matrix inversion can be used to solve a set of 
simultaneous equations in Equation (C.1) as

	 [X] = [A]−1 [B]	 (C.33)

The solution of a system of simultaneous equations by matrix inversion and multiplication 
is most valuable when several systems are to be solved, all of which have the same coefficient 
matrix but different column matrices of constants. This situation requires calculating the 
inverse matrix only once and using it as a premultiplier of each of the column matrices of 
constants [2,13].

The inversion of matrices is closely related to the solution of sets of simultaneous 
equations. The inverse of [A] can be determined from Equation C.32. If we let [C] = [A]−1, 
then

	 [A][C] = [I]	 (C.34a)

or
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(C.34b)

This may be regarded as n sets of n simultaneous equations with identical coefficient 
matrix. The ith set of n simultaneous equations, for example, is
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Thus, the inversion of [A] may be accomplished by solving n sets of equations such 
as Equation C.35. A common approach for matrix inversion is applying the elimination 
method, with or without pivotal compensation. This implies that any elimination technique 
(Gauss, Gauss–Jordan, or Cholesky’s method) can be modified to calculate an inverse 
matrix. Here, we apply the Gauss–Jordan elimination method.

To apply the Gauss–Jordan method, we first augment the coefficient matrix by the 
identity matrix to obtain
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(C.36)
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The goal is to transform this augmented matrix to another augmented matrix of the form
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where [C] is the inverse of [A]. The transformation is achieved using the Gauss–Jordan 
method, which involves applying the following equations in the order listed [2]:
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(C.38)

We apply Equation C.38 for k = 1, 2, …, n. A computer program applying Equation C.38 
is presented in Figure C.5. An iterative method of correcting the elements of the inverse 
matrix is available in Reference 14.

FIGURE C.5	
Matrix inversion using Gauss–Jordan elimination method.
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C.4  Eigenvalue Problems

The nature of these problems is discussed in Section 1.3. Here, we are concerned with the 
so-called standard eigenproblems

	 [A − λI][X] = 0	 (C.39)

or the generalized eigenproblem

	 [A − λB][X] = 0	 (C.40)

To show that Equations C.39 and C.40 are solved in the same way, we premultiply 
Equation C.40 by B−1 to obtain

	 [B−1A − λI][X] = 0	 (C.41)

Assuming C = B−1A gives

	 [C − λI][X] = 0	 (C.42)

showing that Equation C.39 is a special case of Equation C.40 in which B = I. Thus, the 
procedure for solving Equation C.39 applies to Equation C.40 or Equation C.42.

The eigenvalue problems of Equations C.39 and C.40 are solved by either direct 
or  indirect methods. In direct methods, such as Jacobi’s method, the relevant matrix 
elements are stored in the computer, and an explicit procedure is used to obtain 
some  or  all of the eigenvalues λ1, λ2, …, λn and eigenvectors X1, X2, …, Xn. Indirect 
methods are basically iterative, and the matrix elements are usually generated rather 
than stored.

C.4.1  Iteration (or Power) Method

The most commonly used iterative method is this power method. This method is suitable in 
situations where either the greatest or the least eigenvalue is required. Suppose that one of 
the eigenvalues of A, say λ1, satisfies the condition

	 | λ1 | > | λi  |,  i ≠ 1,	 (C.43)

then |λ  1| is said to be the dominant eigenvalue of A. In many applications, the dominant 
eigenvalue is the most important and is probably the only eigenvalue in which we 
are  interested. The iteration method is specifically used for finding the dominant 
eigenvalues.

The iterative procedure is essentially based on the condition that should a trial vector 
[X]i be assumed, an approximate eigenvalue and a new trial eigenvector [X]i+1 can be 
determined from Equation C.39 or Equation C.40. To find the largest eigenvalue |λ 1|, we 
rewrite Equation C.39 as

	 [A][X] = λ[X]	 (C.44)
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and follow these steps [2]:

	 1.	Assume a trial vector [X]0 = (x1, x2, …, xn), for example, [X]0 = (1, 1, …, 1). Substituting 
[X]0 to the left-hand side of Equation C.44 gives the first approximation to the 
corresponding eigenvector, that is,

	 λ[X]1 = (λx1, λx2, …, λxn)

	 2.	Normalize the new vector λ[X] by dividing it by the magnitude of its first component 
or by dividing the vector [X] by the magnitude of the first component.

	 3.	Substitute the normalized vector into the left-hand side of Equation C.44 and obtain 
a new approximate eigenvector.

	 4.	Repeat steps (2) and (3) until the components of the new and previous eigenvectors 
differ by some prescribed tolerance. The normalizing factor will be the largest 
eigenvalue λ1 while [X] is the associated eigenvector.

To find the smallest eigenvalue, we first premultiply Equation C.44 by the inverse of [A] 
to obtain

	 [X] = λ[A]−1[X]

or

	
[ ] [ ] [ ]A X X− =1 1

λ 	
(C.45)

Thus, the iteration formula becomes

	
[ ] [ ] [ ]A X Xi i

−
+=1

1
1
λ 	

(C.46)

In this form, the iteration converges to the largest value 1/λ, which corresponds to the 
smallest eigenvalue λ of [A].

Once the largest eigenvalue is found, the method can be used to obtain the next largest 
eigenvalue by transforming [A] to another matrix possessing only the remaining eigenvalues 
[2]. This so-called matrix deflation procedure assumes that [A] is symmetric. The matrix 
deflation is continued until all the eigenvalues have been extracted. Error propagation 
from one stage of the deflation to the next leads to inaccurate results, specially for large 
eigenproblems. Jacobi’s method, to be discussed in the next section, is recommended for 
large eigenproblems.

The MATLAB program in Figure C.6 is useful for finding the largest eigenvalues of a 
matrix.

C.4.2  Jacobi’s Method

Jacobi’s method is perhaps the most reliable method for solving eigenvalue problems. 
Its major advantage is that it finds all eigenvalues and eigenvectors simultaneously with 
excellent accuracy.
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The method transforms a symmetric matrix [A] into a diagonal matrix having the same 
eigenvalues as [A]. This is achieved by eliminating one pair of off-diagonal elements of [A] 
at a time. Given

	 [A][X] = λ[X],	 (C.47)

let λ1, λ2, …, λn be the eigenvalues and [V1], [V2], …, [Vn] the corresponding eigenvectors. 
Then,

FIGURE C.6
A program for finding the largest eigenvalue of equation [A][X] = Lambda [X].
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(C.48)

or simply

	 [A][V] = [V][λ]	 (C.49)

where

	 [ ] [[ ],[ ], , ]V V V Vn= 1 2 …  [ ] 	 (C.50a)
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(C.50b)

From the theory of matrices, if [A] is symmetric, [V] is orthogonal, that is,

	 [V]t = [V]−1	 (C.51)

hence, premultiplying Equation C.49 by [V]t leads to

	 [V]t[A][V] = [λ]	 (C.52)

signifying that the eigenvalues of [V]t[A][V], which is known as the orthogonal transformation 
of [A], are the same as those of [A]. Thus, the problem of finding the eigenvalues is reduced 
to finding the [V] matrix.

The [V] matrix is constructed iteratively by using unitary matrix (or plane rotation 
matrix) [R]. If we let

	

[ ] [ ]

[ ] [ ] [ ][ ]

[ ] [ ] [ ][ ] [ ] [ ] [ ]

A A

A R A R

A R A R R R A

t

t t t

1

2 1 1 1

3 2 2 2 2 1

=

=

= = [[ ][ ]

[ ] [ ] [ ] [ ][ ] [ ],

R R

A R R A R Rk k
t t

k

1 2

1 1 1 1

�

… …= − − 	

(C.53)

then as k → ∞

	

[ ] [ ]
[ ][ ] [ ] [ ]

A

R R R V
k

k

→
→−

λ

1 2 1… 	
(C.54)

The unitary transformation matrix [R] eliminates the pair of equal elements apq and aqp. 
It is given by [1,2,7]
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(C.55a)

that is,

	 Rqq = Rpp = cos θ

	 −Rpq = Rqp = sin θ

	     Rii = 1,  i ≠ p,q

	 Rij = 0,  elsewhere	

(C.55b)

The choice of θ in the transformation matrix must be such that new elements ′ = ′ =a apq qp 0, 
that is,

	 ′ = − + + − =a a a apq pp qq pq( )cos sin (cos sin )θ θ θ θ2 2 0	 (C.56)

Hence,
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45 45θ θ=
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(C.57)

An alternative manipulation of Equation C.56 gives
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(C.58a)

	
sin

( ) cos
θ

θ
=

− +

a

a a a
pq

pp qq pq
2 24 	

(C.58b)

Notice that Equation C.53 requires an infinite number of transformations because the 
elimination of elements apq and aqp in one step will in general undo the elimination of 
previously treated elements in the same row or column. However, the transformation 
converges rapidly and ceases when all the off-diagonal elements become negligible in 
magnitude.

The program in Figure C.7 determines all the eigenvalues and eigenvectors of symmetric 
matrices employing Jacobi’s method.
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Appendix D: Computational 
Electromagnetic Codes

Numerical modeling and simulation have revolutionized all aspects of engineering 
design to the extent that several software packages have been developed. In the 1970s, 
researchers developed their own computer programs to solve problems since very few 
commercial solvers existed. Nowadays, the situation is completely different. There 
are dozens of computational tools on the market. There is no longer motivation or a 
justifiable need to develop one’s own software tools at universities and in industry. There 
is growing dependence on commercial software in designing complex electromagnetic 
problems both in industry and academia. While some of these software are commercial, 
some are free. They are powerful tools now available to engineers, not formally trained 
in CEM.

The widely used software packages for CEM include:

•	 Numerical Electromagnetic Codes (NEC): This is based on the method of moments 
(MoM) and was developed at Livermore National Laboratory. It is used for 
frequency domain antenna modeling code of wires and surface structures. NEC2 
uses a text interface code and is a widely used 3D code. A free NEC code is 4nec2, 
which can be found at http://www.qsl.net/4nec2/ Online documentation can be 
obtained from http://www.nec2.org/

•	 High-Frequency Structure Simulator (HFSS): This is based on FEM and was developed 
by Ansoft, which was later acquired by Ansys. HFSS offers state-of the-art solver to 
solve a wide range of EM applications. More information about HFSS can be found 
in http://www.ansys.com/Products/Electronics/ANSYS-HFSS

•	 Sonnet: This software provides high-frequency 3D planar electromagnetic (EM) 
analysis of single and multilayer planar circuits. Free student version (Sonnet Lite) is 
available. For more information, visit their website: http://www.sonnetsoftware.com/

•	 COMSOL: This is based on the FEM. It is a powerful tool for various physics and 
engineering applications. More information about COMSOL is available at https://
www.comsol.com/

•	 FEKO: This is an antenna simulation software based on the method of moments. It 
can be used to calculate the radiation pattern, impedance, and gain of an antenna. 
For more information, visit their website: http://www.feko.info

•	 EMAP: This is a family of three-dimensional electromagnetic modeling codes 
developed at the Missouri University of Science and Technology. EMAP3 is a vector 
FEM code, while EMAP5 is a vector FEM/MoM code.

•	 MEEP: This is a free, open-source finite-difference time-domain (FDTD) simulation 
software package developed at MIT. MEEP is an acronym for MIT Electromagnetic.

•	 Equation Propagation: It was first released in 2006 and it can be downloaded from 
http://ab-initio.mit.edu/meep

http://www.qsl.net/4nec2/
http://www.nec2.org/
http://www.ansys.com/Products/Electronics/ANSYS-HFSS
http://www.sonnetsoftware.com/
https://www.comsol.com/
https://www.comsol.com/
http://www.feko.info
http://ab-initio.mit.edu/meep


656 Appendix D

•	 MaxFem: This is an open software package for electromagnetic simulation based 
on the FEM. The package can solve problems in electrostatics, magnetostatics, and 
eddy-currents.

Each of these software has some limitations in their ability to solve EM problems. Several 
CEM software are available on the Web but these are the most popular ones.
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Appendix E: Answers to  
Odd-Numbered Problems

Chapter 1

	 1.1	 Proof
	 1.3	 Proof
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	 1.7	 Proof
	 1.9	 Proof
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	 1.23	 Proof
	 1.25	 (a) Parabolic, (b) elliptic, (c) elliptic

Chapter 2

	 2.1	 If a and d are functions of x only; c and e are functions of y only; b = 0; and f is a 
sum of a function of x only and a function of y only.
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	 2.27	 The result is shown in the table below.

M J0(x) J1(x) J2(x) J3(x) J4(x) J5(x)

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715
2 5.5201 7.0156 8.4127 9.7610 11.06747 12.3386
3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002
4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801
5 14.9309 16.4706 17.9598 19.4095 20.8769 22.2178
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	 2.51	 Φ Φ( , )
( )

( )

sin sin(
ρ λ ρ

λ λ

λ ω ω λ
t a

J a
J

a
t t

o

n

n

n n

n
n

=
−

=

∞

∑2 2

1

0 0

0
2

1 0

0
0/

/aa

an

)












−λ ω0
2 2 2

	

2.53

	

E a

a

g v
n n

n n
n n

n

z

J
C K

b b c z= − + −

+

=

∞

∑ρρ
λ ρ λ λ λ

ρ

2
11

1

( )
[cosh( ) ]sinh[ ( )]

vv
n n

n n
n n

n

J
C K

b b c z
2

10

1

( )
[cosh( ) ]cosh[ ( )]

λ ρ λ λ λ− + −
=

∞

∑

		

E a = − +












=

∞

ρρ
λ ρ λ

ε
λ λv

n n

r n

n

n
n n

n

J
C

z
K

T z
2

11

1

( ) sinh( )
cosh( )∑∑

∑− −












=

∞

az v
n n

r n

n

n
n n

n

J
C

z
K

T zρ λ ρ λ
ε

λ λ2 0

1

( ) cosh( )
sinh( )

	 2.55	 V A x c yg n

n

= −
=

∞

∑ sin sinh ( )β β
1

		
V x C y F y

n

n p = − −
=

∞

∑sin [ sinh (cosh )]β β β
1

1

		  where

	

F
n

a
n

n
p o

=
=

=









0

4 2

3 3

,

,

even

odd
ρ
π ε

	
C F

b c b c b b
b

n p
r

r
=

− + − −ε β β β β
ε β β
sinh sinh ( ) cosh ( )[cosh ]

cosh sinh (
1

cc b b c b− + −











) sinh cosh ( )β β 	

(12)

	
A C

b
c b

F
b
c b

n n p=
−

−
−
−

sinh
sinh ( )

(cosh )
sinh ( )

β
β

β
β

1

	 2.57	 Proof
	 2.59	 Proof
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	 2.63	 See Figure E.1
	 2.65	 See Figure E.2

Chapter 3

	 3.1	 Proof
	 3.3	 Results are shown in the table below.

FIGURE E.1
For Problem 2.63.

FIGURE E.2
For Problem 2.65.
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Φ

t/x 0 0.25 0.5 0.75 1.0

0 0 0.7071 1.0 0.7971 0
0.03125 0 0.5 0.7071 0.5 0
0.0625 0 0.3526 0.5 0.3526 0
0.09375 0 0.25 0.3526 0.25 0
0.125 0 0.1768 0.25 0.1768 0
0.15625 0 0.1250 0.1768 0.125 0
0.1875 0 0.0884 0.125 0.0884 0

	 3.5	 V i n V i n V i n V i n V i n( , ) ( , ) ( ) ( , ) ( , ) ( , )+ = − + − + + − −1 1 2 1 1 12 2 2α α α

		  where α = ∆ ∆t x/ .

	
3.7

	
U i j n

i
U i j n

i
U i j n

U

( , , )
( )

( , , )
( )

( , , )=
+

+
+ +

−
+

−

+
+

1 1 2
4

1
1 1 2

4
1

1
4

/ /
α α

α
(( , , ) ( , , ) ( , , )i j n U i j n U i j n+ + −  + +

−1 1
4

1
α

α

		  where α = ∆h t2/ .
	 3.9	 Results are tabulated below.

No. of Iterations Φ(0) Φ(0.25) Φ(0.5) Φ(0.75) Φ(1.0)

0 0 0 0 0 1
1 0 −0.03916 −0.0664 0.4121 1

2 0 −0.07226 0.1232 0.5069 1

3 0 0.02254 0.2178 0.5542 1
4 0.06984 0.2651 0.5779 1  
5 0 0.09349 0.2888 0.5897 1

	 3.11	 Proof

	 3.13	 V V V V VA B C D E= = = = =61 46 21 96 45 99 21 96 61 46. , . , . , . , .     V

	 3.15	 U U U U U U1 2 5 6 3 44 56 5 72= = = = = =. , .
	 3.17	 Proof
	 3.19	 Proof

	 3.21	 − ≤ ≤j jr jsin βδ/2

	 3.23	 V V V V V1 5 2 4 354 17 58 33 79 16= = = = =. , . , .    
	 3.25	 a.	 The exact solution gives Zo = Ω60 61. .
	 b.	 The exact solution gives Zo = Ω50 .
	 3.27	 kc = 4 443.  (exact), kc = 3 5124.  (exact)
	 3.29	 Proof
	 3.31	 See Figure E.3
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	 3.33	 a.	 Proof

	 b.	 E j k E j k
c t
c t

E j kz
n

z
n o

o
z
n+ ++ = + +

−
+

+1 10 1 2 1 1 2 1 1( , , ) ( , , ) ( , ,/ / /
δ δ
δ δ

22 0 1 21) ( , , )− +





+E j kz
n /

	 3.35	 Proof
	 3.37	 The results are tabulated below.

ρ z V(ρ,z)

5 18 65.852
5 10 23.325
5 2 6.3991
10 2 10.226
15 2 10.343

	 3.39	 Proof
	 3.41	 See table below.

t Exact FD

0.05 6.2475 6.3848
0.10 2.8564 2.9123
0.15 1.3059 1.2975
0.20 0.5971 0.5913
0.25 0.5971 0.27
0.30 0.1248 0.1233

	 3.43	 (a) 3.66, (b) 3.67.
	 3.45	 0.6321

	 3.47	 a a a a0 3 1 2
2
9

16
9

= = = =,

	 3.49	 Exact solution: –0.4116 + j0

FIGURE E.3
For Problem 3.31.
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Chapter 4

	 4.1	 (a) 1.333, (b) −4.667, (c) 157.08
	 4.3	 0
	 4.5	 a. y x e e xx( ) ( )= + − −2 1

		
b. y x

e e
e

e
e

x x

( )
( )

=
−
+

+
+

−
− +1

1
2

1
1

1

		
c. y x

e e e
e

xe
x x

x( )
( )
( )

=
− −

−
+

−2

22 1
1
2

	 4.7	 a.	 y x x= +
1
8

72( )

	 b.	 y = cos x
	 4.9	 Proof
	 4.11	 Proof
	 4.13	 ∇⋅ =J 0
	 4.15	 Proof

	 4.17	 I xe dx ex( ) ( ) ( ) ( ) ( ) ( )Φ Φ Φ Φ Φ Φ Φ Φ= ′ + − − + + +∫ 2 2 2 2

0

1

8 1 0 1 0

	 4.19	 Compare your result with the following exact solutions.

		

a.

b.

U x
x x

x

U x
x

x

( )
sin sin( )

sin

( )
cos( x) sin

sin

=
+ −

+ −

=
− −

+

2 1
1

2

2 1
1

2

2 −−2

	 4.21	 Compare your result with the following exact solutions.

		

a.   

b.   

Φ

Φ

( ) (cos )

( ) (cos )

x x x

x x

= + −

= −

1
2 1

1
1

2

2

π
π

π
π

	 4.23	 a.	 For m = 1,  Φ = = − −a u x x1 1
1
4

1( )

		  For m = 2,  Φ = − −x x x( . . . )0 0184 0 0263 0 15792

		  For m = 3,  Φ = − − − − − −0 223 0 506 0 1572 3 4. ( ) . ( ) . ( )x x x x x x

	 b.	 For m = 1,

	
a1 3

3
= −

π

		  For m = 2,

	

a

a
1

2

3

2

2

1
4 1











 =

−

−























π

π π( )
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		  For m = 3,

	

a

a

a

1

2

3

3

2

3

2

1
1

2
27



















=

−

−

−


























π

π π

π

( ) 





	 4.25	 a.	 a a1 20 1935 0 1843= =. , .  
	 b.	 a a1 20 1924 0 1707= =. , .  
	 c.	 a a1 21 8754 0 1695= =. , .  

	 4.27	 y x x= −
100
12

1( )3

	 4.29	 Φ = − − − +( )( . . . )1 1 0 209 0 789 0 2092 3x x x x

	 4.31	 Exact: λ πn n= ( )2, that is,  λ λ λ1 2 39 8696 39 48 88 83= = =. , . , .    
	 4.33	 0.1987
	 4.35	 10.53
	 4.39	 0.50032c/a

Chapter 5

	 5.1	 Proof
	 5.3	 a.	 Nonsingular, Fredholm integral of the second kind.
	 b.	 Nonsingular, Volterra integral of the second kind.
	 c.	 Fredholm integral of the second kind.

	 5.5	 a.	 Φ = 5
2

ex

	 b.	 Φ = sin x

	 5.7	 Proof

	 5.9	 G x x

k x L
k kL

k x L x x

k x L
k

o

o
o

o
( | )

cos ( )
cos( )

sin ( ),

sin ( )
cos(

=
−

−
+ <

−
+

2

22kL
k x L x xo

)
cos ( ),− >











	 5.11	 G x y x y
n x n y n x n y

m n
nm

( , , , )
sin sin sin sin′ ′ = −

′ ′
+

=

∞

=

∞

∑∑4
2 2 2

11
π

π π π π

	 5.13	 Proof
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	 5.15	 G x y x h h y n x a n x an

n

( , ; , ) ( )sin( )sin( )′ + = ′
=

∞

∑1 2

1

Φ π π/ /

		  where

	

Φn

n

n ny

A n y a y h

B n y a C n y a h y h h( )
sinh ,

sinh cosh ,=
≤ ≤

+ ≤ ≤ +
π

π π
/

/ /
0 1

1 1 2

DD n b y a h h y bn sinh[ ( ) ],π − + ≤ ≤








 / 1 2

	 5.17	 Proof/Derivation

	 5.19	 V x y f x
G x y x

n
dx G x y y h y dy

G x

( , ) ( )
( , ; , )

( , ; , ) ( )

(

=
∂ ′

∂
′ + ′ ′ ′

+

∞∞

∫∫ 0
0

00

,, , , ) ( , )y x y g x y dx dy′ ′ ′ ′ ′ ′
∞∞

∫∫
00

		  where G x y x y
x x y y x x y y
x x

( , ; ) ln
[( ) ( ) ][ ) ( ) ]
[( )

′ ′ =
− ′ + − ′ + ′ + − ′
− ′

1
4

2 2 2 2

2π ++ + ′ + ′ + + ′( ) ][ ) ( ) ]y y x x y y2 2 2

	 5.21	
Q

Q

Q

do

1

2

3

4
0 1053

0
0 1053



















=
−



















πε
.

.

	 5.23	 (a) 0.1019 pF, (b) 0.0679 pF.
	 5.25	 The scattering patterns are shown in Figure E.4.

FIGURE E.4
For Problem 5.25.
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	 5.27	 See Figure E.5.

	 5.29	 [ ]
.

. .
I

j

j
=

+
+













0 0099 0
0 0188 0 0001

	 5.31	 B1 = (0.0094, −0.00357), B2 = (0.00045, −0.00203). See Figure E.6 for the real and 
imaginary parts of I(z).

	 5.33	 Proof
	 5.35	 The absorbed power density calculated at the center of each cell for the first and 

second layers is Figure E.7.

FIGURE E.5
For Problem 5.27.

FIGURE E.6
For Problem 5.31.
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Chapter 6

	 6.1	 a.	 C =
− −

− −
− −

0 5909 0 1364 0 4545
0 1304 0 4545 0 3182
0 4545 0 3182 0

. . .

. . .

. . .77727



















	 b.	 C =
−

− −
−


















0 6667 0 6667 0
0 6667 1 042 0 375
0 0 375 0 375

. .

. . .
. . 

	 6.3	 (a) 10.667 V, (b) 10 V

FIGURE E.7
For Problem 5.35.
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	 6.5	 α1
1

23
4 3 24= + −( )x y

		
α2

1
23

5 2 30= − + +( )x y

		
α3

1
23

5 17= − +( )x y

	 6.7	 Proof

	 6.9	 W
h h

h V h VV h V h VV

h V h V h V
e

x y

y y x x

x y x

=
− + −

+ + −
ε

4

22
1
2 2

1 2
2

3
2 2

1 3

2
2
2 2

2
2 2

22 3V

















	 6.13	 Proof
	 6.15	 E is uniform within each element and its value is calculated using the following 

formula:

	
E a a= − −

= =
∑ ∑1

2
1

2
3

3

3

3

A
PV

A
QVi ei x

i

i ei y

i

	 6.17	 See Figure E.8.
	 6.19	 The exact value is given by

	
k a m n nmn

c

2 2 2 2
2

2
= + + =









( ) [( ) ]π π

λ
/

	
λc mn

a
m n n a, ( ) ,= + + =

2
12 2

	 6.23	 B = 14. With the renumbered mesh, B = 4.

	 6.25	 a.	
A

x x x
3

1 2 3( ).+ +

	 b.	
A

x x x x
12

91
2

2
2

3
2 2+ + +





ˆ , where x̂ is defined in part (c).

FIGURE E.8
For Problem 6.17.
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	 c.	 A
x y x y x y xy

12
91 1 2 2 3 3+ + +





 , 

	where

ˆ ( ), ˆ ( )x x x x y y y y= + + = + +
1
3

1
3

1 2 3 1 2 3

	

6.27

	

α

α

α

α

α

1

2

3

4

5

8
2

4
4

1
4
1
8

4 2

1
4

4

= −

= − −

=

= − − − −

= −

y
y

y
x y

xy

x y x y

xy

( )

( )

( )( )

( xx y

x
x

−

= −

)

( )α6
8

2

	 6.29	 For n = 1,

		  Q Q( ) ( ),2 31
2

1 0 1
0 0 0
1 0 1

1
2

0 1 1
0 1 1
0 0 0

=
−

−



















=
−

−



















		  For n = 2,

		  Q( )2 1
6

3 0 4 0 0 1
0 8 0 0 8 0
4 0 8 0 0 4
0 0 0 0 0 0
0 8 0 0 8 0
1 0 4 0 0 3

=

−
−

− −

−
−

































		  Q( )3 1
6

3 4 0 1 0 0
4 8 0 4 0 0
0 0 8 0 8 0
1 4 0 3 0 0
0 0 8 0 8 0
0 0 0 0 0 0

 =

−
− −

−
−

−

































6.31	a.	 Proof,
	 b.	 Proof. For n = 1,

	

Q( )1 1
2

0 0 0
0 1 1
0 1 1

= −
− −


















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		  For n = 2,

	

Q( )1 1
6

0 0 0 0 0 0
0 8 8 0 0 0
0 8 8 0 0 0
0 0 0 3 4 1
0 0 0 4 8 4
0 0 0 1 4 3

=

−
−

− −
− −

−

































	 6.33	 α α1 1
1

96
96 24 8 8

1
96

24= − − − =( ), ( )x y z y

	 6.35	 T =

























ν
20

2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

	 6.37	 B jk1
1

2
=

∂
∂

+ +
ρ ρ

	
B jk

jk jk
2

2

2

1
2

1
8 1

1
2 1

=
∂

∂
+ + −

+
−

+
∂

∂ρ ρ ρ ρ ρ ρ φ( ) ( )

	 6.39	 40.587 Ω
	 6.41	 See the table below.

w/h C11 = C22 (pF/m) C21 = C12 (pF/m)

2 64.46 −48.74
4 108.40 −88.42
8 195.999 −167.12

Chapter 7

	 7.1	 Proof
	 7.3	 Proof
	 7.5	 ∆ =/λ 0 0501.
	 7.7	 See Figure E.9
	 7.9	 Proof
	 7.11	 Proof
	 7.13	 1/6 ns
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	 7.15	 See table below.

δ λl /

|Z| arg (Z)

TLM Exact TLM Exact

0.023 4.1961 6.1272 −0.2806 −0.0106
0.025 2.3822 2.4898 1.2546 1.0610
0.027 0.3281 0.3252 −0.7951 −0.8554
0.029 5.2724 5.1637 0.8459 0.8678
0.031 0.2963 0.3039 −1.1340 −1.1610
0.033 1.8117 1.8038 1.3408 1.3384
0.035 0.8505 0.8529 −1.3820 −1.4025
0.037 0.4912 0.4838 1.3914 1.3932
0.039 5.3772 5.4883 −1.1022 −1.1125
0.041 0.2115 0.2179 −1.2795 −1.3174

	 7.17	 For εr ck a= =2 1 303, . ; for εr ck a= =8 0 968, .
	 7.19	 See Figure E.10

Chapter 8

	 8.3	 a.   16, 187, 170, 429, 836, 47, 950, 369, 456, 307
	 b.	 997, 281, 13, 449, 277, 721, 133, 209, 757, 761

FIGURE E.9
For Problem 7.7.
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	 8.7	 M = 5, a = 0, b = 1. We generate the random variate as follows:
	 1.	 Generate two uniform random variables U1 and U2 from (0,1)
	 2.	 Check if U f U M UX1 2 2

2≤ =( ) ./
	 3.	 If the inequality holds, accept U2 as the variate generated from f xX( ).
	 4.	 If the inequality is violated, reject U1 and U2 and repeat steps 1–3.
	 8.9	 (a) 3.14156 (exact), (b) 0.4597 (exact), (c ) 1.71828 (exact), (d) 2.0 (exact)
	 8.11	 0.4053 (exact)
	 8.13	 2.5 (exact)
	 8.15	 See table below.

y Exact MCM (Floating)

1 0.408 0.402 ± 0.022
2 0.816 0.818 ±0.026
3 1.224 1.226 ± 0.025
4 1.663 1.679 ± 0.039
5 2.041 2.045 ± 0.038
6 3.633 3.777 ± 0.046
7 5.224 5.262 ± 0.041
8 6.816 6.775 ± 0.048
9 8.408 8.395 ± 0.035

	 8.17	 2.991 V
	 8.19	 1.2 V (exact)
	 8.21	 V(2,10) = 65.85, V(5,10) = 23.32, V(8,10) = 6.4, V(5,2) = 10.23, V(5,18) = 10.34

FIGURE E.10
For Problem 7.19.
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	 8.23	 a.	 0.33, 0.17, 0.17, 0.33
	 b.	 0.455, 0.045, 0.045, 0.455, 0.455

	 8.25	 12.11 V
	 8.27	 10.44 V
	 8.29	 35.55 V
	 8.31	 23.41 V
	 8.33	 See the table below.

t Exact MCM

0.05 1.491 1.534
0.10 0.563 0.6627
0.15 0.216 0.267
0.20 0.078 0.106
0.25 0.029 0.0419
0.30 0.0015 0.019

	 8.35	 See the table below.

t Exact Exodus FD

0.1 6.0191 6.2337 6.0573
0.2 3.3752 3.6034 3.3532
0.3 1.8933 2.1193 1.8770
0.4 1.0619 1.2488 1.0510
0.5 0.5955 0.736 0.589
1.0 0.0330 0.0266 0.0325

	 8.37	 See the table below.

t Exact Random Walk Exodus

0.05 1.491 1.534 1.5427
0.10 0.563 0.6627 0.6634
0.15 0.216 0.267 0.2727
0.20 0.078 0.106 0.1116
0.25 0.029 0.0419 0.0456
0.30 0.0015 0.019 0.0184

Chapter 9

	 9.1	 Proof

	 9.3	 T
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	 9.7	 See the table below.

( , )ρ z Exact MOL

(0,0.25) 5.375 5.370
(0,0.5) 7.123 7.196
(0,0.75) 5.375 5.370
(0.125,0.5) 7.433 7.415
(0.25,0.5) 8.065 8.046

	 9.9	 Proof



http://taylorandfrancis.com


677

Index

A

ABC, see Absorbing boundary condition
Absorbing boundary condition (ABC), 162, 

427–428, 499–501
for FDTD, 173–181

Absorption cross section, 97
Accuracy, 161–162

of FD solutions, 140–147
of results, 470–475

Ampere’s law, 4
Amplification factor, 144, 146
Amplification matrix, 145
Amplitude functions, 95–96
Analytical methods, 1, 29

attenuation due to raindrops, 98–105
cylindrical coordinates, separation of 

variables in, 42–56
practical applications, 90–97
rectangular coordinates, separation of 

variables in, 32–42
scattering by dielectric sphere, 90–95
scattering cross sections, 95–97
separation of variables, 29–32
series expansion, 80–90
spherical coordinates, separation of 

variables in, 56–71
useful orthogonal functions, 71–80

Ansoft, 655
Antennas, 182
Antithetic variates, Monte Carlo integration 

with, 523
Arbitrary array of parallel wires, scattering 

by, 314–320
Arbitrary constant –k2, 31
Arbitrary domains, 399–400

blocks, 400–401
connection of individual blocks, 402
subdivision of each block, 401–402

Arbitrary function, 72, 422
Area coordinates, see Local coordinates
Array, 623

arbitrary, 314–320
MEDIA, 166

Artificial termination conditions, 179
Aspect ratio, 132
Associated Laguerre polynomials, 74
Associated Legendre functions, 64

Attenuation
coefficient, 98
of line, 153
due to raindrops, 98–105

Automatic mesh generation I, 395–399
Automatic mesh generation II, 399–400

blocks, 400–401
connection of individual blocks, 402
subdivision of each block, 401–402

Auxiliary equation, 34
Averaging process, 164
Axisymmetric solution region, 529–530

B

Back-scattering cross section, see Radar cross 
section

Back substitution, 636, 637
Backward-difference formula, 124, 133
Band matrix method, 137, 380–382, 391–392
Bandwidth reduction, 402–408
Basis functions, see Expansion functions
Bayliss, Gunzburger, and Turkel analysis 

(BGT analysis), 428
BEM, see Boundary element method
Bemmel’s code, 171
Ber and bei functions, 51–52
Bessel equation, 601
Bessel functions, 46–47, 49, 50, 52, 72

of fractional order, 63
Bessel–Riccati function, 104
BGT analysis, see Bayliss, Gunzburger, and 

Turkel analysis
Binomial expansion, 67–68
Blocks, 400–401

individual blocks connection, 402
subdivision, 401–402

Boundary conditions, 19–20
classification, 19–20
EM theory, 7–8
homogeneous, 19, 35
imposing, 581
inhomogeneous, 35
Neumann, 19
3-D TLM mesh, 489–497

Boundary element method (BEM), 279, 
425–427
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Boundary representation, 468–469
Break statement, 629

C

Calculus of variations, 232–236
Cartesian coordinates, 179, 409, 426, 584, 597
Cartesian field components, 181
Cartesian system, Laplace’s equation in, 578
Cauchy–Euler equation, 43–44, 58
CEM, see Computational electromagnetics
Central-difference formula, 124
Central limit theorem, 518
Characteristic impedance (Zo), 151
Chebyshev functions, 72, 323
Chebyshev polynomials, 75–76, 196
Cholesky’s method, 638–639
Circuit theory, 451
CME, see Complex-mediums electromagnetics
Coarseness error, 498
Coefficient matrix, 632
Collocation method, 247, 252

Galerkin method, 249, 253
least squares method, 249–251, 253–255
subdomain method, 248–249, 252–253

Column matrix, 137, 139, 263, 390, 635
Command window, 621, 627, 629
Complex-mediums electromagnetics (CME), 

182
Computational efficiency, 577
Computational electromagnetics (CEM), 2

codes, 655–656
community, 182

Computational molecule, 128
Computational time reduction, 577
COMSOL, 430–431, 655
Confidence interval, 519, 520
Confidence level, 519
Conjugate gradients method, 643, 645
Constitutive relations, 7
Continuity equation, 7
Convergence, 641
Coordinate geometries, 42
Cramer’s rule, 282
Crank–Nicholson method, 129
Cross section for extinction, 96
Crout’s method, see Cholesky’s method
Crude Monte Carlo integration, 521–523
Cube, Poisson’s equation in, 80–82
Cumulative probability function, 515
Cylinder

Poisson’s equation in, 82–85
scattering by conducting, 311–314

Cylindrical coordinates, 183–187, 584–588, 619
separation of variables in, 42–56

Cylindrical microstrip structures, 597–604

D

Deep-seated tumors, EM heating of, 334
Diagonalization, 586
Diagonal matrices, 594–595, 604
Dielectric sphere, 90

scattering by, 90–95
Difference operators, 605
Differential and IEs relationship, 284–287
Differential equations, 15–19, 72, 280–282
Differential operator, 30
Diffusion equation, 17, 31, 50–51, 455, 556

solution of, 456–460
Diffusion PDE, see Parabolic PDE
Dirac delta function, 247, 288
Direct method, 154, 229, 515
Dirichlet boundary condition, 19
Dirichlet conditions, 153, 392
Dirichlet–Neumann conditions (DN 

conditions), 583–584
Dirichlet problem, 20, 32, 287
Discretization, 338–339
disp command, 630
Distant scattering pattern, 317
DN conditions, see Dirichlet–Neumann 

conditions
Domain basis functions, 323
Double integral, 197
Double summation, 88
Dufort–Frankel method, 129
Dyadic function, 336

E

EFIE, see Electric field integral equation
Eigenfunctions, 35, 258

expansion, 295–305
Eigenproblem, generalized, 648
Eigenvalue problems, 255–261, 648

iteration method, 648–649
Jacobi’s method, 649–653

Eigenvalues, 155, 258
matrix, 580

Eigenvector matrix, 580
Electrical power engineering, 526
Electric field, 320

intensity, 61
Electric field integral equation (EFIE), 330
Electromagnetic compatibility (EMC), 174
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Electromagnetic compatibility (EMC), 2
Electromagnetic interference (EMI), 174
Electromagnetics (EM), 1, 2, 279, 371

absorption in human body, 334–350
analysis, 655
problem classification, 15–20
scattering problems, 165

Electromagnetic theory (EM theory), 3
boundary conditions, 7–8
electrostatic fields, 3–4
magnetostatic fields, 4–5
time-harmonic fields, 11–14
time-varying fields, 5–7
time-varying potentials, 9–11
wave equations, 8–9

Electrostatics, 526
fields, 3–4

Elements; see also Higher-order elements
3-D, 420–425
assembling, 377–379
coefficient matrix, 376
element-governing equations, 387–390
governing equations, 373–377
shape functions, 375

Elimination methods, 635
Elliptic PDEs, finite differencing of, 136–140
EM, see Electromagnetics
EMAP, 655
EMC, see Electromagnetic compatibility
EMI, see Electromagnetic interference
EM theory, see Electromagnetic theory
End statement, 631
Equation propagation, 655
Error, 144

analysis in numerical schemes, 141
coarseness, 498
evaluation in MCMs, 517–521
function, 643
misalignment, 499
modeling, 143–144
roundoff, 144
sources and correction, 497
truncation, 143–144, 498
velocity, 498–499

Euler–Lagrange equation, see Euler’s equation
Euler’s constant, 48
Euler’s equation, 235–237, 239, 242, 388
Euler’s rule, 190–191
Excitation, 471
Exodus method, 533–545
Expansion function, 249–250
Expansion functions, 240, 244, 246, 249, 255, 279, 

280, 323–334

Explicit finite difference approximation, 160
Explicit formula, 128
Explicit method, 130
Exponential weighting function, 76
Exterior problems, FEMs for, 425

ABC, 427–428
BEM, 426–427
infinite element method, 425–426

F

Far-field region (f.f. region), 425
FDM, see Finite difference methods
FD solution, see Finite difference solution
FDTD method, see Finite-difference time-

domain method
FEKO (antenna simulation software), 655
FEM, see Finite element method
Field(s)

computation of, 469–470
field parameters, equivalence between 

network and, 461–464
transmitted, 92–93

Finer meshes, 144
Finite-difference time-domain method (FDTD 

method), 156–173, 187, 428–430, 655
ABC for, 173–181
advanced applications, 181–183
antennas, 182
MEEP, 183
metamaterials, 182
periodic structures, 181–182
photonics, 182
time-stepping equations, 180

Finite difference approximation, 125, 127, 183
of Laplace’s equation, 148

Finite difference methods (FDM), 123, 371, 452, 
530, 577; see also Finite element method 
(FEM)

ABC for FDTD, 173–181
advanced applications of FDTD, 181–183
of elliptic PDEs, 136–140
finite difference schemes, 124–127
guided structures, 147–156
of hyperbolic PDEs, 132–135
for nonrectangular systems, 183–189
numerical integration, 189–202
of parabolic PDEs, 127–132
transmission lines, 147–153
waveguides, 153–156
wave scattering, 156–173

Finite difference solution (FD solution), 123, 561
accuracy and stability of, 140–147
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Finite element method (FEM), 229, 371, 452; see 
also Finite difference methods (FDM)

applications, 430–432
automatic mesh generation I, 395–399
automatic mesh generation II, 399–402
bandwidth reduction, 402–408
for exterior problems, 425–428
FETD method, 428–430
higher-order elements, 408–420
Laplace’s equation solution, 372–385
nodal coordinates of, 387
Poisson’s equation solution, 385–392
three-dimensional elements, 420–425
wave equation solution, 392–395

Finite elements, 371, 372
discretization, 372–373

First-order equations, 8
Fixed random walk, 526–530
Floating random walk, 530–533
For statement, 628
FORTRAN program, 171, 190, 596
Forward-difference formula, 124
Forward-scattering cross section, 97
Forward elimination, 636, 637
Fourier–Bessel expansion, 53
Fourier function, 323
Fourier method, see Separation of variables
Fourier series solution, classical, 255
Fourier sine expansion, 36
Four medium-dependent equations, 3, 6
4nec2, 655
Fredholm equations, 283
Free space, 288–292

discontinuity, 474
Free space Greens’ function, 321
Frequency response computation, 469–470
Frobenius method, 47, 58
Functionals, 232

from PDEs, 236–239
principle, 233

Functions, 232, 631
Function statement, 631
Fundamental matrix, 413–420, 547

G

Galerkin method, 249, 253, 255, 258, 279, 326, 429
Gamma function, 47

of half-integer order, 63
Gauss–Chebyshev rule, 196
Gauss–Hermite rule, 196
Gaussian rules, 196–197
Gauss–Jordan method, 647

elimination method, 340
Gauss–Laguerre rule, 196
Gauss–Legendre rule, 196
Gauss–Seidel method, 137, 641–642
Gauss’s law, 3, 149, 152

for magnetostatics, see Law of conservation 
of magnetic flux

Gauss’s method, 635–637
General vector auxiliary differential equation 

(GVADE), 182
Generating functions, 69, 72, 75, 79
Geometric optics, 451
Global coefficient matrix, 377
Gradient methods, 643–645
Green’s functions, 287–288

for domain with conducting boundaries, 
293–305

for free space, 288–292, 321
GRID, 395, 398, 399
GVADE, see General vector auxiliary 

differential equation

H

Hallen’s IE, 322–323
Hamilton’s principle, 238
Hand-labeling technique, 408
Hankel functions, 49, 292
Heat conduction, 526
Heat equation, see Diffusion equation
Helmholtz equation, 36, 45, 153, 255, 392, 420, 

455, 464, 597
Helmholtz’s wave equation, 589–590
Helmholtz theorem of vector analysis, 10
Help command, 627
Hermite functions, 72, 76, 324
Hermite polynomials, 72
HFSS, see High-Frequency Structure Simulator
High-frequency methods, 1
High-Frequency Structure Simulator (HFSS), 

655
Higher-order associated Legendre functions, 65
Higher-order difference equations, 144
Higher-order elements, 408

fundamental matrices, 413–420
local coordinates, 409–411
Pascal triangle, 408–409
shape functions, 411–413

Higher-order finite difference approximations, 
126

Homogeneous boundary conditions, 19, 35
Homogeneous Neumann conditions, 392
Homogeneous scalar wave equation, 31
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Human body, EM absorption in, 334
derivation of IEs, 335–337
evaluation of matrix elements, 339–340
solution of matrix equation, 340–350
transformation to matrix equation, 338–339

Hyperbolic PDEs, finite differencing of, 132–135
Hyperthermia, 334

I

Identity matrix, 646
IEs, see Integral equations
IEs derivation, 335–337
If statement, 628
Imaginary parts (IM parts), 329
IM parts, see Imaginary parts
Implicit formula, 128
Implicit methods, 131, 133
Improper integrals, 524–525
Indirect methods, 229
Infinite element method, 425–426
Influence function, see Green’s functions
Inhomogeneous boundary condition, 35
Inhomogeneous equation, 279
Inhomogeneous media in TLM, 475

general 2-D shunt node, 475–477
representation of lossy boundaries, 

478–482
scattering matrix, 477–478

Inhomogeneous ordinary differential equation, 
84

Initial fields, 164–165
Input command, 630
Inscribed figure method, 546
Integer arithmetic, 144
Integral equations (IEs), 279, 282, 523

classification of, 283
connection between differential and, 

284–287
Integration molecule, 201
Integration rules, 189, 196
Integro-differential equation, 321
Inversion method, see Direct method
Iteration methods, 137–140, 155, 380, 390–391, 

639, 648–649
Gauss–Seidel method, 641–642
gradient methods, 643–645
Jacobi’s method, 640–641
relaxation method, 642–643

J

Jacobi’s method, 137, 640–641, 649–653

K

Kelvin functions, see Ber and bei functions
Kernel function, 287
Kirchhoff’s current law, 454
Kirchhoff’s voltage law, 453

L

Lagrange method, 238
Laguerre functions, 72, 76
Laguerre polynomials, 73
Laplace’s equation, 4, 5, 13, 17, 31, 38–39, 42, 56, 

65, 80, 86, 136–137, 140, 148, 183, 185, 
187, 261, 291, 372, 526, 531, 547, 552, 556, 
578

assembling of all elements, 377–379
cylindrical coordinates, 584–588
element governing equations, 373–377
finite difference approximation of, 148
finite element discretization, 372–373
rectangular coordinates, 578–584
rectangular coordinates, separation of 

variables in, 32–36
solving resulting equations, 379–385
spherical coordinates, separation of 

variables in, 57–61
Lattice truncation conditions, 162–164
Law of conservation of magnetic flux, 4
Leapfrog method, 129
Least squares method, 249–251, 253–255
Legendre differential equation, 58
Legendre expansion, 69
Legendre functions, 58–59, 72, 324
Legendre’s associated differential equation, 64
Leibnitz rule, 285
L’Hopital’s rule, 185, 560
Linear congruential sequence, 514
Linear IEs, 283
Linear operators, 30
Linear second-order PDE, 287
Local coordinates, 409–411, 422
Lorentz condition, 10, 320
Lorentz force equation, 7
Lossy boundaries, 478–482
Lossy media in TLM, 475

general 2-D shunt node, 475–477
representation of lossy boundaries, 478–482
scattering matrix, 477–478

Lossy medium, 180
Low-frequency methods, 1
Lower-order spherical Bessel functions, 63
Lumped network model, 452
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M

Maclaurin function, 323
Magnetostatic fields, 4–5
Magnitude of EM wave, 98
Maple, 596
Markov chain, 546
Markov chain regional MCM, 545–552
Markov process, 546
MATLAB, see MATrix LABoratory
Matrix decomposition method, see Cholesky’s 

method
Matrix deflation procedure, 649
Matrix element evaluation, 339–340
Matrix equation

solution, 340–350
transformation to, 338–339

Matrix inversion, 645–647
MATrix LABoratory (MATLAB), 104, 157, 172, 

578, 596, 621
basic operations, 622
color and line types, 626
commands, 634
elementary math functions, 622
functions, 631
fundamentals, 621–625
matrix operations, 623
to plot, 625–627
programming, 621, 627–630, 633–634
relational and logical operators, 628
selected greek and mathematical symbols, 

630
solving equations, 631–633
special matrices, variables, and constants, 624

MaxFem, 656
Maxwell’s curl equations, 457
Maxwell’s equations, 1, 2, 6, 8, 12, 22, 50, 159, 

169, 173–174, 179, 182, 311, 335, 428, 
451–453, 460–461, 463, 466, 476, 477, 
486, 487, 499, 605

in space–time, 429
Maxwell’s four field equations, 3
MCMC, see Monte Carlo Markov chain
MCMs, see Monte Carlo methods
MEDIA array, 166
MEEP, 183, 655
Mesh

function, 626
Mesh generators, 395
Mesh size, 136
nonuniform, 397

Mesh domain (meshdom), 626
Metamaterials, 182

Method of images, 293–294
Method of Lines (MOL), 577

solution of laplace’s equation, 578–588
solution of wave equation, 588–604
time-domain solution, 604–606

Method of moments (MoM), 182, 229, 279, 371, 
655

differential equations, 280–282
EM absorption in human body, 334–350
Green’s functions, 287–305
IE, 282–287
quasi-static problems, 305–310
radiation problems, 320–334
scattering problems, 310–320

Method of squares, 123
Method of statistical trials, see Monte Carlo 

methods (MCM)
Method of weighted residuals, 229
M-files, 631
Microstrip lines, 430–432
Microwave theory, 451
Mie scattering problem, 90
Misalignment error, 499
Mixed boundary condition, 19
Mixed congruential method, 514
Modeling errors, 143–144
Modified Bessel equation, 51
Modified Bessel functions, 47, 49
MOL, see Method of Lines
MoM, see Method of moments
Moment methods, see Method of moments 

(MoM)
Monte Carlo integration

with antithetic variates, 523
of radiation integral, 525

Monte Carlo Markov chain (MCMC), 552
for Poisson’s Equation, 552–556

Monte Carlo methods (MCMs), 513
evaluation of error, 517–521
generation of random numbers and 

variables, 514–516
Markov chain regional MCM, 545–552
MCMC for Poisson’s equation, 552–556
numerical integration, 521–525
solution of potential problems, 526–545
time-dependent problems, 556–561

Multiple integration, 197–202
Multiplicative congruential method, 514

N

Near-field region (n. f. region), 425
NEC, see Numerical Electromagnetic Codes
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Network-matrix wavelength, 474
Network parameters, equivalence with field 

parameters and, 461–464
Neumann condition, 153

boundary condition, 19
Neumann function, 46, 48
Neumann problem, see Dirichlet problem
Newton–Cotes formulas, 195
Newton–Cotes numbers, 194
Newton–Cotes rules, 194–195, 197–198
Nonlinear system, 143–144
Nonrectangular systems, finite differencing for, 

183–189
Nonstationary methods, see Gradient methods
Nonuniform mesh, 397
Norm of function, 230
Numerical algorithm, 144
Numerical Electromagnetic Codes (NEC), 655

NEC2, 655
Numerical integration, 189, 521

crude Monte Carlo integration, 521–523
Euler’s rule, 190–191
Gaussian rules, 196–197
improper integrals, 524–525
Monte Carlo integration with antithetic 

variates, 523
multiple integration, 197–202
Newton–Cotes rules, 194–195
Simpson’s rule, 193–194
trapezoidal rule, 192–193

Numerical methods, 1
Numerical modeling and simulation, 655
Numerical quadrature, see Numerical 

integration
Numerical stability, 577

O

ODE, see Ordinary differential equations
Ohm’s law, 5
One-dimension (1-D)

diffusion equation, 556–558
integration, 197
system, 452

Open-circuiting series nodes, 489
Operator equation, 30
Operators in linear spaces, 229–232
Ordinary Bessel functions, 62, 63
Ordinary differential equation, first-order, 284
Ordinary differential equations (ODE), 31, 

33, 37, 429, 577, 580; see also Partial 
differential equation (PDE)

first-order, 284

inhomogeneous, 84
N coupled, 591, 592
second-order, 284
second-order linear, 322

Ordinary Legendre functions, 64
Orthogonal coordinates, 618–619
Orthogonal functions, 71–80
Orthogonality properties, 72

of sine and cosine functions, 88
Orthogonal matrix, 592
Orthogonal transformation, 651
Orthogonal with weight w(x), 71
Output-impulse function, 470, 478
Output response, 470–475

P

Parabolic PDE, 127
finite differencing of, 127–132

Partial differential equation (PDE), 16, 18, 29, 32, 
80, 287, 451, 455, 605; see also Ordinary 
differential equations (ODE)

construction of functionals from, 236–239
Pascal triangle, 408–409
PDE, see Partial differential equation
Perfectly matched layer (PML), 179, 181, 183, 499
Periodic structures, 181–182
Permeability stub, 483
Phase velocity, 151
Photonics, 182
Piecewise constant function, 324
Piecewise linear function, 248, 324
Piecewise sinusoidal function, 248, 324
Piecewise uniform function, 248
Pivot coefficient, 636
Pivot equation, 636
Planar microstrip structures, 590–597
Plot command, 625–627
PML, see Perfectly matched layer
Pocklington’s IE, 323
Point-matching method, see Collocation method
Poisson’s equation, 4, 5, 12, 16, 17, 136, 140, 185, 

236–237, 292, 382, 455, 527, 532, 534, 556
in cube, 80–82
in cylinder, 82–85
deriving element-governing equations, 

387–390
MCMC for, 552–556
solution, 385–387
solving resulting equations, 390–392

Poisson’s integral formula, 300
Possibly complex parameter, see Scalar 

parameter
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Potential distribution, 426
Potential problems

Exodus method, 533–545
fixed random walk, 526–530
floating random walk, 530–533
Green’s function for, 354
solution of, 526

Power method, 648–649
Principal value (PV), 337
Probabilistic potential theory, 526
Probability density function, 524
Programming

aspects, 165–173
effort reduction, 577
hints, 633–634
with MATLAB, 627–630

Propagation constant, 596
Propagation velocity, dispersion relation of, 

464–466
Pseudospectral time-domain (PSTD), 181, 182
PSTD, see Pseudospectral time-domain
Pulse function, see Piecewise constant function
PV, see Principal value

Q

QUADPACK, 190
Quadratic convergence, 644
Quadratic triangular elements, 409
Quadrature formulas, 521
Quadrature rule, 189
Quasi-static problems, 305–310
Quasi-three-band symmetric matrix, 586

R

Radar cross section, 97
Radiation conditions, 162
Radiation integral, Monte Carlo integration of, 

525
Radiation problems, 320–322

expansion and weighting functions, 323–334
Hallen’s IE, 322–323
Pocklington’s IE, 323

Raindrops, attenuation due to, 98–105
Raleigh formula, 155
Random numbers, generation of, 514–516
Random walk algorithm, 557
Rayleigh–Ritz method, 229, 239–246
Real parts (RE parts), 329
Reciprocity principle, 288
Rectangular coordinates, 159, 578–584, 618

separation of variables in, 32–42

Rectangular domains, 395–399
Rectangular waveguide, normalized 

impedance of, 475
Recurrence relation, 73–76
Rejection method, 515, 516
Relaxation factor, 138, 643
Relaxation method, 642–643
RE parts, see Real parts
Residual matrix, 263
Retarded potentials, 11
Root-finding algorithm, 596, 604
Roundoff errors, 144

S

Sampling, 513
SAR, see Specific absorption rate
Scalar

equations, 159
functions, 597
Helmholtz equation, 428
parameter, 283
wave equation, 9

Scattered field, 55, 92
Scattered radiation, 95
Scattering, 471

cross section, 95–97, 314
by dielectric sphere, 90–95
matrix, 466–468, 477–478

Scattering problems, 310–311
by arbitrary array of parallel wires, 

314–320
by conducting cylinder, 311–314

Schelkunoff’s IE, 323
Schwarz inequality, 230
Script files, 631
Secant method, 597
Second-order differential equation, 8
Second-order ordinary differential equation, 

284
Segmented FDTD (SFDTD), 181
Semi-bandwidth, 405–406
Separation constants, 31, 37
Separation of variables, 29–32

in cylindrical coordinates, 42–56
in rectangular coordinates, 32–42
in spherical coordinates, 56–71

Series expansion, 79, 80, 140
formula, 72
Poisson’s equation in cube, 80–82
Poisson’s equation in cylinder, 82–85
strip transmission line, 85–90

Series nodes, 483–485
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SFDTD, see Segmented FDTD
Shape functions, 400–401, 411–413

polynomial basis function, 414
Short-circuiting shunt nodes, 489
Shrinking boundary method, 546
SIE, see Surface integral method
Simpson’s 1/3 rule, 195, 197–198
Simpson’s rule, 193–194
Simulation, 2, 513; see also Monte Carlo 

methods (MCMs)
FDTD, 181, 183

Simultaneous equation solution, 635
Cholesky’s method, 638–639
eigenvalue problems, 648–653
elimination methods, 635
Gauss’s method, 635–637
iterative methods, 639–645
matrix inversion, 645–647

Six-node triangular elements, see Quadratic 
triangular elements

Soft-grid truncation conditions, 169
Solution regions, 15
Solve command, 632
Sonnet software, 655
SOR method, see Successive over-relaxation 

method
Source function, see Green’s functions
Space discretization, 471
Sparse matrix, 137
Specific absorption rate (SAR), 334
Spherical Bessel functions, 62–63, 92–93
Spherical coordinates, 187–189, 619

separation of variables in, 56–71
Spherical Hankel function, 92–93
Spherical harmonics, 65
Spherical vector functions, 92
Spurious solutions, 144
Sqrt function, 622
Stability, 161–162

of FD solutions, 140–147
numerical, 577

Standard deviation, 517
Standard eigenproblems, 648
Standard FDTD, 179
Standard inner product, 230
Stationary methods, 643
Stationary principle, see Variational principle
Steady-state equations, 16
Steepest method, 643
Stiffness matrix, see Element coefficient matrix
Stirling’s formula, 518
Stokes’s theorem, 3
Strip transmission line, 85–90

Subdomain basis functions, 324
Subdomain method, 248–249, 252–253
Successive over-relaxation method (SOR 

method), 137–138
Successive relaxation, 138
Superposition principle, 21
Superposition theorem, 65
Surface integral method (SIE), 279
Symmetry condition, 169

T

T-type equivalent circuit model, 453
Taylor-series expansion, 185
Taylor’s expansion, 234
Taylor’s series, 125–126, 186
TE mode, see Transverse electric mode
Tensor integral-equation (TIE), 335
Testing functions, see Weighting functions
Tetrahedral element, 422
THREDE, 171
Three-dimension (3-D)

elements, 420–425
plots, 626

Three-dimensional transmission-line-matrix 
mesh (3-D TLM mesh), 483

boundary conditions, 489–497
series nodes, 483–485
3-D node, 485–489

Three-point central finite difference 
scheme, 585

TIE, see Tensor integral-equation
Time-dependent problems, 556–561
Time-domain modeling in three 

dimensions, 169
Time-domain solution, 604–606
Time-harmonic fields, 11–14
Time-varying fields, 5–7
Time-varying potentials, 9–11
TLM method, see Transmission-line-matrix 

method
TM mode, see Transverse magnetic mode
Transcendental equation, 466
Transfer-matrix equation, 464–465
Transformation matrix, 580
Transformed vector, 592–593
Transform method, see Direct method
Transient equations, 16
Transient probability, 534–535
Transition probability, 534–535
Transmission-line-matrix method 

(TLM method), 451, 475
ABCs, 499–501
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Transmission-line-matrix method (TLM 
method) (Continued)

and boundaries, 461
comparison of relative current density, 460
comparison with FDTD methods, 502
error sources and correction, 497–499
inhomogeneous and lossy media, 475–482
mesh, 498–499
rectangular cavity loading with dielectric 

slab, 496
resonant wavenumber, 495, 497
solution of diffusion equation, 456–460
solution of wave equations, 460–475
technique, 497
3-D TLM mesh, 483–497
transmission-line equations, 453–456
transmission-line equivalent models, 456

Transmission-line equations, 452–453, 453–456, 
460–461

Transmission-line modeling, see Transmission-
line-matrix method (TLM method)

Transmission lines, 147–153
Transmitted field, 92–93
Transverse electric mode (TE mode), 179–181, 

463
Transverse magnetic mode (TM mode), 463
Trapezoidal rule, 192–193, 195
Triangular function, see Piecewise linear 

function
Trigonometric basis functions, 262
Truncation errors, 143–144, 498
Two-dimension (2-D), 452

diffusion equation, 558–561
Poisson’s equation, 385
scattering in 2-D TLM network, 469
shunt node, 475–477

U

Uniform mesh, 398
Uniqueness theorem, 21–23
Unitary transformation matrix, 651
Unit matrix, 646
Unit pulse function, 248
Unweighted product, 230
Upper triangular form, 636

V

Variables, generation of, 514–516
Variational formulation, 232
Variational methods, 229

calculus of variations, 232–236

collocation method, 247–255
construction of functionals from PDEs, 

236–239
eigenvalue problems, 255–261
operators in linear spaces, 229–232
practical applications, 261–268
Rayleigh–Ritz method, 239–246
weighted residual method, 246–247

Variational principle, 233, 236–238, 240
Variational problems, 229
Variational symbol, 233
Vector, 623

equation, 159
identities, 617
theorems, 618

Vector relations
orthogonal coordinates, 618–619
vector identities, 617
vector theorems, 618

Velocity error, 498–499
Voltage–current equations, 485–486
Volterra equations, 283
von Neumann’s method, 145

W

Wave equations, 8–9, 56, 153, 392–395, 455, 
460, 588

boundary representation, 468–469
computation of fields and frequency 

response, 469–470
cylindrical coordinates, separation of 

variables in, 45–56
cylindrical microstrip structures, 597–604
dispersion relation of propagation velocity, 

464–466
equivalence between network and field 

parameters, 461–464
homogeneous scalar, 31
lowest wavenumber for rectangular 

waveguide, 398
lowest wavenumber for square waveguide, 

397
output response and accuracy of results, 

470–475
planar microstrip structures, 590–597
rectangular coordinates, separation of 

variables in, 36–42
scattering matrix, 466–468
spherical coordinates, separation of 

variables in, 61–71
Waveguides, 153–156
Wave scattering, 156
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accuracy and stability, 161–162
initial fields, 164–165
lattice truncation conditions, 162–164
programming aspects, 165–173
Yee’s finite difference algorithm, 159–161

Weighted inner product, 230
Weighted norm, 72
Weighted residual method, 246–247, 250

Weighting functions, 247–250, 252, 279, 
323–334

While loop, 629
Wronskian relationship, 94

Y

Yee’s finite difference algorithm, 159–161
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