STEPHEN WOLFRAM

‘MATHEMATICA:S,

Published by Wolfram Media

Comments on this book will be welcomed at:

Library of Congress Cataloging-in-Publication Data comments@wolfram.com

Wolfram, Stephen, 1959 —
Mathematica book / Stephen Wolfram. — 5th ed.
p. cm.
Includes index.

In publications that refer to the Mathematica
system, please cite this book as:
Stephen Wolfram, The Mathematica Book, 5th ed.

ISBN 1-57955-022-3 (hardbound). (Wolfram Media, 2003)
1. Mathematica (Computer file) 2. Mathematics—Data processing.
|. Title. First and second editions published by Addison-Wesley Publishing Company
QA76.95W65 2003 under the title Mathematica: A System for Doing Mathematics by Computer.
510'.285'5369—dc21 03-53794 Third and fourth editions co-published by Wolfram Media
CIP and Cambridge University Press.

Published by Wolfram Media, Inc.

Copyright © 1988, 1991, 1996, 1999, 2003 by Wolfram Research, Inc.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior written permission of the copyright holder.

Wolfram Research is the holder of the copyright to the Mathematica software system described in this book, including without limitation such aspects of
the system as its code, structure, sequence, organization, “look and feel”, programming language and compilation of command names. Use of the system
unless pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an infringement of the copyright.

The author, Wolfram Research, Inc. and Wolfram Media, Inc. make no representations, express or implied, with respect to this documentation
or the software it describes, including without limitations, any implied warranties of merchantability, interoperability or fitness for a particular
purpose, all of which are expressly disclaimed. Users should be aware that included in the terms and conditions under which Wolfram
Research is willing to license Mathematica is a provision that the author, Wolfram Research, Wolfram Media, and their distribution licensees,
distributors and dealers shall in no event be liable for any indirect, incidental or consequential damages, and that liability for direct damages
shall be limited to the amount of the purchase price paid for Mathematica.

In addition to the foregoing, users should recognize that all complex software systems and their documentation contain errors and omissions.
The author, Wolfram Research and Wolfram Media shall not be responsible under any circumstances for providing information on or
corrections to errors and omissions discovered at any time in this book or the software it describes, whether or not they are aware of the
errors or omissions. The author, Wolfram Research and Wolfram Media do not recommend the use of the software described in this book for
applications in which errors or omissions could threaten life, injury or significant loss.

Mathematica, MathLink and MathSource are registered trademarks of Wolfram Research. J/Link, MathLM, MathReader, .NET/Link, Notebooks and
webMathematica are trademarks of Wolfram Research. All other trademarks used are the property of their respective owners. Mathematica is not associated
with Mathematica Policy Research, Inc. or MathTech, Inc.

Printed in the United States of America. @ Acid-free paper. 15 14 13 12 11 10 9 8 7 6 5 4 3 2
Author’s website: Other books by Stephen Wolfram:
www.stephenwolfram.com « Cellular Automata and Complexity: Collected Papers (1993)

Author’s address: « A New Kind of Science (2002)

email: s.wolfram@wolfram.com

mail: c/o Wolfram Research, Inc.
100 Trade Center Drive
Champaign, IL 61820, USA

«R
=AY |
~—l

== O N
R <<\\\4. Vﬁb‘%

Y=
= i N
j Wﬁ%

)
R

\\\&“\\

o

7

<7

|
! \\gx
s

j

i
W)

/Il
i

vii

About the Author

Stephen Wolfram is the creator of Mathematica, and a well-
known scientist. He is widely regarded as the most important
innovator in technical computing today, as well as one of the
world’s most original research scientists.

Born in London in 1959, he was educated at Eton, Oxford and
Caltech. He published his first scientific paper at the age of fifteen,
and had received his PhD in theoretical physics from Caltech by
the age of twenty. Wolfram’s early scientific work was mainly
in high-energy physics, quantum field theory and cosmology,
and included several now-classic results. Having started to use
computers in 1973, Wolfram rapidly became a leader in the
emerging field of scientific computing, and in 1979 he began
the construction of SMP—the first modern computer algebra
system—which he released commercially in 1981.

In recognition of his early work in physics and computing,
Wolfram became in 1981 the youngest recipient of a Mac-
Arthur Prize Fellowship. Late in 1981, Wolfram then set out
on an ambitious new direction in science: to develop a gen-
eral theory of complexity in nature. Wolfram's key idea was
to use computer experiments to study the behavior of simple
computer programs known as cellular automata. And in 1982
he made the first in a series of startling discoveries about the
origins of complexity. The publication of Wolfram’s papers on
cellular automata led to a major shift in scientific thinking, and
laid the groundwork for a new field of science that Wolfram
named “complex systems research”.

Through the mid-1980s, Wolfram continued his work on
complexity, discovering a number of fundamental connections
between computation and nature, and inventing such con-
cepts as computational irreducibility. Wolfram’s work led to a
wide range of applications—and provided the main scientific
foundations for the popular movements known as complexity
theory and artificial life. Wolfram himself used his ideas to
develop a new randomness generation system and a new
approach to computational fluid dynamics—both of which are
now in widespread use.

Following his scientific work on complex systems research,
Wolfram in 1986 founded the first research center and first
journal in the field. Then, after a highly successful career in
academia—first at Caltech, then at the Institute for Advanced
Study in Princeton, and finally as Professor of Physics, Math-
ematics and Computer Science at the University of lllinois—
Wolfram launched Wolfram Research, Inc.

Wolfram began the development of Mathematica in late 1986.
The first version of Mathematica was released on June 23,
1988, and was immediately hailed as a major advance in com-
puting. In the years that followed, the popularity of Mathe-
matica grew rapidly, and Wolfram Research became established
as a world leader in the software industry, widely recognized
for excellence in both technology and business. Wolfram has
been president and CEO of Wolfram Research since its incep-
tion, and continues to be personally responsible for the overall
design of its core technology.

Following the release of Mathematica Version 2 in 1991,
Wolfram began to divide his time between Mathematica
development and scientific research. Building on his work
from the mid-1980s, and now with Mathematica as a tool,
Wolfram made a rapid succession of major new discoveries. By
the mid-1990s his discoveries led him to develop a fundamentally
new conceptual framework, which he then spent the remainder
of the 1990s applying not only to new kinds of questions, but
also to many existing foundational problems in physics, biology,
computer science, mathematics and several other fields.

After more than ten vyears of highly concentrated work,
Wolfram finally described his achievements in his 1200-page
book A New Kind of Science. Released on May 14, 2002, the
book was widely acclaimed and immediately became a best-
seller. Its publication has been seen as initiating a paradigm
shift of historic importance in science.

In addition to leading Wolfram Research to break new ground
with innovative technology, Wolfram is now developing a
series of research and educational initiatives in the science he
has created.

About Mathematica

Mathematica is the world’s only fully integrated environment
for technical computing. First released in 1988, it has had
a profound effect on the way computers are used in many
technical and other fields.

It is often said that the release of Mathematica marked the be-
ginning of modern technical computing. Ever since the 1960s
individual packages had existed for specific numerical, alge-
braic, graphical and other tasks. But the visionary concept of
Mathematica was to create once and for all a single system
that could handle all the various aspects of technical com-
puting in a coherent and unified way. The key intellectual
advance that made this possible was the invention of a new
kind of symbolic computer language that could for the first
time manipulate the very wide range of objects involved in
technical computing using only a fairly small number of basic
primitives.

When Mathematica Version 1 was released, the New York
Times wrote that “the importance of the program cannot
be overlooked”, and Business Week later ranked Mathematica
among the ten most important new products of the year.
Mathematica was also hailed in the technical community as a
major intellectual and practical revolution.

At first, Mathematica's impact was felt mainly in the physical
sciences, engineering and mathematics. But over the years,
Mathematica has become important in a remarkably wide
range of fields. Mathematica is used today throughout the
sciences—physical, biological, social and other—and counts
many of the world’s foremost scientists among its enthusiastic
supporters. It has played a crucial role in many important
discoveries, and has been the basis for thousands of technical
papers. In engineering, Mathematica has become a standard
tool for both development and production, and by now many
of the world’s important new products rely at one stage
or another in their design on Mathematica. In commerce,
Mathematica has played a significant role in the growth of
sophisticated financial modeling, as well as being widely used
in many kinds of general planning and analysis. Mathematica
has also emerged as an important tool in computer science
and software development: its language component is widely
used as a research, prototyping and interface environment.

The largest part of Mathematica's user community consists of
technical professionals. But Mathematica is also heavily used
in education, and there are now many hundreds of courses—
from high school to graduate school—based on it. In addition,
with the availability of student versions, Mathematica has be-
come an important tool for both technical and non-technical
students around the world.

The diversity of Mathematica's user base is striking. It spans
all continents, ages from below ten up, and includes for ex-
ample artists, composers, linguists and lawyers. There are also
many hobbyists from all walks of life who use Mathematica to
further their interests in science, mathematics and computing.

Ever since Mathematica was first released, its user base has
grown steadily, and by now the total number of users is
above a million. Mathematica has become a standard in a
great many organizations, and it is used today in all of the
Fortune 50 companies, all of the 15 major departments of the
U.S. government, and all of the 50 largest universities in the
world.

At a technical level, Mathematica is widely regarded as a major
feat of software engineering. It is one of the largest single
application programs ever developed, and it contains a vast
array of novel algorithms and important technical innovations.
Among its core innovations are its interconnected algorithm
knowledge base, and its concepts of symbolic programming
and of document-centered interfaces.

The development of Mathematica has been carried out at
Wolfram Research by a world-class team led by Stephen
Wolfram. The success of Mathematica has fueled the contin-
uing growth of Wolfram Research, and has allowed a large
community of independent Mathematica-related businesses to
develop. There are today well over a hundred specialized com-
mercial packages available for Mathematica, as well as more
than three hundred books devoted to the system.

X

Features New in Mathematica Version 5

Mathematica Version 5 introduces important extensions to the
Mathematica system, especially in scope and scalability of numeric
and symbolic computation. Building on the core language and
extensive algorithm knowledge base of Mathematica, Version 5
introduces a new generation of advanced algorithms for a wide
range of numeric and symbolic operations.

Numerical Computation

» Major optimization of dense numerical linear algebra.

New optimized sparse numerical linear algebra.

Support for optimized arbitrary-precision linear algebra.

Generalized eigenvalues and singular value decomposition.

LinearSolveFunction for repeated linear-system solving.

p norms for vectors and matrices.

Built-in MatrixRank for exact and approximate matrices.

Support for large-scale linear programming, with interior point
methods.

New methods and array variable support in FindRoot and
FindMinimum.

FindFit for full nonlinear curve fitting.

Constrained global optimization with NMinimize.

Support for n-dimensional PDEs in NDSolve.

Support for differential-algebraic equations in NDSolve.

Support for vector and array-valued functions in NDSolve.

Highly extensive collection of automatically accessible
algorithms in NDSolve.

Finer precision and accuracy control for arbitrary-precision
numbers.

Higher—efficiency big number arithmetic, including
processor-specific optimization.

Enhanced algorithms for number-theoretical operations
including GCD and FactorInteger.

Direct support for high-performance basic statistics functions.

Symbolic Computation

« Solutions to mixed systems of equations and inequalities in
Reduce.

« Complete solving of polynomial systems over real or complex
numbers.

« Solving large classes of Diophantine equations.
» ForAll and Exists quantifiers and quantifier elimination.

« Representation of discrete and continuous algebraic and
transcendental solution sets.

» FindInstance for finding instances of solutions over different
domains.

« Exact constrained minimization over real and integer domains.

« Integrated support for assumptions using Assuming and
Refine.

« RSolve for solving recurrence equations.

« Support for nonlinear, partial and g difference equations and
systems.

« Full solutions to systems of rational ordinary differential
equations.

« Support for differential-algebraic equations.

» CoefficientArrays for converting systems of equations to
tensors.

Programming and Core System
« Integrated language support for sparse arrays.
« New list programming with Sow and Reap.

» EvaluationMonitor and StepMonitor for algorithm
monitoring.

 Enhanced timing measurement, including AbsoluteTiming.
» Major performance enhancements for MathLink.
« Optimization for 64-bit operating systems and architectures.

« Support for computations in full 64-bit address spaces.

Xi

Interfaces

« Support for more than 50 import and export formats.

« High-efficiency import and export of tabular data.

* PNG, SVG and DICOM graphics and imaging formats.

« Import and export of sparse matrix formats.

« MPS linear programming format.

« Cascading style sheets and XHTML for notebook exporting.

* Preview version of .NET/Link for integration with .NET.

Notebook Interface

 Enhanced Help Browser design.

« Automatic copy/paste switching for Windows.
« Enhanced support for slide show presentation.

 AuthorTools support for notebook diffs.

Standard Add-on Packages
« Statistical plots and graphics.

« Algebraic number fields.

New in Versions 4.1 and 4.2

« Enhanced pattern matching of sequence objects.

« Enhanced optimizer for built-in Mathematica compiler.

* Enhanced continued fraction computation.

* Greatly enhanced DSolve.

« Additional TraditionalForm formats.

« Efficiency increases for multivariate polynomial operations.

« Support for import and export of DXF, STL, FITS and STDS data
formats.

« Full support for CSV format import and export.
« Support for UTF character encodings.

« Extensive support for XML, including SymbolicXML subsystem
and NotebookML.

« Native support for evaluation and formatting of Nand and Nor.

« High-efficiency CellularAutomaton function.
« JILink MathLink-based Java capabilities.
» MathMLForm and extended MathML support.

« Extended simplification of Floor, Erf, ProductLog and
related functions.

« Integration over regions defined by inequalities.
« Integration of piecewise functions.

« Standard package for visualization of regions defined by
inequalities.

» ANOVA standard add-on package.
 Enhanced Combinatorica add-on package.

» AuthorTools notebook authoring environment.

Xii

The Role of This Book

The Scope of the Book

This book is intended to be a complete introduction to Mathe-
matica. It describes essentially all the capabilities of Mathematica,
and assumes no prior knowledge of the system.

In most uses of Mathematica, you will need to know only
a small part of the system. This book is organized to make
it easy for you to learn the part you need for a particular
calculation. In many cases, for example, you may be able to
set up your calculation simply by adapting some appropriate
examples from the book.

You should understand, however, that the examples in this
book are chosen primarily for their simplicity, rather than to
correspond to realistic calculations in particular application areas.

There are many other publications that discuss Mathematica
from the viewpoint of particular classes of applications. In some
cases, you may find it better to read one of these publications
first, and read this book only when you need a more general
perspective on Mathematica.

Mathematica is a system built on a fairly small set of very
powerful principles. This book describes those principles, but by
no means spells out all of their implications. In particular, while
the book describes the elements that go into Mathematica
programs, it does not give detailed examples of complete
programs. For those, you should look at other publications.

The Mathematica System Described in the Book

This book describes the standard Mathematica kernel, as it
exists on all computers that run Mathematica. Most major
supported features of the kernel in Mathematica Version 5 are
covered in this book. Many of the important features of the
front end are also discussed.

Mathematica is an open software system that can be customized
in a wide variety of ways. It is important to realize that this book
covers only the full basic Mathematica system. If your system is
customized in some way, then it may behave differently from
what is described in the book.

The most common form of customization is the addition of
various Mathematica function definitions. These may come,
for example, from loading a Mathematica package. Some-

times the definitions may actually modify the behavior of
functions described in this book. In other cases, the definitions
may simply add a collection of new functions that are not
described in the book. In certain applications, it may be primarily
these new functions that you use, rather than the standard
ones described in the book.

This book describes what to do when you interact directly
with the standard Mathematica kernel and notebook front
end. Sometimes, however, you may not be using the standard
Mathematica system directly. Instead, Mathematica may be
an embedded component of another system that you are
using. This system may for example call on Mathematica only
for certain computations, and may hide the details of those
computations from you. Most of what is in this book will
only be useful if you can give explicit input to Mathematica.
If all of your input is substantially modified by the system you
are using, then you must rely on the documentation for that
system.

Additional Mathematica Documentation

For all standard versions of Mathematica, the following is
available in printed form, and can be ordered from Wolfram
Research:

« Getting Started with Mathematica: a booklet describing instal-
lation, basic operation, and troubleshooting of Mathematica on
specific computer systems.

Extensive online documentation is included with most versions

of Mathematica. All such documentation can be accessed from

the Help Browser in the Mathematica notebook front end.

In addition, the following sources of information are available
on the web:

« www.wolfram.com: the main Wolfram Research website.
» documents.wolfram.com: full documentation for Mathematica.

« library.wolfram.com/infocenter: the Mathematica Information
Center—a central web repository for information on Mathe-
matica and its applications.

xiii

Suggestions about Learning Mathematica

Getting Started

As with any other computer system, there are a few points that you
need to get straight before you can even start using Mathematica.
For example, you absolutely must know how to type your input to
Mathematica. To find out these kinds of basic points, you should
read at least the first section of Part 1 in this book.

Once you know the basics, you can begin to get a feeling for
Mathematica by typing in some examples from this book. Always
be sure that you type in exactly what appears in the book—do
not change any capitalization, bracketing, etc.

After you have tried a few examples from the book, you should
start experimenting for yourself. Change the examples slightly,
and see what happens. You should look at each piece of output
carefully, and try to understand why it came out as it did.

After you have run through some simple examples, you should
be ready to take the next step: learning to go through what is
needed to solve a complete problem with Mathematica.

Solving a Complete Problem

You will probably find it best to start by picking a specific problem
to work on. Pick a problem that you understand well—preferably
one whose solution you could easily reproduce by hand. Then
go through each step in solving the problem, learning what you
need to know about Mathematica to do it. Always be ready to
experiment with simple cases, and understand the results you get
with these, before going back to your original problem.

In going through the steps to solve your problem, you will learn
about various specific features of Mathematica, typically from
sections of Part 1. After you have done a few problems with
Mathematica, you should get a feeling for many of the basic
features of the system.

When you have built up a reasonable knowledge of the features
of Mathematica, you should go back and learn about the overall
structure of the Mathematica system. You can do this by system-
atically reading Part 2 of this book. What you will discover is that
many of the features that seemed unrelated actually fit together
into a coherent overall structure. Knowing this structure will make
it much easier for you to understand and remember the specific
features you have already learned.

The Principles of Mathematica

You should not try to learn the overall structure of Mathematica
too early. Unless you have had broad experience with advanced
computer languages or pure mathematics, you will probably find
Part 2 difficult to understand at first. You will find the structure
and principles it describes difficult to remember, and you will
always be wondering why particular aspects of them might be
useful. However, if you first get some practical experience with
Mathematica, you will find the overall structure much easier to
grasp. You should realize that the principles on which Mathema-
tica is built are very general, and it is usually difficult to understand
such general principles before you have seen specific examples.

One of the most important aspects of Mathematica is that it
applies a fairly small number of principles as widely as possible.
This means that even though you have used a particular feature
only in a specific situation, the principle on which that feature
is based can probably be applied in many other situations. One
reason it is so important to understand the underlying principles of
Mathematica is that by doing so you can leverage your knowledge
of specific features into a more general context. As an example,
you may first learn about transformation rules in the context of
algebraic expressions.

But the basic principle of transformation rules applies to any
symbolic expression. Thus you can also use such rules to modify
the structure of, say, an expression that represents a Mathematica
graphics object.

Changing the Way You Work

Learning to use Mathematica well involves changing the way
you solve problems. When you move from pencil and paper to
Mathematica the balance of what aspects of problem solving are
difficult changes. With pencil and paper, you can often get by
with a fairly imprecise initial formulation of your problem. Then
when you actually do calculations in solving the problem, you
can usually fix up the formulation as you go along. However, the
calculations you do have to be fairly simple, and you cannot afford
to try out many different cases.

When you use Mathematica, on the other hand, the initial for-
mulation of your problem has to be quite precise. However,
once you have the formulation, you can easily do many different

Xiv

calculations with it. This means that you can effectively carry out
many mathematical experiments on your problem. By looking at
the results you get, you can then refine the original formulation
of your problem.

There are typically many different ways to formulate a given prob-
lem in Mathematica. In almost all cases, however, the most direct
and simple formulations will be best. The more you can formulate
your problem in Mathematica from the beginning, the better.
Often, in fact, you will find that formulating your problem directly
in Mathematica is better than first trying to set up a traditional
mathematical formulation, say an algebraic one. The main point
is that Mathematica allows you to express not only traditional
mathematical operations, but also algorithmic and structural ones.
This greater range of possibilities gives you a better chance of
being able to find a direct way to represent your original problem.

Writing Programs

For most of the more sophisticated problems that you want to
solve with Mathematica, you will have to create Mathematica
programs. Mathematica supports several types of programming,
and you have to choose which one to use in each case. It turns
out that no single type of programming suits all cases well. As a
result, it is very important that you learn several different types
of programming.

If you already know a traditional programming language such as
BASIC, C, Fortran, Perl or Java, you will probably find it easiest
to learn procedural programming in Mathematica, using Do, For
and so on. But while almost any Mathematica program can, in
principle, be written in a procedural way, this is rarely the best
approach. In a symbolic system like Mathematica, functional and
rule-based programming typically yields programs that are more
efficient, and easier to understand.

If you find yourself using procedural programming a lot, you should
make an active effort to convert at least some of your programs
to other types. At first, you may find functional and rule-based
programs difficult to understand. But after a while, you will find
that their global structure is usually much easier to grasp than
procedural programs. And as your experience with Mathematica
grows over a period of months or years, you will probably find that
you write more and more of your programs in non-procedural
ways.

Learning the Whole System

As you proceed in using and learning Mathematica, it is important
to remember that Mathematica is a large system. Although after
a while you should know all of its basic principles, you may never
learn the details of all its features. As a result, even after you
have had a great deal of experience with Mathematica, you will
undoubtedly still find it useful to look through this book. When
you do so, you are quite likely to notice features that you never
noticed before, but that with your experience, you can now see
how to use.

How to Read This Book

If at all possible, you should read this book in conjunction with
using an actual Mathematica system. When you see examples in
the book, you should try them out on your computer.

You can get a basic feeling for what Mathematica does by looking
at “A Tour of Mathematica” on page 3. You may also find it
useful to try out examples from this Tour with your own copy of
Mathematica.

Whatever your background, you should make sure to look at
the first three or four sections in Part 1 before you start to use
Mathematica on your own. These sections describe the basics that
you need to know in order to use Mathematica at any level.

The remainder of Part 1 shows you how to do many different
kinds of computations with Mathematica. If you are trying to do
a specific calculation, you will often find it sufficient just to look
at the sections of Part 1 that discuss the features of Mathematica
you need to use. A good approach is to try and find examples in
the book which are close to what you want to do.

The emphasis in Part 1 is on using the basic functions that are
built into Mathematica to carry out various different kinds of
computations.

Part 2, on the other hand, discusses the basic structure and
principles that underlie all of Mathematica. Rather than describing
a sequence of specific features, Part 2 takes a more global ap-
proach. If you want to learn how to create your own Mathematica
functions, you should read Part 2.

XV

Part 3 is intended for those with more sophisticated mathematical
interests and knowledge. It covers the more advanced mathe-
matical features of Mathematica, as well as describing some
features already mentioned in Part 1 in greater mathematical
detail.

Each part of the book is divided into sections and subsections.
There are two special kinds of subsections, indicated by the
following headings:

» Advanced Topic: Advanced material which can be omitted on
a first reading.

« Special Topic: Material relevant only for certain users or certain
computer systems.

The main parts in this book are intended to be pedagogical, and
can meaningfully be read in a sequential fashion. The Appendix,
however, is intended solely for reference purposes. Once you
are familiar with Mathematica, you will probably find the list of
functions in the Appendix the best place to look up details you
need.

About the Examples in This Book

All the examples given in this book were generated by running
an actual copy of Mathematica Version 5. If you have a copy of
this version, you should be able to reproduce the examples on
your computer as they appear in the book.

There are, however, a few points to watch:

« Until you are familiar with Mathematica, make sure to type the
input exactly as it appears in the book. Do not change any of
the capital letters or brackets. Later, you will learn what things
you can change. When you start out, however, it is important
that you do not make any changes; otherwise you may not get
the same results as in the book.

Never type the prompt In[n]:= that begins each input line.
Type only the text that follows this prompt.

You will see that the lines in each dialog are numbered
in sequence. Most subsections in the book contain separate
dialogs. To make sure you get exactly what the book says, you
should start a new Mathematica session each time the book
does.

« Some “Special Topic” subsections give examples that may be
specific to particular computer systems.

Any examples that involve random numbers will generally give
different results than in the book, since the sequence of random
numbers produced by Mathematica is different in every session.

Some examples that use machine-precision arithmetic may
come out differently on different computer systems. This is
a result of differences in floating-point hardware. If you use
arbitrary-precision Mathematica numbers, you should not see
differences.

Almost all of the examples show output as it would be generated
in StandardForm with a notebook interface to Mathematica.
Output with a text-based interface will look similar, but not
identical.

Almost all of the examplesin this book assume that your computer
or terminal uses a standard U.S. ASClI character set. If you cannot
find some of the characters you need on your keyboard, or if
Mathematica prints out different characters than you see in the
book, you will need to look at your computer documentation to
find the correspondence with the character set you are using.
The most common problem is that the dollar sign character
(SHiFT-4) may come out as your local currency character.

If the version of Mathematica is more recent than the one used
to produce this book, then it is possible that some results you
get may be different.

Most of the examples in “A Tour of Mathematica”, as well as
Parts 1 and 2, are chosen so as to be fairly quick to execute.
Assuming you have a machine with a clock speed of over about
1 GHz (and most machines produced in 2003 or later do), then
almost none of the examples should take anything more than
a small fraction of a second to execute. If they do, there is
probably something wrong. Section 1.3.12 describes how to
stop the calculation.

xvii

Outline Table of Contents

A Tour of Mathematica...........oeereereeeeereeseeseennn 1

Part 1.A Practical Introduction to Mathematica

1.0 Running Mathematicaccooevveeversersesssssessessesaens 26
1.1 Numerical Calculationsccceeversinsenncsnssnsssscsssnnnens 29
1.2 Building Up Calculationsc.ccoeeernerersrssnnessnssnnnens 38
1.3 Using the Mathematica System...........cccceververeercnnnens 44
1.4 Algebraic Calculationsccccerieemnrnissssssenssenssssnens 63
1.5 Symbolic Mathematics.........coovrirurnsnnsessesssnnessescnsanns 79
1.6 Numerical Mathematics.......ccccourimrrinninnccnicsernennans 102
1.7 Functions and Programs.........cecusmssessersnssnssnssansnnns 110
R X 115
1.9 Graphics and Sound.........cccccevemrreerrserssns e 131
1.10 Input and Output in Notebooks..........ccceecvrrerrcernns 174
1.11 Files and External Operations 204
1.12 Special Topic: The Internals of Mathematica 218

Part 2.Principles of Mathematica
2.1 EXPressions.......cccceeseesensns 230
2.2 Functional Operations 240
2.3 Patterns.......ciciiiiinninniinnin, 259
.283
.299

.324

2.4 Manipulating Lists.........cceomrsenrsnnnians

2.5 Transformation Rules and Definitions.

2.6 Evaluation of Expressions................

2.7 Modularity and the Naming of Things..........cccu.... 378
2.8 Strings and Characters 406
2.9 Textual Input and Output ...424
2.10 The Structure of Graphics and Sound.. .486

2.11 Manipulating Notebooks... .572
2.12 Files and Streams..........cccveevermisesnnscnsinnnns wereeennn. 623
2.13 MathLink and External Program Communication...657

2.14 Global Aspects of Mathematica Sessions................ 702

Part 3. Advanced Mathematics in Mathematica

3.1 Numbers

722

3.2 Mathematical Functions

745

3.3 Algebraic Manipulation

797

3.4 Manipulating Equations and Inequalities..............
3.5 Calculus

..819

853

3.6 Series, Limits and Residues

883

3.7 Linear Algebra

896

3.8 Numerical Operations on Data.........ccceerrierscaninanns
3.9 Numerical Operations on Functions..........cccceeeeuen.

3.10 Mathematical and Other Notation.........cccccvrcemnneen

Appendix. Mathematica Reference Guide
A.1 Basic Objects
A.2 Input Syntax

A.3 Some General Notations and Conventions............

A.4 Evaluation

A.5 Patterns and Transformation Rules...........cceeerueun

A.6 Files and Streams

A.7 Mathematica Sessions

A.8 Mathematica File Organizationccccceeveerienenne
A.9 Some Notes on Internal Implementation
A.10 Listing of Major Built-in Mathematica Objects.....
A.11 Listing of C Functions in the MathLink Library.....
A.12 Listing of Named Characters

A.13 Incompatible Changes since Mathematica
VErsion T

Index

1014
1018
1039
1045
1049
1053
1055
1061
1066
1073
1340
1351

1402

1407

Xix

Table of Contents

+m a section new since Version 4
~m a section substantially modified since Version 4

A TOUE OF MATR@MIATICA. ... eeeeeeeeeeeeeeees e seeeseee s eessseesaseaseseessseesaseeseseeseseanasees 1

= Mathematica as a Calculator » Power Computing with Mathematica m Accessing Algorithms in Mathematica m Mathemat-
ical Knowledge in Mathematica m Building Up Computations ® Handling Data = Visualization with Mathematica m Mathe-
matica Notebooks m Palettes and Buttons = Mathematical Notation » Mathematica and Your Computing Environment
m The Unifying Idea of Mathematica m Mathematica as a Programming Language ® Writing Programs in Mathematica
® Building Systems with Mathematica w Mathematica as a Software Component

Part 1. A Practical Introduction to Mathematica

1.0

1.1

1.2

1.3

14

15

RUNNING MathematiCa........cccoeoeiieiiiiiinis it m e s e s ae s s e an s 26
= Notebook Interfaces m Text-Based Interfaces

Numerical CalCulations..........ooiiiiii s 29
® Arithmetic » Exact and Approximate Results ®m Some Mathematical Functions ® Arbitrary-Precision Calculations
= Complex Numbers = Getting Used to Mathematica » Mathematical Notation in Notebooks

Building Up CalcUlations..........ccoiciiiiiiiis s s 38
m Using Previous Results ® Defining Variables m Making Lists of Objects m Manipulating Elements of Lists ® The Four
Kinds of Bracketing in Mathematica m Sequences of Operations

Using the Mathematica SYStEM.........cccciciieiiiii i e e se s e e a4
m The Structure of Mathematica w Differences between Computer Systems m Special Topic: Using a Text-Based Interface
® Doing Computations in Notebooks m Notebooks as Documents ® Active Elements in Notebooks ® Special Topic:
Hyperlinks and Active Text ~m Getting Help in the Notebook Front End m Getting Help with a Text-Based Interface
= Mathematica Packages m Warnings and Messages ® Interrupting Calculations

7Y [1= o =TT = V1= 4o o T R 63
= Symbolic Computation = Values for Symbols = Transforming Algebraic Expressions = Simplifying Algebraic Expres-
sions m Advanced Topic: Putting Expressions into Different Forms » Advanced Topic: Simplifying with Assumptions
m Picking Out Pieces of Algebraic Expressions ® Controlling the Display of Large Expressions ~® The Limits of
Mathematica m Using Symbols to Tag Objects

Symbolic Mathematics........cociiiiiii i s 79
~m Basic Operations ® Differentiation ® Integration ® Sums and Products m Equations ~m Relational and Logical Op-
erators ~m Solving Equations +m Inequalities ~m Differential Equations ® Power Series ®m Limits m Integral Transforms
+m Recurrence Equations ~m Packages for Symbolic Mathematics = Advanced Topic: Generic and Non-Generic Cases
= Mathematical Notation in Notebooks

XX

1.6

1.7

1.8

1.9

1.10

Numerical Mathematics........ooeioreeee s e 102
® Basic Operations = Numerical Sums, Products and Integrals ~» Numerical Equation Solving ~® Numerical Differential
Equations ~» Numerical Optimization ~» Manipulating Numerical Data ~= Statistics

VLo Tet T o TR T T I oo T T T TN 110
» Defining Functions » Functions as Procedures m Repetitive Operations » Transformation Rules for Functions

= Collecting Objects Together m Making Tables of Values ~m Vectors and Matrices ~m Getting Pieces of Lists m Testing
and Searching List Elements ~m Adding, Removing and Modifying List Elements = Combining Lists = Advanced Topic:
Lists as Sets ~m Rearranging Lists m Grouping Together Elements of Lists +m Ordering in Lists ~m Advanced Topic:
Rearranging Nested Lists

Graphics and SOUNM........o i e a e s s e s e e ae s ae s e e e e e ne s 131
= Basic Plotting ~m Options ® Redrawing and Combining Plots ® Advanced Topic: Manipulating Options ~m Contour
and Density Plots ~m Three-Dimensional Surface Plots » Converting between Types of Graphics m Plotting Lists of Data
= Parametric Plots = Some Special Plots » Special Topic: Animated Graphics = Sound

Input and Output in NOtEDOOKS.........cccoiuiirir i 174
m Entering Greek Letters m Entering Two-Dimensional Input m Editing and Evaluating Two-Dimensional Expressions
~m Entering Formulas = Entering Tables and Matrices m Subscripts, Bars and Other Modifiers m Special Topic: Non-
English Characters and Keyboards = Other Mathematical Notation = Forms of Input and Output = Mixing Text and
Formulas = Displaying and Printing Mathematica Notebooks m Creating Your Own Palettes m Setting Up Hyperlinks
= Automatic Numbering » Exposition in Mathematica Notebooks

Files and External Operations..........ccocciinerniminis it s s s s e 204
m Reading and Writing Mathematica Files m Advanced Topic: Finding and Manipulating Files ~m Importing and Export-
ing Data ~m Exporting Graphics and Sounds » Exporting Formulas from Notebooks m Generating TgX +m Exchanging
Material with the Web = Generating C and Fortran Expressions m Splicing Mathematica Output into External Files
® Running External Programs ~» MathLink

Special Topic: The Internals of Mathematica...........ccccueeverecisriccserscse st sne e e s e e e nn s 218
= Why You Do Not Usually Need to Know about Internals » Basic Internal Architecture = The Algorithms of Mathematica
~m The Software Engineering of Mathematica m Testing and Verification

Part 2. Principles of Mathematica

2.1

2.2

2.3

20T o T Lo 4TSS 230
= Everything Is an Expression m The Meaning of Expressions » Special Ways to Input Expressions = Parts of Expressions
= Manipulating Expressions like Lists m Expressions as Trees m Levels in Expressions

LT o Tt d oY o = I 0T o =T - d T o T SR 240
= Function Names as Expressions m Applying Functions Repeatedly = Applying Functions to Lists and Other Expres-
sions m Applying Functions to Parts of Expressions m Pure Functions » Building Lists from Functions = Selecting Parts
of Expressions with Functions ~m Expressions with Heads That Are Not Symbols ® Advanced Topic: Working with
Operators ~m Structural Operations ® Sequences

PAtLEINS.....ccee e 259
® Introduction ® Finding Expressions That Match a Pattern ® Naming Pieces of Patterns m Specifying Types of Expres-
sion in Patterns ~m Putting Constraints on Patterns m Patterns Involving Alternatives m Flat and Orderless Functions

xXxi

24

2.5

2.6

2.7

2.8

2.9

2.10

® Functions with Variable Numbers of Arguments m Optional and Default Arguments m Setting Up Functions with
Optional Arguments m Repeated Patterns m Verbatim Patterns m Patterns for Some Common Types of Expression = An
Example: Defining Your Own Integration Function

LY YT 10T LT e TR T SRR 283
+m Constructing Lists +® Manipulating Lists by Their Indices +» Nested Lists +m Partitioning and Padding Lists +m Sparse
Arrays

Transformation Rules and Definitions...........oo e 299
» Applying Transformation Rules ® Manipulating Sets of Transformation Rules m Making Definitions m Special Forms of
Assignment m Making Definitions for Indexed Objects = Making Definitions for Functions = The Ordering of Definitions
= Immediate and Delayed Definitions = Functions That Remember Values They Have Found = Associating Definitions
with Different Symbols ~m Defining Numerical Values » Modifying Built-in Functions m Advanced Topic: Manipulating
Value Lists

Evaluation Of EXPreSSIiONS.........cocciiiiiiiiieiiiiis st s s s s e san s e s n e s nmn s 324
®m Principles of Evaluation = Reducing Expressions to Their Standard Form m Attributes m The Standard Evaluation Pro-
cedure m Non-Standard Evaluation m Evaluation in Patterns, Rules and Definitions ® Evaluation in Iteration Functions
= Conditionals = Loops and Control Structures +m Collecting Expressions During Evaluation = Advanced Topic: Tracing
Evaluation ® Advanced Topic: The Evaluation Stack m Advanced Topic: Controlling Infinite Evaluation m Advanced
Topic: Interrupts and Aborts ® Compiling Mathematica Expressions m Advanced Topic: Manipulating Compiled Code

Modularity and the Naming of Things.......ccccooeriiiriinniinrersers e s s e 378
= Modules and Local Variables = Local Constants ® How Modules Work = Advanced Topic: Variables in Pure Functions
and Rules ® Dummy Variables in Mathematics ® Blocks and Local Values m Blocks Compared with Modules » Contexts
= Contexts and Packages m Setting Up Mathematica Packages m Automatic Loading of Packages m Manipulating Symbols
and Contexts by Name » Advanced Topic: Intercepting the Creation of New Symbols

Y AT o T T o I T T Tt (=T P 406
m Properties of Strings m Operations on Strings » String Patterns m Characters in Strings » Special Characters = Advanced
Topic: Newlines and Tabs in Strings m Advanced Topic: Character Codes ~» Advanced Topic: Raw Character Encodings

Textual INPut aNd OQULPUL.........ooieiiiir s s smn s e s s 424
~m Forms of Input and Output ® How Input and Output Work m The Representation of Textual Forms m The Interpre-
tation of Textual Forms m Short and Shallow Output » String-Oriented Output Formats = Output Formats for Numbers
= Tables and Matrices ® Styles and Fonts in Output = Representing Textual Forms by Boxes » Adjusting Details of
Formatting m String Representation of Boxes m Converting between Strings, Boxes and Expressions » The Syntax of the
Mathematica Language m Operators without Built-in Meanings ® Defining Output Formats = Advanced Topic: Low-Level
Input and Output Rules m Generating Unstructured Output = Generating Styled Output in Notebooks m Requesting
Input = Messages = International Messages ® Documentation Constructs

The Structure of Graphics and SOUNd.........coccciiiiciciiccirr e sse e e s s e e s smne s ane e e e ns 486
m The Structure of Graphics = Two-Dimensional Graphics Elements » Graphics Directives and Options m Coordinate
Systems for Two-Dimensional Graphics » Labeling Two-Dimensional Graphics = Making Plots within Plots = Density
and Contour Plots ® Three-Dimensional Graphics Primitives ® Three-Dimensional Graphics Directives m Coordinate
Systems for Three-Dimensional Graphics ® Plotting Three-Dimensional Surfaces » Lighting and Surface Properties
= Labeling Three-Dimensional Graphics » Advanced Topic: Low-Level Graphics Rendering = Formats for Text in
Graphics ® Graphics Primitives for Text m Advanced Topic: Color Output ® The Representation of Sound ~m Exporting
Graphics and Sounds ®» Importing Graphics and Sounds

xxii

2.1

2.12

2.13

2.14

Manipulating NOTEDOOKS..........coooiiiieicre e e ssne s e e n e s me e s e s e enns 572
m Cells as Mathematica Expressions » Notebooks as Mathematica Expressions m Manipulating Notebooks from the Kernel
= Manipulating the Front End from the Kernel » Advanced Topic: Executing Notebook Commands Directly in the Front
End = Button Boxes and Active Elements in Notebooks m Advanced Topic: The Structure of Cells = Styles and the
Inheritance of Option Settings ® Options for Cells m Text and Font Options = Advanced Topic: Options for Expression
Input and Output = Options for Graphics Cells = Options for Notebooks m Advanced Topic: Global Options for the
Front End

Files and STrEaMS.........ececee e e 623
= Reading and Writing Mathematica Files m External Programs m Advanced Topic: Streams and Low-Level Input and
Output ~= Naming and Finding Files = Files for Packages m Manipulating Files and Directories ~m Importing and
Exporting Files m Reading Textual Data w Searching Files m Searching and Reading Strings

MathLink and External Program CommuUNICAtioN........ccceviirireirssimrnserss e sse s e s e s e s sse s e e s e s nesemeenas 657
= How MathLink Is Used = Installing Existing MathLink-Compatible Programs m Setting Up External Functions to Be
Called from Mathematica w Handling Lists, Arrays and Other Expressions = Special Topic: Portability of MathLink
Programs m Using MathLink to Communicate between Mathematica Sessions m Calling Subsidiary Mathematica Processes
m Special Topic: Communication with Mathematica Front Ends = Two-Way Communication with External Programs
= Special Topic: Running Programs on Remote Computers m Special Topic: Running External Programs under a De-
bugger » Manipulating Expressions in External Programs s Advanced Topic: Error and Interrupt Handling » Running
Mathematica from Within an External Program

Global Aspects of Mathematica SESSIONS...........ccciciirrriiirine e s ne s 702

® The Main Loop = Dialogs ~m Date and Time Functions m Memory Management ~m Advanced Topic: Global System
Information

Part 3. Advanced Mathematics in Mathematica

3.1

3.2

3.3

34

NUMDEIS ... ee s e e ne e e e R e e 722
= Types of Numbers @ Numeric Quantities m Digits in Numbers ~» Numerical Precision ~m Arbitrary-Precision Numbers
= Machine-Precision Numbers = Advanced Topic: Interval Arithmetic ® Advanced Topic: Indeterminate and Infinite
Results = Advanced Topic: Controlling Numerical Evaluation

Mathematical FUNCHONS........coou e e 745
= Naming Conventions ~® Numerical Functions ® Pseudorandom Numbers ~m Integer and Number-Theoretical Func-
tions m Combinatorial Functions = Elementary Transcendental Functions m Functions That Do Not Have Unique Values
® Mathematical Constants » Orthogonal Polynomials m Special Functions ® Elliptic Integrals and Elliptic Functions
® Mathieu and Related Functions = Working with Special Functions m Statistical Distributions and Related Functions

Algebraic Manipulation....... ..o e 797
= Structural Operations on Polynomials = Finding the Structure of a Polynomial = Structural Operations on Rational
Expressions ® Algebraic Operations on Polynomials ® Polynomials Modulo Primes m Advanced Topic: Polynomials
over Algebraic Number Fields = Trigonometric Expressions m Expressions Involving Complex Variables m Simplification
~m Using Assumptions

Manipulating Equations and IN@QUAlItIES........c.ccueieierrrrrimiesersr e 819
~m The Representation of Equations and Solutions ~m Equations in One Variable m Advanced Topic: Algebraic Numbers
~m Simultaneous Equations ~m Generic and Non-Generic Solutions ~m» Eliminating Variables ~m Solving Logical Combina-
tions of Equations +m Inequalities +m Equations and Inequalities over Domains +m Advanced Topic: The Representation
of Solution Sets +m Advanced Topic: Quantifiers +m Minimization and Maximization

xxiii

3.5

3.6

3.7

3.8

3.9

3.10

CAICUIUS .. R R e e e e an R 853
m Differentiation ® Total Derivatives m Derivatives of Unknown Functions ® Advanced Topic: The Representation of
Derivatives m Defining Derivatives m Indefinite Integrals m Integrals That Can and Cannot Be Done m» Definite Integrals
= Manipulating Integrals in Symbolic Form ~m= Differential Equations = Integral Transforms and Related Operations
m Generalized Functions and Related Objects

Series, Limits and ReSIAUES..........oeoeeeeeee e e 883
= Making Power Series Expansions = Advanced Topic: The Representation of Power Series m Operations on Power
Series m Advanced Topic: Composition and Inversion of Power Series m Converting Power Series to Normal Expressions
= Solving Equations Involving Power Series m Summation of Series +m Solving Recurrence Equations ® Finding Limits
= Residues

LT LT Y T 1=« T 896
~m Constructing Matrices ~m Getting and Setting Pieces of Matrices m Scalars, Vectors and Matrices m Operations on
Scalars, Vectors and Matrices » Multiplying Vectors and Matrices » Matrix Inversion ~m Basic Matrix Operations
~m Solving Linear Systems ~m Eigenvalues and Eigenvectors +m Advanced Matrix Operations ~m Advanced Topic:
Tensors +m Sparse Arrays

Numerical Operations 0N Data........cccceiririrrinirinrrr e eme s e ne s 924
+m Basic Statistics ~m Curve Fitting m Approximate Functions and Interpolation = Fourier Transforms m Convolutions
and Correlations +m Cellular Automata

Numerical Operations 0N FUNCHIONS........cciciiiiciiircsiris e ss e es s sss e ss s e ssssne e ssssneessne e s sneessnneeessnsesssnnesssnnnnes 951
= Numerical Mathematics in Mathematica = The Uncertainties of Numerical Mathematics ® Numerical Integration
= Numerical Evaluation of Sums and Products = Numerical Solution of Polynomial Equations ~m= Numerical Root
Finding ~m Numerical Solution of Differential Equations +m Numerical Optimization +m Advanced Topic: Controlling
the Precision of Results +m Advanced Topic: Monitoring and Selecting Algorithms » Advanced Topic: Functions with
Sensitive Dependence on Their Input

Mathematical and Other NOtation..........co s 982
~m Special Characters m Names of Symbols and Mathematical Objects ~m Letters and Letter-like Forms ~m Operators
~m Structural Elements and Keyboard Characters

Part A. Mathematica Reference Guide

A1

A.2

A3

23 T T o 1T 3 1014
= Expressions = Symbols = Contexts m Atomic Objects = Numbers = Character Strings

LT oL Y 1018
» Entering Characters » Types of Input Syntax m Character Strings ® Symbol Names and Contexts = Numbers = Bracketed
Objects » Operator Input Forms m Two-Dimensional Input Forms m» Input of Boxes » The Extent of Input Expressions
= Special Input = Front End Files

Some General Notations and CONVeNtions...........cccer e 1039
® Function Names ®» Function Arguments » Options ® Part Numbering = Sequence Specifications ® Level Specifica-
tions m Iterators m Scoping Constructs ® Ordering of Expressions m Mathematical Functions = Mathematical Constants
= Protection = String Patterns

XXiv

A4

A5

A.6

A7

A8

A.9

A.10

A.12

A.13

EVAIUATION. ... a s e e a s R R e n e R e e s 1045
» The Standard Evaluation Sequence ® Non-Standard Argument Evaluation = Overriding Non-Standard Argument
Evaluation = Preventing Evaluation » Global Control of Evaluation s Aborts

Patterns and Transformation Rules.........o e 1049
= Patterns m Assignments » Types of Values » Clearing and Removing Objects = Transformation Rules

LY T4 Lo B =TT 4T S 1053
n File Names » Streams

Mathematica SESSIONS.........ccuceirurercerint st e e e e e e e s e s e e e e 1055
= Command-Line Options and Environment Variables ® Initialization ® The Main Loop = Messages ® Termination
= Network License Management

Mathematica File Organization...........cccceeoiriirinmrssnnsses s s s ssas s s ss s s sss s e ssas s s s s sn e ssnsssnssssnessnsssnnes 1061
® Mathematica Distribution Files » Loadable Files

Some Notes on Internal Implementation.............ccooiiiriciirrccr e 1066
= Introduction = Data Structures and Memory Management = Basic System Features ~» Numerical and Related Functions
~m Algebra and Calculus » Output and Interfacing

Listing of Major Built-in Mathematica ODBJECts.........c.cccereerresirrinirsireserssr s e e 1073

= Introduction » Conventions in This Listing ~m Listing

Listing of C Functions in the MathLink LiDIary...........ccciceeesmssmeesesssessssessseessssessssssssessssssssssssssensssssenss 1340

= Introduction = Listing

Listing of Named Characters.........ccceeeierimineinninseesse s esseessss s ssas s s s sns s e e s s s e s s sness s ssssessnssessessnesen 1351

= Introduction ~= Listing

Incompatible Changes since Mathematica Version 1............cccoioecmicscemrnsrmssssnessssesssseessssesssssessssmsssssnes 1402
= Incompatible Changes between Version 1 and Version 2 ® Incompatible Changes between Version 2 and Version 3
= Incompatible Changes between Version 3 and Version 4 » Incompatible Changes between Version 4 and Version 5

A Tour of
Mathematica

The purpose of this Tour is to show examples of a few of the
things that Mathematica can do. The Tour is in no way intended
to be complete—it is just a sampling of a few of Mathematica’s
capabilities. It also concentrates only on general features, and
does not address how these features can be applied in particular
fields. Nevertheless, by reading through the Tour you should get
at least some feeling for the basic Mathematica system.
Sometimes, you may be able to take examples from this Tour
and immediately adapt them for your own purposes. But more
often, you will have to look at some of Part 1, or at online
Mathematica documentation, before you embark on serious
work with Mathematica. If you do try repeating examples from
the Tour, it is very important that you enter them exactly as they
appear here. Do not change capitalization, types of brackets, etc.
On most versions of Mathematica, you will be able to find this
Tour online as part of the Mathematica help system. Even if you
do not have access to a running copy of Mathematica, you may
still be able to try out the examples in this Tour by visiting

www.wolfram.com/tour.

A Tour of Mathematica

Mathematica as a Calculator 4
Power Computing with Mathematica 5
Accessing Algorithms in Mathematica 6
Mathematical Knowledge in Mathematica 7
Building Up Computations 8
HandlingData 9
Visualization with Mathematica 10
Mathematica Notebooks 12
Palettes and Buttons 13
Mathematical Notation 14
Mathematica and Your Computing Environment . . . 15
The Unifying Idea of Mathematica 16
Mathematica as a Programming Language 17
Writing Programs in Mathematica 18
Building Systems with Mathematica 19

Mathematica as a Software Component 20

a

Mathematica as a Calculator

You can use Mathematica just like a calculator: you type in
questions, and Mathematica prints back the answers.

Mathematica adds the In and Out labels; you do
not type them. You end each line with [sirTHener].

1= 3 +5
Ask Mathematica what 3 +5 ——— ouy1j= 8 Thi s £ " P
A is stands for “to the power of”.
is; it prints back 8. inizi= 57.14100 P
175
- - Outizi= 4.60904 x 10 [T | Mathematica represents
This askf Mathematica to work_ misi- Inverse[{{1, 2}, {3, 4}}] matrices as lists of lists.
out the inverse of a 2 x 2 matrix.

ouiz= {{-2, 1}, {% 7%}}

Mathematica can handle formulas as
well as numbers.

This asks Mathematica to
integrate a simple function.

ni1}= Integrate[Sqrt [x] Sqrt[1l +x], x]

outl1j= % (Vx VT+x (1+2x) -arcsinh[Vx])

[.)
This asks Mathematica to | This stands for mathematical equality.

solve a quadratic equation.

T
Inizi= Solve[xA2 +x =a, X]

. 1 N — 1 N
utiz)= { — (-1-+1+4a)}, { = (-1++/1+2a)}}
ouze {{x> 5 (-1-Vivaa)}, {xo 5 (-1eVivda)}] The result is a list of rules
for x convenient for use in
other calculations.
Mathematica can also create two-
and three-dimensional graphics. = Plot [Sin[x] + Sin[1.6 x], {x, 0, 40}] 4| This creates a 2D plot of a simple function.

2

-

> Algebra

A M
\/ ol 'V 0 0 \/40
o > Arithmetic and Numbers

_> > Lists and Matrices

. v Trigonometric and
1= Plot3D[Sin[xy], {x, 0, 4}, {y, 0, 4}] Exponential Functions

Sin[w] |ArcSin[m]
Part of the Basic Cos[m] |ArcCos[m]
Calculations palette. Tan[a] "jArcTan[s]

Manipulation of trigonormetric
expressions to alternate forras.

0.5 77777 .
- " Y TrigExpand [m]

-0.5 "'l"' oy, “.< [TrigFactor[a]|
iy =

Power Computing with Mathematica

Even though you can use it as easily as a calculator, Mathematica gives you
access to immense computational power.

This creates a 500 x 500 Inf1l= m = Table [Random[], {500}, {500}1;

matrix of random numbers.

Ini2z:= ListPlot [Abs [Eigenvalues[m]]]

The semicolon tells
Mathematica not to
print the result.

8 On most computers it takes Mathematica
only a few seconds to compute the
eigenvalues of the matrix and plot them.

Mathematica can handle 700 200 300 200 500
numbers of any size.

Inf1]:= 100 !
out(1j= 93326215443944152681699238856266700490715968264381621468592~
9638952175999932299156089414639761565182862536979208272237
58251185210916864000000000000000000000000
nizil= N[Pi, 100]
outlzi= 3.1415926535897932384626433832795028841971693993751-
05820974944592307816406286208998628034825342117068

This works out a numerical
100-digit approximation to pi.

Mathematica can work with formulas of
any length—solving problems that would
have taken years by hand.

This asks Mathematica to
factor a polynomial.

= Factor[x499 +y~99]
2

outltj= (X +y) (x -xy +vy?) (xé—x3y3+y6) (xm—xaerxgyz—
Ty ek vt o0yt e xt vt — 3y 412 vE —xy® +y10)

3,7 1 9 0 10

(320 4 %19y =317 3 Z k6 gty 0 13 T 19 10 10

Xyt e x yP xSyt o xf y e oy e x v 4 y?0)

(x80 4+ x57 3 _ (519 48 12, 42 18 | (39 21 33 27 30
X2 33 12T 39, 18 42 | 12 048 L9 51, (3 57 60y
Mathematica calls on sophisticated
algorithms to simplify formulas. I /ni2}= Simplify[%]

outizi= x°% + v ; -
This stands for the previous result.

Mathematica has achieved world records—for both size
and speed—in many kinds of computations.

This tells Mathematica to show only a

shortened version of the result.

ni1:= PartitionsP[1049] // Short

Mathematica takes only a few seconds to work out
how many ways a billion can be partitioned into
sums—a frontier number theory calculation.

I Outl1]= 16045350842809668832728039026391874671468439 <«<35131>>

9 10189731 45752 779792 9 .
8569066861018973103045752685 368568833 This indicates 35131
omitted digits.

6

Accessing Algorithms in Mathematica

Whenever you use Mathematica you are accessing the
world’s largest collection of computational algorithms.

In each case, Mathematica automatically
chooses the best algorithm to use.

Mathematica has state-of-the-art algorithms,
here for factoring integers.

1= FactorInteger[10454 - 3]

-

outltl= {{215188013 5714851137, 1},
{46470989835488840363806434126781, 1}}

miil=m=Table[241 +x43, {i, 3}, {3, 4}]

Here is the list of factors and their exponents.

Ini2l:= MatrixForm[m]

1= FindRoot [Cos [x] == x + Log [x], {x, 1}]
outl1l= {x - 0.840619}

2= NIntegrate[Log[x + Sin[x]], {x, 0, 2}]
outiz= 0.555889

nf3l= NSolve[x*5-6x43+8x+1==0, x]

outi3l= {{x > -2.05411}, {x—->-1.2915},
{(x->-0.126515}, {x—>1.55053}, {x—>1.9216}}
ni4i= NMinimize[{Cos[xy] +X, x*2+y*2 <10}, {x, v}]

out4)= {-3.99011, {x - -2.99809, y 5 1.0057}}

This generates a two-dimensional
table corresponding to a matrix.

outl= {{2 +x, 2+x%, 2+x>, 2+x'},
(d+x, 4+x%, 4+x>, 4+x*}, {8+x, 8+%x%, 8+x>, 8+x*}}

This displays the table in matrix form. |

Out2]//MatrixForm=
24X 24+x% 2+x> 2+x4
4+x 4+x? 4+xP 4+xt
8+x 8+x% 8+x> 8+xt)

InBl:= NullSpace

outlgl= { {x +x%, -

Mathematica can solve differential equations
both symbolically and numerically.

Here Mathematica solves a nonlinear
differential equation numerically.

x, {t, 0,

outllj= { {x -» InterpolatingFunction[{{0., 50.}}, <>]}}

iniir= NDSolve[{x "’ [t] +x[t] *3 == sin[t], x[0] == x [0] == 0}

[m] This computes the null space of the matrix. |
L

1-x-%%,0, 1}, {x, -1-x, 1, 0}}

This represents a suppressed

50}]
long piece of output.

—

Iniz= ParametricPlot [Evaluate[{x[t], x’[t]} /. %], {t, 0, 50}]

The answer is an interpolating
function which implicitly
represents the whole solution.

This tells Mathematica to
substitute the solution for x.

i

Here is a parametric
plot of the solution.

Mathematical Knowledge in Mathematica

Mathematica incorporates the knowledge from the world’s mathematical
handbooks—and uses its own revolutionary algorithms to go much further.

Mathematica knows about all the hundreds

of special functions in pure and applied niti= LegendreQ[3, x]
mathematics. oue 2 _ 3% 1 (3 -5x%) Log| L+x
3 2 4 1-x |

| These both stand for /1. |
Inizj= N[MathieuC[1 +14, 214, 3], 50]

Mathematica can evaluate special
functions with any parameters to
any precision.

Outfzj= 3.9251311374125198643497646168158379203627176844794 +
1.8988239115433472411052747971439115776785813553761 1

Mathematica is now able to do vastly more
integrals than were ever before possible for
either humans or computers. i1} Integrate [Sqrt [x] ArcTan[x], x]

Outl1]= i (8 & 2 \/7 L\Tc‘\‘an[W \/7 \/;] + 2 \/7#«(“ ‘d*x[’\ + \/7\/; +

4 x3/% prcTan[x] -2 T‘og[—' +/2 Vx - x| +\/7T‘og[' +/2 Vx +x])

| Here is a definite integral.

| Here is a symbolic sum.

‘ ini1}= Sum[1/ (k+1) ~6, {k, 0, n}]
ni1}= Integrate[Log[x] Exp[-x43], {x, 0, Infinity}] 6

outl1]= 925- l%O‘ PolyGamma[5, 2 +n]

The results often require
L4y 5 13 1 5 1 L)) special functions.
outzl= = (4 HypergeometricPFQ[{1}, {Z' Z}' “%i | +~/27 (-cos| 7‘ + sin| z |))

Outl1]= % Gamma [— %] (6 EulerGamma + \E s+ 9 Log[3])

2= Integrate[x Sin[x42] Exp[-x], {x, 0, Infinity}]

Mathematica can solve a wide range of
ordinary and partial differential equations.

infi}= DSolve[y '’ [x] +y ' [x] +xy[x] == 0, y[x], x]

/2 piryai [(-1)1/3 (%ﬁ{)]cm +e 2 pivyBi[- (1)1 (%%) cr21}}

out1]= Hy[x} >e

This finds the billionth

Mathematica’s algorithms
prime number.

can generate a huge range | "= FullSimplify[Product[Gamma[2n /5], {n, 1, 5}]]

of mathematical results.

52
infij= Prime[1049] oure 27T
254/5 inl1:= Reduce [Exists[x, x*2+ax+b==0], {a, b}, Reals]
Outl1)= 22801763489
2
a
outll}= = —
4 1= Log[2] < Zeta[3] < Sqrt[2]
out/1]= True
poulcan ?e” Mathemat’,ca (1= Simplify[Sin[x + 27w n], n € Integers]
assumptions about variables.

outl1)= Sin[x]

8

Building Up Computations

Being able to work with formulas lets you easily
integrate all the parts of a computation.

)= Eigenvalues[{{3, 1}, {2, 6}}]

ou= {2 (9+317), 5 (9-17)} —H

Mathematica can still compute the eigenvalues

Here are the eigenvalues
of a matrix of numbers.

even when symbolic parameters are introduced.

representation of the

1= v = Eigenvalues[{{3, 1}, {2, c}}] 1
eigenvalues for any val

This expression is a compact

ue of c.

Ourl?/:{% (3+c—\/17—6c+c7), % (3+c+\/17—6c+c7)}

ni2l= Plot [Evaluate([v], {c, -10, 10}] This takes the formula
10 for the eigenvalues and
This picture shows how the immediately plots it.
eigenvalues vary with c. 5
<10 -5 5 10
-5 You can solve for the
value of c at which the
-10 o= Solve[First[v] == 0, c] first eigenvalue is zero.

2N

ouig= {{c - .

ni4i= Integrate [First[v], c]

Or find the integral
with respect to c.

/

2 _

outl4)= % L} c+ % - (—% + %) \V17 -6c+c? 74ArcSinh[;\E]
Mathematica’s functions are carefully ns}= Series[%, {c, 0, 4}] I This finds the series expansion of the result.
designed so that output from one can o 2 avesinn] ; }) (3 Y17 N] o2 3t L o[e)’
easily be used as input to others. s o 22 2 2 INEE 5117 578+/17

Inf6l:= FindRoot [%% == 1 +c42, {c, 1}] This searches numerically

for a root.
outlel= {c > 2.14314}

This generates a table

of the first 20 primes, | | nl1:= Table [Prime[i], {i, 20}]

outlt= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
37, 41, 43, 47, 53, 59, 61, 67, 71}

nizi= Fit[%, {Log[x], x, x%}, x]

outizl= 3.55559 x + 0.0403706 x? - 5.22256 Log [x]

Fit produces an approximate formula.

ini3l= Sum[%, {x, 1, 20}]

Outisl= 641 .437

This computes the sum of the first 20
primes using the approximate formula.

ini4l= Sum[Prime[i], {i, 1, 20}]

Outl4]= 639 N
Here is the exact result.

Handling Data

Mathematica lets you import data in any format, then
manipulate it using powerful and flexible functions.

This reads data - - -
from a file. Mathematica automatically imports

and exports more than 50 data,

inf11:= data = Import ["image.dat"]

e ounn= ({27, 19, 32, 17, 19, 29, 22, 22, 22, 2

text, graphics and sound formats.

gi 2965 69, 69, 89, 87, 97, 105, 106, 101, 85
52 45 17, 11, 6
g; gg] Iniz1= ListDensityPlot [data] | This visualizes the data

87 73 77 86 66 66 78 102 108 93
636336 1419 14 11 29 36
27 29 32 27 27 22 19 22 39 69

R as a density plot.
5
66 64 73 66 69 70 66 77 64 61 6
5

27 34 34 29 19 19 22 27 22 27

This applies an image
4= ListDensityPlot [ListConvolve[filter to the data.

{{3, -1}, {-3, 1}}, data]l;

- A A Infel:= ListPlot [Sort [Flatten[data
Here the data is /3= ListDensityPlot [" L [L m
successively shifted MapIndexed[RotateR 200
to the right.
150
100 . o
. This is the distribution of
ins]= ListContourPlot [data, 50 __,,,.-// gray levels in the data.
ContourShading -> False, e
Contours -> 6] " 2000 4000 6000 8000

ni7= ListPlot3D[data,
ColorFunction -> GrayLevel,
Mesh -> False,
ViewPoint -> {0.2, -2, 5}]

Here is a contour
plot of the data.

Mathematica can work with data of any kind—not just numbers.

This reads in all the
words in a large
English dictionary.

ni:= data = Import ["webster", "Words"]

outill= {a, AAA, AAAS, Aarhus, Aaron, ABA, Ababa, aback, &
abase, abash, abate, abbas, abbe, abbey, abbot,
abdicat
Aberdee:
abeyant
ablaze,
abolitid

Here is a 3D plot
based on the data.

niz:= Select [data,
(# == StringReverse[#] && StringLength[#] > 4) &] - | This selects words

that are palindromes with

length more than 4.

outz= {civic, level, madam, minim,
radar, refer, rever, rotor, tenet}

3= lengths = Map [StringLength, data];

This is a plot of the number of
words of each length.

4= ListPlot [Table [Count [lengths, i], {i, Max[lengths]}]]
4000 . Mathematica also has full support for sparse arrays.

3000
inl1:= SparseArray[{i_, i_} » 1, {1046, 1046}]

2000

1000

This represents a
million-by-million
identity matrix.

10

Visualization with Mathematica

Mathematica makes it easy to create stunning visual images.

/1= ParametricPlot3D[{u Cos[u] (4 +Cos[v+u]),
usSin[u] (4 +Cos[v+u]), usSin[v+ul},

{u, 0, 47}, {v, 0, 27}, PlotPoints » {60, 12}] This option controls the range of
coordinates shown in the plot.

This creates a 3D parametric
plot with automatic choices
for most options.

iniz:= Show[%, PlotRange -> {-10, 0},
FaceGrids -> {{0, 0, -1}, {0, -1, 0}, {1, 0, 0}},
BoxRatios -> {1, 1, .5}, ViewPoint -> {-1, 3, 2},

Ticks -> None, AxesLabel -> {ai, B1i, ¥1}]

o Here is the same plot with a variety
of specific choices for options.

nf1:= Play[Sin[10000/t], {t, 0, 2}] ——{ This plays a “whoosh” sound
with the specified waveform.

Mathematica includes primitives from which you
can build up 2D and 3D graphics of any complexity.

Inf1:= g = Flatten[Table[Point[{p /g, Denominator[p/ql}].,
{a, 100}, {p, a-1}]]

ini2z:= Show[Graphics[g, Frame -> True]]

Here is a list of outlij= {Point[{%, 2}] , Point[{%, 3}} ,
point primitives. 100
Point”i,ﬂ], PointHé, SH, 80
60
40
20
(1= g = Flatten[Table[If[BitAnd[x, vy, z] == 0, 0

Cuboid[{x, ¥, 2z}]1, {}], {x, 0, 15},

{y, 0, 15}, {z, 0, 15}1] This is the corresponding 2D graphic.

Ini2z.= Show [Graphics3D[g]]
outf1)= {Cuboid[{0, 0, 0}], Cuboid[{0, 0, 1}]

Cuboid[{0, 0, 2}], Cuboid[{0, 0, 3}]
This generates a list of 3D
cuboid primitives.

|

This shows the graphics corresponding
to the list of primitives.

-_-',,‘, i

1]
)
fl
/|
/

1

nl1:= Table[Plot3D[Sin[2 x] Sin[2 y] Cos[t],
{x, 0, Pi}, {y, 0, Pi}, PlotRange -> {-1, 1},

BoxRatios -> {1, 1, 1}], {t, 0, Pi, Pi/6}]

,u‘//".'u‘

R

S
ol

e

I
' """":'::"‘\\

| Mathematica lets you produce animated movies as well as static graphics. |

' f
1

N
i AN

\
S\

LA
u\\\e..'.:',,'

Mathematica has made possible many new kinds of
scientific, technical, and artistic images.

You can create
diagrams of any
complexity.

You can create representations of
abstract mathematical objects.

Nov 17

Latitude
3:20 am

38 South

You can visualize structures

of any kind.
You can display data
in any format.

12

Mathematica Notebooks

Every Mathematica notebook is a complete interactive document which
combines text, tables, graphics, calculations and other elements.

A Section Heading

O A Calculation

inf11=Plot[sin[€] + Sin[VE], (€, 0, 1007)];

O A Subsection
O Another Subsection

O Basic Features of Notebooks

Here is some ordinary text. It can be in any Kol

You can set
up buttons to
perform any

, face, SiZe, color, etc.

Text can contain formulas such a»f ﬁ da. Ttcanalso contain Hyperlinks.

—— __Forward Backward Reverse

action you More Advanced Layout
specify.
o’ - (a-B) (a+B) o - p
@’ -B o - p? (a-B) (&% +aB+p?)

Mathematica notebooks are automatically
retargeted for screen or printout—optimizing
fonts and layout for each medium.

Notebooks are

in a hierarchy of cells.

automatically organized

You can close groups of cells so
you see only their headings.

You can use hyperlinks to
jump within a notebook or
between notebooks.

Each cell can be
assigned a style

A Section Heading
OA Calculation
ini1}=Plot[Sin[€] ¢Sin[\/?], ce o soa—l

A Soction Hoading

9A Calculaton
"

nUu, , .Mmln.m
™

OA Subsection

O Another Subsection

0A Subsoction

9 Another Subsection

A notebook targeted
for presentation.

OMore Advanced Layout

A notebook targeted for
printout.

from a style sheet.

Title: Alt+1
Subtitle: Alt+2

Subsubitle Alt+3
Section Alt+d

Like other objects in Mathematica,, the cells in a notebook, and in facl the whole
notebook itself, are all ulti as Math i pressions. With
the standard notebook front end, you can use the command Show Expression to
see the text of the Mathematica expression that corresponds to any particular cell.

Like other objects in Mm/wmama ﬂ‘AL cells in a mmbuok and in fact the
whole notebook itself, a P
With the standard nulebook 1runl end yﬂu can use 1he Lomm.\nd Show
Expression to see the text of the "a expression that corresponds to any
particular cell.

Text A7
Smallest AlG
| el __a

Subsubsection Alt+6

Zetaand Related Functions

Ler

Riemann

cchPhi[z, 5, a] Lerchs transcendent® (z, s, a)

SiegelThetal 1] Riemann- Siegel function d (1)
Rieman

Logln, z] polylogarithm function Li,(z)

Riemann~ Siegel function Z (1)

Stieltjes constants y,,

Riemann zeta function ¢ (s)

generalized Riemann zeta function Z (s, @)

Zeta and related functions:

The Rieman

(fors > 1). Zeta functions with
and integrals.

function for complex

distibutiono
Re.

Siegel functions &

according to

nzeta functio

51 is definedby the relation £(s) = £ _ k™
evaluating

Mathematicagiv tresults when possible for zeta functio

ents. The whole Mathematica

alytic co i f Z(s) for arbitrary complex s # 1. Th f

e o st st o] Pellp system is based on
notebooks.

f primes. OF particular importance are the values on the critical

Z(1) = e

Mathematica notebooks can be built up using
explicit commands as well as interactively.

This is how Mathematica represents a cell. |

Cell["A Subsection Heading", "Subsection",
CellDingbat->"\ [EmptyDiamond]"],
FontFamily->"CBO Univers 67 CondBoldObl",
FontWeight->"Plain"]

This tells Mathematica
to print three cells in
subsection style.

O A Subsection Heading

Do[StylePrint["Heading " <>

ToString[i], "Subsection"],

{i, 3}]

This joins text
strings together.

Inf1= Do[StylePrint["Heading " <>
ToString[i], "Subsection"],

{i, 3}]
mHeading 1

mHeading 2

mHeading 3

Here are the three new cells. |

Palettes and Buttons

Palettes and buttons provide a simple but fully
customizable point-and-click interface to Mathematica.

Mathematica comes with a collection of
ready-to-use standard palettes.

Part of the standard
Basic Calculations palette.

Palettes work like extensions to your

alala|a|ala|=|¢
m.0 cle|e|i|i|d]s
Cross([m, O] |ﬁ|c‘>|6|6|6|6
Outer[m, 0O, O] |ﬁ|ﬁ|ﬁ|9|9|b
pectal X/a|a[a]a[a]c
Inverse([m]
HAEEEEEE:
Transpose[m] —— T
Eigenvalues[m] E‘| Nl Ol 0| Ol Ol o
] L e
Eigenvectors{s] Jl Ul Ul 1 A standard palette for
LinearSolve[m, O] E'l <<| >>| 4 European characters.
RowReduce[m]

keyboard.

alB

Y
& g

Clicking the e button pastes the ¢
character into your notebook.

It is easy to create your own
custom palettes.

2 (1+ |

2(l+e |

The W indicates where the
current selection should be
inserted.

2

m“ | Exp[m]

Log[m]

Clicking the button takes the
highlighted selection and wraps
a square root around it.

Palettes can be part of a
notebook or can stand alone.

Darken[m] Lighten[m]
EdgeSelect[m] O A button waiting
- = to be filled.

You can make custom palettes to execute any

function or manipulate any expression.

Expand[m]

Simplify[m]

Clicking the button immediately
factors the part of the expression
you have selected.

1+ ENVERESERNFE + (P+q) *2

1+ (a+b)2+ (p+q)r2

P Arithmetic Operations
I Algebra
b Lists and Matrices

~ Trigonometric and
Exponential Functions

= Trigonometric
Sin[a] |ArcSin[a]
Cos[s] |ArcCos[s]

Tan[s] |ArcTan[s]

‘Manipulation of trigonometrie
eXpressions 1 alernate fomis.

TrigExpand[a]
TrigFactor[a]

pRYSin[x] + Coslx]

I
1+ sin[x] + Cos[x]

Indent(20%)
Tunsats 20%)
Trncate 0% oper)
Shink(z0 %)
Holes 20 %1

Geodesate

Clicking a button performs a
geometric operation on the
current polyhedron.

Truneate (50%)
Truncate (60 % open)

Staitata (200 %)
Indent(s0 %) Indent(z0 %)
Truneate (100 %)
Truncate (100 % apen)
Shank(E0 %)
Holes (50 %)

Shiink(s0 %)
Holes (50 4]

Qutiine Make Beams

14

Mathematical Notation

Mathematica notebooks fully support standard
mathematical notation—for both output and input.

Here is an integral entered using only
ordinary keyboard characters.

Mathematica combines the compactness
of mathematical notation with the precision of - Integrate [Log[1 +x] / Sart [x], %]
a computer language.

Outl1)= 4ArcTan[\/;} +24/x (-2 +Log[l+x])

Here is the same integral entered in two-

dimensional form with special characters. You can enter this form using a palette

or directly from the keyboard.

Log[1l + &] |
Ini2k= | ———= da§ |Eint;Log[1+§xE] B /| 2] x: O :4d: :x: |
m” s '\/E ‘
You can use any o
of the notation in this Va Va Outz= 4 ArcTan [\E} +2E€ (-2 +Log[l +€]) | This stands for the & key. |
palette for input. J- do| o, m
JDI do Og,om
Z. n. IOur[1/:—4 £ + (4 ArcTan[VE] +27) +2VE Logll + &l
D?ﬂ = Mathematica always lets you edit
oo) | =Iol output—and use it again as input.

X + x = |

=|#£(s|2]|= -

-l Al v|Uu|n . Mathematica can generate output Mathematica’s StandardForm
2= TraditionalForm[%] | in traditional textbook form. is precise and unambiguous.

TraditionalForm requires
heuristics for interpretation.

Outl2}//TraditionalForm=

4tan” (VE) +2VE (log¢ + 1) - 2)

Mathematica produces top-quality
Mathematica supports over 700 special characters output for formulas of any size or
with new fonts optimized for both screen and printer. complexity. —

©

§1__vemle]
Inl1]:= // TraditionalForm
Uiz (p2 +x) (U2 -2)

i

u=0

1
b

v
v |+
| ¢
b 5
c f sl | =) Outl1}//TradlitionalForm=
J m #) #| <] > (~MiF(=iVi L L =iV @™) =0 Fy(i Vi 1L iV + L e) -
#|| £| <| >
a d = R /<1F2(—\/I;1,l—ﬁ;e”/“c,a)—Kle(\/X;1,ﬁ+1;e”/44p))/
W 5K oo efafe| f| s (@r(Vx i VI)(Vr +iVT))
° IS hl il k|t|m]| [
Y J ofplag|r|s|t|uls
K D v|w|x|1a] 8] v|s|e
H K A[B|C|I0| x| x|A Mathematica makes it easy to
o RIS 1(alin]=|o|o|o work with abstract notation.
Y Y olp|ali®Xx Y| w| F I
= B|T| 2| E Inf1)= Table[g 00 ®Bi= 2, {i, 3}]
NN E i
2 1 0
pERS outf1)= {QOOzleaBl:?, g<>a2®7§2:?, Goa; @733:?}

All characters have consistent full names;
some also have aliases and TEX names. Mathematica includes full

support for MathML.

15

Mathematica and Your Computing Environment

Mathematica runs compatibly across all major computer systems, and
lets you exchange data in many standard formats.

0080 ‘sampleNotebook.nb o

A Sample Notekgq

o) TurpSampoiotabook

Notebooks look he e i ol o bou ter it Hooe o Notebook({
am o
platform and calculations e [o ce oupbata{
A Sample Notel™ === - ce wle Notebook, “Titler],
[
] Notebooks ook e same| A Sample Notebook Jf | comcememeonce
oupe VTX L“:'[r p\atfﬁrm and calculations, Notebooks look the same on every computer on every computer
L1 Plota(sinteyl. (x. 0. 4. (7 resufts. platform and calculations give the same s\
k= Nie, 401 results.
[ot a0 W
Ol 3.141592653589793238462643383279502884197 3
) Tntegrate (St xl Sart[1+x], X1 J "], “Input”,
e PlotmIsiaterl, (0 0,41, 1, 0, 401]
. Notebooks have a
Macintosh portable underlying plain
text representation.
Unix/Linux .
)
Windows
(S]]
This is what you get when you copy the integral O ‘? ﬂ ad v - 1
into an external text application such as email. B — - e
Log[l+€&] ae 8 CADocuments nd Sttt pescoSrlevichok LERE = Ay Mathematica lets you import
‘ A Sample Notebook external graphics and sounds
! into notebooks.
. Notebooks look the same on every computer
\VIN(\ [Integrall\ (Log[1+ \[Xi]]\/\@\[Xi]\)\[DifferentialD]\[Xi]\) platform and calculations givelheysamepresulls. ———
D 503y 556
S et
o = 3
\ \ 3.141592653589793238462643383270502884197 Epic SN or ke
\\‘ e O Leberdie Hrpothenn palbe dor]1
\ \ IntegratelSartx] S@t(1ex], x] Corumi 71 Grade g
Out: O Helerdie Aol sou Aznewbin]]
\\\\\ VT [Q . ;] R "“":*W\ IR SO O T
N 8
Poupisiatan, G, 0,43, (0, 41
You can export graphics and formulas to Complete Mathematica notebooks
other programs in EPS, GIE PNG, SVG, QA can be exported in formats such as
. AN
etc., and then manipulate them.) ’,::3))\\\& XML, HTML, TEX and RTF.
| €] Done) 4 My Computer
Mathematica provides system-independent
functions for file manipulation.
1= all = FileNames["*",
3 $HomeDirectory, Infinity];
Ein Beispiel-Notebook You can easily connect to external programs.
s Notebooks - Ini2:= sizes = Map[FileByteCount, all];
n Notebooks kann man aush Unilaute benutzen:

4,5, u; und B und

= Install["sampler.exe"]

Mx. 401 TN I— T D 3= ListPlot[Sort[Log[10, 1+ sizes]]]
5 14159265558979323040 | i i out/1)= LinkObject[sampler.exe, 2, 2]
Integratersartizisqy M2 FZ7»2@ E¥0aALEa-sbTy 7
BCESEXRRIN. F—ostHERH . .
MR I i ; nizi= Table[getdata[i], {i, 3}] p
z x
Plot3D[Sin[x¥l. {x. (3.1416926636897932 36462643363279502684197 §

outlzl= {{x—2.45, y > 5.78}, 5
{x>1.16, y—>2.19}, 4
{x->1.3, y>4.35}} 3

Integrate[Sqrt[1] Sart[1+I]. r]

j.x[ﬁ.ﬁ],“mm[ﬂ] i
4
]

Here is a plot of the
sizes of all files in a
file system.

z 1

Plot3ID[Sin[xy]l. {x. 0. 4}. {7. 0. 4}]

500 1000 1500 2000 2500

RN

16

The Unifying Idea of Mathematica

Mathematica is built on the powerful unifying idea that
everything can be represented as a symbolic expression.

All symbolic expressions are built up from
combinations of the basic form: headlarg;,arg,,...J.

m[1l] +=a

A command

Graphics

a®b~c, ——

Press hereI

{a, b, ¢} List[a, b, c]
A list of elements
x* +x Plus[Power[x, 2], Sqrt[x]]
An algebraic expression
x == Sin[x] —— Equal[x, Sin[x]]
An equation
p&&!lq And[p, Not[q]]

A logic expression

A button

A cell containing text

The uniformity of symbolic expressions makes it easy to
add to Mathematica any construct you want.

HNO;

Chemical[{Hydrogen, 1},
{Nitrogen, 1}, {Oxygen, 3}]

"Pext"]

A cell in a notebook

A chemical compound

All operations in Mathematica are ultimately
transformations of symbolic expressions.
Mathematica has a uniquely powerful pattern
matcher for applying transformation rules.

This tells Mathematica to apply a
simple transformation rule.

nii:= {a, b, ¢, d} /.b->1+x

outl= {a, 1+x, c, d}

An electric circuit

Mathematica uses patterns
to generalize the notion of
functions.

= £[x_] :=2/%x
inizl= £[0] :=e

3= £[6] + £[a +Db] + £[0]

2
a+b

Out[3] E + +e
{ =
3

Each of these stands for any expression.

nizl= {a+b, c+d, a+c} /. x_+y_->x*"2+y*2

outizi= {a® +b?, c? +d%, a? +c?}

nEgli= {a+b, c+d, a+c}/.a+x_->x"3

outiz= {b>, c+d, c*}

= gl{x_, y_}] :=x+y

AddTo[Part[m, 1], al]

Graphics[{Circle[{1, 0}, 2],
0 Circle[{-1, 0}, 2]}]

Tilde[CirclePlus[a, b],
Subscript[c, Infinity]]

Abstract mathematical notation

ButtonBox["Press here"]

7 Cell["A cell containing text",

Circuit[{Resistor["R"],
Capacitor["C"]}]

This is an ordinary function
definition to be used for any x.

Here is a special
case that overrides the
general definition.

Using patterns allows “functions” to
take arguments in any structure.

nizi= g[{4, a}]

outizl= 4 + a

area[Circle[{_, _}, r_]] :=Pir+2

reduce[p_ && q_ || p_] :=Dp

17

Mathematica as a Programming Language

Mathematica is an unprecedentedly flexible and productive

programming language.

Mathematica incorporates a range of programming
paradigms—so you can write every program in its most
natural way.

In[1:= Z =aj;
Do[Print[z *=z+1], {i, 3}]

a(l+a)
a(l+a) (2+a(l+a))
a

(1+a) (2+a(1l+a)) (3+a(l+a) (2+a(l+a)))

Procedural programming

Inf1= NestList[£, x, 4]
ouni= {x, £[x], f[f[x]], F[E[E[x]]], ELE[F[E[x]]]]}

=1+ {a, b, c}*2

Many operations are
automatically threaded
over lists.

ouril= {1+a, 1+b%, 1+c?}

inizi- Table[i43F, {i, 4}, {3, i}]

outlzl= {{1}, {2, 4}, {3, 9, 27}, {4, 16, 64, 256}}

This flattens | Ini3i:= Flatten([%]
. 1
out sublists. outz= {1, 2, 4, 3, 9, 27, 4, 16, 64, 256}

Inj4)= Partition[%, 2]

This partitions into
sublists of length 2.

outl4= {{1, 2}, {4, 3}, {9, 27}, {4, 16}, {64, 256}}

List-based programming

= p[x_+y_] :=p[x] +P[Y]

Iniz= NestList[(1 + #) 2 &, x, 3]
P Snl bl

2

This is a pure function. ni2i= pla+b+c]

|
ouizi= {x, (1+x)?, (1+ (L+x)?)", (1+<1+(1+x>2)2)‘}|

Functional programming

inf11:= StringReplace["aababbaabaabababa",
(uaau -> "AAA", "ba" -> uvu}]

out/1]= AAAVDbVavavvVv

String-based programming

outiz= p[a] +p[b] +p[c]

niBl= s[{x__, a_, ¥.

This stands for any
sequence of expressions. | 4= s[{1, 2, 3, 4, 5, 6}, 4]

Y, a_]:={a, x, x, ¥, ¥}

out4)- {4, 1, 2,3,1,2,3,5,6,5, 6}

Rule-based programming

with the o

This associates the definition

h/:h[x] +h[y_] :=hplus[x, y]

bject h. h/:p[h[x_], x_] :=hp[x]

Mathematica gives you the
flexibility to write programs

f = Factorial . .
in many different styles.

f[n_] := n!

f[n_] := Gamma[n + 1]
f[n_] :=n f£[n-1]; £[1] = 1
f[n_] := Product[i, {i, n}]

fn_]
Do[t

Module[{t = 1},
t+i, {i, n}]; t]

f[n_] := Module[{t = 1, i},
For[i =1, i <=n, i++, t *=1i]; t]

f[n_] := Apply[Times, Range[n]]
f[n_] := Fold[Times, 1, Range[n]]
f[n] :=If[n ==1, 1, nf[n-1]]
£ = IE[#1 == 1, 1, #1#0[#1 - 1]]&
£[n_] := Fold[#2[#1]&, 1,

Array[Function[t, #t]&, n]]

A dozen definitions of the factorial function

Here are three definitions to be
h/: f_[h[x_]] :=fh[£f, x] associated with the object h.

Object-oriented programming

nii= Position[{1, 2, 3, 4, 5} /2, _Integer]

outni= {{2}, {4}}

ourz= {{a}, {b*}, {c’}, {a'}}

Many of Mathematica’s most
iniz= MapIndexed[Power, {a, b, ¢, d}] powerful functions mix different
programming paradigms.

3= FixedPointList[If [EvenQ[#], #/2, #]&, 1045]
outi3l= {100000, 50000, 25000, 12500, 6250, 3125, 3125}
4= ReplaceList[{a, b, ¢, 4, e},
(x__, v__}->{{x}, {¥}}]
outd= {{{a}, {b, c, d, e}}, {{a, b}, {c, d, e}},
{{a, b, c}, {d, e}}, {{a, b, c, d}, {e}}}

Mixed programming paradigms

18

Writing Programs in Mathematica

Mathematica's high-level programming constructs let you build
sophisticated programs more quickly than ever before.

Single-line Mathematica programs can
perform complex operations. This one
produces a one-dimensional random walk.

The directness of Mathematica programs makes
them easy to generalize. This one produces a
random walk in d dimensions.

RandomWalk[n_, d_] :=NestList[

RandomWalk[n_] :=NestList[(# + (-1) ~Random[Integer])&, 0, n]

inizl:= ListPlot[RandomWalk[200], PlotJoined-> True]

Here is a plot of a
200-step random walk.

inizl:= Show[Graphics3D[
Line[RandomWalk[1000, 3]]]]

(#+ (-1) ~Table[Random[Integer], {d}])&, Table[0, {d}], n]

Here is a plot of a
3D random walk.

Mathematica makes it easy to build

the Life cellular automaton.

Here is a direct program for a step in

up programs from components.

CenterList[n_Integer] :=

LifeStep[a_List] :=
MapThread[Tf[(#1 == 1 && #2 == 4) || #2 == 3, 1, 0]&,
{a, Sum[RotateLeft[a, {i, j}], {i, -1, 1}, {3,

LifeStep[list_] :=
With[{u = Split[Sort[Flatten[Outer[Plus, list, N9, 1], 1]1]1},
Union[Cases[u, {x_, _, _} ->x],
Intersection[Cases[u, {x_, _, _, _} ->x], list]]]

N9 = Flatten[Array[List, {3, 3}, -1], 1] ;

-1, 1}1}, 2]

ReplacePart[Table[0, {n}], 1, Ceiling[n/2]]

ElementaryRule [num_Integer] :=
IntegerDigits[num, 2, 8]

CAStep[rule_List, a_List] :=rule[[
8 - (RotateLeft[a] + 2 (a + 2 RotateRight[a]))]]

CAEvolveList[rule_List, init_List, t_Integer] :=
NestList[CAStep[rule, #]&, init, t]

CAGraphics[history_ List] :=

Mathematica’s rich structure also makes it easy to

implement this alternative highly optimized algorithm.

Graphics[Raster[l - Reverse[history]],
AspectRatio -> Automatic]

FareySequence[q_] :=
Apply[Union, Array[Range[# - 1] / #&, q]]

TransferMatrix{a , & , p_] :=

{{§+ If[l-a<Mod[pa, 1] <1, 1, 0], -1}, {1, 0}}
TransferMatrixList[a_, £] :=
Table[TransferMatrix[a, &, pl,

{p, 0, Denominator[a] - 1}]
TransferMatrixProduct[a_

Fold[Expand[Dot [##]]&, F| mnis:= Show[Graphics[

TransferMatrixList[a, & SpectrumData /@

EnergyPolynomialla_, £] FareySequence[20]]]

Transpose[TransferMatr

Spectrum[a_, £] := /.NS
EnergvPolvnomialla. £11

Mathematica programs can mix
numerical, symbolic and graphics
operations. This short program solves a
sophisticated quantum model.

Impedance[Resistor[r_], w_] :=r
Impedance[Capacitor[c_], w_] := ;
Jwc

Impedance[Inductor[l_], w_] :=jwl

ini6l:= Show[CAGraphics[CAEvolveList[
ElementaryRule[30],
CenterList[101], 50]]]

g[k_] :=1+FixedPoint[N[1/ (1 +#), k]&, 1]

Impedance[SeriesElement[e_], w_] :=
Apply[Plus, Map[Impedance[#, w]&, e]]
Impedance[ParallelElement[e_], w_] :=
1/Apply[Plus, 1/Map[Impedance[#, w]&, e]]

nfel= Impedance[SeriesElement[Table[ParallelElement|
Table[SeriesElement[{Resistor[R,]}], {n}]],
{n, 1, 4}]1, w] // Simplify

Outl6]= ?,+§ (6 Ry +4R3 +3Ry)

Mathematica programs
are often a direct translation
of material in textbooks.

Q[n_] := Total[Map[Last, FactorInteger[n]]]
pu[n_] :=MoebiusMu[n]

|Log[2,x]] [x27%) X1k
pixdie- D, ubkl 3 uialama) |52 /x>0
k=1 n=2

g[k_] := FixedPoint[N[Sqrt[1l + #], k]&, 1]

Mathematica programs provide
unprecedentedly clear ways to
express algorithms. Both of these
programs approximate the Golden
Ratio to k digits.

computational notation.

Mathematica programs allow a unique
combination of mathematical and

19

Building Systems with Mathematica

Mathematica has everything you need to create complete
systems for technical and non-technical applications.

Inl1)= << Miscellaneous WorldPlot ™

Ini2l:= WorldPlot[World, WorldProjection ->
N[{#2 (Abs[Sin[Degree/ 60 #1]] +1) /2, #1} &],

This loads a Mathematica package
called Combinatorica.

WorldBackground
[T nll:= << DiscreteMath”Combinatorica”

-> Hue[.5]];

Approximating
an Integral

A common use for i ea under a curve. That

jon is determining

les as tall as some part of the curve within each
as wide as the subinterval itself along the axis. then add
areas of the rectangles. The resull is an approximation of the
) from ato b

Aspprox =) f () Ax
=

This can be represented visually. Given the function 22 between
0,01 and 10, we can demonstrate the technique as follows:

sin(x]

Aroarpproxsmationpiot

w001 101]s

08
0
04

02

02

Mathematica has made possible a
new generation of notebook-
based interactive courseware.

You can use palettes and buttons to
build custom user interfaces.

I Generate

Click the desired ticker symbol for
a historical summary.

eComputer Hardware

eComputer Software

MSFT

Autodesk, Inc.
Borland International
Intergraph Corp.
Intuit

Clicking this button
generates a report
and puts it in a
new notebook.

Microsoft

Novell, Inc.
Oracle System Corp.
Sybase

Stock Reports

Inl2l= ShowGraph[LineGraph[LineGraph[
CirculantGraph[5, Range[1, 3]]11]1;

&
X

Optica is a large Mathematica package
for doing optical engineering.

In[1]:= << Optica™

In[2:= DrawSystem[{
ConeOfRays [10, NumberOfRays->10],
Move [PlanoConvexLens[100,50,10], {100,0,0}1,
Move [PlanoConvexCylindricalLens [
100, {50, 50},10], {130,0,0}1,
Move [BeamSplitter[{50,50},{50,50},10]1,{180,0,45}],
Boundary[{-100,-100,-100}, {250,100,200}1}1;

Notebook documentation can
automatically be integrated
with the main Mathematica
help system.

m3.8 IntrinsicSurface Functions

9Two Intrinsic Surtaces Forming a Prism
9 Two Parallel Intrinsic Surfaces
Putting Light Sources in Water

The SwitchintrinsicMedium Genetic Building Block

m3.9 Lenses

v Spherical Lenses

% GaleulationCanter 2.0 - [Untitled-1 71

Flo Edt_Caulate Basc ish Aosbra_Caluks_Lsts aiabes

Graphics _solvers _Defnng Furctors_belp

) % Untitod 1~
SmartPlot
IeTATCALCULATOR:

s
func iy

isuslize dota automaticaty

Smartpiot()

Historical Daily Data for Microsoft (MSFT)

T —
[

You can create complete
applications and user
interfaces directly in
Mathematica.

'S;g?g;ﬁ::s?oﬁe"ﬁ'jff This is the notebook et
produced by clicking e
the button. YT i)
T A NEW KIND

ey T | OF SCIENCE"

\qu i

8] chapter 5 1 Inicators for Everyday Systens: Gowth of Plantsand it

#l

‘v Limiting patterns produced by plant e substtution systems
RS —

outor branch growth
rato

| max Min Average Volatility
Ciose ES 80187 88486 283
Volume | 14215, ma 57844 28796

o
ranch ange range
iG]

number of branches

Generate.

5 pintimage s axpertinage i copsdat

it

20

Mathematica as a Software Component

Mathematica’s symbolic architecture and uniform linking
mechanism make it uniquely powerful as a component in

many kinds of software systems.

You can easily integrate external programs into Mathematica.

This gives a template for

:Begin:

:Function: anneal

:Pattern: TSPTour [r:{{_, _}..}]

:Arguments: {First [Transpose(r]], Last[Transpose[r]],
Length[r], Range[Length[r]]}

:ArgumentTypes: {RealList, RealList, Integer, IntegerList}

:Ref] -

:Enc

calling a C program.

I

Install["anneal"]; 4' This installs the C program.
TSPTour[Table[Random[], {100},

I {2}11
outizi= {10, 7, 34, 30, 46, 40, 43, 38, 65, 57, 28, 23, 80,
78, 94, 6, 92, 32, 18, 26, 98, 56,

Now the program is just like
any Mathematica function.

The Mathematica Database Access
Kit connects Mathematica to any
standard database.

infi)- Needs ["DatabaseAccess™ "]

DataSourceEvaluate[dbselect,

dbselect = OpenDataSource["dbselect"]
) R This does a database query.
SourceObject [dbselect, 1, <>]

ata.

o]

sQLSelect [SQLTable["publishers"]],

ShowColumnHeadings -> True] // TableForm

Outl2):=

pub_

0736
0877
1389

The Mathematica JILink system gives you immediate access to any Java library.

Java objects and behaviors are automatically

mapped to

Mathematica symbolic functions.

All the methods in this Java
class are now accessible.

- traceTask = JavaNew["com.wolfram.net.util.TraceRoute"];
traceTask @ setHost [

JavaNew["java.net.URL", "http://www.wolfram.com/"]];

traceTask @ execute[];

{"HopCount" - traceTask @ getHopCount[],
"HopTimes" -» traceTask@ getHopTimes[]}

This indicates function nesting
representing Java object structure.

uiik= {HopCount - 4, HopTimes -

MathLink provides a general way for programs

to communicate with Mathematica.

{0.12, 3.4, 2.1, 0.09}}

id pub_name address city
cond Galaxy Books 100 1st st. Boston
& Helmuth
NanoSoft Book Publishers The data can now be

analyzed in Mathematica.

This Mathematica program

- Needs ["Inink"] defines a Java Swing interface.

iizi- PrimeFinder[] := JavaBlock[

Module[{frm, txtField, pane, statusLabel, prevButton, nextButton,
primesVisited = {}},

Installdaval[];

frm = JavaNew["com.wolfram.jlink.MathJFrame", "Prime Finder"];

frm@getContentPane[] @setLayout [JavaNew["java.awt.BorderLayout"]];

txtField = JavaNew["javax.swing.JTextField", "1"];

txtField@setHorizontalAlignment [JTextField RIGHTI:

txtField@addReyListener[JavaNew["com.

{{"keyReleased", "testIfPrime"}}]];

pane = JavaNew["javax.swing.JPanel"];

| Previous || Hext |
statusLabel =

JavaNew|["javax.swing.JLa

prevButton = JavaNew["javax.swing.JBut | 23441 + Round[Log[834.4]) |
prevButton@addActionListener[YR S T

JavaNew["com.wolfram.jlink.MathActic

nextButton = JavaNew["javax.swing.JButton|

Running the program brings

nextButton@addActionListener[up a Java d/alog bOX

These

link.putfunction(“EvaluatePacket”,1)

a computation to a

programs send

Shorter forms

work in simple

MathLink allows multiple Mathematica
kernels to communicate.

nlip=1ink =

LinkCreate["8000"]

ouf1i=LinkObject [8000@frog.wolfram.com,

Link =

LinkConnect ["8000"]

out/1=LinkObject ["80 ram.com", 4, 4]

2= LinkWrite[link, 15!] | This writes from one kernel. |

iniz}= LinkRead [1ink]

74368

Outiz}= 17 | This reads in another kernel. |

ini3i=LinkWrite[link, N[%*6]]

link.putfunction (“Integrate”,2) :
link.puf . - Mathematica kernel.
Tink.puf link.PutFunction(“EvaluatePacket”, 1);
link.puf link.PutFunction(“Integrate’, 2); |
link.P
Linkepud O] MLPutFunction(link, “Evaluatepacket *, 1);
tinkeend D] MLPutFunction(link, “Integrate”, 2);
link.py MLPutFup . . ion (“Evalt B
Python 1P puepy] 1k putfunction(vEvaluateracket”, 1); —
- MLPUt Sy link.putFunction(“Integrate”, 2);
}{LPJLS:/ link.putFunction(“sqgrt”, 1); |
C# MLEndpa{ 11|
15| link.evaluate(“IntegratelSart[Log(x]], x]”);
1i
C/C++ link.endPacket () ;
MathLink is supported | Java | Integrate[Sqrt [Log(x]], x]

for many languages.

Mathematica

MathLink uses symbolic expressions to represent
arbitrary data, structure and functions.

3= LinkRead [1ink]

gridMathematica supports
parallel computation.

outi3l=5.00032x 10

iniz= LaunchSlaves[];

ini4= RemoteEvaluate[$System]

outi4= {Mac 0S X, Microsoft Windows,

HP/Compe
H

Sun

Truéd Unix,
C (64 bit

(UltraSPA

This finds values in parallel
on many computers.

c

Solaris

21

[eTaurvass

THE POWER 70/00 INTEGRALS AS THE VIORLD HAS WEVER SFEN BEFORE

webMathematica provides a complete
solution for building active websites.

MATTER:

ENTER ANY
FUNGTION,

[
o g

Howiooer
o gt

Do IT!

m

Power Measurement Data Plot

Parameters
Ride Dot View Dot

)) =

Baslc Power
Analysis

w0 v) ‘Semimunl] uarary [v]

. s

][] 2 0350 (02240 | (00320 |[oo1s0 | o040 |[o0r0 | ooooo (00000 | oooo0

SLl el e ke 3 06210 |[03930 | 01630 (00850 | 00160 (00050 | 00020 0000 | 00010
‘Spoed Unit. 0 71 7 I "

S Sy i |ism om0 oxso | orsw | v | soto | a0 | oo
G mtees

webMathematica uses JSP to define
appearance and action of websites.

<%@ page language="java' %>

<%@ taglib uri="/webMathematica-taglib" prefix="msp" %>

<!-- webMathematica source code (c) 1999-2003,

Wolfram Research, Inc. All rights reserved.

<html>

<head>
<title>Plot</title>

</head>

-->

MathLink lets you connect to other
applications and set up alternative
interfaces to Mathematica.

i) v

Link for Excel provides two-way
communication between

<body bgcolor="#ffffff" >

=]

Mathematica and Excel.

<hl1>Plot</hl>
<form action="Plot.jsp"
<msp:allocatekernel>
Enter a function:
<input type="text" nam
"<msp:evaluate>MSPVa
"Sin[x]"2"]</msp:eva

Plot
emE— e ST
B

It takes only a short script to set up a
complete dynamic web page.

Do exanpie shows o t.d st webahinaica

rocess moge e

wle/aNB BRI

[B

Froces

=

Mathematica’s symbolic architecture allows direct
integration with XML and XML-aware applications.

Link for LabVIEW lets you define
Mathematica virtual instruments.

<?xml version="1.0"?>
<document>

simple Mathematica
expression.

In(1}= ExportString[x + 1, "XML"]

oui1p= <?xml version='1.0'?>

This generates XML for a

<!-- CML document - caffeine - karne - 7/8/00 -->
<cml title="caffeine" id="cml_caffeine_karne" xmlns="x-sche

<molecule title="caffeine" id="m
<formula>C8 H10 N4 02</formula>
<string title="CAS">58-08-2</str
<string title="RTECS">EV6475000.

infi}= mol =

<!DOCTYPE Expression SYSTEM 'http://
www.wolfram.com/XML/notebookmll.dtd'>
<Expression xmlns:mathematica='
http://www.wolfram.com/XML/"
xml

5= http://www.wolfram.com/XML/ ' >
<Function>
<Symbol>Plus</Symbol>
<Number>1</Number>
<Symbol>x</Symbol>

</Function>

</Expression>

SymbolicXML gives a uniform way to
represent any kind of XML as a

Mathematica expression.

<float title="molecule weight">19.
<float title="specific gravity">l.
<string title="water solubility"
<list title="alternate names"
<string title="name"1,3,7-1
<string title="name">Cafipel<

Import ["caffeine.xml"]

outi1}= XMLObject [Document] [
(XMLObject [Declaration] [Version»1.0]},
XMLElement [document, {}, {XMLElement [cml,
(title » caffeine, id » cml_caffeine_karne,
{http://www.w3.0rg/2000/xmlns/, xmlns} -
x-schema:cml_schema_ie_02.xml},
LXMLE] ement [mo]

This imports XML as a
SymbolicXML expression.

<atom id="caffein Cases[mol,
<loat builtin="

<float builtin="

type , {0, =}]

XMLElement[_, {_ -> "elementType"}, {type_}]

string title-"name ule lritle o caffeine,
</list>]
Iniz= atoms =
<atomArray>

External XML file

ouizi= {C, N, C, C, C, N, N, C, N, C, O,
c, 0, C, H, H, H, H, H, H, H, H, H, H}
ini3l= Map [{#, Count [atoms, #]} &,

outai= {{C, 8}, {H, 10}, {N, 4}, {0, 2}}

Mathematica provides ways to

manipulate XML in symbolic form.

This extracts a list of data from
the SymbolicXML expression.

Union[atoms]] |

This analyzes the data.
]

Part 1

This part gives a self-contained introduction to Mathematica,
concentrating on using Mathematica as an interactive problem-
solving system.

When you have read this part, you should have sufficient knowledge
of Mathematica to tackle many kinds of practical problems.

You should realize, however, that what is discussed in this part is
in many respects just the surface of Mathematica. Underlying all the var-
ious features and capabilities that are discussed, there are powerful and
general principles. These principles are discussed in Part 2. To get the
most out of Mathematica, you will need to understand them.

This part does not assume that you have used a computer before. In
addition, most of the material in it requires no knowledge of mathematics
beyond high-school level. The more advanced mathematical aspects of

Mathematica are discussed in Part 3 of this book.

A Practical Introduction to
Mathematica

1.0 Running Mathematica 26
1.1 Numerical Calculations 29
1.2 Building Up Calculations 38
1.3 Using the Mathematica System 44
1.4 Algebraic Calculations 63
1.5 Symbolic Mathematics 79
1.6 Numerical Mathematics 102
1.7 Functions and Programs 110
1.8 Lists 115
1.9 @Graphicsand Sound 131
1.10 Input and Output in Notebooks 174
1.11 Files and External Operations 204

1.12 Special Topic: The Internals of Mathematica 218

26 1. A Practical Introduction to Mathematica « 1.0 Running Mathematica

1.0 Running Mathematica

To find out how to install and run Mathematica you should read the documentation that came with
your copy of Mathematica. The details differ from one computer system to another, and are affected
by various kinds of customization that can be done on Mathematica. Nevertheless, this section outlines
two common cases.

Note that although the details of running Mathematica differ from one computer system to another,
the structure of Mathematica calculations is the same in all cases. You enter input, then Mathematica
processes it, and returns a result.

H 1.0.1 Notebook Interfaces

use an icon or the Start menu graphical ways to start Mathematica

mathematica the shell command to start Mathematica

text ending with SHIFT-ENTER input for Mathematica (SHIFT-RETURN on some keyboards)

choose the Quit menu item exiting Mathematica

Running Mathematica with a notebook interface.

In a “notebook” interface, you interact with Mathematica by creating interactive documents.

If you use your computer via a purely graphical interface, you will typically double-click the Mathe-
matica icon to start Mathematica. If you use your computer via a textually based operating system, you
will typically type the command mathematica to start Mathematica.

When Mathematica starts up, it usually gives you a blank notebook. You enter Mathematica input
into the notebook, then type SHIFT-ENTER to make Mathematica process your input. (To type SHIFT-ENTER,
hold down the SHiFT key, then press ENTER.) You can use the standard editing features of your graph-
ical interface to prepare your input, which may go on for several lines. SHIFT-ENTER tells Mathematica
that you have finished your input. If your keyboard has a numeric keypad, you can use its ENTER key
instead of SHIFT-ENTER.

After you send Mathematica input from your notebook, Mathematica will label your input with
In[n]:= It labels the corresponding output Out[n]=.

1.0.2 Text-Based Interfaces 27

You type 2 + 2, then end your input
with SHIFT-ENTER. Mathematica processes | 2+2 3 |
the input, then adds the input label
In[1]:=, and gives the output.
In[1]:= 2+2 3
outt= 4 3}

Throughout this book, “dialogs” with Mathematica are shown in the following way:

With a notebook interface, you just In[1]:=2 + 2
type in 2 + 2. Mathematica then adds out[1]= 4
the label In[1]:=, and prints the

result.

Page xv discusses some important details about reproducing the dialogs on your computer system.
Section 1.3 gives more information about Mathematica notebooks.

You should realize that notebooks are part of the “front end” to Mathematica. The Mathematica
kernel which actually performs computations may be run either on the same computer as the front
end, or on another computer connected via some kind of network or line. In most cases, the kernel is
not even started until you actually do a calculation with Mathematica.

To exit Mathematica, you typically choose the Quit menu item in the notebook interface.

H 1.0.2 Text-Based Interfaces

math the operating system command to start Mathematica

text ending with ENTER input for Mathematica

ContrOL-D or Quitl 1 exiting Mathematica

Running Mathematica with a text-based interface.

With a text-based interface, you interact with your computer primarily by typing text on the keyboard.

To start Mathematica with a text-based interface, you typically type the command math at an oper-
ating system prompt. On some systems, you may also be able to start Mathematica with a text-based
interface by double-clicking on a Mathematica Kernel icon.

When Mathematica has started, it will print the prompt In[1]:=, signifying that it is ready for your
input. You can then type your input, ending with ENTER or RETURN.

28 1. A Practical Introduction to Mathematica « 1.0 Running Mathematica

Mathematica will then process the input, and generate a result. If it prints the result out, it will label
it with Out[1]=

Throughout this book, dialogs with Mathematica are shown in the following way:

The computer prints In[1]:= You just In[1]:=2+ 2
type in 2 + 2. The line that starts with out[1]= 4
Out[1]= is the result from Mathematica.

Page xv discusses some important details about reproducing the dialogs on your computer system.
Note that you do not explicitly type the In[n]:= prompt; only type the text that follows this prompt.

Note also that most of the actual dialogs given in the book show output in the form you get with
a notebook interface to Mathematica; output with a text-based interface looks similar, but lacks such
features as special characters and font size changes.

Section 1.3 gives more details on running Mathematica with a text-based interface. To exit Mathe-
matica, either type CoNTROL-D, CONTROL-Z or Quit[] at an input prompt.

1.1.1 Arithmetic 29

1.1 Numerical Calculations

Ml 1.1.1 Arithmetic

You can do arithmetic with Mathematica just as you would on an electronic calculator.

This is the sum of two numbers. In[1]:=2.3 + 5.63
Out[1]= 7.93

Here the / stands for division, and the In[2]:=2.4/ 8.9 ~2

~ stands for power. Out[2]= 0.0302992

Spaces denote multiplication in In[3]:=23 4

Mathematica. You can use a * for out[3]= 24

multiplication if you want to.

You can type arithmetic expressions In[4]:= (3 +4) ~2-2(3+1)
with parentheses. out[4]= 41

Spaces are not needed, though they In[5]:= (3+4)~2-2(3+1)

often make your input easier to read. out[5]= 41

X~y power
-x minus
x/y divide
xyz or xxyxz multiply

x+y+z add

Arithmetic operations in Mathematica.

Arithmetic operations in Mathematica are grouped according to the standard mathematical conven-
tions. As usual, 2 ~ 3 + 4, for example, means (2 ~ 3) + 4, and not 2 ~ (3 + 4). You can always
control grouping by explicitly using parentheses.

This result is given in scientific In[6]:=2.4 ~ 45

notation.
otat Out[6]= 1.28678x 107

You can enter numbers in scientific In[7]:= 2.3 10~70

notation like this.
otation 4 ! Out[7]= 2.3x107°

Or like this. In[8]:= 2.3*~70
Out[8]= 2.3x10"°

30 1. A Practical Introduction to Mathematica o 1.1 Numerical Calculations

H 1.1.2 Exact and Approximate Results

A standard electronic calculator does all your calculations to a particular accuracy, say ten decimal
digits. With Mathematica, however, you can often get exact results.

Mathematica gives an exact result for In[1]:=2 ~ 100
100 : :

i. , even though it has 31 decimal Out[1]= 1267650600228229401496703205376
igits.

You can tell Mathematica to give you an approximate numerical result, just as a calculator would,
by ending your input with //N. The N stands for “numerical”. It must be a capital letter. Section 2.1.3
will explain what the // means.

This gives an approximate numerical In[2]:=2 ~ 100 //N

result.
Out[2]= 1.26765x 10>

Mathematica can give results in terms of In[3]:=1/3 + 2/7
rational numbers. 13

Out[3]= o1
//N always gives the approximate In[4]:=1/3 + 2/7 //N

numerical result. Out[4]= 0.619048

expr //N give an approximate numerical value for expr

Getting numerical approximations.

When you type in an integer like 7, Mathematica assumes that it is exact. If you type in a number
like 4.5, with an explicit decimal point, Mathematica assumes that it is accurate only to a fixed number
of decimal places.

This is taken to be an exact rational In[5]:= 452/62
number, and reduced to its lowest 996
terms. Out[5]= ——
ut[5] 31
Whenever you give a number with an In[6]:= 452.3/62
explicit decimal point, Mathematica Out[6]= 7.29516
produces an approximate numerical
result.

Here again, the presence of the decimal In[7]:= 452./62
point makes Mathematica give you an Out[7]= 7.29032
approximate numerical result.

When any number in an arithmetic In[8]:= 1. + 452/62
expression is given with an explicit Out[8]= 8.29032
decimal point, you get an approximate

numerical result for the whole

expression.

1.1.3 Some Mathematical Functions 31

H 1.1.3 Some Mathematical Functions

Mathematica includes a very large collection of mathematical functions. Section 3.2 gives the complete
list. Here are a few of the common ones.

Sqrtlx] square root (vx)
Exp[x] exponential (e*)
Log[x] natural logarithm (log, x)
Loglb, x] logarithm to base b (log, x)
Sin[x], Cos[x], Tan[x] trigonometric functions (with arguments in radians)
ArcSin[x], ArcCos[x], ArcTan[x] inverse trigonometric functions
n! factorial (product of integers 1,2,..., 1)
Abs[x] absolute value
Round[x] closest integer to x
Mod[n, m] n modulo m (remainder on division of n by m)
Random[] pseudorandom number between 0 and 1
Max[x, y, ...], Min[x, y, ...] maximum, minimum of x, y, ...

FactorInteger[n] prime factors of n (see page 750)

Some common mathematical functions.

m The arguments of all Mathematica functions are enclosed in square brackets.

m The names of built-in Mathematica functions begin with capital letters.

Two important points about functions in Mathematica.

It is important to remember that all function arguments in Mathematica are enclosed in square brack-
ets, not parentheses. Parentheses in Mathematica are used only to indicate the grouping of terms, and
never to give function arguments.

This gives log,(8.4). Notice the capital In[1]:= Log[8.4]

letter for Log, and the square brackets Out[1]= 2.12823
for the argument.

Just as with arithmetic operations, Mathematica tries to give exact values for mathematical functions
when you give it exact input.

32 1. A Practical Introduction to Mathematica o 1.1 Numerical Calculations

This gives V16 as an exact integer. In[2]:= Sqrt[16]
Out[2]= 4

This gives an approximate numerical In[3]:= sqrt[2] //N

result for V2. Out[3]= 1.41421

The presence of an explicit decimal In[4]:= Sqrt[2.]

point tells Mathematica to give an Out[4]= 1.41421

approximate numerical result.

Since you are not asking for an In[5]:= sqrt[2]

approximate numerical result, 3

Mathematica leaves the number here in out[5]= N2

an exact symbolic form.

Here is the exact integer result for In[6]:= 30!

30x29x...x 1. Computing factorials like 5,¢r67- 265252859812191058636308480000000
this can give you very large numbers.

You should be able to calculate up to
at least 2000! in a short time.

This gives the approximate numerical In[7]:= 30! //N

value of the factorial. 32
Out[7]= 2.65253x 10

Pi 7 =~3.14159
E e =~2.71828 (normally output as e)
Degree m/180: degrees-to-radians conversion factor (normally output
as °)
I i=+v-1 (normally output as i)

Infinity oo

Some common mathematical constants.

Notice that the names of these built-in constants all begin with capital letters.

This gives the numerical value of 72. In[8]:=Pi ~2//N
Out[8]= 9.8696

This gives the exact result for sin(z/2). In[9]:= Sin[Pi/2]
Notice that the arguments to out[9]= 1
trigonometric functions are always in

radians.

1.1.4 Arbitrary-Precision Calculations 33

This gives the numerical value of In[10]:= 8in[20 Degree] //N

sin(20°). Multiplying by the constant Out[10]= 0.34202

Degree converts the argument to

radians.

Loglx] gives logarithms to base e. In[11]:= Logl[E ~ 5]
Out[11]= 5

You can get logarithms in any base b In[12]:= Log[2, 256]

using Log[b, x]. As in standard out[12]= 8

mathematical notation, the b is

optional.

M 1.1.4 Arbitrary-Precision Calculations

When you use //N to get a numerical result, Mathematica does what a standard calculator would do:
it gives you a result to a fixed number of significant figures. You can also tell Mathematica exactly how
many significant figures to keep in a particular calculation. This allows you to get numerical results
in Mathematica to any degree of precision.

expr//N or N[expr]l approximate numerical value of expr

N[expr, n] numerical value of expr calculated with n-digit precision

Numerical evaluation functions.

This gives the numerical value of 7 to In[1]:= N[Pil

a fixed number of significant digits. Out[1]= 3.14159
Typing N[Pi] is exactly equivalent to

Pi //N.

This gives n to 40 digits. In[2]:= N[Pi, 40]

Out[2]= 3.141592653589793238462643383279502884197

Here is V7 to 30 digits. In[3]:= N[Sqrt[7], 30]
Out[3]= 2.64575131106459059050161575364

Doing any kind of numerical calculation can introduce small roundoff errors into your results.
When you increase the numerical precision, these errors typically become correspondingly smaller.
Making sure that you get the same answer when you increase numerical precision is often a good
way to check your results.

The quantity e’”/E turns out to be In[4]:= N[Exp[Pi Sqrt[163]], 40]
very close to an integer. To check that
the result is not, in fact, an integer, you
have to use sufficient numerical
precision.

Out[4]= 2.625374126407687439999999999992500725972x 10*

34 1. A Practical Introduction to Mathematica

1.1 Numerical Calculations

H 1.1.5 Complex Numbers

You can enter complex numbers in Mathematica just by including the constant I, equal to V—-1. Make

sure that you type a capital I.

If you are using notebooks, you can also enter I as i by typing [etliilest) (see page 36). The form i

is normally what is used in output
This gives the imaginary number

result 2i.

This gives the ratio of two complex
numbers.

Here is the numerical value of a
complex exponential.

. Note that an ordinary i means a variable named i, not V—-1.

In[1]:= Sqrt[-4]
Out[1]= 21

In[2]:=(4+31)/ (2-1I)
Out[2]= 1+21

In[3]:= Exp[2 + 9 I] //N
Out[3]= -6.73239+3.045171

x+Iy the complex number x +iy
Re[z] real part
Im[z] imaginary part
Conjugate[z] complex conjugate z* or z
Abs[z] absolute value |z|
Arg[z] the argument ¢ in [z[e™

Complex number operations.

H 1.1.6 Getting Used to Mathematica

m Arguments of functions are given in square brackets.

m Names of built-in functions have their first letters capitalized.
m Multiplication can be represented by a space.

m Powers are denoted by ~.

m Numbers in scientific notation are entered, for example, as 2.5%~-4 or 2.5 10~-4.

Important points to remember in Mathematica.

This section has given you a first glimpse of Mathematica. If you have used other computer systems
before, you will probably have noticed some similarities and some differences. Often you will find

1.1.7 Mathematical Notation in Notebooks 35

the differences the most difficult parts to remember. It may help you, however, to understand a little
about why Mathematica is set up the way it is, and why such differences exist.

One important feature of Mathematica that differs from other computer languages, and from con-
ventional mathematical notation, is that function arguments are enclosed in square brackets, not
parentheses. Parentheses in Mathematica are reserved specifically for indicating the grouping of terms.
There is obviously a conceptual distinction between giving arguments to a function and grouping
terms together; the fact that the same notation has often been used for both is largely a consequence
of typography and of early computer keyboards. In Mathematica, the concepts are distinguished by
different notation.

This distinction has several advantages. In parenthesis notation, it is not clear whether c(1 + x)
means c[1 + x] or cx(1 + x). Using square brackets for function arguments removes this ambiguity.
It also allows multiplication to be indicated without an explicit * or other character. As a result,
Mathematica can handle expressions like 2x and a x or a (1 + x), treating them just as in standard
mathematical notation.

You will have seen in this section that built-in Mathematica functions often have quite long names.
You may wonder why, for example, the pseudorandom number function is called Random, rather than,
say, Rand. The answer, which pervades much of the design of Mathematica, is consistency. There is a
general convention in Mathematica that all function names are spelled out as full English words, unless
there is a standard mathematical abbreviation for them. The great advantage of this scheme is that it
is predictable. Once you know what a function does, you will usually be able to guess exactly what
its name is. If the names were abbreviated, you would always have to remember which shortening of
the standard English words was used.

Another feature of built-in Mathematica names is that they all start with capital letters. In later
sections, you will see how to define variables and functions of your own. The capital letter convention
makes it easy to distinguish built-in objects. If Mathematica used max instead of Max to represent the
operation of finding a maximum, then you would never be able to use max as the name of one of your
variables. In addition, when you read programs written in Mathematica, the capitalization of built-in
names makes them easier to pick out.

M 1.1.7 Mathematical Notation in Notebooks

If you use a text-based interface to Mathematica, then the input you give must consist only of characters
that you can type directly on your computer keyboard. But if you use a notebook interface then other
kinds of input become possible.

Usually there are palettes provided which operate like extensions of your keyboard, and which
have buttons that you can click to enter particular forms. You can typically access standard palettes
using the Palettes submenu of the File menu.

36 1. A Practical Introduction to Mathematica o 1.1 Numerical Calculations

Clicking the 7 button in this palette
will enter a pi into your notebook.

Clicking the first button in this palette
will create an empty structure for
entering a power. You can use the
mouse to fill in the structure.

You can also give input by using special keys on your keyboard. Pressing one of these keys does
not lead to an ordinary character being entered, but instead typically causes some action to occur or

some structure to be created.

ESC|p|[ESC
[clinf
[EscleelEsc]

[esc]d 4 [esc]
[Escld eg]esc]

the symbol 7
the symbol co

the symbol e for the exponential constant (equivalent to E)

the symbol i for V-1 (equivalent to I)

the symbol ° (equivalent to Degree)

cmH~] or [my6]
cmf /|

crj@| or [mH2)

go to the superscript for a power
go to the denominator for a fraction

go into a square root

cwf .| (CONTROL-SPACE)

return from a superscript, denominator or square root

A few ways to enter special notations on a standard English-language keyboard.

Here is a computation entered using
ordinary characters on a keyboard.

Here is the same computation entered
using a palette or special keys.

Here is an actual sequence of keys that
can be used to enter the input.

In[1]:= N[Pi~2/6]
Out[1]= 1.64493

2
In[2]:= N|—

n [+
Out[2]= 1.64493

In[3]:= N[[EUp[st] [oR{~] 2 [caf_] Emy{/] 6 [cwy,_]]
Out[3]= 1.64493

1.1.7 Mathematical Notation in Notebooks 37

In a traditional computer language such as C, Fortran, Java or Perl, the input you give must always
consist of a string of ordinary characters that can be typed directly on a keyboard. But the Mathematica
language also allows you to give input that contains special characters, superscripts, built-up fractions,
and so on.

The language incorporates many features of traditional mathematical notation. But you should re-
alize that the goal of the language is to provide a precise and consistent way to specify computations.
And as a result, it does not follow all of the somewhat haphazard details of traditional mathematical
notation.

Nevertheless, as discussed on page 193, it is always possible to get Mathematica to produce output
that imitates every aspect of traditional mathematical notation. And as discussed on page 194, it is
also possible for Mathematica to import text that uses such notation, and to some extent to translate it
into its own more precise language.

38 1. A Practical Introduction to Mathematica « 1.2 Building Up Calculations

1.2 Building Up Calculations

H 1.2.1 Using Previous Results

In doing calculations, you will often need to use previous results that you have got. In Mathematica,
% always stands for your last result.

% the last result generated
%% the next-to-last result
%h ... % (k times) the k'™ previous result

%n the result on output line Out[n] (to be used with care)

Ways to refer to your previous results.

Here is the first result. In[1]:=77 ~ 2
Out[1]= 5929

This adds 1 to the last result. In[2]:=% + 1
Out[2]= 5930

This uses both the last result, and the In[3]:=3 % +%h~2+ %%
result before that. Out[3]= 35188619

You will have noticed that all the input and output lines in Mathematica are numbered. You can
use these numbers to refer to previous results.

This adds the results on lines 2 and 3 In[4]:= %2 + %3
above. Out[4]= 35194549

If you use a text-based interface to Mathematica, then successive input and output lines will always
appear in order, as they do in the dialogs in this book. However, if you use a notebook interface to
Mathematica, as discussed in Section 1.0.1, then successive input and output lines need not appear in
order. You can for example “scroll back” and insert your next calculation wherever you want in the
notebook. You should realize that % is always defined to be the last result that Mathematica generated.
This may or may not be the result that appears immediately above your present position in the
notebook. With a notebook interface, the only way to tell when a particular result was generated is to
look at the Out[#] label that it has. Because you can insert and delete anywhere in a notebook, the
textual ordering of results in a notebook need have no relation to the order in which the results were
generated.

1.2.2 Defining Variables 39

M 1.2.2 Defining Variables

When you do long calculations, it is often convenient to give names to your intermediate results. Just
as in standard mathematics, or in other computer languages, you can do this by introducing named
variables.

This sets the value of the variable x to In[1]:=x=5

be 5. Out[1]= 5

Whenever x appears, Mathematica now In[2]:=x ~ 2

replaces it with the value 5. out[2]= 25

This assigns a new value to x. In[3]:=x=T7+4
Out[3]= 11

pi is set to be the numerical value of 7 In[4]:= pi = N[Pi, 40]
to 40-digit accuracy. Out[4]= 3.141592653589793238462643383279502884197

Here is the value you defined for pi. In[5]:= pi
Out[5]= 3.141592653589793238462643383279502884197

This gives the numerical value of 72, to In[6]:=pi ~ 2
the same accuracy as pi. Out[6]= 9.86960440108935861883449099987615113531

x =value assign a value to the variable x
x =y =value assign a value to both x and y
x=. or Clear[x] remove any value assigned to x

Assigning values to variables.

It is very important to realize that values you assign to variables are permanent. Once you have
assigned a value to a particular variable, the value will be kept until you explicitly remove it. The
value will, of course, disappear if you start a whole new Mathematica session.

Forgetting about definitions you made earlier is the single most common cause of mistakes when
using Mathematica. If you set x = 5, Mathematica assumes that you always want x to have the value
5, until or unless you explicitly tell it otherwise. To avoid mistakes, you should remove values you
have defined as soon as you have finished using them.

m Remove values you assign to variables as soon as you finish using them.

A useful principle in using Mathematica.

40 1. A Practical Introduction to Mathematica « 1.2 Building Up Calculations

The variables you define can have almost any names. There is no limit on the length of their
names. One constraint, however, is that variable names can never start with numbers. For example,
x2 could be a variable, but 2x means 2*x.

Mathematica uses both upper- and lower-case letters. There is a convention that built-in Mathematica
objects always have names starting with upper-case (capital) letters. To avoid confusion, you should
always choose names for your own variables that start with lower-case letters.

aaaaa a variable name containing only lower-case letters

Aaaaa a built-in object whose name begins with a capital letter

Naming conventions.

You can type formulas involving variables in Mathematica almost exactly as you would in mathe-
matics. There are a few important points to watch, however.

B X y means x times y.
m xy with no space is the variable with name xy.
m 5x means 5 times x.

m x~2y means (x~2) y, not x~(2y).

Some points to watch when using variables in Mathematica.

H 1.2.3 Making Lists of Objects

In doing calculations, it is often convenient to collect together several objects, and treat them as a
single entity. Lists give you a way to make collections of objects in Mathematica. As you will see later,
lists are very important and general structures in Mathematica.

A list such as {3, 5, 1} is a collection of three objects. But in many ways, you can treat the whole
list as a single object. You can, for example, do arithmetic on the whole list at once, or assign the
whole list to be the value of a variable.

Here is a list of three numbers. In[1]:= {3, 5, 1}
out[1]= {3, 5, 1}

This squares each number in the list, In[2]:= {3, 5, 1}*2 + 1
and adds 1 to it. outl2]= {10, 26, 2}

1.2.4 Manipulating Elements of Lists a1

This takes differences between In[3]:= {6, 7, 8} - {3.5, 4, 2.5}
corresponding elements in the two lists. out[3]= {2.5. 3. 5.5
The lists must be the same length. utl3]= 12.5, 3, 5.5}

The value of % is the whole list. In[4]:=%
out[4]= {2.5, 3, 5.5}

You can apply any of the mathematical In[5]:=Expl % 1// N
functions in Section 1.1.3 to whole lists. Out[5]= {12.1825, 20.0855, 244.692}

Just as you can set variables to be numbers, so also you can set them to be lists.
This assigns v to be a list. In[6]:=v = {2, 4, 3.1}
Out[6]= {2, 4, 3.1}

Wherever v appears, it is replaced by In[7]:=v [/ (v - 1)
the list.

out[7]- {2, %, 1.47619}

M 1.2.4 Manipulating Elements of Lists

Many of the most powerful list manipulation operations in Mathematica treat whole lists as single
objects. Sometimes, however, you need to pick out or set individual elements in a list.

You can refer to an element of a Mathematica list by giving its “index”. The elements are numbered
in order, starting at 1.

{a, b, ¢+ alist
Part[list, i] or Ilist[[i]] the i element of list (the first element is list[[1]])

Part[list, {i, j, ... }1 or [Lst[[{7, j, ... }1]
a list of the i, jth, ... elements of list

Operations on list elements.

This extracts the second element of the In[1]:= {5, 8, 6, 9}[[2]]

list. Out[1]= 8

This extracts a list of elements. In[2]:= {5, 8, 6, 9}[{3, 1, 3, 2, 4} 1]
Out[2]= {6, 5, 6, 8, 9}

This assigns the value of v to be a list. In[3]:=v =12, 4, T}

Out[3]= {2, 4, 7}

42 1. A Practical Introduction to Mathematica « 1.2 Building Up Calculations

You can extract elements of v. In[4]:=v[[2 1]
Out[4]= 4

By assigning a variable to be a list, you can use Mathematica lists much like “arrays” in other
computer languages. Thus, for example, you can reset an element of a list by assigning a value to

ol[i]].

Part[v, il or wvl[[il] extract the i" element of a list

Part[v, il = value or ov[[i]] = value reset the i™ element of a list

Array-like operations on lists.
Here is a list. In[5]:=v ={4, -1, 8, 7}
Out[5]= {4, -1, 8, 7}

This resets the third element of the list. In[6]:=v[[3]1]1 =0
Out[6]= 0

Now the list assigned to v has been In[7]:=v
modified. out[7]= {4, -1, 0, 7}

H 1.2.5 The Four Kinds of Bracketing in Mathematica

Over the course of the last few sections, we have introduced each of the four kinds of bracketing
used in Mathematica. Each kind of bracketing has a very different meaning. It is important that you
remember all of them.

(term) parentheses for grouping
flx]1 square brackets for functions
{a, b, ¢+ curly braces for lists

vl[il]l double brackets for indexing (Partl[v, il)

The four kinds of bracketing in Mathematica.

When the expressions you type in are complicated, it is often a good idea to put extra space
inside each set of brackets. This makes it somewhat easier for you to see matching pairs of brackets.
ol[{a, b} 1] is, for example, easier to recognize than v[[{a, b}1].

1.2.6 Sequences of Operations 43

H 1.2.6 Sequences of Operations

In doing a calculation with Mathematica, you usually go through a sequence of steps. If you want to,
you can do each step on a separate line. Often, however, you will find it convenient to put several
steps on the same line. You can do this simply by separating the pieces of input you want to give
with semicolons.

expry; expr,; expr; do several operations, and give the result of the last one

expry; expr,; do the operations, but print no output

Ways to do sequences of operations in Mathematica.

This does three operations on the same In[1]:=x=4; y=6;z=3 + 6
line. The r.esult is the result from the Out[1]= 12
last operation.

If you end your input with a semicolon, it is as if you are giving a sequence of operations, with
an “empty” one at the end. This has the effect of making Mathematica perform the operations you
specify, but display no output.

expr ; do an operation, but display no output
Inhibiting output.
Putting a semicolon at the end of the In[2]:=x =67 -5 ;
line tells Mathematica to show no
output.
You can still use % to get the output In[3]:= %

that would have been shown. Out[3]= 62

a4 1. A Practical Introduction to Mathematica « 1.3 Using the Mathematica System

1.3 Using the Mathematica System

H 1.3.1 The Structure of Mathematica

Mathematica kernel the part that actually performs computations

Mathematica front end the part that handles interaction with the user

The basic parts of the Mathematica system.

Mathematica is a modular software system in which the kernel which actually performs computations
is separate from the front end which handles interaction with the user.

The most common type of front end for Mathematica is based on interactive documents known
as notebooks. Notebooks mix Mathematica input and output with text, graphics, palettes and other
material. You can use notebooks either for doing ongoing computations, or as means of presenting or
publishing your results.

Notebook interface interactive documents
Text-based interface text from the keyboard

MathLink interface =~ communication with other programs

Common kinds of interfaces to Mathematica.

The notebook front end includes many menus and graphical tools for creating and reading notebook
documents and for sending and receiving material from the Mathematica kernel.

1.3.1 The Structure of Mathematica

45

A notebook mixing text, graphics and
Mathematica input and output. m Examples of Integrals

Here is an example of a very simple algebraic integral:

1
In[1]:= f dx
x3-1

1+2
ArcTan[\/gx] . Log[-1+x] Logl[l+x+x?]

V3 3 6
And here is a plot of the resulting function:

Ini2]= Plot[%, {x, 1, 2}]

Out[1]= -

-1
-1.5
-2
-2.5
-3
-3.5

I 1.2 1.4 1.6 1.8 2
Out[2]l= - Graphics -

In some cases, you may not need to use the notebook front end, and you may want instead to
interact more directly with the Mathematica kernel. You can do this by using a text-based interface, in

which text you type on the keyboard goes straight to the kernel.

A dialog with Mathematica using a In[1]:= 2~100
text-based interface.

Out[1]= 1267650600228229401496703205376

In[2]:= Integrate[1/(x~3 - 1), x]

1+2x
ArcTan[-------] 2
Sqrt[3] Logl-1 + x] Logll + x + x]
Out[2]= —()+ -
Sqrt[3] 3 6

An important aspect of Mathematica is that it can interact not only with human users but also with
other programs. This is achieved primarily through MathLink, which is a standardized protocol for

two-way communication between external programs and the Mathematica kernel.

46 1. A Practical Introduction to Mathematica « 1.3 Using the Mathematica System

A fragment of C code that MLPutFunction(stdlink, "EvaluatePacket", 1);
communicates via MathLink with the
Mathematica kernel. MLPutFunction(stdlink, "Gamma", 2);

MLPutReal(stdlink, 2);
MLPutInteger(stdlink, n);

MLEndPacket(stdlink);
MLCheckFunction(stdlink, "ReturnPacket", &n);

MLGetReal(stdlink, &result);

Among the many MathLink-compatible programs that are now available, some are set up to serve as
complete front ends to Mathematica. Often such front ends provide their own special user interfaces,
and treat the Mathematica kernel purely as an embedded computational engine. If you are using
Mathematica in this way, then only some parts of the discussion in the remainder of this section will
probably be relevant.

M 1.3.2 Differences between Computer Systems

There are many detailed differences between different kinds of computer systems. But one of the
important features of Mathematica is that it allows you to work and create material without being
concerned about such differences.

In order to fit in as well as possible with particular computer systems, the user interface for
Mathematica on different systems is inevitably at least slightly different. But the crucial point is that
beyond superficial differences, Mathematica is set up to work in exactly the same way on every kind
of computer system.

m The language used by the Mathematica kernel
m The structure of Mathematica notebooks

m The MathLink communication protocol

Elements of Mathematica that are exactly the same on all computer systems.

The commands that you give to the Mathematica kernel, for example, are absolutely identical on
every computer system. This means that when you write a program using these commands, you can
immediately take the program and run it on any computer that supports Mathematica.

1.3.2 Differences between Computer Systems 47

The structure of Mathematica notebooks is also the same on all computer systems. And as a result,
if you create a notebook on one computer system, you can immediately take it and use it on any other
system.

m The visual appearance of windows, fonts, etc.
m Mechanisms for importing and exporting material from notebooks

m Keyboard shortcuts for menu commands

Elements that can differ from one computer system to another.

Although the underlying structure of Mathematica notebooks is always the same, there are often
superficial differences in the way notebooks look on different computer systems, and in some of the
mechanisms provided for interacting with them.

The goal in each case is to make notebooks work in a way that is as familiar as possible to people
who are used to a particular type of computer system.

And in addition, by adapting the details of notebooks to each specific computer system, it becomes
easier to exchange material between notebooks and other programs running on that computer system.

The same Mathematica notebook on (EEsunnn (D]
three different computer systems. The Fle Bt Col Fomal nput Kemdl g Window]
underlying structure is exactly the 5
same, but some details of the m A Symbolic Sum ﬂ

resentation are different.
p Here is the inpur: 0686 sum.nb ="

==

Zn.i | m A Symbolic Sum]]
) Here is the mput: #t/sum.nb E]ﬁ

1 Lyt
o (15 2 Inlt]= 2‘{ =~ (n

Here is the ontput:

m A Symbolic Sum
| Here is the cutput:
S — Hege is the input:

1
= our L s w
an Zi; (e 4y] i |
na
1

e e

1
(157 + 167* ¢ 720 Zeta[3])
90

100% ~[¢] (3]

One consequence of the modular nature of the Mathematica system is that its parts can be run on
different computers. Thus, for example, it is not uncommon to run the front end for Mathematica on
one computer, while running the kernel on a quite separate computer.

Communications between the kernel and the front end are handled by MathLink, using whatever
networking mechanisms are available.

48 1. A Practical Introduction to Mathematica « 1.3 Using the Mathematica System

W 1.3.3 Special Topic: Using a Text-Based Interface

With a text-based interface, you interact with Mathematica just by typing successive lines of input, and
getting back successive lines of output on your screen.

At each stage, Mathematica prints a prompt of the form In[n]:= to tell you that it is ready to receive
input. When you have entered your input, Mathematica processes it, and then displays the result with
a label of the form Out[n]=.

If your input is short, then you can give it on a single line, ending the line by pressing ENTER
or ReTurN. If your input is longer, you can give it on several lines. Mathematica will automatically
continue reading successive lines until it has received a complete expression. Thus, for example, if
you type an opening parenthesis on one line, Mathematica will go on reading successive lines of input
until it sees the corresponding closing parenthesis. Note that if you enter a completely blank line,
Mathematica will throw away the lines you have typed so far, and issue a new input prompt.

%n or Out[n] the value of the n'" output
InString[n] the text of the n'M input

In[n] the nth input, for re-evaluation

Retrieving and re-evaluating previous input and output.

With a text-based interface, each line of Mathematica input and output appears sequentially. Of-
ten your computer system will allow you to scroll backwards to review previous work, and to
cut-and-paste previous lines of input.

But whatever kind of computer system you have, you can always use Mathematica to retrieve or
re-evaluate previous input and output. In general, re-evaluating a particular piece of input or output
may give you a different result than when you evaluated it in the first place. The reason is that in
between you may have reset the values of variables that are used in that piece of input or output. If
you ask for Out[n], then Mathematica will give you the final form of your n™' output. On the other
hand, if you ask for In[n], then Mathematica will take the n'™ input you gave, and re-evaluate it using
whatever current assignments you have given for variables.

1.3.4 Doing Computations in Notebooks 49

H 1.3.4 Doing Computations in Notebooks

A typical Mathematica notebook
containing text, graphics and Here is a factorial:]
Mathematica expressions. The brackets
on the right indicate the extent of each
cell.

In[1:= 100! 31

17599993229915608941463976156518286253697920827223758251185210916™

Out[1]= 933262154439441526816992388562667004907159682643816214685929638952".
864000000000000000000000000 i

2= NL%] 3]
outfzl= 9.33262x 1057 1]
This is a plot of the related I function:]
In[3l:= Plot[Gamma[x], {x, -5, 5}] Y]

N |

qZ 2 4
10\

Out[3]= - Graphics - H,

Mathematica notebooks are structured interactive documents that are organized into a sequence of
cells. Each cell contains material of a definite type—usually text, graphics, sounds or Mathematica
expressions. When a notebook is displayed on the screen, the extent of each cell is indicated by a
bracket on the right.

The notebook front end for Mathematica provides many ways to enter and edit the material in a
notebook. Some of these ways will be standard to whatever computer system or graphical interface
you are using. Others are specific to Mathematica.

SHIFT-ENTER or SHIFT-RETURN send a cell of input to the Mathematica kernel

Doing a computation in a Mathematica notebook.

Once you have prepared the material in a cell, you can send it as input to the Mathematica kernel
simply by pressing SHIFT-ENTER or SHIFT-RETURN. The kernel will send back whatever output is gen-
erated, and the front end will create new cells in your notebook to display this output. Note that if
you have a numeric keypad on your keyboard, then you can use its ENTER key as an alternative to
SHIFT-ENTER.

50 1. A Practical Introduction to Mathematica « 1.3 Using the Mathematica System

Here is a cell ready to be sent as input
to the Mathematica kernel. 8n00 3

The output from the computation is

inserted in a new cell. Inl1]:= 3~100 3
Out[1]= 515377520732011331036461129765621272702107522001 H

Most kinds of output that you get in Mathematica notebooks can readily be edited, just like input.
Usually Mathematica will make a copy of the output when you first start editing it, so you can keep
track of the original output and its edited form.

Once you have done the editing you want, you can typically just press SHIFT-ENTER to send what
you have created as input to the Mathematica kernel.

Here is a typical computation in a

Mathematica notebook. In[1]:= Integrate[Sqrt[x+1]/Sqrtlx-1], x] Y
out[1]= \/-1+x v/T+x +2ArcSinh[:/1_+x] j
2

Mathematica will automatically make a
copy if you start editing the output.

In[1]:= Integrate[Sqrt[x+1]/Sqrtlx-1], x]

-1+x

|

out[1]= \/[-1+x /T+x +2ArcSinh[

V-T+x Vi+x +D[2Arcsinh[l], x] // Simplify j
V2
After you have edited the output, you
can send it back as further input to the In[1]:= Integrate[Sqrt[x+1]/Sqrtlx-11, x] Y
Mathematica kernel. outf1]= \/=1+x y/T+x +2ArcSinh[;/1_“] j
2
m[2]:= \[-1+x \1+x +D[2 ArcSinh[;/l_" 1. x] 7/ simplity]
2
2
Out[2]e e j
Volrx AT+x

When you do computations in a Mathematica notebook, each line of input is typically labeled with
In[n]:=, while each line of output is labeled with the corresponding Out[n]=.

There is no reason, however, that successive lines of input and output should necessarily appear
one after the other in your notebook. Often, for example, you will want to go back to an earlier part
of your notebook, and re-evaluate some input you gave before.

It is important to realize that wherever a particular expression appears in your notebook, it is
the line number given in In[n]:= or Out[n]= which determines when the expression was processed
by the Mathematica kernel. Thus, for example, the fact that one expression may appear earlier than

1.3.5 Notebooks as Documents 51

another in your notebook does not mean that it will have been evaluated first by the kernel. This will
only be the case if it has a lower line number.

Each line of input and output is given

a label when it is evaluated by the Results:
kernel. It is these labels, not the In[2]:= 872 + 2
position of the expression in the outr2]- 146

notebook, that indicate the ordering of

evaluation by the kernel. s a2

Out[4]= 10002

[R Y |

Settings for s:
In[1]:= s=12
Out[1]= 12
In[3]:= s=100

Out[3]= 100

e T B T T T]

[R Y |

If you make a mistake and try to enter input that the Mathematica kernel does not understand, then
the front end will produce a beep. In general, you will get a beep whenever something goes wrong in
the front end. You can find out the origin of the beep using the Why the Beep? item in the Help menu.

Animate graphics double-click the first cell in the sequence of frames
Resize a graphic click the graphic and move the handles that appear

Find coordinates in a graphic = move around in the graphic holding down the ComMAND or
ConrtroL key (or equivalent)

Play a sound double-click the cell that contains it

Operations on graphics and sounds.

M 1.3.5 Notebooks as Documents

Mathematica notebooks allow you to create documents that can be viewed interactively on screen or
printed on paper.

Particularly in larger notebooks, it is common to have chapters, sections and so on, each represented
by groups of cells. The extent of these groups is indicated by a bracket on the right.

52 1. A Practical Introduction to Mathematica « 1.3 Using the Mathematica System

The grouping of cells in a notebook is
indicated by nested brackets on the m Section heading 1
right.
= Subsection heading]
Text within a subsection.]
More text. j
= Another subsection]
Text within the second subsection. 1]

A group of cells can be either open or closed. When it is open, you can see all the cells in it explicitly.
But when it is closed, you see only the first or heading cell in the group.

Large notebooks are often distributed with many closed groups of cells, so that when you first look
at the notebook, you see just an outline of its contents. You can then open parts you are interested in
by double-clicking the appropriate brackets.

Double-clicking the bracket that spans

a group of cells closes the group,

leaving only the first cell visible. m Section heading]
= Subsection heading N
= Another subsection N

When a group is closed, the bracket for

it has an arrow at the bottom.

Double—ch.ckmg this arrow opens the m Section heading 1]

group again.
= Subsection heading]
Text within a subsection.]
More text. j
= Another subsection]

Each cell within a notebook is assigned a particular style which indicates its role within the note-
book. Thus, for example, material intended as input to be executed by the Mathematica kernel is
typically in Input style, while text that is intended purely to be read is typically in Text style.

The Mathematica front end provides menus and keyboard shortcuts for creating cells with different
styles, and for changing styles of existing cells.

1.3.5 Notebooks as Documents 53

This shows cells in various styles. The =
styles define not only the format of the m This cell is in Section style.]
cell contents, but also their placement
and spacing. = This cell is in Subsection style.]

m This cell is in Subsubsection style.

This cell is in Text style.

This cell is in SmallText style.

I T T W)

This cell is in Input style.

By putting a cell in a particular style, you specify a whole collection of properties for the cell,
including for example how large and in what font text should be given.

The Mathematica front end allows you to modify such properties, either for complete cells, or for
specific material within cells.

Even within a cell of a particular style,

the Mathematica front end allows a Within a text cell, there can be 12T 2€ ONLS, bold fonts, ana funiny fonts.]
wide range of properties to be
modified Separately~ A cell can have properties such as a frame or background. ‘ }

It is worth realizing that in doing different kinds of things with Mathematica notebooks, you are
using different parts of the Mathematica system. Operations such as opening and closing groups of
cells, doing animations and playing sounds use only a small part of the Mathematica front end, and
these operations are supported by a widely available program known as MathReader.

To be able to create and edit notebooks, you need more of the Mathematica front end. And finally,
to be able to actually do computations within a Mathematica notebook, you need a full Mathematica
system, with both the front end and the kernel.

MathReader reading Mathematica notebooks
Mathematica front end creating and editing Mathematica notebooks

Mathematica kernel — doing computations in notebooks

Programs required for different kinds of operations with notebooks.

54 1. A Practical Introduction to Mathematica « 1.3 Using the Mathematica System

H 1.3.6 Active Elements in Notebooks

One of the most powerful features of Mathematica notebooks is that their actions can be programmed.
Thus, for example, you can set up a button in a Mathematica notebook which causes various operations
to be performed whenever you click it.

Here is a notebook that contains a
button. Click the button to get the current date: Date[] ﬂ

Clicking the button in this case causes
the current date to be dlsplayed Click the button to get the current date: Date[]

L=y

{1995, 9, 5, 10, 40, 53} j

Later in this book, we will discuss how you can set up buttons and other similar objects in Mathe-
matica notebooks. But here suffice it to say that whenever a cell is indicated as active, typically by
the presence of a stylized “A” in its cell bracket, clicking on active elements within the cell will cause
actions that have been programmed for these elements to be performed.

It is common to set up palettes which consist of arrays of buttons. Sometimes such palettes appear
as cells within a notebook. But more often, a special kind of separate notebook window is used,
which can conveniently be placed on the side of your computer screen and used in conjunction with
any other notebook.

Palettes consisting of arrays of buttons
are often placed in separate notebooks.

In the simplest cases, the buttons in palettes serve essentially like additional keys on your keyboard.
Thus, when you press a button, the character or object shown in that button is inserted into your
notebook just as if you had typed it.

Here is a palette of Greek letters with =
buttons that act like additional keys on ﬂﬂﬂﬂﬂ

your keyboard. Qﬂﬂﬂﬂ
#|»] €] x|]
olz|¢le|x]
¥]o|r]a]e]
LEIRIRIR

1.3.6 Active Elements in Notebooks 55

Often, however, a button may contain a placeholder indicated by m. This signifies that when you
press the button, whatever is currently selected in your notebook will be inserted at the position of
the placeholder.

The buttons here contain placeholders =
NOlLd

v

indicated by m.

Here is a notebook with an expression
selected. 1o (1o (e ae?)?)’ j

Pressing the top left button in the
palette wraps the selected expression I O PP ’
with a square root. Pl e

Sometimes buttons that contain placeholders will be programmed simply to insert a certain expres-
sion in your notebook. But more often, they will be programmed to evaluate the result, sending it as
input to the Mathematica kernel.

These buttons are set up to perform

algebraic operations. Simplify [m] | EulLlSimpi] |

Expand [m] | Factor [m] |
Apart [m] | Together [m] |
Here is a notebook with an expression
selected. W+% (12- 16 Cos[2 x] +4 Cos[4 x]) j

Pressing the top left button in the
palette causes the selected expression
to be simplified.

2+2Cos[2x]
4

+8in[x]* j

There are some situations in which it is convenient to have several placeholders in a single button.
Your current selection is typically inserted at the position of the primary placeholder, indicated by
m. Additional placeholders may however be indicated by o, and you can move to the positions of
successive placeholders using Tas.

Here is a palette containing buttons

with several placeholders. f mdo | S;m

f:ldln Og,oM

56 1. A Practical Introduction to Mathematica « 1.3 Using the Mathematica System

Here is an expression in a notebook.

Sin[x] j
1+x

Pressing the top left button in the
palette inserts the expression in place [an j
of the m. :

You can move to the other
placeholders using Tas, and then edit [s:[‘] ax j
them to insert whatever you want.

M 1.3.7 Special Topic: Hyperlinks and Active Text

The Mathematica front end provides a variety of ways to search for particular words or text in Mathe-
matica notebooks. But particularly when large documents or collections of documents are involved, it
is often convenient to insert hyperlinks which immediately take you to a specific point in a notebook,
just as is often done on websites.

Hyperlinks are usually indicated by
words or phrases that are underlined, Here is some text. The text can contain a link, which points elsewhere. i
and are often in a different color.
Clicking on a hyperlink immediately
takes you to wherever the hyperlink
points.

Hyperlinks in notebooks work very much like the buttons discussed in the previous section. And
once again, all aspects of hyperlinks are programmable.

Indeed, it is possible to set up active text in notebooks that performs almost any kind of action.

1.3.8 Getting Help in the Notebook Front End 57

-l 1.3.8 Getting Help in the Notebook Front End

In most versions of the Mathematica notebook front end, the Help menu gives you access to the Help
Browser, which serves as an entry point into a large amount of online documentation for Mathematica.

Getting Started a quick start to using Mathematica
Built-in Functions information on all built-in functions
The Mathematica Book the complete book online

Master Index index of all online documentation material

Typical types of help available with the notebook front end.

AI‘[example of IOOklng uP ba.SIC x| Mathematica Help Browser E]@
information about a function in the "
Help Browser. B (3 EZ (a) .
Getting Started Tour Demos Master Index
Built-in Functions | Add-ons & Links The Math ica Book Front End
Mumerical Computation » 'A‘”(A\pnabaﬁcal Listing) ’A\" Log 'a\‘"
Algsbraic Computation * [| Basic Arthmetic v || Exp [
|Mathematical Functions *| = | | yathematical Constants » —| | Powsr () i
Lists and HMatrices. * | Numerical Functions v sqrt
Graphics and Sound * Random Numbsrs v Sin
Programming * [+ [EEmentary Functions »)/, | | Cos ™
~
¥
Cos
® Cos [2] gives the cosine of 2
» Mathematical function (ses Section A3 10) =
u Ths argument of Cos is assumed to be in radians. (Multiply by Degree te convert from dagrees.)
u Cos is automatically evaluated when its argument is a simple rational multipls of 7, for mors complicated rational
multiplss, FuncticnExpand can somstimes be uzed.
u Sz The Mk icer Book: Section 1.1.3 and Section 3.2.6. m
= Seealzo: ArcCos, Sec, TrigToExp, TrigExpand.
u New in Persion 1.
[Further Examples
[
<] o | [2].:

If you type the name of a function into a notebook, most versions of the front end allow you im-
mediately to find information about the function by pressing an appropriate key (F1 under Windows).

When you first start Mathematica, you will typically be presented with a basic tutorial. You can visit
the tutorial again with the Tutorial menu item in the Help menu.

58 1. A Practical Introduction to Mathematica « 1.3 Using the Mathematica System

H 1.3.9 Getting Help with a Text-Based Interface

?Name show information on Name
??Name show extra information on Name

?Aaaax show information on all objects whose names begin with
Aaaa

Ways to get information directly from the Mathematica kernel.

This gives information on the built-in In[1]:= 7Log

function Log. Loglz] gives the natural logarithm of z (logarithm to base

e). Loglb, z] gives the logarithm to base b.
You can ask for information about any object, whether it is built into Mathematica, has been read in
from a Mathematica package, or has been introduced by you.

When you use 7 to get information, you must make sure that the question mark appears as the first
character in your input line. You need to do this so that Mathematica can tell when you are requesting
information rather than giving ordinary input for evaluation.

You can get extra information by using In[2]:= 77Log
??7. Attributes will be discussed in

| Log[z] gives the natural logarithm of z (logarithm to base
Section 2.6.3. glzl g g g

e). Loglb, z] gives the logarithm to base b.

Attributes[Log] = {Listable, NumericFunction, Protected}

This gives information on all In[3]:= 7Lo*

Mqthematzca objects wlr}ose names begin Locked LogGamma LogIntegral Loopback
with Lo. When there is more than one Log LogicalExpand LongForm LowerCaseQ
object, Mathematica just lists their

names.

?Aaaa will give you information on the particular object whose name you specify. Using the
“metacharacter” *, however, you can get information on collections of objects with similar names. The
rule is that * is a “wild card” that can stand for any sequence of ordinary characters. So, for example,
?Lo* gets information on all objects whose names consist of the letters Lo, followed by any sequence
of characters.

You can put * anywhere in the string you ask 7 about. For example, ?*Expand would give you
all objects whose names end with Expand. Similarly, 7x*0 would give you objects whose names start
with x, end with 0, and have any sequence of characters in between. (You may notice that the way
you use * to specify names in Mathematica is similar to the way you use * in Unix and other operating
systems to specify file names.)

You can ask for information on most of In[4]:= ?:=

the spemgllnptu ﬁnrps that lhs := rhs assigns rhs to be the delayed value of lhs. rhs
Mathematica uses. This asks for is maintained in an unevaluated form. When lhs appears,
information about the := operator. it is replaced by rhs, evaluated afresh each time.

1.3.10 Mathematica Packages 59

M 1.3.10 Mathematica Packages

One of the most important features of Mathematica is that it is an extensible system. There is a
certain amount of mathematical and other functionality that is built into Mathematica. But by using
the Mathematica language, it is always possible to add more functionality.

For many kinds of calculations, what is built into the standard version of Mathematica will be quite
sufficient. However, if you work in a particular specialized area, you may find that you often need to
use certain functions that are not built into Mathematica.

In such cases, you may well be able to find a Mathematica package that contains the functions you
need. Mathematica packages are files written in the Mathematica language. They consist of collections
of Mathematica definitions which “teach” Mathematica about particular application areas.

<<package read in a Mathematica package

Reading in Mathematica packages.

If you want to use functions from a particular package, you must first read the package into Mathe-
matica. The details of how to do this are discussed in Section 1.11. There are various conventions that
govern the names you should use to refer to packages.

This command reads in a particular In[1]:= << DiscreteMath‘CombinatorialFunctions"
Mathematica package.

The Subfactorial function is defined In[2]:= Subfactorial[10]
in the package. Out[2]= 1334961

There are a number of subtleties associated with such issues as conflicts between names of functions
in different packages. These are discussed in Section 2.7.9. One point to note, however, is that you
must not refer to a function that you will read from a package before actually reading in the package.
If you do this by mistake, you will have to execute the command Removel["name"] to get rid of the
function before you read in the package which defines it. If you do not call Remove, Mathematica will
use “your” version of the function, rather than the one from the package.

Removel["name"] remove a function that has been introduced in error

Making sure that Mathematica uses correct definitions from packages.

The fact that Mathematica can be extended using packages means that the boundary of exactly what
is “part of Mathematica” is quite blurred. As far as usage is concerned, there is actually no difference
between functions defined in packages and functions that are fundamentally built into Mathematica.

60 1. A Practical Introduction to Mathematica « 1.3 Using the Mathematica System

In fact, a fair number of the functions described in this book are actually implemented as Mathe-
matica packages. However, on most Mathematica systems, the necessary packages have been preloaded,
so that the functions they define are always present.

To blur the boundary of what is part of Mathematica even further, Section 2.7.11 describes how
you can tell Mathematica automatically to load a particular package if you ever try to use a certain
function. If you never use that function, then it will not be present. But as soon as you try to use it,
its definition will be read in from a Mathematica package.

As a practical matter, the functions that should be considered “part of Mathematica” are probably
those that are present in all Mathematica systems. It is these functions that are primarily discussed in
this book.

Nevertheless, most versions of Mathematica come with a standard set of Mathematica packages,
which contain definitions for many more functions. Some of these functions are mentioned in this
book. But to get them, you must usually read in the necessary packages explicitly.

.You can use the Help Browser to get %2 Mathematica Help Browaer WEx|

information on standard Mathematica —

add-on packages E Mumericald ath'BesselZerns’ E] ;;{;
Getting Started Tour Demos Master Index

Built-in Functions ‘ Add-ons & Links | The Mathematica Book Front End

‘Wolfram Resesarch Produck 'A‘"Gsumsiry roximations. 'A‘"

Reassl¥Primefernal
<

givre a list nf tha first » 7arne nf
I

I3 'I\‘
|Standard Packages v || Graphics YR
Combinatorica = || LinsarAlgebra b =
AuthorToolke ||| Mizcellansous ¥ | £ ||| CauchyPrincipaivValue
XML Capabilties | NumberTheory r — || ComputerArithmetic
- Humericalitath Y| GaussianQuadrature
MathLink 1821]| Statistira + [%)]| InternnlateRnat]|
-
¥
NumericalMath*BesselZeros ™
Exact selutions te many partial differential equations can be expressed as infinits sums over the zeres of some Bessel =
function or functions. For example, the solution U7(», {) to the heat squation in canonical units en the unit dizc with
initial temperature U(r, 0} = 0 and boundary cendition T7(1, 1) = 1 is given by
1 o 7)
Ulrfl=1-2 E 7] e
ay)
#=1
whers the gy are the positive zeros of Jj, 01 = 240483 ag = 552008, o3 = 8.65373 etc. Using FindRoot it is
ot difficult to find any single desired zero if you can find a good pair of starting valuss. This package automatically
cheoses starting values and uses FindRoot to efficiently preducs lists of positive zares of vatious Bessal
functions.
BesseldZeros[nm, n] givealist of the first 2 zeres of A (x)
Bessel¥Zeros[am, n] givealistof the first # zeros of T (x)
BesselJdPrimeZeros[mu, n] givealist of the first n zeres of J{x) |
e al ¥ il lnd

2

It is possible to set your Mathematica system up so that particular packages are pre-loaded, or are
automatically loaded when needed. If you do this, then there may be many functions that appear as
standard in your version of Mathematica, but which are not documented in this book.

One point that should be mentioned is the relationship between packages and notebooks. Both are
stored as files on your computer system, and both can be read into Mathematica. However, a notebook

1.3.11 Warnings and Messages

61

is intended to be displayed, typically with a notebook interface, while a package is intended only
to be used as Mathematica input. Many notebooks in fact contain sections that can be considered as
packages, and which contain sequences of definitions intended for input to Mathematica. There are
also capabilities that allow packages set up to correspond to notebooks to be maintained automatically.

H 1.3.11 Warnings and Messages

Mathematica usually goes about its work silently, giving output only when it has finished doing the

calculations you asked for.

However, if it looks as if Mathematica is doing something you definitely did not intend, Mathematica
will usually print a message to warn you.

The square root function should have

only one argument. Mathematica prints
a message to warn you that you have
given two arguments here.

Each message has a name. You can
switch off messages using Off.

The message Sqrt::argx has now
been switched off, and will no longer

appear.

This switches Sqrt: :argx back on
again.

In[1]:= Sqrt[4, 5]

Sqrt::argx:
Sqrt called with 2 arguments; 1 argument is expected.

Out[1]= Sqrt[4, 5]

In[2]:= 0££[Sqrt: :argx]

In[3]:= Sqrt[4, 5]
Out[3]= Sqrt[4, 5]

In[4]:= On[Sqrt::argx]

0ff[Function: :tag]

On[Function: :tag]

switch off (suppress) a message

switch on a message

Functions for controlling message output.

62 1. A Practical Introduction to Mathematica « 1.3 Using the Mathematica System

H 1.3.12 Interrupting Calculations

There will probably be times when you want to stop Mathematica in the middle of a calculation.
Perhaps you realize that you asked Mathematica to do the wrong thing. Or perhaps the calculation is
just taking a long time, and you want to find out what is going on.

The way that you interrupt a Mathematica calculation depends on what kind of interface you are
using.

ALT-Comma or ComMAND-ComMMA notebook interfaces

ConTrROL-C text-based interfaces

Typical keys to interrupt calculations in Mathematica.

On some computer systems, it may take Mathematica some time to respond to your interrupt. When
Mathematica does respond, it will typically give you a menu of possible things to do.

continue continue the calculation
show show what Mathematica is doing
inspect inspect the current state of your calculation
abort abort this particular calculation

exit exit Mathematica completely

Some typical options available when you interrupt a calculation in Mathematica.

1.4.1 Symbolic Computation 63

1.4 Algebraic Calculations

H 1.4.1 Symbolic Computation

One of the important features of Mathematica is that it can do symbolic, as well as numerical calculations.
This means that it can handle algebraic formulas as well as numbers.

Here is a typical numerical
computation.

This is a symbolic computation.

In[1]:=3 +62 - 1
Out[1]= 64

In[2]:=3x - x + 2
Out[2]= 2+2x

Numerical computation

Symbolic computation

3+62-1 — 64

3x-x+2 — 2+2x

Numerical and symbolic computations.

You can type any algebraic expression
into Mathematica.

Mathematica automatically carries out
basic algebraic simplifications. Here it
combines x* and —4x? to get —3x2.

In[3]:= -1 + 2x + x*3
Out[3]= -1+2x+x°

In[4]:= x~2 + x - 4 x~2
Out[4]= x-3x°

You can type in any algebraic expression, using the operators listed on page 29. You can use spaces
to denote multiplication. Be careful not to forget the space in x y. If you type in xy with no space,
Mathematica will interpret this as a single symbol, with the name xy, not as a product of the two

symbols x and y.

Mathematica rearranges and combines
terms using the standard rules of
algebra.

Here is another algebraic expression.

The function Expand multiplies out
products and powers.

Factor does essentially the inverse of
Expand.

In[5]:=xy+2x"2y+y*2x*2-2yx
Out[5]= -xy+2x’y+x°y?

In[6]:= (x + 2y + 1)(x - 2)~2

Out[6]= (-2+%)° (L+x+27)

In[7]:= Expand[%]

Out[7]= 4-3x% +x>+8y-8xy+2x°y

In[8]:= Factor[%]

Out[8]= (-2+x)> (1 +x+2y)

64 1. A Practical Introduction to Mathematica « 1.4 Algebraic Calculations

When you type in more complicated expressions, it is important that you put parentheses in the
right places. Thus, for example, you have to give the expression x* in the form x~(4y). If you leave
out the parentheses, you get x*y instead. It never hurts to put in too many parentheses, but to find
out exactly when you need to use parentheses, look at Section A.2.

Here is a more complicated formula, In[9]:= Sqrt[2]1/9801 (4n)! (1103 + 26390 n) / (n!~4 396~(4n))

requiring several parentheses. L
27782 99" (1103 +263901n) (4n) !

Out[9]= 7
@!)

When you type in an expression, Mathematica automatically applies its large repertoire of rules for
transforming expressions. These rules include the standard rules of algebra, such as x —x = 0, together
with much more sophisticated rules involving higher mathematical functions.

Mathematica uses standard rules of In[10]:= Sqrtl1 + x]~4

algebra to replace (V1 +x)* by (1 +x)2. ut[10]= (1412

Mathematica knows no rules for this In[11]:= Logl1l + Cos[x]]
f.expressio.n,. so it leaves the expression Out[11]= Log[1+Cos[x]]
in the original form you gave.

The notion of transformation rules is a very general one. In fact, you can think of the whole of
Mathematica as simply a system for applying a collection of transformation rules to many different
kinds of expressions.

The general principle that Mathematica follows is simple to state. It takes any expression you input,
and gets results by applying a succession of transformation rules, stopping when it knows no more
transformation rules that can be applied.

m Take any expression, and apply transformation rules until the result no longer changes.

The fundamental principle of Mathematica.

M 1.4.2 Values for Symbols

When Mathematica transforms an expression such as x + x into 2x, it is treating the variable x in a
purely symbolic or formal fashion. In such cases, x is a symbol which can stand for any expression.

Often, however, you need to replace a symbol like x with a definite “value”. Sometimes this value
will be a number; often it will be another expression.

To take an expression such as 1 + 2x and replace the symbol x that appears in it with a definite
value, you can create a Mathematica transformation rule, and then apply this rule to the expression.
To replace x with the value 3, you would create the transformation rule x -> 3. You must type -> as
a pair of characters, with no space in between. You can think of x -> 3 as being a rule in which “x
goes to 3”.

1.4.2 Values for Symbols

65

To apply a transformation rule to a particular Mathematica expression, you type expr /. rule. The
“replacement operator” /. is typed as a pair of characters, with no space in between.

This uses the transformation rule x->3
in the expression 1 + 2x.

You can replace x with any expression.
Here every occurrence of x is replaced

by 2 - y.

Here is a transformation rule.
Mathematica treats it like any other
symbolic expression.

This applies the transformation rule on
the previous line to the expression
X2 - 9.

In[1]:=1+2x /. x->3
Out[1]= 7

In[2]:=1+x+x*2 /. x->2-y5
out[2]= 3+ (2-y)" -y
In[3]:=x ->3 +y

Out[3]= x> 3+y

In[4]:=x*2 -9 /. %
Out[4]= -9+ (3+y)°

expr /. x => value

expr /. {x => xval, y -> yoval}

replace x by value in the expression expr

perform several replacements

Replacing symbols by values in expressions.

You can apply rules together by
putting the rules in a list.

In[5]:=(x+y) (x-y)*2 /. {x->3, y->1-a}

Out[5]= (4-a) (2+a)>

The replacement operator /. allows you to apply transformation rules to a particular expression.
Sometimes, however, you will want to define transformation rules that should always be applied. For
example, you might want to replace x with 3 whenever x occurs.

As discussed in Section 1.2.2, you can do this by assigning the value 3 to x using x = 3. Once you

have made the assignment x = 3, x will always be replaced by 3, whenever it appears.

This assigns the value 3 to x.

Now x will automatically be replaced
by 3 wherever it appears.

This assigns the expression 1 + a to be
the value of x.

Now x is replaced by 1 + a.

In[6]:=x =3
Out[6]= 3

In[7]:= x~2 - 1
Out[7]= 8

In[8]:=x=1+a
Out[8]= 1+a

In[9]:= x~2 - 1

Out[9]= -1+ (1+a)>

You can define the value of a symbol to be any expression, not just a number. You should realize
that once you have given such a definition, the definition will continue to be used whenever the

66 1. A Practical Introduction to Mathematica « 1.4 Algebraic Calculations

symbol appears, until you explicitly change or remove the definition. For most people, forgetting to
remove values you have assigned to symbols is the single most common source of mistakes in using
Mathematica.

x = value define a value for x which will always be used

x =. remove any value defined for x

Assigning values to symbols.

The symbol x still has the value you In[10]:=x + 5 - 2x
assigned to it above. Out[10]= 6+a-2(1+a)

This removes the value you assigned In[11]:=x =.

to x.

Now x has no value defined, so it can In[12]:=x + 5 - 2x
be used as a purely symbolic variable. out[12]= 5-x

A symbol such as x can serve many different purposes in Mathematica, and in fact, much of the
flexibility of Mathematica comes from being able to mix these purposes at will. However, you need to
keep some of the different uses of x straight in order to avoid making mistakes. The most important
distinction is between the use of x as a name for another expression, and as a symbolic variable that
stands only for itself.

Traditional programming languages that do not support symbolic computation allow variables to
be used only as names for objects, typically numbers, that have been assigned as values for them. In
Mathematica, however, x can also be treated as a purely formal variable, to which various transfor-
mation rules can be applied. Of course, if you explicitly give a definition, such as x = 3, then x will
always be replaced by 3, and can no longer serve as a formal variable.

You should understand that explicit definitions such as x = 3 have a global effect. On the other
hand, a replacement such as expr /. x->3 affects only the specific expression expr. It is usually much
easier to keep things straight if you avoid using explicit definitions except when absolutely necessary.

You can always mix replacements with assignments. With assignments, you can give names to
expressions in which you want to do replacements, or to rules that you want to use to do the
replacements.

This assigns a value to the symbol t. In[13]:=t =1 + x~2
Out[13]= 1+x°

This finds the value of t, and then In[14]:=t /. x => 2
replaces x by 2 in it. Out[14]= 5

1.4.3 Transforming Algebraic Expressions 67

This finds the value of t for a different
value of x.

In[15]:=t /. x => Ba
Out[15]= 1+25a?

In[16]:=t /. x => Pi //N
Out[16]= 10.8696

This finds the value of t when x is
replaced by Pi, and then evaluates the
result numerically.

M 1.4.3 Transforming Algebraic Expressions

There are often many different ways to write the same algebraic expression. As one example, the
expression (1 +x)? can be written as 1 + 2x + x*>. Mathematica provides a large collection of functions
for converting between different forms of algebraic expressions.

Expand[expr]

Factor[expr]

multiply out products and powers, writing the result as a
sum of terms

write expr as a product of minimal factors

Two common functions for transforming algebraic expressions.

Expand gives the “expanded form”,
with products and powers multiplied
out.

Factor recovers the original form.

It is easy to generate complicated
expressions with Expand.

Factor often gives you simpler
expressions.

There are some cases, though, where
Factor can give you more complicated
expressions.

In this case, Expand gives the
“simpler” form.

In[1]:= Expand[(1 + x)~2]
Out[1]= 1+2x+x%>

In[2]:= Factor[%]

Out[2]= (1+x)°

In[3]:= Expand[(1 + x + 3 y)»~4]

Out[3]= 1+4x+6x>+4x>+x* +12y+36xy+36x2y+12x°3y+
54y2+108xy2 +54x?y2 +108y° +108xy° +81y*

In[4]:= Factor[%]

out[4]= (1+x+3y)"

In[5]:= Factor[x~10 - 1]

Out[5]= (-1+x) (1+x) (1-x+x2-x>+x*) W+x+x? +x% +x%)

In[6]:= Expand[%]
Out[6]= -1+x'°

68 1. A Practical Introduction to Mathematica « 1.4 Algebraic Calculations

H 1.4.4 Simplifying Algebraic Expressions

There are many situations where you want to write a particular algebraic expression in the simplest
possible form. Although it is difficult to know exactly what one means in all cases by the “simplest
form”, a worthwhile practical procedure is to look at many different forms of an expression, and pick
out the one that involves the smallest number of parts.

Simplifylexpr] try to find the simplest form of expr by applying various
standard algebraic transformations

FullSimplifylexpr] try to find the simplest form by applying a wide range of

transformations
Simplifying algebraic expressions.
Simplify writes x> + 2x + | in factored In[1]:= Simplify[x~2 + 2x + 1]
form. 2
Out[1]= (1+x)
Simplify leaves x' — 1 in expanded In[2]:= Simplify[x~10 - 1]

form, since for this expression, the

- _ 10
factored form is larger. Out[2]= -1+x

You can often use Simplify to “clean up” complicated expressions that you get as the results of
computations.

Here is the integral of 1/(x* = 1). In[3]:= Integrate[1/(x~4-1), x]
Integrals are discussed in more detail 1
in Section 1.5.3. Out[3]= vy (-2 ArcTan[x] +Log[-1+x] -Log[1+x])
Differentiating the result from In[4]:= D[%, x]
Integrate shoqld give bE'iCk your 1 1 1 5
original expression. In this case, as is Out[4]= — (- - 5)
common, you get a more complicated 4 t-lrx dex dex
version of the expression.
Simplify succeeds in getting back the In[5]:= Simplify[%]
original, more simple, form of the
expression. Out[5]= ——

-1+x4

Simplify is set up to try various standard algebraic transformations on the expressions you give.
Sometimes, however, it can take more sophisticated transformations to make progress in finding the
simplest form of an expression.

FullSimplify tries a much wider range of transformations, involving not only algebraic functions,
but also many other kinds of functions.

Simplify does nothing to this In[6]:= Simplify[Gamma[x] Gamma[1 - x]]

expression. Out[6]= Gamma[1 - x] Gamma [x]

1.4.5 Advanced Topic: Putting Expressions into Different Forms 69

FullSimplify, however, transforms it In[7]:= FullSimplify[Gamma[x] Gamma[1 - x]]
to a simpler form. Out[7]= nCsclnx]

For fairly small expressions, FullSimplify will often succeed in making some remarkable simpli-
fications. But for larger expressions, it can become unmanageably slow.

The reason for this is that to do its job, FullSimplify effectively has to try combining every part of
an expression with every other, and for large expressions the number of cases that it has to consider
can be astronomically large.

Simplify also has a difficult task to do, but it is set up to avoid some of the most time-consuming
transformations that are tried by FullSimplify. For simple algebraic calculations, therefore, you may
often find it convenient to apply Simplify quite routinely to your results.

In more complicated calculations, however, even Simplify, let alone FullSimplify, may end up
needing to try a very large number of different forms, and therefore taking a long time. In such cases,
you typically need to do more controlled simplification, and use your knowledge of the form you
want to get to guide the process.

H 1.4.5 Advanced Topic: Putting Expressions into Different Forms

Complicated algebraic expressions can usually be written in many different ways. Mathematica pro-
vides a variety of functions for converting expressions from one form to another.

In many applications, the most common of these functions are Expand, Factor and Simplify.
However, particularly when you have rational expressions that contain quotients, you may need to
use other functions.

Expand[expr] multiply out products and powers
ExpandAll[expr] apply Expand everywhere
Factor[expr] reduce to a product of factors
Together[expr] put all terms over a common denominator
Apartl[expr] separate into terms with simple denominators

Cancellexpr] cancel common factors between numerators and
denominators

Simplifylexpr] try a sequence of algebraic transformations and give the
smallest form of expr found

Functions for transforming algebraic expressions.

70 1. A Practical Introduction to Mathematica « 1.4 Algebraic Calculations

Here is a rational expression that can In[1]:=e=(x-1)22 (2 +x) / ((1 +x) (x - 3)~2)

be written in many different forms.)
(-1+x)" (2+x)

Dut[l J= —-———2———
(-3+x)" (1+x)
Expand expands out the numerator, but In[2]:= Expand[e]
leaves the denominator in factored 3
f 2 3x X
orm. Out[2]= 5 - 3 + 3
(=3+x)" (1+x) (-3+x)" (1+x) (-3+x)" (1+x)
ExpandAll expands out everything, In[3]:= ExpandAllle]
including the denominator. 3
2 3x X
Out[3]=

- +
9+3x-5x2+x3 9+3x-5x2+x3 9+3x-5x2+x3

Together collects all the terms together In[4]:= Together[%]
over a common denominator.

2-3x+x3
Out[4]= ——p—
(-3+x)" (1 +x)
Apart breaks the expression apart into In[5]:= Apart[%]
terms with simple denominators. 5 19 1
Out[5]= 1+ + +
utls] (c3+0)° 4(3+x) 4(1+xn
Factor factors everything, in this case In[6]:= Factor[%]
reproducing the original form.)
(-1+x)" (2+x)
Out[6]= ———————
(=3+x)" (1+x)
According to Simplify, this is the In[7]:= Simplifyle]
simplest way to write the original)
expression. Out[7]= (-1+x)" (2+%)

(-3+x)° (1+x)

Getting expressions into the form you want is something of an art. In most cases, it is best simply
to experiment, trying different transformations until you get what you want. Often you will be able
to use palettes in the front end to do this.

When you have an expression with a single variable, you can choose to write it as a sum of terms, a
product, and so on. If you have an expression with several variables, there is an even wider selection
of possible forms. You can, for example, choose to group terms in the expression so that one or
another of the variables is “dominant”.

Collectlexpr, x] group together powers of x

FactorTerms[expr, x1 pull out factors that do not depend on x

Rearranging expressions in several variables.

1.4.5 Advanced Topic: Putting Expressions into Different Forms 71

Here is an algebraic expression in two In[8]:= v = Expand[(3 + 2 x)~2 (x + 2 y)~2]

variables. Out[8]= 9x>+12x3 +4x* +36xy+

48x° y+16x° y+36y2 +48xy2 +16x° y?

This groups together terms in v that In[9]:= Collectlv, x]

involve the same power of x. Out[9]= 4x% +36y2 +x° (12+16y) +

x? (9+48y+16y%) +x (36y+48y?)

This groups together powers of y. In[10]:= Collectlv, y]

Out[10]= 9x% +12x3 +4x* +
(36x+48x% +16x°) y+ (36 +48x + 16x2) y°

This factors out the piece that does not In[11]:= FactorTerms[v, y]
depend on y.

Out[11]= (9+12x+4x%) (x> +4xy+4y?)

As we have seen, even when you restrict yourself to polynomials and rational expressions, there
are many different ways to write any particular expression. If you consider more complicated expres-
sions, involving, for example, higher mathematical functions, the variety of possible forms becomes
still greater. As a result, it is totally infeasible to have a specific function built into Mathematica to
produce each possible form. Rather, Mathematica allows you to construct arbitrary sets of transforma-
tion rules for converting between different forms. Many Mathematica packages include such rules; the
details of how to construct them for yourself are given in Section 2.5.

There are nevertheless a few additional built-in Mathematica functions for transforming expressions.

TrigExpand[expr] expand out trigonometric expressions into a sum of terms
TrigFactor[expr] factor trigonometric expressions into products of terms
TrigReducel[expr] reduce trigonometric expressions using multiple angles
TrigToExplexpr] convert trigonometric functions to exponentials
ExpToTriglexpr] convert exponentials to trigonometric functions
FunctionExpand[expr] expand out special and other functions
ComplexExpand[expr] perform expansions assuming that all variables are real

PowerExpand[expr] transform (xy)? into x"y”, etc.

Some other functions for transforming expressions.

This expands out the trigonometric In[12]:= TrigExpand[Tan[x] Cos[2x]]
expression, writing it so that all

functions have argument x. Out[12]= %COS [x] Sin[x] - Tan[x] 1

. 2
5 Y Sin[x]” Tan[x]

72 1. A Practical Introduction to Mathematica « 1.4 Algebraic Calculations

This uses trigonometric identities to In[13]:= TrigFactor([%]

generate a factored form of the Out[13]= (Cos[x] -Sin[x]) (Cos[x] +Sin[x]) Tan[x]
expression.

This reduces the expression by using In[14]:= TrigReduce[%]

multiple angles. 1
Out[14]= - 5 Sec[x] (Sin[x] -Sin[3x])

This expands the sine assuming that x In[15]:= ComplexExpand[Sin[x + I y]]

and y are both real. Out[15]= Coshly] Sin[x] +1i Cos[x] Sinh[y]

This does the expansion allowing x In[16]:= ComplexExpand[Sin[x + I y], {x, y}]
and y to be complex. Out[16]= -Cosh[Im[x] +Relyl] Sin[In[y] - Re[x]] +

1 Cos[Im[y] -Re[x]] Sinh[Im[x] +Rely]]

The transformations on expressions done by functions like Expand and Factor are always correct,
whatever values the symbolic variables in the expressions may have. Sometimes, however, it is useful
to perform transformations that are only correct for some possible values of symbolic variables. One
such transformation is performed by PowerExpand.

Mathematica does not automatically In[17]:= Sqrtlx y]
expand out non-integer powers of 3

products. Out[17]= Nxy
PowerExpand does the expansion. In[18]:= PowerExpand[}]

out[18]= \x [y

H 1.4.6 Advanced Topic: Simplifying with Assumptions

Simplifylexpr, assum] simplify expr with assumptions

Simplifying with assumptions.

Mathematica does not automatically In[1]:= Simplify[Sqrt[x~2]]
simplify this, since it is only true for

some values of x. Out[1]= Vx2

Va2 is equal to x for x = 0, but not In[2]:= {Sqrt[4~2], Sqrt[(-4)~2]}
otherwise. out[2]= {4, 4}

This tells Simplify to make the In[3]:= Simplify[Sqrt[x~2], x > 0]
assumption x > 0, so that simplification out[3]= x

can proceed.

No automatic simplification can be In[4]:=2 a + 2 Sqrt[a - Sqrt[-b]] Sqrt[a + Sqrt[-bl]

done on this expression.
2a+2\/a—\/-b \/a+\/-b

Out[4]

1.4.7 Picking Out Pieces of Algebraic Expressions 73

If a and b are assumed to be positive,
the expression can however be
simplified.

Here is a simple example involving
trigonometric functions.

In[5]:= Simplify[%, a > 0 && b > 0]

Out[5]= 2 (a++a2+Db)

In[6]:= Simplify[ArcSin[Sin[x]], -Pi/2 < x < Pi/2]
Out[6]= x

Element[x, dom] state that x is an element of the domain dom
Element[{x;, x», ... }, dom] state that all the x; are elements of the domain dom
Reals real numbers
Integers integers
Primes prime numbers

Some domains used in assumptions.

This simplifies Va2 assuming that x is
a real number.

This simplifies the sine assuming that
n is an integer.

With the assumptions given, Fermat’s
Little Theorem can be used.

This uses the fact that sin(x), but not
arcsin(x), is real when x is real.

In[7]:= Simplify[Sqrt[x~2], Element[x, Reals]]
Out[7]= Abs[x]

In[8]:= Simplify[Sin[x + 2 n Pi], Element[n, Integers]]
Out[8]= Sin[x]
In[9]:= Simplify[Mod[a~p, p], Element[a, Integers]
%&& Element[p, Primes]]
Out[9]= Mod[a, p]

In[10]:= Simplify[Re[{Sin[x], ArcSin[x]}], Element[x, Reals]]
Out[10]= {Sin[x], Re[ArcSin[x]]1}

M 1.4.7 Picking Out Pieces of Algebraic Expressions

Coefficient[expr, form]
Exponent[expr, form]

Part[expr, n] or expr[[nl]

coefficient of form in expr

maximum power of form in expr

n™ term of expr

Functions to pick out pieces of polynomials.

Here is an algebraic expression.

In[1]:= e = Expand[(1 + 3x + 4y~2)~2]
Out[1]= 1+6x+9x?+8y? +24xy? +16y*

74 1. A Practical Introduction to Mathematica « 1.4 Algebraic Calculations

This gives the coefficient of x in e. In[2]:= Coefficient[e, x]

Out[2]= 6+247y?

Exponent[expr, y] gives the highest In[3]:= Exponent[e, y]

power of y that appears in expr. Out[3]= 4

This gives the fourth term in e. In[4]:= Partl[e, 4]
Out[4]= 8y?

You may notice that the function Part[expr, n] used to pick out the nh term in a sum is the same as
the function described in Section 1.2.4 for picking out elements in lists. This is no coincidence. In fact,
as discussed in Section 2.1.5, every Mathematica expression can be manipulated structurally much like
a list. However, as discussed in Section 2.1.5, you must be careful, because Mathematica often shows
algebraic expressions in a form that is different from the way it treats them internally.

Coefficient works even with In[5]:= Coefficient[(1 + 3x + 4y~2)~2, x]
polynomials that are not explicitly Out[5]= 6+24y?
expanded out.

Numerator[expr] numerator of expr

Denominator[expr] denominator of expr

Functions to pick out pieces of rational expressions.

Here is a rational expression. In[6]:=r = (1 +x)/(2 (2 -y))
Out[6]= L
“ 2(2-y)
Denominator picks out the In[7]:= Denominator[}]
denominator. out[7]= 2 (2-7)
Denominator gives 1 for expressions In[8]:= Denominator[1/x + 2/y]
that are not quotients. out[8]= 1

H 1.4.8 Controlling the Display of Large Expressions

When you do symbolic calculations, it is quite easy to end up with extremely complicated expressions.
Often, you will not even want to see the complete result of a computation.

If you end your input with a semicolon, Mathematica will do the computation you asked for, but
will not display the result. You can nevertheless use % or Out[#] to refer to the result.

1.4.9 The Limits of Mathematica

75

Even though you may not want to see the whole result from a computation, you often do need to
see its basic form. You can use Short to display the outline of an expression, omitting some of the

terms.

Ending your input with ; stops
Mathematica from displaying the
complicated result of the computation.

You can still refer to the result as %.
//Short displays a one-line outline of
the result. The <<n>> stands for n
terms that have been left out.

This shows a three-line version of the
expression. More parts are now visible.

This gives the total number of terms in
the sum.

In[1]:= Expand[(x + 5 y + 10)~8] ;

In[2]:=% //Short
Out[2]//Short= 100000000 + 80000000 x + <<42>> + 390625 y8

In[3]:= Short[%, 3]

Out[3]//Short= 100000000 + 80000000 x + 28000000 x2 +
5600000 x® + 700000 x* + <<35>> + 8750000 x y© +
437500 x2 y® + 6250000 y” + 625000 y” + 390625 y®

In[4]:= Length[%]
Out[4]= 45

command ;
expr // Short

Short[expr, nl

execute command, but do not print the result
show a one-line outline form of expr

show an n-line outline of expr

Some ways to shorten your output.

-l 1.4.9 The Limits of Mathematica

In just one Mathematica command, you can easily specify a calculation that is far too complicated for
any computer to do. For example, you could ask for Expand[(1+x)~(10~100)]. The result of this
calculation would have 10'® + 1 terms—more than the total number of particles in the universe.

You should have no trouble working out Expand[(1+x)~100] on any computer that can run Mathe-
matica. But as you increase the exponent of (1+x), the results you get will eventually become too big
for your computer’s memory to hold. Exactly at what point this happens depends not only on the
total amount of memory your computer has, but often also on such details as what other jobs happen
to be running on your computer when you try to do your calculation.

If your computer does run out of memory in the middle of a calculation, most versions of Mathe-
matica have no choice but to stop immediately. As a result, it is important to plan your calculations
so that they never need more memory than your computer has.

Even if the result of an algebraic calculation is quite simple, the intermediate expressions that you
generate in the course of the calculation can be very complicated. This means that even if the final

76 1. A Practical Introduction to Mathematica « 1.4 Algebraic Calculations

result is small, the intermediate parts of a calculation can be too big for your computer to handle. If
this happens, you can usually break your calculation into pieces, and succeed in doing each piece on
its own. You should know that the internal scheme which Mathematica uses for memory management
is such that once part of a calculation is finished, the memory used to store intermediate expressions
that arose is immediately made available for new expressions.

Memory space is the most common limiting factor in Mathematica calculations. Time can also,
however, be a limiting factor. You will usually be prepared to wait a second, or even a minute, for
the result of a calculation. But you will less often be prepared to wait an hour or a day, and you will
almost never be able to wait a year.

The internal code of Mathematica uses highly efficient and optimized algorithms. But there are some
tasks for which the best known algorithms always eventually take a large amount of time. A typical
issue is that the time required by the algorithm may increase almost exponentially with the size of the
input. A classic case is integer factorization—where the best known algorithms require times that grow
almost exponentially with the number of digits. In practice, you will find that FactorInteger[k]
will give a result almost immediately when k has fewer than about 40 digits. But if k has 60 digits,
FactorInteger[k] can start taking an unmanageably long time.

In some cases, there is progressive improvement in the algorithms that are known, so that succes-
sive versions of Mathematica can perform particular computations progressively faster. But ideas from
the theory of computation strongly suggest that many computations will always in effect require an
irreducible amount of computational work—so that no fast algorithm for them will ever be found.

Whether or not the only algorithms involve exponentially increasing amounts of time, there will
always come a point where a computation is too large or time-consuming to do on your particular
computer system. As you work with Mathematica, you should develop some feeling for the limits on
the kinds of calculations you can do in your particular application area.

1.4.9 The Limits of Mathematica

77

Doing arithmetic with numbers containing a few hundred million digits.

Generating a million digits of numbers like 7 and e.

Expanding out a polynomial that gives a million terms.

Factoring a polynomial in four variables with a hundred thousand terms.

Reducing a system of quadratic inequalities to a few thousand independent components.
Finding integer roots of a sparse polynomial with degree a million.

Applying a recursive rule a million times.

Calculating all the primes up to ten million.

Finding the numerical inverse of a 1000 x 1000 dense matrix.

Solving a million-variable sparse linear system with a hundred thousand non-zero
coefficients.

Finding the determinant of a 250 x 250 integer matrix.

Finding the determinant of a 20 x 20 symbolic matrix.

Finding numerical roots of a polynomial of degree 200.

Solving a sparse linear programming problem with a few hundred thousand variables.
Finding the Fourier transform of a list with a hundred million elements.

Rendering a million graphics primitives.

Sorting a list of ten million elements.

Searching a string that is ten million characters long.

Importing a few tens of megabytes of numerical data.

Formatting a few hundred pages of TraditionalForm output.

Some operations that typically take a few seconds on a 2003 vintage PC.

78 1. A Practical Introduction to Mathematica « 1.4 Algebraic Calculations

H 1.4.10 Using Symbols to Tag Objects

There are many ways to use symbols in Mathematica. So far, we have concentrated on using symbols
to store values and to represent mathematical variables. This section describes another way to use
symbols in Mathematica.

The idea is to use symbols as “tags” for different types of objects.

Working with physical units gives one simple example. When you specify the length of an object,
you want to give not only a number, but also the units in which the length is measured. In standard
notation, you might write a length as 12 meters.

You can imitate this notation almost directly in Mathematica. You can for example simply use a
symbol meters to indicate the units of our measurement.

The symbol meters here acts as a tag, In[1]:= 12 meters
which indicates the units used. Out[1]= 12meters
You can add lengths like this. In[2]:= % + 5.3 meters

Out[2]= 17.3meters

This gives a speed. In[3]:= % / (25 seconds)
0.692meters
Out[3]= —————
seconds
This converts to a speed in feet per In[4]:= % /. meters -> 3.28084 feet

second. 2.27034 feet

Out[4]=
seconds

There is in fact a standard Mathematica package that allows you to work with units. The package
defines many symbols that represent standard types of units.

Load the Mathematica package for In[5]:= <<Miscellaneous‘Units*
handling units.
The package uses standardized names In[6]:= 12 Meter/Second
for units. o 19 Meter

" ~ Second
The function Convertlexpr, units] In[7]:= Convert[%, Mile/Hour]
converts to the specified units. o 37500 Mile

HH T 1397 Hour
Usually you have to give prefixes for In[8]:= Convert[3 Kilo Meter / Hour, Inch / Minute]
units as separate words. 950000 Tnch

Out[8]=

127 Minute

1.5.2 Differentiation

79

1.5 Symbolic Mathematics

-l 1.5.1 Basic Operations

Mathematica’s ability to deal with symbolic expressions, as well as numbers, allows you to use it for

many kinds of mathematics.

Calculus is one example. With Mathematica, you can differentiate an expression symbolically, and

get a formula for the result.

This finds the derivative of x".

Here is a slightly more complicated
example.

In[1]:=D[x~n, x]

OQut[1]= nx 1*®

In[2]:= D[x~2 Log[x + al, x]

%2
Out[2]=
a+

" +2xLogla +x]

D[f, x]

Integratelf, x]

Sumlf, {i, imin, imax}]
Solvellhs==rhs, x]
Series[f, {x, xo, order}]
Limit[f, x->xo]

+ Minimize[f, x]

the (partial) derivative Z—{(

the indefinite integral [f dx

the sum Y

solution to an equation for x

a power series expansion of f about the point x = x
the limit lim,_,, f

minimization of f with respect to x

Some symbolic mathematical operations.

Getting formulas as the results of computations is usually desirable when it is possible. There
are however many circumstances where it is mathematically impossible to get an explicit formula
as the result of a computation. This happens, for example, when you try to solve an equation for
which there is no “closed form” solution. In such cases, you must resort to numerical methods and
approximations. These are discussed in Section 1.6.

M 1.5.2 Differentiation

Here is the derivative of x” with
respect to x.

In[1]:=D[x*n, x]

Qut[1]= nx 1*®

80 1. A Practical Introduction to Mathematica « 1.5 Symbolic Mathematics

Mathematica knows the derivatives of In[2]:= D[ArcTan[x], x]
all the standard mathematical
functions. Out[2]= ——
1+x2
This differentiates three times with In[3]:= D[x#*n, {x, 3}]

respect to x. Out[3]= (-2+n) (-1+n) nx 3™

The function D[x~n, x] really gives a partial derivative, in which n is assumed not to depend on x.
Mathematica has another function, called Dt, which finds fotal derivatives, in which all variables are
assumed to be related. In mathematical notation, D[f, x] is like g—i, while Dt[f, x] is like Z—i. You can
think of Dt as standing for “derivative total”.

Dt gives a fotal derivative, which In[4]:= Dt[x*n, x]

assumes that n can depend on x. [49 (n . x] ‘])
d Out[4]= x* |— +Dt[n, x] Log(x

Dtn, x] stands for 2. X g

This gives the total differential d(x"). In[5]:=Dt[x#n]

Dt[x] is the differential dx. 2Dt [x]

Outl5]= = (+Dt[n] Log[x])

DIf, x] partial derivative 2 f

DIf, x1, x2, ... 1 multiple derivative %% wf

DLf, {x, n}] repeated derivative 9f

ox"

Dt[f] total differential df

Dt[f, x] total derivative % f

Some differentiation functions.

As well as treating variables like x symbolically, you can also treat functions in Mathematica sym-
bolically. Thus, for example, you can find formulas for derivatives of £[x], without specifying any
explicit form for the function f.

Mathematica does not know how to In[6]:= D[£[x], x]
differen.tiate 1, so it gives you back a Out[6]= £ [x]
symbolic result in terms of f’.

Mathematica uses the chain rule to In[7]:=D[2 x £f[x~2], x]
simplify derivatives. Out[7]= 2£[x°] +4%° £ [x°]

1.5.3 Integration

81

H 1.5.3 Integration
Here is the integral [x" dx in

Mathematica.

Here is a slightly more complicated
example.

In[1]:= Integrate[x~n, x]
1+n

Out[1]= ——
1+n

In[2]:= Integrate[1/(x~4 - a~4), x]

2ArcTan[+] - Logla - x] +Log[a +x]

Out[2]= - 133

Mathematica knows how to do almost any integral that can be done in terms of standard mathematical
functions. But you should realize that even though an integrand may contain only fairly simple
functions, its integral may involve much more complicated functions—or may not be expressible at
all in terms of standard mathematical functions.

Here is a fairly straightforward
integral.

This integral can be done only in terms
of a dilogarithm function.

This integral involves Erf.

And this one involves a Fresnel
function.

Even this integral requires a
hypergeometric function.

This integral simply cannot be done in
terms of standard mathematical
functions. As a result, Mathematica just
leaves it undone.

In[3]:= Integrate[Log[l - x~2], x]
Out[3]= -2x-Log[-1+x] +Logl[1+x] +xLogl1-x?]

In[4]:= Integrate[Log[1l - x~2]/x, x]
Out[4]= —%PolyLog[?, x?]

In[5]:= Integrate[Exp[1 - x~2], x]
Out[5]= %e\/;Erf [x]

In[6]:= Integrate[Sin[x~2], x]

_ bg 2
Out[6]= 5 FresnelS[= x:|

In[7]:= Integrate[(1 - x~2)#n, x]

. 1 3
Out[7]= xHypergeometIlcQFl[;, n, o, X]

In[8]:= Integrate[x*x, x]

Out[8]= fx" dx

82 1. A Practical Introduction to Mathematica « 1.5 Symbolic Mathematics

Integrate[f, x] the indefinite integral [f dx
Integrate[f, x, y] the multiple integral [dx dy f
Integratelf, {x, xmin, xmax}] the definite integral L chnn::x fdx
Integratelf, {x, xmin, xmax}, {y, ymin, ymax}]

the multiple integral fx ZZX dx | M dy f

ymin

Integration.

Here is the definite integral In[9]:= Integrate[Sin[x]~2, {x, a, b}]

f b sin(x) dx. 1
a Out[9]=) (-a+b+Cos[a] Sin[a] - Cos[b] Sin[b])

Here is another definite integral. In[10]:= Integrate[Exp[-x~2], {x, 0, Infinity}]
outr103=
2
Mathematica cannot give you a formula In[11]:= Integrate[x~x, {x, 0, 1}]

for this definite integral. .
Out[11]= f x* dx
0

You can still get a numerical result, In[12]:= N[% 1
though. Out[12]= 0.783431
This evaluates the multiple integral In[13]:= Integrate[x~2 + y~2, {x, 0, 1}, {y, 0, x}]
ﬂ dx LX dy (x* + y?). The range of the 1
outermost integration variable appears Out[13]= 3
first.
M 1.5.4 Sums and Products
This constructs the sum 21-7:1 XT’ In[1]:= Sum[x~i/i, {i, 1, 7}]
x> x x* X % X
Out[1]= X+'2—+"3—+'Z_+'5—+'6—+"7—
You can leave out the lower limit if it In[2]:= Sum[x~i/i, {i, 7}]
i 1to 1.
1s equal to outl2]= +x2+x3+x4+x5+x6+x7
e A
This makes i increase in steps of 2, so In[3]:= sum[x~i/i, {i, 1, 5, 2}]

that only odd-numbered values are 3 5
x

included. Out[3]= x+ x? —

1.5.4 Sums and Products 83

Products work just like sums. In[4]:= Product[x + i, {i, 1, 4}]
Out[4]= (1+x) (2+x) (3+x) (4+x)

sunlf, {i, imin, imax}] the sum Y™~

Sumlf, {i, imin, imax, di}] the sum with i increasing in steps of di

sunlf, {i, imin, imax}, {j, jmin, jmax}] the nested sum Y%~ ;ZZW f

Productlf, {i, imin, imax}] the product l—limux

i=imin

Sums and products.

This sum is computed symbolically as In[5]:= sum[i~2, {i, 1, n}]
a function of n. 1
Out[5]= i (1+mn) (1+2n)

Mathematica can also give an exact In[6]:= Sum[1/i~4, {i, 1, Infinity}]
result for this infinite sum. .
T
Out[6]= —
ut[6] 50
As with integrals, simple sums can In[7]:= Sum[x~(i (i + 1)), {i, 1, Infinity}]

lead to complicated results.
-2x'/%4 +EllipticTheta[2, 0, x]

Out[7]= S l/A

This sum cannot be evaluated exactly In[8]:= Sum[1/(i! + (2i)!), {i, 1, Infinity}]
using standard mathematical functions.

®

1
Outl8]= Zl it+ @i

You can nevertheless find a numerical In[9]:= N[%]
approximation to the result. Out[9]= 0.373197

Mathematica also has a notation for multiple sums and products.

Sumlf, {i, imin, imax}, {j, jmin, jmax}] represents a sum over i and j, which would be written in
: p imax jmax

standard mathematical notation as ;7 iimin

mathematical notation, the range of the outermost variable is given first.

f. Notice that in Mathematica notation, as in standard

This is the multiple sum Z?:] Z;zl xiyf. In[10]:= Sum[x~i y~j, {i, 1, 3}, {j, 1, i}]
Notice that the outermost sum over i Out[10]= xy+x?y+x0y+x2y2 +x3y2 +x3 y°
is given first, just as in the
mathematical notation.

The way the ranges of variables are specified in Sum and Product is an example of the rather general
iterator notation that Mathematica uses. You will see this notation again when we discuss generating
tables and lists using Table (Section 1.8.2), and when we describe Do loops (Section 1.7.3).

84 1. A Practical Introduction to Mathematica « 1.5 Symbolic Mathematics

{imax}

{i, imax}

{i, imin, imax}
{i, imin, imax, di}

{i, imin, imax}, {j, jmin, jmax}, ...

iterate imax times, without incrementing any variables
i goes from 1 to imax in steps of 1

i goes from imin to imax in steps of 1

i goes from imin to imax in steps of di

i goes from imin to imax, and for each such value, j
goes from jmin to jmax, etc.

Mathematica iterator notation.

M 1.5.5 Equations

Section 1.2.2 discussed assignments such as x = y which set x equal to y. This section discusses equations,
which test equality. The equation x == y tests whether x is equal to y.

This tests whether 2 + 2 and 4 are In[1]:
equal. The result is the symbol True. outl1]

2+ 2==

True

It is very important that you do not confuse x = y with x == y. While x = y is an imperative state-
ment that actually causes an assignment to be done, x == y merely tests whether x and y are equal,
and causes no explicit action. If you have used the C programming language, you will recognize that
the notation for assignment and testing in Mathematica is the same as in C.

x =y assigns x to have value y

x == tests whether x and y are equal

Assignments and tests.
This assigns x to have value 4. In[2]:=x =4

Out[2]= 4
If you ask for x, you now get 4. In[3]:=x

Out[3]= 4
This tests whether x is equal to 4. In In[4]:=x ==
this case, it is. Out[4]= True
x is equal to 4, not 6. In[5]:= x ==

Out[5]= False

This removes the value assigned to x. In[6]:

1.5.5 Equations

85

The tests we have used so far involve only numbers, and always give a definite answer, either True

or False. You can also do tests on symbolic expressions.

Mathematica cannot get a definite result In[7]:= x ==
for t.h.is test un'less you give x a Out[7]= x ==
specific numerical value.

If you replace x by the specific In[8]:=% /. x -> 4
numerical value 4, the test gives False. Out[8]= False

Even when you do tests on symbolic expressions, there are some cases where you can get definite
results. An important one is when you test the equality of two expressions that are identical. What-
ever the numerical values of the variables in these expressions may be, Mathematica knows that the

expressions must always be equal.

The two expressions are identical, so In[9]:=2 x + x~2 == 2 x + x~2

the result is True, whatever the value Out[9]= True
of x may be.

Mathematica does not try to tell In[10]:= 2 x + x~2 == x (2 + x)

whether these expressions are equal. In
this case, using Expand would make
them have the same form.

Out[10]= 2x+x% ==x (2+x)

Expressions like x == 4 represent equations in Mathematica. There are many functions in Mathematica

for manipulating and solving equations.

This is an equation in Mathematica. In[11]:=x*2 + 2 x - 7 ==

Subsection 1.5.7 will discuss how to

; Out[11]= -T+2x+x?
solve it for x.

You can assign a name to the equation. In[12]:= eqn = %
Out[12]= -7 +2x+x?

If you ask for eqn, you now get the In[13]:= eqn

equation. Out[13]= -7 +2x+x?

86 1. A Practical Introduction to Mathematica « 1.5 Symbolic Mathematics

-l 1.5.6 Relational and Logical Operators

x ==y equal (also input as x == y)

x '=y unequal (also input as x # y)
x >y greater than

x >=y greater than or equal to (also input as x 2 y)
x <y less than

x <=y less than or equal to (also input as x < y)

x==y==z all equal

x !=y !'=z all unequal (distinct)

x>y >z etc. strictly decreasing, etc.
Relational operators.
This tests whether 10 is less than 7. In[1]:=10< 7
The result is False. Out[1]= False
Not all of these numbers are unequal, In[2]:=31=21=3
so this gives False. Out[2]= False
You can mix < and <= In[3]:=3<5<=6

Out[3]= True

Since both of the quantities involved In[4]:= PirE < E~Pi
are nur.ne.ric, Mathematica can determine Out[4]= True

that this is true.

Mathematica does not know whether In[5]:=x >y

this is true or false. Out[5]= x>y

1.5.7 Solving Equations

87

'p
p&& q && ...
pllgll..

Xorlp, q, ...]

+ Nand[p, ¢, ... 1 and Nor[p, g, ...]

not (also input as -p)

and (also input asp Ag A ...)

or (also inputasp VgqV...)
exclusive or (also input asp ¥ gV ...)

nand and nor (also input as A and V)

Iflp, then, else]

give then if p is True, and else if p is False

LogicalExpand[expr] expand out logical expressions
Logical operations.
Both tests give True, so the result is In[6]:=7 >4 && 2 !=3
True. Out[6]= True

You should remember that the logical operations ==, && and | | are all double characters in Mathematica.
If you have used a programming language such as C, you will be familiar with this notation.

Mathematica does not know whether In[7]:=p && q

this is true or false. Out[7]= pa&q

Mathematica leaves this expression In[8]:=(p Il q) && '(xr || s)
unchanged. out[8]= (pllq) &k! (rlls)

You can use LogicalExpand to expand In[9]:= LogicalExpand[%]

out the terms.

-l 1.5.7 Solving Equations

Out[9]= p&&'r&&'s|lq&&'!'T&&!s

An expression like x*2 + 2 x - 7 == 0 represents an equation in Mathematica. You will often need to
solve equations like this, to find out for what values of x they are true.

This gives the two solutions to the In[1]:= Solve[x~2 + 2x - 7 == 0, x]
i ; 2 _7 =
quadratic equation x* +2x -7 =0. The outl1]= {{x>-1-2+Z}, {x>-1+2vZ}}

solutions are given as replacements
for x.

Here are the numerical values of the In[2]:=N[% 1]
solutions. Out[2]= {{x - -3.82843}, {x > 1.82843}}

88 1. A Practical Introduction to Mathematica « 1.5 Symbolic Mathematics

You can get a list of the actual
solutions for x by applying the rules
generated by Solve to x using the
replacement operator.

You can equally well apply the rules to
any other expression involving x.

In[3]:=x/. %
Out[3]= {-3.82843, 1.82843}

In[4]:=x~2 + 3 x /. %%
Out[4]= {3.17157, 8.82843}

Solvellhs == rhs, x]
x /. solution

expr /. solution

solve an equation, giving a list of rules for x
use the list of rules to get values for x

use the list of rules to get values for an expression

Finding and using solutions to equations.

Solve always tries to give you explicit formulas for the solutions to equations. However, it is a basic
mathematical result that, for sufficiently complicated equations, explicit algebraic formulas cannot be
given. If you have an algebraic equation in one variable, and the highest power of the variable is at
most four, then Mathematica can always give you formulas for the solutions. However, if the highest
power is five or more, it may be mathematically impossible to give explicit algebraic formulas for all

the solutions.

Mathematica can always solve algebraic
equations in one variable when the
highest power is less than five.

It can solve some equations that
involve higher powers.

There are some equations, however, for
which it is mathematically impossible
to find explicit formulas for the
solutions. Mathematica uses Root
objects to represent the solutions in this
case.

Even though you cannot get explicit
formulas, you can still find the
solutions numerically.

In[5]:= Solve[x~4 - 5 x~2 - 3 == 0, x]

[roy 2+ L) o 20 0,

1

{x—>—1‘1 5(—5+\/ﬁ) } {x—)i %(—5+\/ﬁ) H

Out[5]

In[6]:= Solve[x~6 == 1, x]

out[6]= {{x->-1}, {x>1}, {x>-(-D"?},
{X—>(—1)1/3}, {x_)_<_1)2/3}, {x_>(_1)2/3}}

In[7]:= Solve[2 - 4 x + x~5 == 0, x]

Out[7]= {{x>Root[2-4a#1+#1° &, 1]}
{x > Root[2-4#1+#1° &, 2]},
{x > Root[2-4#1+#1° &, 3]},
x> Root[2-4#1+#1° &, 4]},
{ [
{x > Root[2-4#1+#1° &, 5]}}

3

In[8]:=N[% 1

Out[8]= {{x—>-1.51851}, {x > 0.508499},
{x—>1.2436}, {x > -0.116792-1.438451},
{x—>-0.116792+1.438451i}}

1.5.7 Solving Equations 89

In addition to being able to solve purely algebraic equations, Mathematica can also solve some
equations involving other functions.

After printing a warning, Mathematica In[9]:= Solve[Sin[x] == a, x]

returns one solution to this equation. Solve: :ifun:

Inverse functions are being used by Solve, so some
solutions may not be found; use Reduce for complete
solution information.

Out[9]= {{x - ArcSin[all}}

It is important to realize that an equation such as sin(x) = a actually has an infinite number of
possible solutions, in this case differing by multiples of 27. However, Solve by default returns just
one solution, but prints a message telling you that other solutions may exist. You can use Reduce to
get more information.

There is no explicit “closed form” In[10]:= Solve[Cos[x] ==x, x]
s.olutlo.n for a transcendental equation Solve: :tdep:
like this. The equations appear to involve the variables to be

solved for in an essentially non-algebraic way.

Out[10]= Solve[Cos[x] ==x, x]

You can find an approximate numerical In[11]:= FindRoot[Cos[x] == x, {x, 0}]
solut.lon using FindRoot, and giving a Out[11]= {x—0.739085}
starting value for x.

Solve can also handle equations involving symbolic functions. In such cases, it again prints a
warning, then gives results in terms of formal inverse functions.

Mathematica returns a result in terms of In[12]:= Solve[f[x~2] == a, x]

the formal inverse function of f. InverseFunction: :ifun:

Inverse functions are being used. Values may be lost
for multivalued inverses.

Out[12]= {{x - -4/ £CD [a] }, {x =4/ £V [a] }}

Solvel{lhs\==rhs;, lhsy==rhs,, ... }, {x, y, ... }]
solve a set of simultaneous equations for x, y, ...

Solving sets of simultaneous equations.

You can also use Mathematica to solve sets of simultaneous equations. You simply give the list of
equations, and specify the list of variables to solve for.

Here is a list of two simultaneous In[13]:= Solve[{a x + y == 0, 2 x + (1-a) y == 1}, {x, y}]
equations, to be solved for the
variables x and y. Out[13]= {{x - ! v - a }}

-2+a-a?’ 2-a+a?

20 1. A Practical Introduction to Mathematica « 1.5 Symbolic Mathematics

Here are some more complicated In[14]:= Solve[{x~2 + y*2 == 1, x + 3 y == 0}, {x, y}]
simultaneous equations. The two

solutions are given as two lists of Out[14]= {{X - _L, y- ;}’ {X > L’ y- _;}}
replacements for x and y. V10 V10 V10 V10
This uses the solutions to evaluate the In[15]:=x+y /. %

expression x + y.
’ 2 ’ 2
Out[15]= {— '5- B '5—]’

Mathematica can solve any set of simultaneous linear equations. It can also solve a large class of
simultaneous polynomial equations. Even when it does not manage to solve the equations explicitly,
Mathematica will still usually reduce them to a much simpler form.

When you are working with sets of equations in several variables, it is often convenient to reorganize
the equations by eliminating some variables between them.

This eliminates y between the two In[16]:= Eliminate[{a x + y == 0, 2 x + (1-a) y == 1}, y]
equations, giving a single equation

Out[16]= (2-a+a?)x ==
for x.

If you have several equations, there is no guarantee that there exists any consistent solution for a
particular variable.

There is no consistent solution to these In[17]:= Solve[{x==1, x==2}, x]
equations, so Mathematica returns {}, out[17]= {}

indicating that the set of solutions is

empty.

There is also no consistent solution to In[18]:= Solve[{x==1, x==a}, x]
tl}ese equations for almost all values outl18]= {}

of a.

The general question of whether a set of equations has any consistent solution is quite a subtle
one. For example, for most values of a, the equations {x==1, x==a} are inconsistent, so there is no
possible solution for x. However, if a is equal to 1, then the equations do have a solution. Solve is set
up to give you generic solutions to equations. It discards any solutions that exist only when special
constraints between parameters are satisfied.

If you use Reduce instead of Solve, Mathematica will however keep all the possible solutions to a
set of equations, including those that require special conditions on parameters.

This shows that the equations have a In[19]:= Reduce[{x==a, x==1}, x]
solution only when a==1. The notation Out[19]= a==18&&x ==

a==1 && x==1 represents the

requirement that both a==1 and x==

should be True.

1.5.7 Solving Equations 91

This gives the complete set of possible In[20]:= Reduce[a x - b == 0, x]

solutions to the equation. The answer b

is stated in terms of a combination of Out[20]= b==0&&a==0||la+08&&x== —
a

simpler equations. && indicates
equations that must simultaneously be
true; || indicates alternatives.

This gives a more complicated In[21]:= Reducela x#2 - b == 0, x]
combination of equations.

Vb Vb

Out[21]= b==0&&a=0|la#0&& |x=-—= || x= —
Va Va
This gives a symbolic representation of In[22]:= Reduce[Sin[x] == a, x]

all solutions. Out[22]= C[1] € Integers && (x == n - ArcSin[al +2xC[1] ||
x == ArcSin[a] +2xC[1])

Solvellhs==rhs, x] solve an equation for x

Solvel[{lhs==rhs;, lhsy==rhsy, ... }, {x, y, ... }]
solve a set of simultaneous equations for x, y, ...

Eliminate[{lhs;==rhs;, lhs,==rhs,, ... }, {x, ... }]
eliminate x, ... in a set of simultaneous equations

Reducel[{lhs|==rhs;, lhs,==rhs;, ... }, {x, y, ... }]
give a set of simplified equations, including all possible
solutions

Functions for solving and manipulating equations.

Reduce also has powerful capabilities for handling equations specifically over real numbers or
integers. Section 3.4.9 discusses this in more detail.

This reduces the equation assuming x In[23]:= Reduce[x~2 + y~2 == 1, y]

and y are complex. Out[23]= 3o VI3 |1y = VI3

This includes the conditions for x and In[24]:= Reduce[x~2 + y~2 == 1, y, Reals]

y to be real. Out[24]= -1sxsta(y=-Vi-x2 [ly=+1-%2)
This gives only the integer solutions. In[25]:= Reduce[x~2 + y~2 == 1, y, Integers]

Out[25]= x==-1&&y==0||x==0&&y==-11|
x==0&&y==1]]x==18&%y-==

92 1. A Practical Introduction to Mathematica « 1.5 Symbolic Mathematics

‘1 1.5.8 Inequalities

Reducelinegs, {x, y, ... }1 reduce a collection of inequalities

+ FindInstancelinegs, {x, y, ... Y1 find an instance that satisfies the inegs

Handling inequalities.

This finds a reduced form for the In[1]:= Reduce[x + y <1 & y > x > 0, {x, y}]
inequalities. 1
Out[1]= 0<x< —2—&&X<y<1—x

These inequalities can never be In[2]:= Reduce[x + y <1 & y > x > 1, {x, y}]
satisfied. Out[2]= False
It is easy to end up with rather In[3]:= Reducelx + y < 1 & y~2 > x > 0, {x, y}]

complicated results. 1
Out[3]= 0<x< (3-v5)&k (y<-x l1Vx <y<1-%) Il
1

—(3—\/—5—)5x<%(3+\/§)&&y<—\/;||

2
1
x25(3+\/€)&&y<1—x

Equations can often be solved to give definite values of variables. But inequalities typically just define
regions that can only be specified by other inequalities. You can use FindInstance to find definite
values of variables that satisfy a particular set of inequalities.

This finds a point in the region In[4]:= FindInstance[x + y < 1 && y~2 > x > 0, {x, y}]

specified by the inequalities.

Out[4]= {{x - z y- —3}}
5

+ Minimize[{expr, ineq}, {x, y, ... }1 minimize expr while satisfying inegs

+ Maximize[{expr, ineq}, {x, vy, ... }]1 maximize expr while satisfying inegs

Constrained minimization and maximization.

This gives the maximum, together with In[5]:= Maximize[{x~2 + y, x~2 + y~2 <= 1}, {x, y}]

where it occurs.
Out[5]= {—2—, {x—)——\/—f——, y- é—}}

1.5.9 Differential Equations 93

-l 1.5.9 Differential Equations

DSolveleqns, y[x], x] solve a differential equation for y[x], taking x as the
independent variable

DSolvelegns, y, x]1 give a solution for y in pure function form

Solving an ordinary differential equation.

Here is the solution to the differential In[1]:= DSolvel y’'[x] == a y[x] + 1, y[x], x]

equation y'(x) =ay(x)+ 1. C[1]is a 1

coefficient which must be determined Out[1]= {{y [x] »-—+e** C[1] }}

from boundary conditions. a

If you include an appropriate initial In[2]:= DSolvel {y'[x] == a y[x] + 1, y[0] == 0}, y[x], x]
condition, there are no undetermined 1 4eax

coefficients in the solution. Out[2]= {{y [x] » T}}

Whereas algebraic equations such as x* + x = 1 are equations for variables, differential equations such
as y’(x) + ¥’ (x) = y(x) are equations for functions. In Mathematica, you must always give differential
equations explicitly in terms of functions such as y[x], and you must specify the variables such as x
on which the functions depend. As a result, you must write an equation such as y”(x) + y'(x) = y(x)
in the form y’'[x] + y'[x] == y[x]. You cannot write itas y'’ +y' ==

Mathematica can solve both linear and nonlinear ordinary differential equations, as well as lists of
simultaneous equations. If you do not specify enough initial or boundary conditions, Mathematica will
give solutions that involve an appropriate number of undetermined coefficients. Each time you use
DSolve, it names the undetermined coefficients C[1], C[2], etc.

Here is a pair of simultaneous In[3]:= DSolvel {x'[t] == y[t], y'[t] == x[t]},

differential equations, with no initial or {x[t], y[tl}, ¢t]
boundary conditions. The solution you

get involves two undetermined Out[3]= {{x[t] - 1 et (1+e2t) 1] + 1 et (-1+e2t)cl2],
coefficients. 2 2

y[t] = %e_t (-1+e2%) C[1] +%e_t (1+e2t)cm}}

When you ask DSolve to get you a solution for y[x], the rules it returns specify how to replace
y[x] in any expression. However, these rules do not specify how to replace objects such as y’'[x]. If
you want to manipulate solutions that you get from DSolve, you will often find it better to ask for
solutions for y, rather than for y[x].

This gives the solution for y as a “pure In[4]:= DSolvel y'[x] ==x + y[x], y, x]

function”. Out[4]= {{y > Function[{x}, -1-x+e* C[1]1}}
You can now use the replacement In[5]:=y''[x] + y[x] /. %
operator to apply this solution to out[5]= {-1-x+2e*Cl[1]}

expressions involving y.

94 1. A Practical Introduction to Mathematica « 1.5 Symbolic Mathematics

Section 2.2.5 explains how the “pure function” indicated by & that appears in the result from DSolve
works.

Note that DSolve can handle combinations of algebraic and differential equations. It can also handle
partial differential equations, in which there is more than one independent variable.

M 1.5.10 Power Series

The mathematical operations we have discussed so far are exact. Given precise input, their results are
exact formulas.

In many situations, however, you do not need an exact result. It may be quite sufficient, for
example, to find an approximate formula that is valid, say, when the quantity x is small.

This gives a power series In[1]:= Series[(1 + x)~n, {x, 0, 3}]
approximation to (1 + x)" for x close to 1 1
0, up to terms of order x>. Out[1]= 1+nx+ o (-1+n) nx? + 5 (-2+n) (-1+n) nx®+0[x]*
Mathematica knows the power series In[2]:= Series[Exp[-a t] (1 + Sin[2 t]), {t, 0, 4}]
expansions for many mathematical 9
functions. Out[2]= 1+ (2-a)t+ (-2a + %—) t2 +
4 ad 4a ad a*
——+a? - — |t — - —+ — |t + 5
(3 a 6)t (3 3 24)t olt]
If you give it a function that it does In[3]:= Series[1 + £[t], {t, 0, 3}]
not know, Series writes out the power 1 1
series in terms of derivatives. Out[3]= 1+£[0] +£' [0] t+ 5 £/ [0] t2 + 5 £® [0] t® +0[t]*

Power series are approximate formulas that play much the same role with respect to algebraic
expressions as approximate numbers play with respect to numerical expressions. Mathematica allows
you to perform operations on power series, in all cases maintaining the appropriate order or “degree
of precision” for the resulting power series.

Here is a simple power series, accurate In[4]:= Series[Exp[x], {x, 0, 5}]

to order x°. 2 53 gt 5
Out[4]= 1+x+ —+ —+ —+
utl4] 7% T 2a T 120

+0[x1°

When you do operations on a power In[5]:= %~2 (1 + %)
series, the result is computed only to 9 3 . s
the appropriate order in x. Out[5]= 2+5x+ 13x + 35x + 97x + 55x +0[x]°

6 24 24

This turns the power series back into In[6]:= Normall[%]
an ordinary expression.
y exp 13 x2 +35x3 +97x4 +55x5

= 245x+
Out[6]= 2+5x 5 52 o

1.5.11 Limits

95

Now the square is computed exactly.

Applying Expand gives a result with
eleven terms.

In[7]:= §»2

3x> 35x% 97x* 55%°
+ + +

1
Out[7]= |2+5x+

6 24 24
In[8]:= Expand[%]
Dut[8]= 4+20x+51x? + 2005, A67xT 1806x°
o o 3 4 12
7883x° 1385x7 24809x° 5335’ 3025x"
72 18 576 288 576

Series[expr, {x, xo, n}]

Normal [series]

find the power series expansion of expr about the point
X = xo to at most n™ order

truncate a power series to give an ordinary expression

Power series operations.

M 1.5.11 Limits

Here is the expression sin(x)/x.

If you replace x by 0, the expression
becomes 0/0, and you get an
indeterminate result.

If you find the numerical value of
sin(x)/x for x close to 0, however, you
get a result that is close to 1.

This finds the limit of sin(x)/x as x
approaches 0. The result is indeed 1.

In[1]:=t = Sin[x]/x

Out[1]= ﬂ
X
In[2]:=t /. x>0

1
Power::infy: Infinite expression - encountered.
0

Infinity::indet:
Indeterminate expression O ComplexInfinity encountered.

Out[2]= Indeterminate
In[3]:=t /. x->0.01

Out[3]= 0.999983

In[4]:= Limit[t, x->0]
Out[4]= 1

Limitlexpr, x->x¢1

the limit of expr as x approaches x

Limits.

96 1. A Practical Introduction to Mathematica « 1.5 Symbolic Mathematics

M 1.5.12 Integral Transforms

LaplaceTransform[expr, t, s] find the Laplace transform of expr

InverseLaplaceTransform[expr, s, t]
find the inverse Laplace transform of expr

Laplace transforms.

This computes a Laplace transform. In[1]:= LaplaceTransform[t~3 Exp[a t], t, s]
6
Out[1]= 7
(a-s)
Here is the inverse transform. In[2]:= InverselaplaceTransform[%, s, t]

Out[2]= e** t3

FourierTransform[expr, t, w]l find the symbolic Fourier transform of expr

InverseFourierTransform[expr, w, t]
find the inverse Fourier transform of expr

Fourier transforms.

This computes a Fourier transform. In[3]:= FourierTransform[t~4 Exp[-t~2], t, w]
w2 u2 u2
%(E_T - %e’T w2+ f—ee_T wt
Out[3]=
V2
Here is the inverse transform. In[4]:= InverseFourierTransform[%, w, t]

Out[4]= ¥ t*

Note that in the scientific and technical literature many different conventions are used for defining
Fourier transforms. Page 936 describes the setup in Mathematica.

Il 1.5.13 Recurrence Equations

+ RSolvelegns, alnl, n] solve the recurrence equations eqns for aln]

Solving recurrence equations.

This solves a simple recurrence In[1]:= RSolve[{aln] == 3 a[n-1]+1, a[1]==1}, a[n], n]
equation.

outf1]= {{alm] > % -1+3}}

1.5.14 Packages for Symbolic Mathematics

97

-l 1.5.14 Packages for Symbolic Mathematics

There are many Mathematica packages which implement symbolic mathematical operations. This sec-
tion gives a few examples drawn from the standard set of packages distributed with Mathematica. As
discussed in Section 1.3.10, some copies of Mathematica may be set up so that the functions described
here are automatically loaded into Mathematica if they are ever needed.

Vector Analysis

<<Calculus‘VectorAnalysis"*

load the vector analysis package

SetCoordinates[system[names]]

Gradl[f]

Div[f]
Curl[f]
Laplacian[f]

specify the coordinate system to be used (Cartesian,
Cylindrical, Spherical, etc.), giving the names of the
coordinates in that system

evaluate the gradient Vf of f in the coordinate system
chosen

evaluate the divergence V - f of the list f
evaluate the curl V x f of the list f

evaluate the Laplacian Vf of f

Vector analysis.

This loads the vector analysis package.
In some versions of Mathematica, you
may not need to load the package
explicitly.

This specifies that a spherical
coordinate system with coordinate
names r, theta and phi should be
used.

This evaluates the gradient of 12 sin(6)
in the spherical coordinate system.

In[1]:= <<Calculus‘VectorAnalysis"

In[2]:= SetCoordinates[Spherical[r, theta, phil]l
Out[2]= Sphericallr, theta, phil

In[3]:= Grad[r~2 Sin[thetal]]
Out[3]= {2rSin[thetal, r Cos[theta], 0}

98 1. A Practical Introduction to Mathematica « 1.5 Symbolic Mathematics

+Variational Methods

<<Calculus‘VariationalMethods‘ load the variational methods package

VariationalD[f, y[x], x] find the variational derivative of f

Variational methods.

This loads the variational methods In[1]:= <<Calculus‘VariationalMethods"*
package.
This finds the functional derivative of In[2]:= VariationalD[y[x] Sqrtly’[x1], y[x], x]

YOy’ (). 2y [x12 +y0x] v [x]

4y [x] 3/2

Out[2]=

+ Quaternions

<<Algebra‘Quaternions‘ load the quaternions package

Quaternion[a, b, ¢, d]1 the quaternion a + bi + ¢j + dk

Quaternions.

This loads the quaternions package. In[1]:= <<Algebra‘Quaternions*
This finds the principal square root of In[2]:= Sqrt[Quaternion[1, 1, 1, 0]]
a quaternion.
! Out[2]= Quaternion[l%l/4 Cos [EC—TEQ[—\/Z:L] s
31/4 Sin[ArcTar21 V2] 31/4 Sin[ArcTag V2]
7z ’ vz -]

H 1.5.15 Advanced Topic: Generic and Non-Generic Cases

This gives a result for the integral of x" In[1]:= Integrate[x~n, x]
that is valid for almost all values of n. n
Out[1]= ——
1+n
For the special case of x~!, however, In[2]:= Integrate[x~-1, x]

the correct result is different. Out[2]= Loglx]

1.5.15 Advanced Topic: Generic and Non-Generic Cases 99

The overall goal of symbolic computation is typically to get formulas that are valid for many possible
values of the variables that appear in them. It is however often not practical to try to get formulas
that are valid for absolutely every possible value of each variable.

Mathematica always replaces 0/x by 0. In[3]:=0/ x
Out[3]= 0
If x is equal to 0, however, then the In[4]:=0/ 0
true result is not 0. 1

Power::infy: Infinite expression - encountered.
0

Infinity::indet:
Indeterminate expression O ComplexInfinity encountered.

Out[4]= Indeterminate

This construct treats both cases, but In[5]:= 1f[x '= 0, 0, Indeterminate]
would be quite unwieldy to use. Out[5]= If[x #0, 0, Indeterminate]

If Mathematica did not automatically replace 0/x by 0, then few symbolic computations would get
very far. But you should realize that the practical necessity of making such replacements can cause
misleading results to be obtained when exceptional values of parameters are used.

The basic operations of Mathematica are nevertheless carefully set up so that whenever possible the
results obtained will be valid for almost all values of each variable.

Va2 is not automatically replaced by x. In[6]:= Sqrt[x~2]
Out[6]= /%2
If it were, then the result here would In[7]:=%/. x -> -2
be -2, which is incorrect. out[7]= 2
This makes the assumption that x is a In[8]:= Simplify[Sqrt[x~2], x > 0]
positive real variable, and does the out[8]= x

replacement.

100

1. A Practical Introduction to Mathematica « 1.5 Symbolic Mathematics

H 1.5.16 Mathematical Notation in Notebooks

If you use the notebook front end for Mathematica, then you can enter some of the operations discussed

in this section in special ways.

imax

> f Sumlf, {i, imin, imax}]

i=imin

imax

I1r Productlf, {i, imin, imax}]

ffdlx Integratelf, x]

fdx Integratelf, {x, xmin, xmax}]

3 f DLf, x]
S,y f DLf, x, y]

sum

product

indefinite integral

definite integral

partial derivative

multivariate partial derivative

Special and ordinary ways to enter mathematical operations in notebooks.

This shows part of the standard palette
for entering mathematical operations.
When you press a button in the
palette, the form shown in the button
is inserted into your notebook, with
the black square replaced by whatever
you had selected in the notebook.

mdo

mdo

CFaR
8 £ llor

—
oo

oo

~

opm
Og,ol

=0

o]

1.5.16 Mathematical Notation in Notebooks 101

[Bt/sumfest) summation sign
[stlprodest] product sign []
[sclintfs] integral sign f
[stlddesc) special differential d for use in integrals
[stlpdesc] partial derivative 0
crH_| o -] move to the subscript position or lower limit of an integral
arf~| or 6} move to the superscript position or upper limit of an integral
arf+| o =] move to the underscript position or lower limit of a sum or product
crf&| or 7} move to the overscript position or upper limit of a sum or product

o] or Ewis]
.| (CONTROL-SPACE)

switch between upper and lower positions

return from upper or lower positions

Ways to enter special notations on a standard English-language keyboard.

You can enter an integral like this. Be In[1]:= f x" dx
sure to use the special differential d
entered as [e/dd[Est], not just an L+
ordinary d. Outlil= T+
Here is the actual key sequence you In[2]:= [sdint[Edx iy~ |nfomy, | [EddEcx
type to get the input. 1n
Out[2]=

1+

102 1. A Practical Introduction to Mathematica « 1.6 Numerical Mathematics

1.6 Numerical Mathematics

H 1.6.1 Basic Operations

Exact symbolic results are usually very desirable when they can be found. In many calculations,
however, it is not possible to get symbolic results. In such cases, you must resort to numerical
methods.

N[expr] numerical value of an expression (see Section 1.1)

NIntegratelf, {x, xmin, xmax}] numerical approximation to L J’cﬂn::x fdx
NSum[f, {i, imin, Infinity}] numerical approximation to Y5, f

FindRoot[lhs==rhs, {x, xp}] search for a numerical solution to an equation, starting
with x = xg

NSolve[lhs==rhs, x] numerical approximations to all solutions of an equation
FindMinimum[f, {x, xo}] search for a minimum of f, starting with x = x

+ NMinimize[f, x] attempt to find the global minimum of f

Basic numerical operations.

Mathematica maintains this expression In[1]:= (3 + Sqrt[2])~3
in an exact, symbolic, form. 3
out[1]= (3++4/2)

You can even use standard symbolic In[2]:= Expand[% 1
operations on it.

Out[2]= 45+29+/2
N[expr] gives you a numerical In[3]:=N[%]
approximation. Out[3]= 86.0122

Functions such as Integrate always try to get exact results for computations. When they cannot
get exact results, they typically return unevaluated. You can then find numerical approximations by
explicitly applying N. Functions such as NIntegrate do the calculations numerically from the start,
without first trying to get an exact result.

1.6.2 Numerical Sums, Products and Integrals 103

There is no exact formula for this In[4]:= Integrate[Sin[Sin[x]], {x, 1, 2}]
integral, so Mathematica returns it 5
unevaluated. Out[4]= f Sin[Sin[x]1]dx
1
You can use N to get an approximate In[5]:=N[% 1
numerical result. Out[5]= 0.81645
NIntegrate does the integral In[6]:= NIntegrate[Sin[Sin[x]], {x, 1, 2}]
numerically from the start. Out[6]= 0.81645

M 1.6.2 Numerical Sums, Products and Integrals

NSum[f, {i, imin, Infinity}] numerical approximation to Y5 ., f

NProduct[f, {i, imin, Infinity}] numerical approximation to [],;, f
NIntegratelf, {x, xmin, xmax}] numerical approximation to fx j:::x fdx

NIntegratelf, {x, xmin, xmax}, {y, ymin, ymax}] the multiple integral [fn"::x dx [dy f

ymin
Numerical sums, products and integrals.
Here is a numerical approximation to In[1]:= NSum[1/i~3, {i, 1, Infinity}]
1

DI 2 Out[1]= 1.20206
NIntegrate can handle singularities at In[2]:= NIntegrate[1/Sqrt[x (1-x)], {x, 0, 1}]
the end points of the integration T

. Out[2]= 3.14159-1.65678x10 1
region.
You can do numerical integrals over In[3]:= NIntegrate[Exp[-x~2], {x, -Infinity, Infinity}]
infinite regions. Out[3]= 1.77245
Here is a double integral over a In[4]:= NIntegrate[Sin[x y], {x, 0, 1}, {y, 0, x}]
triangular domain. Note the order in Out[4]= 0.119906

which the variables are given.

104 1. A Practical Introduction to Mathematica « 1.6 Numerical Mathematics

-l 1.6.3 Numerical Equation Solving

NSolvel[lhs==rhs, x]

NSolvel[{lhs\==rhs;, lhsy==rhsy, ... }, {x, y, ... }]

FindRoot[lhs==rhs, {x, xo}]

~ FindRoot[{lhs ==rhs,, lhs,==rhs,,

solve a polynomial equation numerically

solve a system of polynomial equations numerically

search for a numerical solution to an equation, starting at
X = Xo

3 e, ok, {ys ks - H]

search for numerical solutions to simultaneous equations

Numerical root finding.

NSolve gives you numerical
approximations to all the roots of a
polynomial equation.

You can also use NSolve to solve sets
of simultaneous equations numerically.

In[1]:= NSolve[x5 + x + 1 == 0, x]

Out[1]= {{x—>-0.754878}, {x > -0.5-0.8660251},
{x—>-0.5+0.8660251}, {x > 0.877439-0.7448621},
{x—>0.877439+0.7448621i}}

In[2]:= NSolve[{x + y==2, x -3 y+z==3, x-y+z==0},
{x, y, 2z}1

Out[2]= {{x—>3.5,y>-1.5,z>-5.}}

If your equations involve only linear functions or polynomials, then you can use NSolve to get nu-
merical approximations to all the solutions. However, when your equations involve more complicated
functions, there is in general no systematic procedure for finding all solutions, even numerically. In
such cases, you can use FindRoot to search for solutions. You have to give FindRoot a place to start

its search.

This searches for a numerical solution,
starting at x = 1.

The equation has several solutions. If
you start at a different x, FindRoot
may return a different solution.

You can search for solutions to sets of
equations. Here the solution involves
complex numbers.

In[3]:= FindRoot[3 Cos[x] == Logl[x], {x, 1}]
Out[3]= {x—>1.44726}

In[4]:= FindRoot[3 Cos[x] == Logl[x], {x, 10}]
Out[4]= {x— 13.1064}

In[5]:= FindRoot[{x==Log[y], y==Log[x1}, {{x, I}, {y, 2}}]
Out[5]= {x—>0.318132+1.337241, y—>0.318132+1.337241}

1.6.4 Numerical Differential Equations 105

-l 1.6.4 Numerical Differential Equations

NDSolvelegns, y, {x, xmin, xmax}]
solve numerically for the function y, with the independent
variable x in the range xmin to xmax

NDSolvelegns, {y,, v,, ... }, {x, xmin, xmax}]
solve a system of equations for the v,

Numerical solution of differential equations.

This generates a numerical solution to In[1]:= NDSolve[{y’'[x] == y[x], y[0] == 1}, y, {x, 0, 2}]
the equation y’(x) = y(x) with 0 <x <2.
The result is given in terms of an
InterpolatingFunction.

Out[1]= {{y - InterpolatingFunction[{{0., 2.}}, <>]1}}

Here is the value of y(1.5). In[2]:=y[1.5) /. %
Out[2]= {4.48169}

With an algebraic equation such as x* + 3x + 1 = 0, each solution for x is simply a single number. For
a differential equation, however, the solution is a function, rather than a single number. For example,
in the equation 1’(x) = y(x), you want to get an approximation to the function y(x) as the independent
variable x varies over some range.

Mathematica represents numerical approximations to functions as InterpolatingFunction objects.
These objects are functions which, when applied to a particular x, return the approximate value of
y(x) at that point. The InterpolatingFunction effectively stores a table of values for y(x;), then
interpolates this table to find an approximation to y(x) at the particular x you request.

y[x] /. solution use the list of rules for the function y to get values for y[x]

InterpolatingFunction[data][x]
evaluate an interpolated function at the point x

Plot[Evaluate[y[x] /. solution], {x, xmin, xmax}]
plot the solution to a differential equation

Using results from NDSolve.

This solves a system of two coupled In[3]:= NDSolve[{y'[x] == z[x], z'[x] == -y[x], y[0] == 0,
differential equations. z[0] == 1}, {y, z}, {x, 0, Pi}]

Out[3]= {{y - InterpolatingFunction[{{0., 3.14159}}, <>],
z - InterpolatingFunction[{{0., 3.14159}}, <>]1}}

Here is the value of z[2] found from In[4]:=z[2]1 /. %
the solution. Out[4]= {-0.416147}

106 1. A Practical Introduction to Mathematica « 1.6 Numerical Mathematics

Here is a plot of the solution for z[x]
found on line 3. Plot is discussed in
Section 1.9.1.

In[5]:= Plot[Evaluate[z[x] /. %3], {x, 0, Pi}]

NDSolvelegn, u, {x, xmin, xmax}, {t, tmin, tmax}, ...]

solve a partial differential equation

Numerical solution of partial differential equations.

-l 1.6.5 Numerical Optimization

+

+

NMinimize[f, {x, y, ...
NMaximize[f, {x, y, ...
+ NMinimize[{f, inegs}, {x, y, ...
+ NMaximize[{f, inegs}, {x, v, ...

]
]
]
3]

minimize f
maximize f
minimize f subject to the constraints inegs

maximize f subject to the constraints ineqs

Finding global minima and maxima.

This gives the maximum value, and
where it occurs.

This minimizes the function within the
unit circle.

In[1]:= NMaximize[x/(1 + Exp[x]), x]
Out[1]= {0.278465, {x > 1.27846}}

In[2]:= NMinimize[{Cos[x] - Explx y], x~2 + y~2 < 1}, {x, y}]
Out[2]= {-0.919441, {x - 0.795976, y - 0.605328}}

NMinimize and NMaximize can find the absolute minima and maxima of many functions. But in some
cases it is not realistic to do this. You can search for local minima and maxima using FindMinimum

and FindMaximum.

1.6.6 Manipulating Numerical Data 107

FindMinimum[f, {x, x0}] search for a local minimum of f, starting at x = xq

FindMinimum[f, {{x, xo}, {y, vy}, ... }]

search for a local minimum in several variables

+ FindMaximum[f, {x, xo}] search for a local maximum

Searching for local minima and maxima.

This searches for a local minimum of In[3]:= FindMinimum[x Cos[x], {x, 2}]

X cos(x), starting at x = 2. Out[3]= {-3.28837, {x— 3.42562}}

With a different starting point, you In[4]:= FindMinimum[x Cos[x], {x, 10}]

may reach a different local minimum. Out[4]= {-9.47729, {x - 9.52933}}

This finds a local minimum of sin(xy). In[5]:= FindMinimum[Sin[x y], {{x, 2}, {y, 2}}]

Out[5]= {-1., {x—>2.1708, y—>2.1708}}

-l 1.6.6 Manipulating Numerical Data

When you have numerical data, it is often convenient to find a simple formula that approximates it.
For example, you can try to “fit” a line or curve through the points in your data.

Fitl{y,, ¥o» o }» i fos oo 3y]

fit the values y, to a linear combination of functions f;

Fit[{{x1, v,}, T, 1}, . b p» for oo 3, 2]

fit the points (x,,¥,) to a linear combination of the f;

Fitting curves to linear combinations of functions.

This generates a table of the numerical In[1]:= data = Table[Exp[x/5.]1 , {x, 7}]
values oflichl)e ex'ponentlaI. function. Out[1]= {1.2214, 1.49182, 1.82212,
Table will be discussed in 2.22554, 2.71828, 3.32012, 4.0552}

Section 1.8.2.

This finds a least-squares fit to data of In[2]:= Fit[data, {1, x, x~2}, x]

2
the form ¢y +cox +c3x”. The elements Out[2]= 1.09428 +0.0986337 x + 0.0459482 x2
of data are assumed to correspond to

values 1, 2, ... of x.

This finds a fit of the form In[3]:= Fit[data, {1, x, x~3, x~5}, x]

3 5
C1 +Cr)X +C3X +CaX. _
e Tes 4 Out[3]= 0.96806 +0.246829 x + 0.00428281 x® - 6.57948 x 107° x°

108 1. A Practical Introduction to Mathematica « 1.6 Numerical Mathematics

This gives a table of x, y pairs. In[4]:= data = Table[{x, Exp[Sin[x]]} , {x, 0., 1., 0.2}]

Out[4]= {{0., 1.}, {0.2, 1.21978}, {0.4, 1.47612},
{0.6, 1.75882}, {0.8, 2.04901}, {1., 2.31978}}

This finds a fit to the new data, of the In[5]:= Fit[%, {1, Sin[x], Sin[2x]}, x]
form ¢ + ¢; sin(x) + c3 sin(2x). Out[5]= 0.989559+2.04199Sin[x] - 0.418176 Sin[2x]

+ FindFitldata, form, {p,, p,, ... }, x1 find a fit to form with parameters p;,

Fitting data to general forms.

This finds the best parameters for a In[6]:= FindFit[data, a + b x + ¢ x~2, {a, b, c}, x]
linear fit. Out[6]= {a—0.991251, b-1.16421, c - 0.174256}
This does a nonlinear fit. In[7]:= FindFit[data, a + b~(c + d x), {a, b, c, d}, x]

Out[7]= {a—>-3.65199, b—>1.65713,
c—3.03947, d > 0.501815}

2

One common way of picking out “signals” in numerical data is to find the Fourier transform, or

frequency spectrum, of the data.

Fourier[data]l] numerical Fourier transform

InverseFourier[datal inverse Fourier transform

Fourier transforms.

Here is a simple square pulse. In[8]:= data ={1, 1,1, 1, -1, -1, -1, -1}
Out[8]= {1,1,1,1, -1, -1, -1, -1}

This takes the Fourier transform of the In[9]:= Fourier[data]

pulse. Out[9]= {0.+0.1i, 0.707107 +1.707114,
0.+0.1, 0.707107+0.2928931, 0. +0. 1,
0.707107-0.2928931, 0. +0.1, 0.707107-1.707111}

Note that the Fourier function in Mathematica is defined with the sign convention typically used
in the physical sciences—opposite to the one often used in electrical engineering. Section 3.8.4 gives
more details.

1.6.7 Statistics

109

-l 1.6.7 Statistics

mean (average value)

median (central value)

standard deviation

+ Mean[data]

+ Median[data]

+ Variance[data] variance

+ StandardDeviation[data]

+ Quantilel[data, g1 g™ quantile
+ Totalldata]

total of values

Basic descriptive statistics.

Here is some “data”.

In[1]:= data = {4.3, 7.2, 8.4, 5.8, 9.2, 3.9}

Out[1]= {4.3,7.2,8.4,5.8,9.2, 3.9}

This gives the mean of your data.

In[2]:= Mean[data]

Out[2]= 6.46667

Here is the variance.

In[3]:= Variance[data]

Out[3]= 4.69467

The standard set of packages distributed with Mathematica includes several for doing more sophisti-

cated statistical analyses of data.

Statistics‘DescriptiveStatistics®

Statistics‘ContinuousDistributions®
Statistics‘DiscreteDistributions®
Statistics‘HypothesisTests"

Statistics‘Confidencelntervals®

Statistics*MultinormalDistribution®

Statistics‘LinearRegression®
Statistics‘NonlinearFit:*
Statistics‘DataSmoothing*

Statistics‘DataManipulation®

descriptive statistics functions

Statistics*MultivariateDescriptiveStatistics®

multivariate descriptive statistics functions
properties of continuous statistical distributions
properties of discrete statistical distributions
hypothesis tests based on the normal distribution

confidence intervals derived from the normal
distribution

properties of distributions based on the
multivariate normal distribution

linear regression analysis
nonlinear fitting of data
smoothing of data

utilities for data manipulation

Some standard statistical analysis packages.

110 1. A Practical Introduction to Mathematica « 1.7 Functions and Programs

1.7 Functions and Programs

H 1.7.1 Defining Functions

In this part of the book, we have seen many examples of functions that are built into Mathematica.
In this section, we discuss how you can add your own simple functions to Mathematica. Part 2 will
describe in much greater detail the mechanisms for adding functions to Mathematica.

As a first example, consider adding a function called £ which squares its argument. The Mathematica
command to define this function is f[x_] := x~2. The _ (referred to as “blank”) on the left-hand side
is very important; what it means will be discussed below. For now, just remember to put a _ on the
left-hand side, but not on the right-hand side, of your definition.

This defines the function f. Notice the In[1]:= f[x_] := x~2
_ on the left-hand side.

f squares its argument. In[2]:= fla+1]

Out[2]= (1+a)’

The argument can be a number. In[3]:= £[4]
Out[3]= 16

Or it can be a more complicated In[4]:= £[3x + x~2]

expression.

Out[4]= (3x +}~:2)2

You can use f in a calculation. In[5]:= Expand[£f[(x+1+y)]]

Out[5]= 1+2x+x2+2y+2xy+y?

This shows the definition you made In[6]:= 7f
for f.
Global“f
flx_] := x~2

f[x_] := x~2 define the function f
?f show the definition of f
Clear[f] clear all definitions for f

Defining a function in Mathematica.

The names like £ that you use for functions in Mathematica are just symbols. Because of this, you
should make sure to avoid using names that begin with capital letters, to prevent confusion with

1.7.2 Functions as Procedures

111

built-in Mathematica functions. You should also make sure that you have not used the names for

anything else earlier in your session.

Mathematica functions can have any
number of arguments.

You can use the hump function just as
you would any of the built-in
functions.

This gives a new definition for hump,
which overwrites the previous one.

The new definition is displayed.

This clears all definitions for hump.

In[7]:= hump[x_, xmax_] := (x - xmax)~2 / xmax

In[8]:= 2 + hump[x, 3.5]

Out[8]= 2+0.285714 (-3.5+x)>

In[9]:= hump[x_, xmax_] := (x - xmax)~4

In[10]:= ?hump
Global *hump

hump[x_, xmax_] := (x - xmax)~4

In[11]:= Clear[hump]

When you have finished with a particular function, it is always a good idea to clear definitions you
have made for it. If you do not do this, then you will run into trouble if you try to use the same
function for a different purpose later in your Mathematica session. You can clear all definitions you
have made for a function or symbol f by using Clear[f].

M 1.7.2 Functions as Procedures

In many kinds of calculations, you may find yourself typing the same input to Mathematica over and
over again. You can save yourself a lot of typing by defining a function that contains your input

commands.

This constructs a product of three
terms, and expands out the result.

This does the same thing, but with
four terms.

This defines a function exprod which
constructs a product of n terms, then
expands it out.

Every time you use the function, it will
execute the Product and Expand
operations.

In[1]:= Expand[Product[x + i, {i, 3}]]
Out[1]= 6+11x+6x> +x°

In[2]:= Expand[Product[x + i, {i, 4}]]
Out[2]= 24+50x+35x2+10x> +x*

In[3]:= exprod[n_] := Expand[Product[x + i, {i, 1, n} 1]

In[4]:= exprod[5]
Out[4]= 120+274x+225x%?> +85%> +15x* +x°

The functions you define in Mathematica are essentially procedures that execute the commands you
give. You can have several steps in your procedures, separated by semicolons.

112 1. A Practical Introduction to Mathematica « 1.7 Functions and Programs

The result you get from the whole In[5]:= cex[n_, i_] := (t = exprod[n]; Coefficient[t, x~i])
function is simply the last expression in

the procedure. Notice that you have to

put parentheses around the procedure

when you define it like this.

This “runs” the procedure. In[6]:= cex[5, 3]
Out[6]= 85
expr; expry; ... a sequence of expressions to evaluate

Module[{a, b, ... }, proc] a procedure with local variables 4, b, ...

Constructing procedures.

When you write procedures in Mathematica, it is usually a good idea to make variables you use
inside the procedures local, so that they do not interfere with things outside the procedures. You can
do this by setting up your procedures as modules, in which you give a list of variables to be treated
as local.

The function cex defined above is not In[7]:= ¢t
a module, so the value of t “escapes”,

. . = + + 2 4 3 4 4 445
and exists even after the function Out[7]= 120+274x+225%" +85x" +16x" +x

returns.

This function is defined as a module In[8]:= ncex[n_, i_] :=

with local variable u. Module[{u}, u = exprod[n]; Coefficient[u, x*il]]
The function gives the same result as In[9]:= ncex[5, 3]

before. out[9]= 85

Now, however, the value of u does not In[10]:=u

escape from the function. Out[10]= u

H 1.7.3 Repetitive Operations

In using Mathematica, you sometimes need to repeat an operation many times. There are many ways
to do this. Often the most natural is in fact to set up a structure such as a list with many elements,
and then apply your operation to each of the elements.

Another approach is to use the Mathematica function Do, which works much like the iteration
constructs in languages such as C and Fortran. Do uses the standard Mathematica iterator notation
introduced for Sum and Product in Section 1.5.4.

1.7.4 Transformation Rules for Functions 113

Dolexpr, {i, imax}] evaluate expr with i running from 1 to imax
Dolexpr, {i, imin, imax, di}] evaluate expr with i running from imin to imax in steps of di
Print[expr] print expr

Tablel[expr, {i, imax}] make a list of the values of expr with 7 running from 1 to
imax

Implementing repetitive operations.

This prints out the values of the first In[1]:= Dol Print[i'], {i, 5}]
five factorials. 1

2

6
24
120

It is often more useful to have a list of In[2]:= Table[i!, {i, 5}]
results, which you can then manipulate outf2]= {1, 2, 6, 24, 120}
further.

If you do not give an iteration variable, In[3]:=r=1; Dol r=1/(1 +), {100} 1; r
Mathematica simply repeats the

operation you have specified, without Out[3]=
changing anything.

573147844013817084101
927372692193078999176

H 1.7.4 Transformation Rules for Functions

Section 1.4.2 discussed how you can use transformation rules of the form x -> value to replace symbols
by values. The notion of transformation rules in Mathematica is, however, quite general. You can set
up transformation rules not only for symbols, but for any Mathematica expression.

Applying the transformation rule In[1]:=1 + £[x] + £[y]l /. x -> 3
x -> 3 replaces x by 3. Out[1]= 1+£[3] +£[y]

You can also use a transformation rule In[2]:=1 + £[x] + £f[y]l /. £f[x] -> p
for £[x]. This rule does not affect Out[2]= 1+p+£ly]

flyl.

fLt_] is a pattern that stands for £ In[3]:=1 + £[x] + £fly] /. £[t_]1 -> t~2

with any argument. Out[3]= 1+x2 +y?

Probably the most powerful aspect of transformation rules in Mathematica is that they can involve
not only literal expressions, but also patterns. A pattern is an expression such as £[t_] which contains
a blank (underscore). The blank can stand for any expression. Thus, a transformation rule for £[t_]
specifies how the function £ with any argument should be transformed. Notice that, in contrast, a
transformation rule for £[x] without a blank, specifies only how the literal expression £[x] should be
transformed, and does not, for example, say anything about the transformation of £[y].

114 1. A Practical Introduction to Mathematica « 1.7 Functions and Programs

When you give a function definition such as £f[t_] := t~2, all you are doing is telling Mathematica
to automatically apply the transformation rule f[t_] -> t~2 whenever possible.

You can set up transformation rules for In[4]:= £la b] + £[c 4] /. £[x_ y_1 -> £[x] + £[y]

expressions of any form. Out[4]= £[al +£[b] +£[c] +£[d]
This uses a transformation rule for In[5]:=1 + x*2 + x*4 /. x*p_ -> £[p]
X7Pp-. Out[5]= 1+£[2] +£[4]

Sections 2.3 and 2.5 will explain in detail how to set up patterns and transformation rules for any
kind of expression. Suffice it to say here that in Mathematica all expressions have a definite symbolic
structure; transformation rules allow you to transform parts of that structure.

1.8.2 Making Tables of Values 115

1.8 Lists

H 1.8.1 Collecting Objects Together

We first encountered lists in Section 1.2.3 as a way of collecting numbers together. In this section,
we shall see many different ways to use lists. You will find that lists are some of the most flexible
and powerful objects in Mathematica. You will see that lists in Mathematica represent generalizations
of several standard concepts in mathematics and computer science.

At a basic level, what a Mathematica list essentially does is to provide a way for you to collect
together several expressions of any kind.
Here is a list of numbers. In[1]:= {2, 3, 4}
Out[1]= {2, 3, 4}

This gives a list of symbolic In[2]:= x~% - 1

expressions.
p Out[2]= {-1+x%, -1+x°, -1 +x}

You can differentiate these expressions. In[3]:= D[%, x]
Out[3]= {2x, 3%%, 4x°}
And then you can find values when x In[4]:=% /. x -> 3

is replaced with 3. out[4]= {6, 27, 108}

The mathematical functions that are built into Mathematica are mostly set up to be “listable” so that
they act separately on each element of a list. This is, however, not true of all functions in Mathematica.
Unless you set it up specially, a new function £ that you introduce will treat lists just as single objects.
Sections 2.2.4 and 2.2.10 will describe how you can use Map and Thread to apply a function like this
separately to each element in a list.

H 1.8.2 Making Tables of Values

You can use lists as tables of values. You can generate the tables, for example, by evaluating an
expression for a sequence of different parameter values.

This gives a table of the values of 2 In[1]:= Table[i~2, {i, 6}]
with i running from 1 to 6. outf1]= {1, 4, 9, 16, 25, 36}

Here is a table of sin(n/5) for n from 0 In[2]:= Table[Sin[n/5], {n, 0, 4}]

to 4.
’ out[2]- {o, Sin[%], Sin[%], Sin[%], Sin[%]}

116 1. A Practical Introduction to Mathematica 1.8 Lists

This gives the numerical values. In[3]:= N[%]
Out[3]= {0., 0.198669, 0.389418, 0.564642, 0.717356}

You can also make tables of formulas. In[4]:= Table[x~i + 2i, {i, 5}]

Out[4]= {2+x, 4+%x°, 6+x%, 8+x%, 10+x°}

Table uses exactly the same iterator In[5]:= Product[x~i + 2i, {i, 5}]

notation as the funct1on's Sum an.d Out[5]= (2+%) (4+%x2) (6+%3) (8+x%) (10+%5)
Product, which were discussed in

Section 1.5.4.

This makes a table with values of x In[6]:= Table[Sqrt[x], {x, 0, 1, 0.25}]
running from 0 to 1 in steps of 0.25. out[6]= {0, 0.5, 0.707107, 0.866025, 1.}
You can perform other operations on In[7]:= %*2 + 3

the lists you get from Table. Out[7]= {3, 3.25, 3.5, 3.75, 4.}

TableForm displays lists in a “tabular” In[8]:= % // TableForm
format. Notice that both words in the

name TableForm begin with capital 3
letters. 3.25
Out[8]//TableForm= 3.5
3.75
4.

All the examples so far have been of tables obtained by varying a single parameter. You can also
make tables that involve several parameters. These multidimensional tables are specified using the
standard Mathematica iterator notation, discussed in Section 1.5.4.

This makes a table of x! +y/ with i In[9]:= Table[x~i + y~j, {i, 3}, {j, 2}]

running from 1 to 3 and j running

from 1 to 2. Outl9]= {fx+y, x+y?}, & 4y, @ +3°), O 4y, 24370

The table in this example is a list of lists. The elements of the outer list correspond to successive
values of i. The elements of each inner list correspond to successive values of j, with i fixed.

Sometimes you may want to generate a table by evaluating a particular expression many times,
without incrementing any variables.

This creates a list containing four In[10]:= Table[x, {4}]

copies of the symbol x. Outl10]= {x, x, x, x}

This gives a list of four pseudorandom In[11]:= Table[Random[], {4}]

numbers. Table re-evaluates Oout[11]= {0.0560708, 0.6303, 0.359894, 0.871377}

Random[] for each element in the list,
so that you get a different
pseudorandom number.

1.8.2 Making Tables of Values

117

Tablelf, {imax}]

Tablelf, {i, imax}]
Tablelf, {i, imin, imax}]
Tablelf, {i, imin, imax, di}]

give a list of imax values of f
give a list of the values of f as i runs from 1 to imax
give a list of values with i running from imin to imax

use steps of di

Tablelf, {i, imin, imax}, {j, jmin, jmax}, ...]

generate a multidimensional table

TableForml[/ist]

display a list in tabular form

Functions for generating tables.

You can use the operations discussed in Section 1.2.4 to extract elements of the table.

This creates a 2 x 2 table, and gives it
the name m.

This extracts the first sublist from the
list of lists that makes up the table.

This extracts the second element of that
sublist.

This does the two operations together.

This displays m in a “tabular” form.

In[12]:= m = Table[i - j, {i, 2}, {j, 2}]
Out[12]= {{0, -1}, {1, 0}}

In[13]:=m[[1]]
Out[13]= {0, -1}

In[14]:= %[[2]1]
Out[14]= -1

In[15]:=m[[1,2]]
Out[15]= -1

In[16]:= TableForm[m]

0
Out[16]//TableForm= 1 0

t[[i1] or Partlt, i]

t[li, j, ... 11 or Partlt, i,], ...

give the i sublist in t (also input as t[i])

tll{i, i, ... }11 or Partlt, {i;, ip, ... }]

give a list of the T . parts of ¢

]
give the part of t corresponding to t[[i11[[j1] ...

Ways to extract parts of tables.

118 1. A Practical Introduction to Mathematica 1.8 Lists

As we mentioned in Section 1.2.4, you can think of lists in Mathematica as being analogous to
“arrays”. Lists of lists are then like two-dimensional arrays. When you lay them out in a tabular
form, the two indices of each element are like its x and y coordinates.

You can use Table to generate arrays with any number of dimensions.

This generates a three-dimensional In[17]:= Table[i j~2 k~3, {i, 2}, {j, 2}, {k, 2}]
%xtsZXZ array. It is a list of lists of out[177= {{{1, 8}, {4, 32}}, {{2, 16}, {8, 64}}}
1StS.

-l 1.8.3 Vectors and Matrices

Vectors and matrices in Mathematica are simply represented by lists and by lists of lists, respectively.

{a, b, ¢} vector (a,b,c)

{{a, b}, {c, d¥} matrix (“ b)
c d

The representation of vectors and matrices by lists.

This is a 2 x 2 matrix. In[1]:=m = {{a, b}, {c, d}}
Out[1]= {{a, b}, {c, d}}

Here is the first row. In[2]:=m[[1]]

Out[2]= {a, b}

Here is the element m,. In[3]:=m[[1,2]]
Out[3]= b
This is a two-component vector. In[4]:=v = {x, y}

Out[4]= {x, y}

The objects p and q are treated as In[5]:=pv+gq

scalars. Out[5]= {q+px, q+py}

Vectors are added component by In[6]:= v + {xp, yp} + {xpp, ypp}
component. Out[6]= {x+xp+xpp, ¥+yp+ypp}

This takes the dot (“scalar”) product of In[7]:= {x, y} . {xp, yp}

two vectors. Out[7]= xxp+yyp

You can also multiply a matrix by a In[8]:=m . v

vector. Out[8]= {ax+by, cx+dy}

1.8.3 Vectors and Matrices

Or a matrix by a matrix.

Or a vector by a matrix.

This combination makes a scalar.

Because of the way Mathematica uses lists to represent vectors and matrices, you never have to

In[9]:=m . m
Out[9]= {{a? +bc, ab+Dbd}, {ac+cd, bc+d?}}

In[10]:=v . m
Out[10]= {ax+cy, bx+dy}

In[11]:=v .m . v
Out[11]= x(ax+cy) +y (bx+dy)

distinguish between “row” and “column” vectors.

Table[f, {i, n}]
Array[a, n]
Range[n]
Rangel[n;, ny]
Rangeln,, ny, dnl

list[[i1] or Part[list, il

build a length-n vector by evaluating f withi=1,2, ... , n
build a length-n vector of the form {al1], al2], ... }
create the list {1, 2, 3, ... , n}

create the list {n;, m+1, ... , ny}

create the list {n;, ny+dn, ... , ny}

give the ith element in the vector list

Crossla, b]

+ Norm[v]

Length[list] give the number of elements in [ist
ColumnForm[[ist] display the elements of list in a column
cv multiply by a scalar
a.b vector dot product

vector cross product (also input as a x b)

norm of a vector

Functions for vectors.

120

1. A Practical Introduction to Mathematica 1.8 Lists

Tablelf, {i, m}, {j, n}]

Arrayla, {m, n}]
IdentityMatrix[n]

DiagonalMatrix[/ist]

list[[i1]1 or Partllist, il
list[[A11l, j11 or Partllist, All, j]
list[[i, j11 or Partl[list, i, j]
Dimensions[list]

MatrixForm[/list]

build an m x n matrix by evaluating f with i ranging
from 1 to m and j ranging from 1 to n

build an m x n matrix with i, element ali, j]
generate an # x n identity matrix

generate a square matrix with the elements in list on
the diagonal

give the i row in the matrix list

give the /™ column in the matrix list

give the i,j™ element in the matrix list

give the dimensions of a matrix represented by list

display list in matrix form

Functions for matrices.

This builds a 3 x 3 matrix s with
elements s;; =i+ j.

This displays s in standard
two-dimensional matrix format.

This gives a vector with symbolic
elements. You can use this in deriving
general formulas that are valid with
any choice of vector components.

This gives a 3 x 2 matrix with symbolic
elements. Section 2.2.6 will discuss
how you can produce other kinds of
elements with Array.

Here are the dimensions of the matrix
on the previous line.

This generates a 3 x 3 diagonal matrix.

In[12]:= s = Table[i+j, {i, 3}, {j, 3}]
out[12]= {{2, 3, 4}, {3, 4, 5}, {4, 5, 6}}

In[13]:= MatrixForm[s]

>wN
(S S GV]

Out[13]//MatrixForm= (

o O W
—_—

In[14]:= Arrayla, 4]
Out[14]= {al1], a[2], a[3], al[4]}

In[15]:= Array[p, {3, 2}]

Out[15]= {{p[1, 11, p[1, 213},
{pl2, 11, p[2, 21}, {p[3, 11, p[3, 21}}

In[16]:= Dimensions[%]
Out[16]= {3, 2}

In[17]:= DiagonalMatrix[{a, b, c}]
Out[17]= {{a, 0, 0}, {0, b, 0}, {0, 0, c}}

1.8.3 Vectors and Matrices

121

cm
a.b

Inverse[m]

MatrixPower[m, n]

multiply by a scalar
matrix product

matrix inverse

n™ power of a matrix

Det[m] determinant
Tr[m] trace
Transpose[m] transpose
Eigenvalues[m] eigenvalues
Eigenvectors[m] eigenvectors
Some mathematical operations on matrices.
Here is the 2 x 2 matrix of symbolic In[18]:=m

variables that was defined above.

This gives its determinant.

Here is the transpose of m.

This gives the inverse of m in symbolic
form.

Here is a 3 x 3 rational matrix.

This gives its inverse.

Taking the dot product of the inverse
with the original matrix gives the
identity matrix.

Here is a 3 x 3 matrix.

Out[18]= {{a, b}, {c, d}}

In[19]:= Det[m]
Out[19]= -bc+ad

In[20]:= Transpose[m]
Out[20]= {{a, c}, {b, d}}

In[21]:= Inverse[m]

d
-bc+ad’

b
Out[21]= {{ h —bc+ad}’ {_ —bcc+ad ’ -bca"'ad}}

In[22]:= h = Table[1/(i+j-1), {i, 3}, {j, 3}]

1 1 11 1 1 1 1
ourt221- {{1. 7. sh {3 5. gh {5 o
In[23]:= Inversel[h]
Out[23]= {{9, -36, 30}, {-36, 192, -1803}, {30, -180, 180}}
In[24]:=% . h

out[24]= {{1, 0, 0}, {0, 1, O}, {0, 0, 1}}

In[25]:= r = Table[i+j+1, {i, 3}, {j, 3}]
Out[25]= {{3, 4, 5}, {4, 5, 6}, {5, 6, 7}}

122

1. A Practical Introduction to Mathematica e

1.8 Lists

Eigenvalues gives the eigenvalues of
the matrix.

This gives a numerical approximation
to the matrix.

Here are numerical approximations to
the eigenvalues.

In[26]:= Eigenvalues[r]
1 1
Out[26]= {5 (15++/249), 5 (15-+/249), o}

In[27]:= rn = N[r]
out[27]= {{3.,4.,5.},{4.,5.,6.}, {5.,6., 7.3}

In[28]:= Eigenvalues[rn]
Out[28]= {15.3899, -0.389867, -2.43881 x 10 '°}

Section 3.7 discusses many other matrix operations that are built into Mathematica.

-l 1.8.4 Getting Pieces of Lists

First[list]
Last[list]
Part[list, n] or list[[n]]

Part[list, -n] or list[[-n]]

the first element in list

the last element
the nth element

the nth element from the end

Part[list, {ny, np, ... ¥1 or listL[{n, ny, ... }11]

the list of elements at positions n;, 1y, ...

Picking out elements of lists.

We will use this list for the examples.

Here is the last element of t.

This gives the third element.

This gives a list of the first and fourth
elements.

In[1]:= t = {a,b,c,d,e,f,g}
Out[1]= {a9 b,c,d, e, £, g}

In[2]:= Last[t]
Out[2]= g

In[3]:= t[[3]]
Out[3]

C

In[4]:= t[[{1, 4} 1]
Out[4]= {a, d}

1.8.4 Getting Pieces of Lists 123

Takel[list, n] the first n elements in list
Take[list, -n] the last n elements

Take[list, {m, n}] elements m through n (inclusive)

Restllist] list with its first element dropped
Dropllist, n] list with its first n elements dropped
+ Most[list] list with its last element dropped
Dropllist, -n] list with its last n elements dropped
Dropllist, {m, n}]1 list with elements m through n dropped

Picking out sequences in lists.

This gives the first three elements of In[5]:= Takel[t, 3]
the list t defined above. out[5]= {a, b, c}

This gives the last three elements. In[6]:= Take[t, -3]
Out[6]= {e, £, g}

This gives elements 2 through 5 In[7]:= Take[t, {2, 5}]
inclusive. out[7]= {b, c, d, e}

This gives elements 3 through 7 in In[8]:= Take[t, {3, 7, 2}]
steps of 2. out[8]= {c, e, g}

This gives t with the first element In[9]:= Rest[t]

dropped. 0ut[9]= {b, ¢, d, e, f, g}
This gives t with its first three In[10]:= Drop[t, 3]
elements dropped. Out[10]= {d, e, £, g}

This gives t with only its third element In[11]:= Drop[t, {3, 3}]
dropped. Out[11]= {a, b, d, e, £, g}

Section 2.1.5 will show how all the functions in this section can be generalized to work not only on
lists, but on any Mathematica expressions.

The functions in this section allow you to pick out pieces that occur at particular positions in lists.
Section 2.3.2 will show how you can use functions like Select and Cases to pick out elements of lists
based not on their positions, but instead on their properties.

124

1. A Practical Introduction to Mathematica 1.8 Lists

M 1.8.5 Testing and Searching List Elements

Position[list, form]
Countl[list, form]
MemberQ[list, form]
FreeQllist, form]

the positions at which form occurs in list
the number of times form appears as an element of list
test whether form is an element of list

test whether form occurs nowhere in list

Testing and searching for elements of lists.

The previous section discussed how to extract pieces of lists based on their positions or indices.
Mathematica also has functions that search and test for elements of lists, based on the values of those

elements.

This gives a list of the positions at
which a appears in the list.

Count counts the number of
occurrences of a.

This shows that a is an element of
{a, b, c}.

On the other hand, d is not.

This assigns m to be the 3 x 3 identity
matrix.

This shows that 0 does occur somewhere
in m.

This gives a list of the positions at
which 0 occurs in m.

In[1]:= Position[{a, b, c, a, b}, al
Out[1]= {{1}, {4}}

In[2]:= Count[{a, b, ¢, a, b}, al
Out[2]= 2

In[3]:= MemberQ[{a, b, c}, al
Out[3]= True

In[4]:= MemberQ[{a, b, c}, d]
Out[4]= False

In[5]:=m = IdentityMatrix[3]
out[5]= {{1, 0, 0}, {0, 1, 0}, {0, O, 1}}

In[6]:= FreeQ[m, 0]
Out[6]= False

In[7]:= Position[m, 0]
out[7]= {{1, 2}, {1, 3}, {2, 1}, {2, 3}, {3, 1}, {3, 2}}

As discussed in Section 2.3.2, the functions Count and Position, as well as MemberQ and FreeQ,
can be used not only to search for particular list elements, but also to search for classes of elements

which match specific “patterns”.

1.8.6 Adding, Removing and Modifying List Elements 125

-l 1.8.6 Adding, Removing and Modifying List Elements

Prepend[list, element] add element at the beginning of list
Append[list, element] add element at the end of list
Insertl[list, element, i] insert element at position i in list
Insertllist, element, —-i] insert at position i counting from the end of list

Deletellist, i] delete the element at position i in list

ReplacePart[list, new, i] replace the element at position i in list with new

ReplacePart[list, new, {i, j}]1 replace list[[i, j1] with new

Functions for manipulating elements in explicit lists.

This gives a list with x prepended. In[1]:= Prepend[{a, b, c}, x]
Out[1]= {x, a, b, c}

This inserts x so that it becomes In[2]:= Insert[{a, b, c}, x, 2]
element number 2. outl2]= {a, x, b, c}

This replaces the third element in the In[3]:= ReplacePart[{a, b, c, d}, x, 3]
list with x. out[3]= {a, b, x, d}

This replaces the 1,2 element in a 2x2 In[4]:= ReplacePart[{{a, b}, {c, d}}, x, {1, 2}]
matrix. out[4]= {{a, x}, {c, d}}

Functions like ReplacePart take explicit lists and give you new lists. Sometimes, however, you may
want to modify a list “in place”, without explicitly generating a new list.

v=Ae, e, ... } assign a variable to be a list

o[[i]1] = new assign a new value to the i element

Resetting list elements.

This defines v to be a list. In[5]:=v = {a, b, c, d}
Out[5]= {a, b, c, d}

This sets the third element to be x. In[6]:=v[[3]] = x
Out[6]= x

126

1. A Practical Introduction to Mathematica 1.8 Lists

Now v has been changed.

In[7]:=v
Out[7]= {a, b, x, d}

mlLi, j1] = new
ml[i]] = new

m[[Al11, i]1] = new

replace the (i,/)™ element of a matrix
replace the i" row

replace the i column

Resetting pieces of matrices.

This defines m to be a matrix.
This sets the first column of the matrix.

This sets every element in the first
column to be 0.

H 1.8.7 Combining Lists

In[8]:=m = {{a, b}, {c, d}}
out[8]= {{a, b}, {c, d}}

In[9]:=m[[A11, 1]] = {x, y}; m
Out[9]= {{x, b}, {y, d}}

In[10]:= m[[A1l, 1]]1=0; m
Out[10]= {{0, b}, {0, d}}

Join[listl, liStg,]

Unionl[list;, list,, ...]

concatenate lists together

combine lists, removing repeated elements and sorting the
result

Functions for combining lists.

Join concatenates any number of lists
together.

Union combines lists, keeping only
distinct elements.

In[1]:= Join[{a, b, c}, {x, y}, {t, u}]
Out[1]= {a, b, c, x, ¥, t, u}

In[2]:= Union[{a, b, ¢}, {c, a, d}, {a, d}]
oOut[2]= {a, b, c, d}

H 1.8.8 Advanced Topic: Lists as Sets

Mathematica usually keeps the elements of a list in exactly the order you originally entered them. If
you want to treat a Mathematica list like a mathematical set, however, you may want to ignore the

order of elements in the list.

1.8.9 Rearranging Lists

127

Unionl[list;, listy, ...]
Intersectionl[list, listy, ...]

Complement[universal, listy, ...]

give a list of the distinct elements in the [ist;
give a list of the elements that are common to all the list;

give a list of the elements that are in universal, but not in
any of the list;

Set theoretical functions.

Union gives the elements that occur in
any of the lists.

Intersection gives only elements that
occur in all the lists.

Complement gives elements that occur
in the first list, but not in any of the
others.

-l 1.8.9 Rearranging Lists

In[1]:= Union[{c, a, b}, {d, a, c}, {a, e}]
Out[1]= {a, b, c, d, e}

In[2]:= Intersection[{a, c, b}, {b, a, d, a}]
out[2]= {a, b}

In[3]:= Complement[{a, b, ¢, d}, {a, d}]
Out[3]= {b, c}

Sort[list]
Union[/ist]
Reversel[list]
RotateLeft[list, n]

RotateRight[list, n]

sort the elements of [ist into a standard order
sort elements, removing any duplicates
reverse the order of elements in [ist

rotate the elements of list n places to the left

rotate n places to the right

Functions for rearranging lists.

This sorts the elements of a list into a
standard order. In simple cases like
this, the order is alphabetical or
numerical.

This sorts the elements, removing any
duplicates.

This rotates (“shifts”) the elements in
the list two places to the left.

In[1]:= Sort[{b, a, c, a, b}]
Out[1]= {a, a, b, b, c}

In[2]:= Union[{b, a, c, a, b}]
Out[2]= {a, b, c}

In[3]:= RotateLeft[{a, b, ¢, d, e}, 2]
Out[3]= {c, d, e, a, b}

128

1. A Practical Introduction to Mathematica 1.8 Lists

You can rotate to the right by giving a
negative displacement, or by using
RotateRight.

In[4]:= RotateLeft[{a, b, c, d, e}, -2]
Out[4]= {d, e, a, b, c}

PadLeft[list, len, x]
PadRight[list, len, x]

pad list on the left with x to make it length len
pad list on the right

Padding lists.

This pads a list with x’s to make it
length 10.

In[5]:= PadLeft[{a, b, c}, 10, x]

Out[5]= {x, x, x, X, X, X, X, a, b, c}

H 1.8.10 Grouping Together Elements of Lists

Partition[list, n]
Partitionl[list, n, d]

Split[list]

partition list into n-element pieces
use offset d for successive pieces

split list into pieces consisting of runs of identical elements

Functions for grouping together elements of lists.

Here is a list.

This groups the elements of the list in
pairs, throwing away the single
element left at the end.

This groups elements in triples. There
is no overlap between the triples.

This makes triples of elements, with
each successive triple offset by just one
element.

This splits up the list into runs of
identical elements.

In[1]:=t ={a, b, c, 4, e, £, g}
Out[1]= {a, b, c,d, e, £, g}

In[2]:= Partition[t, 2]
Out[2]= {{a, b}, {c, d}, {e, f}}

In[3]:= Partition[t, 3]
Out[3]= {{a, b, c}, {d, e, f}}

In[4]:= Partition[t, 3, 1]
Out[4]= {{a, b, c}, {b, c, d}, {c, d, e}, {4, e, £}, {e, £, g}}

In[5]:= Splitl[{a, a, b, b, b, a, a, a, b}]
Out[5]= {{a, a}, {b, b, b}, {a, a, a}, {b}}

1.8.12 Advanced Topic: Rearranging Nested Lists

129

-l 1.8.11 Ordering in Lists

Sort[list]

Min[list]

+ Ordering[list, n]
Max[list]

+ Ordering[list, -n]
+ Ordering[list]

Permutations[list]

sort the elements of list into order

the smallest element in [ist

the positions of the n smallest elements in list
the largest element in /ist

the positions of the 7 largest elements in list
the ordering of all elements in [ist

all possible orderings of list

Ordering in lists.

Here is a list.

This gives the smallest element in the
list.

This gives in order the positions of the
3 smallest elements.

Here are the actual elements.

In[1]:=t = {17, 21, 14, 9, 18}
out[1]= {17, 21, 14, 9, 18}

In[2]:= Min[t]
Out[2]= 9

In[3]:= Ordering[t, 3]
Out[3]= {4, 3, 1}

In[4]:= t[[%]]
Out[4]= {9, 14, 17}

-l 1.8.12 Advanced Topic: Rearranging Nested Lists

You will encounter nested lists if you use matrices or generate multidimensional arrays and tables.
Mathematica provides many functions for handling such lists.

Flatten[list]

Flatten[list, n]
Partition[list, {ny, ny, ... }1
Transposel[list]
RotateLeft[list, {n;, ny, ... }1
PadLeft[list, {ny, ny, ... }1

flatten out all levels in list

flatten out the top n levels in list
partition into blocks of size 1 x 15 x ...
interchange the top two levels of lists
rotate successive levels by n; places

pad successive levels to be length #;

A few functions for rearranging nested lists.

130 1. A Practical Introduction to Mathematica 1.8 Lists

This “flattens out” sublists. You can In[1]:= Flatten[{{a}, {b, {c}}, {d}}]
think of it as effectively just removing out[1]= {a, b, c, d}
all inner braces. » D, C,

Flatten[{{a}, {b, {c}}, {d}}, 1]
= {a, b, {c}, d}

This flattens out only one level of In[2]:
sublists. out[2]

There are many other operations you can perform on nested lists. We will discuss more of them in
Section 2.4.

1.9.1 Basic Plotting 131

1.9 Graphics and Sound

H 1.9.1 Basic Plotting

Plot[f, {x, xmin, xmax}] plot f as a function of x from xmin to xmax

Plot[{f,, f,, ... }, {x, xmin, xmax}] plot several functions together

Basic plotting functions.

This plots a graph of sin(x) as a In[1]:= Plot[Sin[x], {x, 0, 2Pi}]
function of x from 0 to 2.
1
0.5
1 2 3 4 5 6
-0.5
-1
You can plot functions that have In[2]:= Plot[Tan[x], {x, -3, 3}]

singularities. Mathematica will try to
choose appropriate scales.

40

)

132 1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

You can give a list of functions to plot. In[3]:= Plot[{Sin[x], Sin[2x], Sin[3x]}, {x, 0, 2Pi}]

To get smooth curves, Mathematica has to evaluate functions you plot at a large number of points. As
a result, it is important that you set things up so that each function evaluation is as quick as possible.

When you ask Mathematica to plot an object, say f, as a function of x, there are two possible
approaches it can take. One approach is first to try and evaluate f, presumably getting a symbolic
expression in terms of x, and then subsequently evaluate this expression numerically for the specific
values of x needed in the plot. The second approach is first to work out what values of x are needed,
and only subsequently to evaluate f with those values of x.

If you type Plotlf, {x, xmin, xmax}] it is the second of these approaches that is used. This has
the advantage that Mathematica only tries to evaluate f for specific numerical values of x; it does not
matter whether sensible values are defined for f when x is symbolic.

There are, however, some cases in which it is much better to have Mathematica evaluate f before
it starts to make the plot. A typical case is when f is actually a command that generates a table
of functions. You want to have Mathematica first produce the table, and then evaluate the func-
tions, rather than trying to produce the table afresh for each value of x. You can do this by typing
Plot[Evaluatelf], {x, xmin, xmax}].

This makes a plot of the Bessel In[4]:= Plot[Evaluate[Table[BesselJ[n, x], {n, 4}]],
functions J,(x) with 7 running from 1 {x, 0, 10}]

to 4. The Evaluate tells Mathematica
first to make the table of functions, and
only then to evaluate them for
particular values of x.

This finds the numerical solution to a In[5]:= NDSolve[{y’[x] == Sin[y[x]], y[0] == 1}, y, {x, 0, 4}]

diffgrential equation, as discussed in Out[5]= {{y - InterpolatingFunction[{{0., 4.3}, <>1}}
Section 1.6.4.

1.9.2 Options 133

Here is a plot of the solution. The In[6]:= Plot[Evaluatel y[x] /. % 1, {x, 0, 4}]
Evaluate tells Mathematica to first set

up an InterpolatingFunction object,

then evaluate this at a sequence of x 3
values.

Plotlf, {x, xmin, xmax}] first choose specific numerical values for x, then evaluate f
for each value of x

Plot[Evaluate[f], {x, xmin, xmax}]
first evaluate f, then choose specific numerical values of x

Plot[Evaluate[Tablelf, ... 11, {x, xmin, xmax}]
generate a list of functions, and then plot them

Plot[Evaluate[y[x] /. solution], {x, xmin, xmax}]
plot a numerical solution to a differential equation obtained
from NDSolve

Methods for setting up objects to plot.

-l 1.9.2 Options

When Mathematica plots a graph for you, it has to make many choices. It has to work out what the
scales should be, where the function should be sampled, how the axes should be drawn, and so on.
Most of the time, Mathematica will probably make pretty good choices. However, if you want to get
the very best possible pictures for your particular purposes, you may have to help Mathematica in
making some of its choices.

There is a general mechanism for specifying “options” in Mathematica functions. Each option has
a definite name. As the last arguments to a function like Plot, you can include a sequence of rules
of the form name->value, to specify the values for various options. Any option for which you do not
give an explicit rule is taken to have its “default” value.

Plotlf, {x, xmin, xmax}, option->valuel
make a plot, specifying a particular value for an option

Choosing an option for a plot.

134 1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

A function like Plot has many options that you can set. Usually you will need to use at most a few
of them at a time. If you want to optimize a particular plot, you will probably do best to experiment,
trying a sequence of different settings for various options.

Each time you produce a plot, you can specify options for it. Section 1.9.3 will also discuss how
you can change some of the options, even after you have produced the plot.

option name default value

AspectRatio 1/GoldenRatio the height-to-width ratio for the plot; Automatic
sets it from the absolute x and y coordinates

Axes Automatic whether to include axes

AxesLabel None labels to be put on the axes; ylabel specifies a
label for the y axis, {xlabel, ylabel} for both axes

AxesOrigin Automatic the point at which axes cross

TextStyle $TextStyle the default style to use for text in the plot

FormatType StandardForm the default format type to use for text in the
plot

DisplayFunction $DisplayFunction how to display graphics; Identity causes no
display

Frame False whether to draw a frame around the plot

FrameLabel None labels to be put around the frame; give a list in
clockwise order starting with the lower x axis

FrameTicks Automatic what tick marks to draw if there is a frame;
None gives no tick marks

GridLines None what grid lines to include; Automatic includes
a grid line for every major tick mark

PlotLabel None an expression to be printed as a label for the
plot

PlotRange Automatic the range of coordinates to include in the plot;
A11 includes all points

Ticks Automatic what tick marks to draw if there are axes; None
gives no tick marks

Some of the options for Plot. These can also be used in Show.

1.9.2 Options 135

Here is a plot with all options having In[7]:= Plot[Sin[x~2], {x, 0, 3}]
their default values.
1
0.5
0.5 1 1.5 2 2[5 3
-0.5
-1
This draws axes on a frame around the In[8]:= Plot[Sin[x~2], {x, 0, 3}, Frame->True]
plot.
1
0.5
[
-0.5
-1
0 0.5 1 1.5 2 2.5 3
This specifies labels for the x and y In[9]:= Plot[Sin[x~2], {x, 0, 3},
axes. The expressions you give as AxesLabel -> {"x value", "Sin[x~2]"}]
labels are printed just as they would
be if they appeared as Mathematica)
output. You can give any piece of text sinlx2]
by putting it inside a pair of double
quotes. 0.5
0.5 1 15 \ 2 2fs 3 *rale

136

1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

You can give several options at the
same time, in any order.

Setting the AspectRatio option
changes the whole shape of your plot.
AspectRatio gives the ratio of width
to height. Its default value is the
inverse of the Golden
Ratio—supposedly the most pleasing
shape for a rectangle.

In[10]:= Plot[Sin[x~2], {x, 0, 3}, Frame -> True,
GridLines -> Automatic]

INEERY

In[11]:= Plot[Sin[x~2], {x, 0, 3}, AspectRatio -> 1]

Automatic
None

A1l

True

False

use internal algorithms
do not include this
include everything

do this

do not do this

Some common settings for various options.

When Mathematica makes a plot, it tries to set the x and y scales to include only the “interesting”
parts of the plot. If your function increases very rapidly, or has singularities, the parts where it gets
too large will be cut off. By specifying the option PlotRange, you can control exactly what ranges of
x and y coordinates are included in your plot.

1.9.2 Options 137

Automatic show at least a large fraction of the points, including the
“interesting” region (the default setting)

A1l show all points
{ymin, ymax} show a specific range of y values

{xrange, yrange} show the specified ranges of x and y values

Settings for the option PlotRange.

The setting for the option PlotRange In[12]:= Plot[Sin[x~2], {x, 0, 3}, PlotRange -> {0, 1.2}]
gives explicit y limits for the graph.
With the y limits specified here, the
bottom of the curve is cut off.

Mathematica always tries to plot functions as smooth curves. As a result, in places where your
function wiggles a lot, Mathematica will use more points. In general, Mathematica tries to adapt its
sampling of your function to the form of the function. There is, however, a limit, which you can set,
to how finely Mathematica will ever sample a function.

The function sin(%) wiggles infinitely In[13]:= Plot[Sin[1/x], {x, -1, 1}]
often when x =~ 0. Mathematica tries to

sample more points in the region

where the function wiggles a lot, but it

can never sample the infinite number

that you would need to reproduce the 9

function exactly. As a result, there are
slight glitches in the plot.

138 1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

option name default value

PlotStyle Automatic a list of lists of graphics primitives to use for each curve (see
Section 2.10.3)

PlotPoints 25 the minimum number of points at which to sample the
function

MaxBend 10. the maximum kink angle between successive segments of a
curve

~ PlotDivision 30. the maximum factor by which to subdivide in sampling the

function

Compiled True whether to compile the function being plotted

More options for Plot. These cannot be used in Show.

It is important to realize that since Mathematica can only sample your function at a limited number
of points, it can always miss features of the function. By increasing PlotPoints, you can make Mathe-
matica sample your function at a larger number of points. Of course, the larger you set PlotPoints
to be, the longer it will take Mathematica to plot any function, even a smooth one.

Since Plot needs to evaluate your function many times, it is important to make each evalua-
tion as quick as possible. As a result, Mathematica usually compiles your function into a low-level
pseudocode that can be executed very efficiently. One potential problem with this, however, is that
the pseudocode allows only machine-precision numerical operations. If the function you are plotting
requires higher-precision operations, you may have to switch off compilation in Plot. You can do this
by setting the option Compiled -> False. Note that Mathematica can only compile “inline code”; it
cannot for example compile functions that you have defined. As a result, you should, when possible,
use Evaluate as described on page 132 to evaluate any such definitions and get a form that the
Mathematica compiler can handle.

1.9.3 Redrawing and Combining Plots 139

M 1.9.3 Redrawing and Combining Plots

Mathematica saves information about every plot you produce, so that you can later redraw it. When
you redraw plots, you can change some of the options you use.

Show[plot] redraw a plot
Show[plot, option->value] redraw with options changed
Showl[plot,, plot,, ... 1 combine several plots

Show[GraphicsArray[{{plot,, plot,, ... }, ... }]1]
draw an array of plots

InputForm[plot] show the information that is saved about a plot

Functions for manipulating plots.

Here is a simple plot. -Graphics- is In[1]:= Plot[ChebyshevT[7, x], {x, -1, 1}]
usually printed on the output line to
stand for the information that
Mathematica saves about the plot.

-1

This redraws the plot from the In[2]:= Show[}]
previous line.

-0.5

140

1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

When you redraw the plot, you can
change some of the options. This

changes the choice of y scale.

This takes the plot from the previous
line, and changes another option in it.

In[3]:= Show[%, PlotRange -> {-1, 2}]

L]
\

In[4]:= Showl[%, PlotLabel -> "A Chebyshev Polynomial"]

A Chebyshev Polynomial
2

0.5 V1

By using Show with a sequence of different options, you can look at the same plot in many different
ways. You may want to do this, for example, if you are trying to find the best possible setting of

options.

You can also use Show to combine plots. It does not matter whether the plots have the same scales:
Mathematica will always choose new scales to include the points you want.

This sets gjO to be a plot of Jy(x) from

x =0 to 10.

In[5]:= gjO = Plot[BesselJ[0, x], {x, 0, 10}]

2\76

1.9.3 Redrawing and Combining Plots 141

Here is a plot of Y;(x) from x =1 In[6]:= gyl = Plot[BesselY[1, x], {x, 1, 10}]
to 10.

0.4

0.2 /\

4 6 8 10

-0.2

-0.4

-0.6

-0.8
This shows the previous two plots In[7]:= gjy = Showlgjo, gy1l

combined into one. Notice that the
scale is adjusted appropriately.

Using Show[plot,, plot,, ...] you can combine several plots into one. GraphicsArray allows you
to draw several plots in an array.

Show[GraphicsArray[{plot,, plot,, ... }]1]
draw several plots side by side

Show[GraphicsArray[{{plot,}, {plot,}, ... }11]
draw a column of plots

Show[GraphicsArray[{{plot,,, plot,,, ... }, ... }]1]
draw a rectangular array of plots

Show[GraphicsArray[plots, GraphicsSpacing -> {h, v}]]
put the specified horizontal and vertical spacing between the
plots

Drawing arrays of plots.

142 1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

This shows the plots given above in an In[8]:= Show[GraphicsArray[{{gjo, gjy}, {gyl, gjy}}1]

array.
1 1
0.8 0.75
0.6 0.5
0.4 0.25
0.2 0.5 WO
-0.2 2 _4/ 6 NG -0.5
~0.4 -0.75
0.4 1
0.2 /\ 0.75
TN Y10 %
0.2 0.25
0.4 -0.25 W L
-0.6 -0.5
0.8 -0.75
If you redisplay an array of plots using In[9]:= Show[%, Frame->True, FrameTicks->Nonel

Show, any options you specify will be
used for the whole array, rather than
for individual plots.

1 1
0.8 0.75
0.6 0.5
0.4 0.25
0.2

0.5 WO
2\-4/6 8 10 .

-0.5]
-0.75|

0.4 1
0.2 /\ 0.75
—— 0.5

i 1
0.2 0.25

7 0
0.4 -0.25 /W

-0.6 -0.5
0.8 -0.75|

1.9.3 Redrawing and Combining Plots 143

Here is a way to change options for all In[10]:= Showl % /. (Ticks -> Automatic) -> (Ticks -> None)]

the plots in the array.

GraphicsArray by default puts a narrow border around each of the plots in the array it gives. You
can change the size of this border by setting the option GraphicsSpacing -> {h, v}. The parameters
h and v give the horizontal and vertical spacings to be used, as fractions of the width and height of
the plots.

This increases the horizontal spacing, In[11]:= Show[%, GraphicsSpacing -> {0.3, 0}]
but decreases the vertical spacing
between the plots in the array.

N
% /
a N
/

When you make a plot, Mathematica saves the list of points it used, together with some other
information. Using what is saved, you can redraw plots in many different ways with Show. However,
you should realize that no matter what options you specify, Show still has the same basic set of points
to work with. So, for example, if you set the options so that Mathematica displays a small portion of
your original plot magnified, you will probably be able to see the individual sample points that Plot
used. Options like PlotPoints can only be set in the original Plot command itself. (Mathematica
always plots the actual points it has; it avoids using smoothed or splined curves, which can give
misleading results in mathematical graphics.)

144 1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

Here is a simple plot. In[12]:= Plot[Cos[x], {x, -Pi, Pi}]
0.5
-3 -2 -1 1 2 3
-0.5
-1
This shows a small region of the plot In[13]:= Show[%, PlotRange -> {{0, .3}, {.92, 1}}]

in a magnified form. At this
resolution, you can see the individual
line segments that were produced by
the original Plot command.

0.99
0.98
0.97

0.96

0.95
0.94

0.93

0.92

H 1.9.4 Advanced Topic: Manipulating Options

There are a number of functions built into Mathematica which, like Plot, have various options you
can set. Mathematica provides some general mechanisms for handling such options.

If you do not give a specific setting for an option to a function like Plot, then Mathematica
will automatically use a default value for the option. The function Options[function, option] al-
lows you to find out the default value for a particular option. You can reset the default using
SetOptions[function, option->value]. Note that if you do this, the default value you have given will
stay until you explicitly change it.

Options[function] give a list of the current default settings for all options
Options[function, option] give the default setting for a particular option

SetOptions[function, option->value, ...]
reset defaults

Manipulating default settings for options.

1.9.4 Advanced Topic: Manipulating Options 145

Here is the default setting for the
PlotRange option of Plot.

This resets the default for the
PlotRange option. The semicolon
stops Mathematica from printing out the
rather long list of options for Plot.

Until you explicitly reset it, the default
for the PlotRange option will now be
A1l.

In[1]:= Options[Plot, PlotRangel
Out[1]= {PlotRange - Automatic}

In[2]:= SetOptions[Plot, PlotRange->All] ;

In[3]:= Options[Plot, PlotRangel
Out[3]= {PlotRange - All}

The graphics objects that you get from Plot or Show store information on the options they use.
You can get this information by applying the Options function to these graphics objects.

Options[plot]
Options[plot, option]
AbsoluteOptions[plot, option]

show all the options used for a particular plot
show the setting for a specific option

show the absolute form used for a specific option, even if
the setting for the option is Automatic or All

Getting information on options used in plots.

Here is a plot, with default settings for
all options.

The setting used for the PlotRange
option was All.

AbsoluteOptions gives the absolute
automatically chosen values used for
PlotRange.

In[4]:= g = Plot[SinIntegrallx], {x, 0, 20}]

In[5]:= Options[g, PlotRange]
Out[5]= {PlotRange - All}

In[6]:= AbsoluteOptions[g, PlotRange]

Out[6]= {PlotRange -
{{-0.499999, 20.5}, {-0.0462976, 1.89824}}}

146 1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

-l 1.9.5 Contour and Density Plots

ContourPlot[f, {x, xmin, xmax}, {y, ymin, ymax}]
make a contour plot of f as a function of x and y

DensityPlotlf, {x, xmin, xmax}, {y, ymin, ymax}]
make a density plot of f

Contour and density plots.

This gives a contour plot of the In[1]:= ContourPlot[Sin[x] Sin[y], {x, -2, 2}, {y, -2, 2}]
function sin(x) sin(y).

A contour plot gives you essentially a “topographic map” of a function. The contours join points on
the surface that have the same height. The default is to have contours corresponding to a sequence
of equally spaced z values. Contour plots produced by Mathematica are by default shaded, in such a
way that regions with higher z values are lighter.

1.9.5 Contour and Density Plots 147

option name default value

ColorFunction Automatic what colors to use for shading; Hue uses a sequence of
hues

Contours 10 the total number of contours, or the list of z values for
contours

PlotRange Automatic the range of values to be included; you can specify
{zmin, zmax}, A11 or Automatic

ContourShading True whether to use shading

~ PlotPoints 25 number of evaluation points in each direction
Compiled True whether to compile the function being plotted

Some options for ContourPlot. The first set can also be used in Show.

Particularly if you use a display or In[2]:= Show[%, ContourShading -> False]
printer that does not handle gray levels
well, you may find it better to switch
off shading in contour plots.

=)

'
-

@
M

You should realize that if you do not evaluate your function on a fine enough grid, there may be
inaccuracies in your contour plot. One point to notice is that whereas a curve generated by Plot may
be inaccurate if your function varies too quickly in a particular region, the shape of contours can be
inaccurate if your function varies too slowly. A rapidly varying function gives a regular pattern of
contours, but a function that is almost flat can give irregular contours. You can typically overcome
such problems by increasing the value of PlotPoints.

148 1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

Density plots show the values of your In[3]:= DensityPlot[Sin[x] Sin[y], {x, -2, 2}, {y, -2, 2}]
function at a regular array of points.
Lighter regions are higher.

You can get rid of the mesh like this. In[4]:= Show[%, Mesh -> False]
But unless you have a very large
number of regions, plots usually look
better when you include the mesh.

option name default value

ColorFunction Automatic what colors to use for shading; Hue uses a sequence of hues

Mesh True whether to draw a mesh
~ PlotPoints 25 number of evaluation points in each direction
Compiled True whether to compile the function being plotted

Some options for DensityPlot. The first set can also be used in Show.

1.9.6 Three-Dimensional Surface Plots 149

-l 1.9.6 Three-Dimensional Surface Plots

Plot3DLf, {x, xmin, xmax}, {y, ymin, ymax}]
make a three-dimensional plot of f as a function of the
variables x and y

Basic 3D plotting function.

This makes a three-dimensional plot of In[1]:= Plot3D[Sin[x y], {x, 0, 3}, {y, 0, 3}]
the function sin(xy).

\
\\

2o
L7
7717
777777~
s "',','.’~\\ N
. 711777 N7/
y"":', . ;,'ln"'; X
L2
1T L7 78

L7
LB,

There are many options for three-dimensional plots in Mathematica. Some will be discussed in this
section; others will be described in Section 2.10.

The first set of options for three-dimensional plots is largely analogous to those provided in the
two-dimensional case.

150

1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

option name

default value

Axes True whether to include axes

AxesLabel None labels to be put on the axes: zlabel specifies a
label for the z axis, {xlabel, ylabel, zlabel} for
all axes

Boxed True whether to draw a three-dimensional box
around the surface

ColorFunction Automatic what colors to use for shading; Hue uses a
sequence of hues

TextStyle $TextStyle the default style to use for text in the plot

FormatType StandardForm the default format type to use for text in the
plot

DisplayFunction $DisplayFunction how to display graphics; Identity causes no
display

FaceGrids None how to draw grids on faces of the bounding
box; A1l draws a grid on every face

HiddenSurface True whether to draw the surface as solid

Lighting True whether to color the surface using simulated
lighting

Mesh True whether an xy mesh should be drawn on the
surface

PlotRange Automatic the range of coordinates to include in the plot:
you can specify All, {zmin, zmax} or
{H{xmin , xmax} , {ymin ,ymax} ,{zmin ,zmax}}

Shading True whether the surface should be shaded or left
white

ViewPoint {1.3, -2.4, 2} the point in space from which to look at the
surface

~ PlotPoints 25 the number of points in each direction at which

to sample the function; {n,, n,} specifies
different numbers in the x and y directions

Compiled True whether to compile the function being plotted

Some options for P1ot3D. The first set can also be used in Show.

1.9.6 Three-Dimensional Surface Plots 151

This redraws the plot on the previous In[2]:= Show[%, PlotRange -> {-0.5, 0.5}]
line, with options changed. With this

setting for PlotRange, only the part of
the surface in the range —-0.5<z<0.5

is shown.
When you make the original plot, you In[3]:= P1lot3D[10 Sin[x + Sin[y]l], {x, -10, 10}, {y, -10, 10},
can choose to sample more points. You PlotPoints -> 50]

will need to do this to get good
pictures of functions that wiggle a lot.

e s
N N
‘ \

m”q’n\\ff:! o u’o’o‘o

“\ m U ~" "‘

\‘,‘

W

n.\m’o"

152 1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

Here is the same plot, with labels for In[4]:= Show[%, AxesLabel -> {"Time", "Depth", "Value"},
the axes, and grids added to each face. FaceGrids -> All]

Probably the single most important issue in plotting a three-dimensional surface is specifying where
you want to look at the surface from. The ViewPoint option for P1ot3D and Show allows you to spec-
ify the point {x, y, z} in space from which you view a surface. The details of how the coordinates
for this point are defined will be discussed in Section 2.10.10. In many versions of Mathematica, there
are ways to choose three-dimensional view points interactively, then get the coordinates to give as
settings for the ViewPoint option.

Here is a surface, viewed from the In[5]:= Plot3D[Sinl[x y], {x, 0, 3}, {y, 0, 3}]
default view point {1.3, -2.4, 2}.
This view point is chosen to be
“generic”, so that visually confusing
coincidental alignments between
different parts of your object are
unlikely.

Y aa
: ’ '.llng "'
Yo Ill .l;","" ." "
l"'""'
""' "

1.9.6 Three-Dimensional Surface Plots 153

This redraws the picture, with the view In[6]:= Show[%, ViewPoint -> {0, -2, 0}]
point directly in front. Notice the

perspective effect that makes the back

of the box look much smaller than the

front.

{1.3, -2.4, 2} default view point
{0, -2, 0} directly in front
{0, -2, 2} in front and up
{0, -2, -2} in front and down
{-2, -2, 0} left-hand corner
{2, -2, 0} right-hand corner
{0, 0, 2} directly above

Typical choices for the ViewPoint option.

The human visual system is not particularly good at understanding complicated mathematical
surfaces. As a result, you need to generate pictures that contain as many clues as possible about the
form of the surface.

View points slightly above the surface usually work best. It is generally a good idea to keep the
view point close enough to the surface that there is some perspective effect. Having a box explicitly
drawn around the surface is helpful in recognizing the orientation of the surface.

154 1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

Here is a plot with the default settings In[7]:= g = Plot3D[Exp[-(x~2+y~2)], {x, -2, 2}, {y, -2, 2}]
for surface rendering options.

This shows the surface without the In[8]:= Show[g, Mesh -> Falsel
mesh drawn. It is usually much harder
to see the form of the surface if the
mesh is not there.

1.9.6 Three-Dimensional Surface Plots

155

This shows the surface with no
shading. Some display devices may
not be able to show shading.

In[9]:= Show[g, Shading -> Falsel

>
N
SO K

The inclusion of shading and a mesh are usually great assets in understanding the form of a surface.
On some vector graphics output devices, however, you may not be able to get shading. You should
also realize that when shading is included, it may take a long time to render the surface on your

output device.

To add an extra element of realism to three-dimensional graphics, Mathematica by default colors
three-dimensional surfaces using a simulated lighting model. In the default case, Mathematica assumes
that there are three light sources shining on the object from the upper right of the picture. Section
2.10.12 describes how you can set up other light sources, and how you can specify the reflection

properties of an object.

While in most cases, particularly with color output devices, simulated lighting is an asset, it can
sometimes be confusing. If you set the option Lighting -> False, then Mathematica will not use

simulated lighting, but will instead shade all surfaces with gray levels determined by their height.

P1lot3D usually colors surfaces using a
simulated lighting model.

In[10]:= Plot3D[Sin[x y], {x, 0, 3}, {y, 0, 3}]

N\,
LN]
K]

N/

L1772
Yy,

" ..h 2
T 'v:'.

156 1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

Lighting -> False switches off the In[11]:= Show[%, Lighting -> False]
simulated lighting, and instead shades
surfaces with gray levels determined
by height.

With Lighting -> False, Mathematica shades surfaces according to height. You can also tell Mathe-
matica explicitly how to shade each element of a surface. This allows you effectively to use shading
to display an extra coordinate at each point on your surface.

Plot3D[{f, GrayLevellsl}, {x, xmin, xmax}, {y, ymin, ymax}]
plot a surface corresponding to f, shaded in gray according

to the function s

Plot3D[{f, Huels1}, {x, xmin, xmax}, {y, ymin, ymax}]
shade by varying color hue rather than gray level

Specifying shading functions for surfaces.

This shows a surface whose height is In[12]:= Plot3D[{Sin[x y], GrayLevell[x/31},
determined by the function Sin[x y]I, {x, 0, 3}, {y, 0, 3}]
but whose shading is determined by
GrayLevel[x/3].

1.9.7 Converting between Types of Graphics 157

H 1.9.7 Converting between Types of Graphics

Contour, density and surface plots are three different ways to display essentially the same information
about a function. In all cases, you need the values of a function at a grid of points.

The Mathematica functions ContourPlot, DensityPlot and Plot3D all produce Mathematica graph-
ics objects that include a list of the values of your function on a grid. As a result, having used any
one of these functions, Mathematica can easily take its output and use it to produce another type of
graphics.

Here is a surface plot. In[1]:= Plot3D[BesselJ[nu, 3x], {nu, 0, 3}, {x, 0, 3}]

This converts the object produced by In[2]:= Show[ContourGraphics[% 1]
P1lot3D into a contour plot.

158 1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

Show[ContourGraphics[g]l] convert to a contour plot
Show[DensityGraphics[¢g]] convert to a density plot
Show[SurfaceGraphics[g]] convert to a surface plot

Show[Graphics[g]] convert to a two-dimensional image

Conversions between types of graphics.

You can use GraphicsArray to show In[3]:= Showl[GraphicsArray[{%, %%} 11
different types of graphics together.

H 1.9.8 Plotting Lists of Data

So far, we have discussed how you can use Mathematica to make plots of functions. You give Mathe-
matica a function, and it builds up a curve or surface by evaluating the function at many different
points.

This section describes how you can make plots from lists of data, instead of functions. (Section
1.11.3 discusses how to read data from external files and programs.) The Mathematica commands for
plotting lists of data are direct analogs of the ones discussed above for plotting functions.

1.9.8 Plotting Lists of Data 159

ListPlot[{y,, v,, ... }1 plotyy, ¥, ... at x values 1, 2, ...

ListPlot[{{x;, y;}, {x2, y,}, ... }]
plot points (x1,Yy1), ...

ListPlot[list, PlotJoined -> Truel
join the points with lines

ListPlot3D[{{z11, z12, --- }, {201, 202, ... }, ... }]
make a three-dimensional plot of the array of heights z,,

ListContourPlot[array]l make a contour plot from an array of heights

ListDensityPlot[array] make a density plot

Functions for plotting lists of data.

Here is a list of values. In[1]:= t = Table[i~2, {i, 10}]
out[1]= {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

This plots the values. In[2]:= ListPlot[t]

100
80
60
40

20

This joins the points with lines. In[3]:= ListPlot[t, PlotJoined -> Truel

100
80
60
40

20

160

1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

This gives a list of x, y pairs.

This plots the points.

This gives a rectangular array of
values. The array is quite large, so we
end the input with a semicolon to stop
the result from being printed out.

This makes a three-dimensional plot of
the array of values.

In[4]:= Table[{i~2, 4 i~2 + i~3}, {i, 10}]
Out[4]= {{1, 5}, {4, 24}, {9, 63}, {16, 128},

{25, 225}, {36, 360}, {49, 539},
{64, 768}, {81, 1053}, {100, 1400}}

In[5]:= ListPlot[%]

1400
1200
1000
800
600
400

200

20 40 60 80 100

In[6]:= t3 = Table[Mod[x, y], {y, 20}, {x, 30}] ;

In[7]:= ListPlot3D[t3]

1.9.9 Parametric Plots 161

You can redraw the plot using Show, as In[8]:= Show[%, ViewPoint -> {1.5, -0.5, 0}]
usual.

This gives a density plot of the array In[9]:= ListDensityPlot[t3]
of values.

Ml 1.9.9 Parametric Plots

Section 1.9.1 described how to plot curves in Mathematica in which you give the y coordinate of each
point as a function of the x coordinate. You can also use Mathematica to make parametric plots. In a

parametric plot, you give both the x and y coordinates of each point as a function of a third parameter,
say t.

162 1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

ParametricPlot[{f,, fy}, {t, tmin, tmax}]
make a parametric plot

ParametricPlot[{{f,, f }, {8, &}, ... }, {t, tmin, tmax}]
plot several parametric curves together

ParametricPlot[{f,, fy}’ {t, tmin, tmax}, AspectRatio -> Automatic]
attempt to preserve the shapes of curves

Functions for generating parametric plots.

Here is the curve made by taking the x In[1]:= ParametricPlot[{Sin[t], Sin[2t]}, {t, 0, 2Pi}]
coordinate of each point to be Sin[t]
and the y coordinate to be Sin[2t].

The “shape” of the curve produced In[2]:= ParametricPlot[{Sin[t], Cos[t]}, {t, 0, 2Pi}]
depends on the ratio of height to
width for the whole plot.

1.9.9 Parametric Plots 163

Setting the option AspectRatio to In[3]:= Show[%, AspectRatio -> Automatic]
Automatic makes Mathematica preserve
the “true shape” of the curve, as
defined by the actual coordinate values
it involves.

ParametricPlot3D[{f,, fy, f.}, {t, tmin, tmax}]
make a parametric plot of a three-dimensional curve

ParametricPlot3D[{f,, fy, .}, {t, tmin, tmax}, {u, umin, umax}]
make a parametric plot of a three-dimensional surface

ParametricPlot3D[{f,, fy, foo 8}, ... 1
shade the parts of the parametric plot according to the
function s

ParametricPlot3D[{{f,, f,, f.}, {g,, 8y 2 O
plot several objects together

Three-dimensional parametric plots.

ParametricPlot3D[{f,, f,, f,}, {t, tmin, tmax}] is the direct analog in three dimensions of
ParametricPlot[{f,, fy}, {t, tmin, tmax}] in two dimensions. In both cases, Mathematica effectively
generates a sequence of points by varying the parameter f, then forms a curve by joining these
points. With ParametricPlot, the curve is in two dimensions; with ParametricPlot3D, it is in three
dimensions.

164 1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

This makes a parametric plot of a In[4]:= ParametricPlot3D[{Sin[t], Cos[t], t/3}, {t, 0, 15}]
helical curve. Varying t produces
circular motion in the x, y plane, and
linear motion in the z direction.

ParametricPlot3D[{f,, fy, f.}, {t, tmin, tmax}, {u, umin, umax}] creates a surface, rather than
a curve. The surface is formed from a collection of quadrilaterals. The corners of the quadrilaterals
have coordinates corresponding to the values of the f; when t and u take on values in a regular grid.

Here the x and y coordinates for the In[5]:= ParametricPlot3D[{t, u, Sin[t ul},
quadrilaterals are given simply by t {t, 0, 3}, {u, 0, 3}]
and u. The result is a surface plot of
the kind that can be produced by
Plot3D.

1.9.9 Parametric Plots 165

This shows the same surface as before, In[6]:= ParametricPlot3D[{t, u~2, Sin[t ul},
but with the y coordinates distorted by {t, 0, 3}, {u, 0, 3}]
a quadratic transformation.

This produces a helicoid surface by In[7]:= ParametricPlot3D[{u Sin[t], u Cos[t], t/3},
taking the helical curve shown above, {t, 0, 15}, {u, -1, 1}]
and at each section of the curve

drawing a quadrilateral.

In general, it is possible to construct many complicated surfaces using ParametricPlot3D. In each
case, you can think of the surfaces as being formed by “distorting” or “rolling up” the ¢, u coordinate
grid in a certain way.

166 1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

This produces a cylinder. Varying the In[8]:= ParametricPlot3D[{Sin[t], Cos[t], u},
t parameter yields a circle in the x, y {t, 0, 2Pi}, {u, 0, 4}]
plane, while varying u moves the
circles in the z direction.

SR

SN SSSSNN Y

A\

2%

AAAARRRY
NI

ALY

N

NN

This produces a torus. Varying u In[9]:= ParametricPlot3D[
{Cos[t] (3 + Cos[ul), Sin[t] (3 + Cos[ul), Sin[ul},

yields a circle, while varying t rotates
the circle around the z axis to form the {t, 0, 2Pi}, {u, 0, 2Pi}]

torus.

1.9.10 Some Special Plots 167

This produces a sphere. In[10]:= ParametricPlot3D[
{Cos[t] Cos[ul, Sin[t] Cos[u], Sin[ul},
{t, 0, 2Pi}, {u, -Pi/2, Pi/2}]

You should realize that when you draw surfaces with ParametricPlot3D, the exact choice of
parametrization is often crucial. You should be careful, for example, to avoid parametrizations in
which all or part of your surface is covered more than once. Such multiple coverings often lead
to discontinuities in the mesh drawn on the surface, and may make ParametricPlot3D take much
longer to render the surface.

M 1.9.10 Some Special Plots

As discussed in Section 2.10, Mathematica includes a full graphics programming language. In this
language, you can set up many different kinds of plots. A few of the common ones are included in
standard Mathematica packages.

168 1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

<<Graphics‘ load a package to set up additional graphics functions

LogPlot[f, {x, xmin, xmax}] generate a log-linear plot

LogLogPlotlf, {x, xmin, xmax}]
generate a log-log plot

LogListPlot[list] generate a log-linear plot from a list of data
LogLogListPlot[list] generate a log-log plot from a list of data
PolarPlot[r, {t, tmin, tmax}] generate a polar plot of the radius r as a function of angle ¢

ErrorListPlot[{{x;, v, dy,}, ... }]
generate a plot of data with error bars

TextListPlot[{{x, y,, "si"}, ... }]
plot a list of data with each point given by the text string s;

BarChart[list] plot a list of data as a bar chart
PieChart[list] plot a list of data as a pie chart

PlotVectorField[{f,, fy}, {x, xmin, xmax}, {y, ymin, ymax}]
plot the vector field corresponding to the vector function f

ListPlotVectorField[list] plot the vector field corresponding to the two-dimensional
array of vectors in [ist

SphericalPlot3D[r, {theta, min, max}, {phi, min, max}]
generate a three-dimensional spherical plot

Some special plotting functions defined in standard Mathematica packages.

This loads a standard Mathematica In[1]:= <<Graphics"
package to set up additional graphics
functions.

This generates a log-linear plot. In[2]:= LogPlot[Exp[-x] + 4 Exp[-2x], {x, 0, 6}]

1.9.10 Some Special Plots

169

Here is a list of the first 10 primes.

This plots the primes using the integers
1, 2,3, ... as plotting symbols.

Here is a bar chart of the primes.

This gives a pie chart.

In[3]:= p = Table[Prime[n], {n, 10}]
Out[3]= {2, 3,5, 7, 11, 13, 17, 19, 23, 29}

In[4]:= TextListPlot[p]

In[5]:= BarChart[p]

In[6]:= PieChart[p]

=

170 1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

H 1.9.11 Special Topic: Animated Graphics

On many computer systems, Mathematica can produce not only static images, but also animated
graphics or “movies”.

The basic idea in all cases is to generate a sequence of “frames” which can be displayed in rapid
succession. You can use the standard Mathematica graphics functions described above to produce each
frame. The mechanism for displaying the frames as a movie depends on the Mathematica interface you
are using. With a notebook-based interface, you typically put the frames in a sequence of cells, then
select the cells and choose a command to animate them. With text-based interfaces, there is often an
external program provided for displaying animated graphics. The program can typically be accessed
from inside Mathematica using the function Animate.

<<Graphics‘Animation® load the animation package (if necessary)

Animatelplot, {t, tmin, tmax}] execute the graphics command plot for a sequence of values
of t, and animate the resulting sequence of frames

ShowAnimation[{g,, g,, ... }] produce an animation from a sequence of graphics objects

Typical ways to produce animated graphics.

When you produce a sequence of frames for a movie, it is important that different frames be
consistent. Thus, for example, you should typically give an explicit setting for the PlotRange option,
rather than using the default Automatic setting, in order to ensure that the scales used in different
frames are the same. If you have three-dimensional graphics with different view points, you should
similarly set SphericalRegion -> True in order to ensure that the scaling of different plots is the
same.

This generates a list of graphics objects. In[1]:= Table[Plot3D[BesselJ[0, Sqrt[x~2 + y~2] + t],

Setting DisplayFunction -> Identity {x, -10, 10}, {y, -10, 10}, Axes -> False,
stops P1lot3D from rendering the PlotRange -> {-0.5, 1.0},

graphics it produces. Explicitly setting DisplayFunction -> Identity 1,

PlotRange ensures that the scale is the {t, 0, 8} 1 // Short

same in each piece of graphics. Out[1]//Short= {-SurfaceGraphics-, <<7>, -SurfaceGraphics-}

1.9.12 Sound 171

On an appropriate computer system, In[2]:= Show[GraphicsArray[Partition[%, 3]]]
ShowAnimation[%] would animate the
graphics. This partitions the graphics
into three rows, and shows the
resulting array of images.

Ml 1.9.12 Sound

On most computer systems, Mathematica can produce not only graphics but also sound. Mathematica
treats graphics and sound in a closely analogous way.

For example, just as you can use Plot[f, {x, xmin, xmax}] to plot a function, so also you can
use Playl[f, {¢, 0, tmax}] to “play” a function. Play takes the function to define the waveform for
a sound: the values of the function give the amplitude of the sound as a function of time.

Playlf, {t, 0, tmax}] play a sound with amplitude f as a function of time f in
seconds

Playing a function.

On a suitable computer system, this In[1]:= Play[Sin[2Pi 440 t], {t, 0, 1}]
plays a pure tone with a frequency of Out[17= -Sound-
440 hertz for one second. utl1]= ~Soun

Sounds produced by Play can have any waveform. They do not, for example, have to consist of
a collection of harmonic pieces. In general, the amplitude function you give to Play specifies the
instantaneous signal associated with the sound. This signal is typically converted to a voltage, and
ultimately to a displacement. Note that amplitude is sometimes defined to be the peak signal associated
with a sound; in Mathematica, it is always the instantaneous signal as a function of time.

This plays a more complex sound. In[2]:= Play[Sin[700 t + 25 t Sin[350 t]], {t, 0, 4}]
Out[2]= -Sound-

172 1. A Practical Introduction to Mathematica « 1.9 Graphics and Sound

Play is set up so that the time variable that appears in it is always measured in absolute seconds.
When a sound is actually played, its amplitude is sampled a certain number of times every second.
You can specify the sample rate by setting the option SampleRate.

Play[f, {t, 0, tmax}, SampleRate -> r]
play a sound, sampling it r times a second

Specifying the sample rate for a sound.

In general, the higher the sample rate, the better high-frequency components in the sound will be
rendered. A sample rate of r typically allows frequencies up to r/2 hertz. The human auditory system
can typically perceive sounds in the frequency range 20 to 22000 hertz (depending somewhat on age
and sex). The fundamental frequencies for the 88 notes on a piano range from 27.5 to 4096 hertz.

The standard sample rate used for compact disc players is 44100. The effective sample rate in a
typical telephone system is around 8000. On most computer systems, the default sample rate used by
Mathematica is around 8000.

You can use Play[{f,, f,}, ...] to produce stereo sound. In general, Mathematica supports any
number of sound channels.

ListPlay[{a;, ap, ... }, SampleRate -> r]
play a sound with a sequence of amplitude levels

Playing sampled sounds.

The function ListPlay allows you simply to give a list of values which are taken to be sound
amplitudes sampled at a certain rate.

When sounds are actually rendered by Mathematica, only a certain range of amplitudes is allowed.
The option PlayRange in Play and ListPlay specifies how the amplitudes you give should be scaled
to fit in the allowed range. The settings for this option are analogous to those for the PlotRange
graphics option discussed on page 137.

PlayRange -> Automatic (default) use an internal procedure to scale amplitudes
PlayRange -> A1l scale so that all amplitudes fit in the allowed range

PlayRange -> {amin, amax} make amplitudes between amin and amax fit in the
allowed range, and clip others

Specifying the scaling of sound amplitudes.

1.9.12 Sound 173

While it is often convenient to use the default setting PlayRange -> Automatic, you should realize
that Play may run significantly faster if you give an explicit PlayRange specification, so it does not
have to derive one.

Show[sound] replay a sound object

Replaying a sound object.

Both Play and ListPlay return Sound objects which contain procedures for synthesizing sounds.
You can replay a particular Sound object using the function Show that is also used for redisplaying
graphics.

The internal structure of Sound objects is discussed in Section 2.10.18.

174 1. A Practical Introduction to Mathematica « 1.10 Input and Output in Notebooks

1.10 Input and Output in Notebooks

H 1.10.1 Entering Greek Letters

click on @ wuse a button in a palette

\[Alpha] wuse a full name
[clafest] or [EClalphalest) use a standard alias (shown below as :za:)
[Bt\alphalet] use a TgX alias
[E&agr(est] — use an SGML alias

Ways to enter Greek letters in a notebook.

Here is a palette for entering common

Greek letters. ﬂﬂﬁﬂﬂgﬂ
CEEEEEE
plolz| o] x| ¥] o]
BEEEEEE
EEEEEEE

You can use Greek letters just like the In[1]:= Expand[(a + B)»3]

ordinary letters that you type on your _ 3 2 2, 3

keyboard. Out[1]= a°+3a“ B+3af*+f

There are several ways to enter Greek In[2]:= Expand[(\[Alpha] + \[Beta])~3]

letters. This input uses full names. Out[2]= a® +30 B+3af? + 63

1.10.1 Entering Greek Letters

175

full name aliases full name aliases
@ \[Alpha] :a:, zalpha: I' \[CapitalGamma] :G:, :Gamma:
,8 \[Beta] :b:z, :beta: A \[CapitalDeltal] D:, :Delta:
v \[Gamma] :g:, -gamma: ® \[CapitalTheta] :Q:, :Th:, :Theta:
0 \[Delta] d:, :delta: A \[CapitalLambda] L:, :Lambda:
€ \[Epsilon] :e:, zepsilon: IT \[CapitalPi] Pz, :Pi:
{ \[Zetal :z:, zeta: Y \[CapitalSigma] :S:, :Sigma:
n \[Etal th:, zet:, zeta: Y \[CapitalUpsilon] :U:, :Upsilon:
0 \[Thetal :qz, :th:, :theta: ® \[CapitalPhi] :F:, :Ph:, :Phi:
K \[Kappal :k:, :kappa: X \[CapitalChil :Cz, :Ch:z, =Chi:
A \[Lambda] :1:, :lambda: ¥ \[CapitalPsi] :Y:, :Ps:, :Psi:
M \[Mu] Im:z, Imu: () \[CapitalOmegal :0:z, :W:, :Omega:
vV \[Nul in:, :nu:
& \[xi] :x:, 1xi:
m \[Pil ip:, :pi:
P \[Rho] :r:, :rho:
o \[Sigmal :s:, :sigma:
T \[Taul :t:, stau:
¢ \[Phil :f:, :ph:, :phi:
@ \[CurlyPhi] :j:, :cph:, :cphi:
X \[Chi] :c:, :ch:, :chi:
¥ \[Psil :y:, :ps:, :psi:
@ \[Omegal t0:, :w:, omega:

Commonly used Greek letters. In aliases :

stands for the key [t. TpX aliases are not listed explicitly.

Note that in Mathematica the letter m stands for Pi. None of the other Greek letters have special

meanings.

7 stands for Pi.

You can use Greek letters either on
their own or with other letters.

The symbol ra is not related to the

symbol .

In[3]:= N[x]
Out[3]= 3.14159

In[4]:= Expand[(RaB + E)~4]

Out[4]= RaB* +4RaB’ Z+6Raf’ 52 + 4RaBE3 + 54

In[5]:= Factor[rar4 - 1]

Out[5]= (-1+na) (1+na) (1+na?)

176 1. A Practical Introduction to Mathematica « 1.10 Input and Output in Notebooks

H 1.10.2 Entering Two-Dimensional Input

When Mathematica reads the text x*y, it In[1]:= x~y
interprets it as x raised to the power y.

Out[1]= x¥
In a notebook, you can also give the In[2]:= x¥
two-dimensional input x¥ directly. out[2]= ¥
Mathematica again interprets this as a
power.

One way to enter a two-dimensional form such as x¥ into a Mathematica notebook is to copy this
form from a palette by clicking the appropriate button in the palette.

Here is a palette for entering some

imensi i w| W | = |
common two-dimensional notations. o
.

HIRCERLE

There are also several ways to enter two-dimensional forms directly from the keyboard.

x [cmf~| y mf_| use control keys that exist on most keyboards
x [cr}6| y [cmf,_| use control keys that should exist on all keyboards
A\ (x\~y\) followed by Make 2D use only ordinary printable characters

Ways to enter a superscript directly from the keyboard. .| stands for ControL-Spact.

You type ~| by holding down the ConTroL key, then hitting the ~ key. As soon as you do this,
your cursor will jump to a superscript position. You can then type anything you want and it will
appear in that position.

When you have finished, press [rf,_| to move back down from the superscript position. [, |
stands for CONTROL-SPACE; you type it by holding down the CoNTrOL key, then pressing the space bar.

This sequence of keystrokes enters xV . In[3]:= x [mH~] y
Out[3]= %Y
Here the whole expression y+z is in In[4]:= x [RH~] y + z

the superscript. Out[4]= x**

Pressing [}, | (CONTROL-SPACE) takes In[5]:=x Ca¥~] y Tad] + =z
you down from the superscript. Out[5]= ¥ +z

You can remember the fact that [w{~| gives you a superscript by thinking of [®m{~| as just a
more immediate form of ~. When you type x~y, Mathematica will leave this one-dimensional form

1.10.2 Entering Two-Dimensional Input 177

unchanged until you explicitly process it. But if you type x [c®i~| y then Mathematica will immediately
give you a superscript.

On a standard English-language keyboard, the character ~ appears as the shifted version of 6.
Mathematica therefore accepts [®E6| as an alternative to ~]. Note that if you are using something
other than a standard English-language keyboard, Mathematica will almost always accept [®{6| but
may not accept [cR{~].

This is an alternative input form that In[6]:= \'"\(x * y \)
avoids the use of control characters. Out[6]= %7
With this input form, Mathematica In[7]:=\"\(x\~y+2z\)

automatically understands that the + z

. . Out[7]= x¥ +z
does not go in the superscript.

Using control characters minimizes the number of keystrokes that you need to type in order to
enter a superscript. But particularly if you want to save your input in a file, or send it to another
program, it is often more convenient to use a form that does not involve control characters. You can
do this using \! sequences.

If you copy a \! sequence into Mathematica, it will automatically jump into two-dimensional form.
But if you enter the sequence directly from the keyboard, you explicitly need to choose the Make 2D
menu item in order to get the two-dimensional form.

When entered from the keyboard |

\(... \) sequences are shown in literal MMy = 3
form.
Choosing the Make 2D item in the Edit |

X +z j

menu converts these sequences into
two-dimensional forms.

x mf_| y cmy.|] use control keys that exist on most keyboards
x [cmf-| y cmy.|] use control keys that should exist on all keyboards
\I\(x_y\) followed by Make 2D use only ordinary printable characters

Ways to enter a subscript directly from the keyboard.

Subscripts in Mathematica work very much like superscripts. However, whereas Mathematica auto-
matically interprets x¥ as x raised to the power y, it has no similar interpretation for x,. Instead, it
just treats x, as a purely symbolic object.

This enters y as a subscript. In[8]:=x [mH_] y
Out[8]= xy

178 1. A Practical Introduction to Mathematica « 1.10 Input and Output in Notebooks

Here is another way to enter y as a
subscript.

In[9]:=\'\(x_y\)
Out[9]= xy

x /] y el
\ "\ (x\/y\) followed by Make 2D

use control keys

use only ordinary printable characters

Ways to enter a built-up fraction directly from the keyboard.

This enters the built-up fraction §

Here the whole y + z goes into the
denominator.

But pressing CONTROL-SPACE takes you
out of the denominator, so the + z
does not appear in the denominator.

Mathematica automatically interprets a
built-up fraction as a division.

Here is another way to enter a built-up
fraction.

In[10]:= x [w{/] y
out[10]= —
y
In[11]:=x R{/] y + =

Out[11]=

+z

In[12]:= x [wf/] y wf_] + z

x
Out[12]= ? +z

8888
In[13]:= ——

2222
Out[13]= 4

In[14]:= \'\(8888 \/ 2222 \)
Out[14]= 4

CTRL @} X J
2| x [cwf |

\1\(\ex\) followed by Make 2D

use control keys that exist on most keyboards
use control keys that should exist on all keyboards

use only ordinary printable characters

Ways to enter a square root directly from the keyboard.

This enters a square root.

CONTROL-SPACE takes you out of the
square root.

Here is a form without control
characters.

In[15]:= [mHe] x + y

Out[15]= /x+y

In[16]:= [mfe] x [mf_| + y
Out[16]= \[x +y
In[17]:=\'\(\@ x + y \)
Out[17]= \[x +y

1.10.2 Entering Two-Dimensional Input

179

And here is the usual one-dimensional
Mathematica input that gives the same

output expression.

In[18]:= Sqrtlx] + y
Out[18]= [x +y

or [CTRL 6}
or [cm-]
or [cw2]
or [CTRL 5}

ey /|

go to the superscript position
go to the subscript position
go into a square root

go from subscript to superscript or vice versa, or to the
exponent position in a root

go to the denominator for a fraction

.|

return from a special position (CONTROL-SPACE)

Special input forms based on control characters.

This puts both a subscript and a

superscript on x.

Here is another way to enter the same

expression.

The second forms given should work on any keyboard.
In[19]:= x [wH~| y [cwf%] =z
Out[19]= x

In[20]:= x [®f_] z [cwd%]| y
Out[20]= x¥

\I\(C...\) all two-dimensional input and grouping within it
x \~y superscript ¥ within \!\(... \)
x_y subscript x, within \!\(... \)
x\~y \%z subscript and superscript x, within \!\(... \)
\@ x square root yx within \!'\(... \)
x\/y built-up fraction § within \!\(... \)

Special input forms that generate two-dimensional input with the Make 2D menu item.

You must preface the outermost \(

with \!.

In[21]:=\'\(a \/ b+\@c\)+d

a
Out[21]= g+\/?+d

180 1. A Practical Introduction to Mathematica « 1.10 Input and Output in Notebooks

You can use \(and \) to indicate the In[22]:=\!"\(a \/ \(b+\@c\)\) +d
grouping of elements in an expression a

without introducing explicit Out[22]= Je +d

parentheses. b*ve

In addition to subscripts and superscripts, Mathematica also supports the notion of underscripts
and overscripts—elements that go directly underneath or above. Among other things, you can use
underscripts and overscripts to enter the limits of sums and products.

x [mH+] y cmK_] or x [mH=] y mH_.| create an underscript x
y
\ 1\ (x\+y\) followed by Make 2D create an underscript x
y
x [mi&| y cmi| or x mH7| y CRH.| create an overscript X
\ '\ (x\&y\) followed by Make 2D create an overscript X

Creating underscripts and overscripts.

H 1.10.3 Editing and Evaluating Two-Dimensional Expressions

When you see a two-dimensional expression on the screen, you can edit it much as you would edit
text. You can for example place your cursor somewhere and start typing. Or you can select a part of
the expression, then remove it using the DELETE key, or insert a new version by typing it in.

In addition to ordinary text editing features, there are some keys that you can use to move around
in two-dimensional expressions.

.| select the next larger subexpression
tRE_] move to the right of the current structure
— move to the next character

< move to the previous character

Ways to move around in two-dimensional expressions.

1.10.3 Editing and Evaluating Two-Dimensional Expressions 181

This shows the sequence of

subexpressions selected by repeatedly hecTan[5] Logl-14x] Logli+x+x] | Logl-1tx+x+x’]
typing [. |. ' s ’ ?
ArcTaﬂ[%J Logl-1+x] Log[i+x+x2] Logl-1+x+x2+x%]
- NG * 3 - 6 * 9

12
AreTan[*ZE] [oo(142 Logli+x+x2] Logl-1+x+x2+x’]
- W - +

Ne 3 6 9

"
ArcTan[F2] 10143 Logli+x+x?] Logl-1+x+x +x°]
- . - .

Nel 3 6 9

142
ArcTan[E2] 1og[-14x] Logli+x+x?] | Logl-1+x+x+x°]
L . - .

Ne 3 6 9

12
hrcTen[T] Logl-1+x) lLogli+x+x®] lLogl-i+x+x®+x]

Ne 3 6 9

3 N N [74 B N34 [N |

SHIFT-ENTER ~ evaluate the whole current cell

SHIFT-CONTROL-ENTER or CoMMAND-RETURN evaluate only the selected subexpression

Ways to evaluate two-dimensional expressions.

In most computations, you will want to go from one step to the next by taking the whole expression
that you have generated, and then evaluating it. But if for example you are trying to manipulate a
single formula to put it into a particular form, you may instead find it more convenient to perform a
sequence of operations separately on different parts of the expression.

You do this by selecting each part you want to operate on, then inserting the operation you want
to perform, then using SHIFT-CONTROL-ENTER or COMMAND-RETURN.

Here is an expression with one part

selected {Factor[x* - 1], Factor[x® - 1], Factor[x® - 1], Factor[x’ - 1]} g
Pressing Swirr-CoNTROL-ENTER evaluates

the selected part {Factor[x*-1], (-1+x) (1 +x+x? +x* +x'), Factor[x® - 1], Factor[x’ - 1]} g

182

1. A Practical Introduction to Mathematica « 1.10 Input and Output in Notebooks

-l 1.10.4 Entering Formulas

character short form long form symbol

n Ip: \[Pi] Pi

o0 tinf: \[Infinity] Infinity
° zdeg: \[Degree] Degree

Special forms for some common symbols.

: stands for the key [t

This is equivalent to Sin[60 Degree]. In[1]:= 8in[60°]
Out[1]= ﬁ
2
Here is the long form of the input. In[2]:= 8in[60 \[Degree]l
Out[2]= ﬁ
2
You can enter the same input like this. In[3]:= 8in[60 :deg:]
Out[3]= ﬁ
2
Here the angle is in radians. In[4]:= Sin[-;(-]
Out[4]= ﬁ
2
special characters short form long form ordinary characters
X<y xX:<=:y x \[LessEqual] y x<=y
X2y xX:i>=:y x \[GreaterEqual] y x>=y
xX+yYy x:il=:y x \[NotEqual] y x =y
xXey x:el:y x \[Element] y Element[x, y]
x>y x:i->:y x \[Rule] y x>y

Special forms for a few operators. Pages 1024-1029 give a complete list.

1.10.4 Entering Formulas

183

Here the replacement rule is entered

using two ordinary characters, as ->.

This means exactly the same.

As does this.

Or this.

The special arrow form — is by default

also used for output.

In[5]:=x/(x+1) /. x > 3 +y

3+y
Out[5]= ——
4+y

In[6]:= x/(x+1) /. x \[Rule] 3 + y

Out[6]= 3ty
ut = 4+y

In[7]:=x/(x+1) /. x> 3 +y

3+y
Out[7]= ——
4+y

In[8]:=x/(x+1) /. x:->: 3 +y

3+y
Out[8]= ——
4+y

In[9]:= Solve[x~2 == 1, x]
Out[9]= {{x->-1}, {x>1}}

special characters short form long form ordinary characters
x+y x :div:y x \[Divide]l y x/y
XXy Xik:y x \[Times] y X *y
X xy X :cross:y x \[Cross] y Cross[x, yl
x=y EE=2 Y x \[Equal] y x ==

X =Y x:l=:y x \[LongEquall y x==y
XAy x:&&:y x \[And] y X && y
xVy x:ll:zy x \[Orly x1ly
X lix \[Not] x x
x>y x:i=>:y x \[Implies]y Implies[x, vl
xUy X:iun:y x \[Union] y Union[x, y]
xny X :inter:y x \[Intersection] y Intersection[x, y]
xy X,y x \[InvisibleComma] y X,y
fx f:@:x f\[InvisibleApplication] x fex or fIx]

Some operators with special forms used for input but not output.

184 1. A Practical Introduction to Mathematica « 1.10 Input and Output in Notebooks

Mathematica understands -+, but does In[10]:=x + ¥y

not use it by default for output.
Out[10]=

<

The forms of input discussed so far in this section use special characters, but otherwise just consist of
ordinary one-dimensional lines of text. Mathematica notebooks, however, also make it possible to use
two-dimensional forms of input.

two-dimensional one-dimensional
XY X~y power
x o
= x/y division
y
\x Sqrt[x] square root
Vx x ~ (1/n) n™ root
imax
Z f Sum[f, {i, imin, imax}] sum
i=imin
imax
H f Productlf, {i, imin, imax}] product
i=imin
f fdx Integratelf, x] indefinite integral
max
f fdx Integratelf, {x, xmin, xmax}] definite integral
xmin
I f D[f, x] partial derivative
A,y f D[f, x, y] multivariate partial derivative
expry i 1 Partlexpr, i, j, ...] part extraction

Some two-dimensional forms that can be used in Mathematica notebooks.

You can enter two-dimensional forms using any of the mechanisms discussed on pages 176—
180. Note that upper and lower limits for sums and products must be entered as overscripts and
underscripts—not superscripts and subscripts.

This enters an indefinite integral. Note In[11]:= :int: £[x] :dd: x

the use of :dd: to enter the
“differential d”. Out[11]= f f[x] dx

1.10.4 Entering Formulas

185

Here is an indefinite integral that can

be explicitly evaluated.

Here is the usual Mathematica input for

this integral.

This enters exactly the same integral.

In[12]:= fExp[-x2] dx

1
Out[12]= — A/ Erf[x]

In[13]:= Integrate[Exp[-x~2], x]

Out[13]= % /7 Erf [x]

In[14]:= \'\(\[Integrall] Exp[-x\~2] \[DifferentialD]x \)

1
Out[14]= — /7 Erf[x]

short form long form
Isum: \[Sum] summation sign Y,
:prod: \[Product] product sign []
zint: \[Integrall integral sign f
:dd: \[DifferentialD] special d for use in integrals
ipd: \[PartialD] partial derivative operator 0
=[[:, :=11: \[LeftDoubleBracket], \[RightDoubleBracket]
part brackets

Some special characters used in entering formulas. Section 3.10 gives a complete list.

You should realize that even though a summation sign can look almost identical to a capital sigma
it is treated in a very different way by Mathematica. The point is that a sigma is just a letter; but a
summation sign is an operator which tells Mathematica to perform a Sum operation.

Capital sigma is just a letter.

A summation sign, on the other hand,

is an operator.

Here is another way to enter the same

input.

In[15]:= a + \[CapitalSigma]~2
Out[15]= a+1?

In[16]:= [ssumst) [mi+] n=0 [mf%| m [CwH_] 1/£[n]

i 1

n=0 f[n]

In[17]:= \'"\(\[Sum] \+ \(n=0\) \%m1\/ £[n] \)

!

Out[16]

Out[17]

186 1. A Practical Introduction to Mathematica « 1.10 Input and Output in Notebooks

Much as Mathematica distinguishes between a summation sign and a capital sigma, it also distin-
guishes between an ordinary d and the special “differential d” d that is used in the standard notation
for integrals. It is crucial that you use this differential d—entered as [Et/dd[st—when you type in an
integral. If you try to use an ordinary d, Mathematica will just interpret this as a symbol called d—it
will not understand that you are entering the second part of an integration operator.

This computes the derivative of x". In[18]:= 98,x™
Out[18]= nx '*™

Here is the same derivative specified in In[19]:= D[x*n, x]
ordinary one-dimensional form. Out[19]= nx-t

This computes the third derivative. In[20]:= Oy,x,xX"
Out[20]= (-2+mn) (-1+n) nx 3™

Here is the equivalent one-dimensional In[21]:= D[x*n, x, x, x]

input form. Out[21]= (-2+mn) (-1+n)nx 3™

H 1.10.5 Entering Tables and Matrices

The Mathematica front end typically provides a Create Table/Matrix/Palette menu item which allows you
to create a blank array with any specified number of rows and columns. Once you have such an
array, you can then edit it to fill in whatever elements you want.

a b c
Mathematica treats an array like this as In[1]:=
. . . 1 23
a matrix represented by a list of lists.
Out[1]= {{a, b, c}, {1, 2, 3}}
. a b c
Putting parentheses around the array In[2]:= (12 3)
makes it look more like a matrix, but
does not affect its interpretation. Out[2]= {{a, b, c}, {1, 2, 3}}

. . a b c
Using MatrixForm tells Mathematica to In[3]:= MatrixForm[Transpose[(193)]]
display the result of the Transpose as
a matrix.

a 1
Out[3]//MatrixForm= (b 2 J
c 3

1.10.6 Subscripts, Bars and Other Modifiers 187

,| add a column
d| (ConTrOL-ENTER) add a row
Tap go to the next O or m element

cmf,| (CONTROL-SPACE) move out of the table or matrix

Entering tables and matrices.
Note that you can use [®f,| and [mH<¢!| to start building up an array, and particularly for small
arrays this is often more convenient than using the Create Table/Matrix/Palette menu item.

Page 449 will describe how to adjust many aspects of the appearance of arrays you create in
Mathematica. The Create Table/Matrix/Palette menu item typically allows you to make basic adjustments,
such as drawing lines between rows or columns.

H 1.10.6 Subscripts, Bars and Other Modifiers

Here is a typical palette of modifiers.

Mathematica allows you to use any In[1]:= Expand[(1+ x1+n)4]

expression as a subscript.
P p Out[1]= 144Xy +6%7,, +4x5, +xi,

Unless you specifically tell it otherwise, In[2]:= Factor[x} -1]
Mathematica will interpret a superscript

Out[2]= (-1+x,) (1+x,) (1+x2)
as a power.

188 1. A Practical Introduction to Mathematica « 1.10 Input and Output in Notebooks

or [cmf-

go to the position for a subscript

crj+| or [mH=| go to the position underneath
crf~| or [mH6| go to the position for a superscript
crj&| or [mH7| go to the position on top

crf,_| return from a special position (CONTROL-SPACE)

Special input forms based on control characters. The second forms given should work on any keyboard.

This enters a subscript using control In[3]:= Expand[(1 + x[my_]1+n[mf_]|)~4]
keys. Out[3]= 1+4%q, +6x%,, +4x3, +xt,

Just as ~] and [mH_| go to superscript and subscript positions, so also [w{&| and [cRH=| can be
used to go to positions directly above and below. With the layout of a standard English-language
keyboard [is directly to the right of [cR{~| while [cRH=] is directly to the right of [cw{_].

key sequence displayed form expression form
xR & _ X OverBar[x]
x[RH& | vec: X OverVector[x]
x Ry &] ~ X OverTilde[x]
xRy &)~ b OverHat[x]
x[RH&] . X OverDot[x]
x[omy =] _ X UnderBar[x]
Ways to enter some common modifiers using control keys.
Here is ¥. In[4]:=x [cmi&|_ [mf,_]
Out[4]= X
You can use X as a variable. In[5]:= Solve[ar2 == ¥, a]
ouefs)- {{a> -z}, {2 /2}}

1.10.7 Special Topic: Non-English Characters and Keyboards 189

key sequence displayed form expression form
x_y Xy Subscriptlx, y]
x\+ty X Underscriptlx, vl
Y
x\~y xY Superscript[x, y] (interpreted as

Power[x, yl)

x \&y X Overscript[x, y]
x \&_ X OverBar[x]

x \&\[RightVector] X OverVector[x]

x \&~ X OverTilde[x]

x \&» X OverHat[x]

x \&. X OverDot[x]

x \+_ X UnderBar[x]

Ways to enter modifiers without control keys. All these forms can be used only inside \!\(... \).

H 1.10.7 Special Topic: Non-English Characters and Keyboards

If you enter text in languages other than English, you will typically need to use various additional
accented and other characters. If your computer system is set up in an appropriate way, then you will
often be able to enter such characters directly using standard keys on your keyboard. But however
your system is set up, Mathematica always provides a uniform way to handle such characters.

190 1. A Practical Introduction to Mathematica « 1.10 Input and Output in Notebooks

full name alias full name alias

a \[AGravel SoNE @ \[0Slash] to/:
4 \[ARing] zao: O \[ODoubleDot] to":
4 \[ADoubleDot] :a": U \[UGravel SN
¢ \[CCedilla] ic,: 11 \[UDoubleDot] u":
¢ \[CHacek] tcv: 8 \[sz] :sz:, :sS:
é \[EAcute] ze’: A \[CapitalARing] :Ao:
€ \[EGravel ie': A \[CapitalADoubleDot] :A":
i \[IAcute] 2if: O \[CapitalODoubleDot] :0":
N \[NTildel in~: U \[CapitalUDoubleDot] :U":
O \[OGrave] to':

Some common European characters.

Here is a function whose name In[1]:= Lam\[EAcutellx, y]

involves an accented character. Out[1]= Lamé[x, y]

This is another way to enter the same In[2]:= Lam:e’:[x, y]

input. Out[2]= Lamé[x, yl

You should realize that there is no uniform standard for computer keyboards around the world,
and as a result it is inevitable that some details of what has been said in this chapter may not apply
to your keyboard.

In particular, the identification for example of [m{6| with [mj~| is valid only for keyboards on
which ~ appears as SHIFT-6. On other keyboards, Mathematica uses [®{6| to go to a superscript
position, but not necessarily ~].

Regardless of how your keyboard is set up you can always use palettes or menu items to set up
superscripts and other kinds of notation. And assuming you have some way to enter characters such
as \, you can always give input using full names such as \[Infinity] and textual forms such as

\(x\/y\).

Ml 1.10.8 Other Mathematical Notation

Mathematica supports an extremely wide range of mathematical notation, although often it does not
assign a pre-defined meaning to it. Thus, for example, you can enter an expression such as x & y, but
Mathematica will not initially make any assumption about what you mean by .

Mathematica knows that ® is an In[1]:= {17 & 5, 8 & 3}

operator, but it does not initially assign out[1]= {17@5, 83}
any specific meaning to it. ’

1.10.8 Other Mathematical Notation 191

This gives Mathematica a definition for In[2]:=x_ ® y_ := Mod[x + y, 2]
what the ® operator does.
Now Mathematica can evaluate ® In[3]:={17 & 5, 8 ® 3}
operations. out[3]= {0, 1}
full name alias full name alias
@ \[CirclePlus] zct: —> \[LongRightArrow] 3==52
® \[CircleTimes] tCk: s \[LeftRightArrow] <>
+ \[PlusMinus] T-: T \[UpArrow]
A \[Wedge] N = \[Equilibrium] Zequi:
\% \[Vee] Zv: = \[RightTeel
= \[TildeEquall i~=:) \[Superset] zsup:
~ \[TildeTilde] S N \[SquareIntersection]
~ \[Tilde] i~ € \[Element] zelem:
o< \[Proportionall :prop: ¢ \[NotElement] :lelem:
= \[Congruent] t===: o \[SmallCircle] :sc:
= \[GreaterTilde] >~ \[Therefore]
> \[GreaterGreater] | \[VerticalSeparator] iz
\[Succeeds] I \[VerticalBar] A
\[RightTriangle] \ \[Backslash] :\:
A few of the operators whose input is supported by Mathematica.
Mathematica assigns built-in meanings In[4]:={3 24, 324, 324, 3>4}

to > and >, but not to x or >. Out[4]= {False, False, 324, 3> 4}

There are some forms which look like characters on a standard keyboard, but which are interpreted
in a different way by Mathematica. Thus, for example, \[Backslash] or :\: displays as \ but is not
interpreted in the same way as a \ typed directly on the keyboard.

The \ and ~ characters used here are In[5]:={a :\: b, a :~: b}

different from the \ and ~ you would Out[5]= b b
type directly on a keyboard. ut[6]= {a\b, anb}

Most operators work like ® and go in between their operands. But some operators can go in other
places. Thus, for example, :<: and :>: or \[LeftAngleBracket] and \[RightAngleBracket] are
effectively operators which go around their operand.

The elements of the angle bracket In[6]:= \[LeftAngleBracket] 1 + x \[RightAngleBracket]
operator go around their operand. Out[6]= {1+x>

192 1. A Practical Introduction to Mathematica « 1.10 Input and Output in Notebooks

full name alias full name alias

/ \[ScriptL] :scl: A \[Angstrom] :Ang:
& \[ScriptCapitalE] :scE: fi \[HBar] :hb:
R \[GothicCapitalR] :goR: £ \[Sterling]
Z \[DoubleStruckCapitalz] :dsZ: L \[Angle]
N \[Aleph] =gl e \[Bullet] :bu:
(1) \[EmptySet] tes: T \[Dagger] :dg:
B \[Micro] imi: § \[Naturall

Some additional letters and letter-like forms.

You can use letters and letter-like In[7]:= {R®, \[Angle]ABC}

forms anywhere in symbol names. Out[7]= {RD, LABC}

@ is assumed to be a symbol, and so is In[8]:=a @b

just multiplied by a and b. Out[8]= abd

M 1.10.9 Forms of Input and Output

Mathematica notebooks allow you to give input and get output in a variety of different forms. Typically
the front end provides menu commands for converting cells from one form to another.

InputForm a form that can be typed directly using characters on a
standard keyboard

OutputForm a form for output only that uses just characters on a
standard keyboard

StandardForm a form for input and output that makes use of special
characters and positioning

TraditionalForm a form primarily for output that imitates all aspects of
traditional mathematical notation

Forms of input and output.

The input here works in both In[1]:= x72 + y~2/z

InputForm and StandardForm.)

M

OQut[1]= %%+ *—
z

1.10.9 Forms of Input and Output 193

2
Here is a version of the input Inf2]:= x*+ -

appropriate for StandardForm. z

y2

Out[2]= %%+ -
z

InputForm is the most general form of input for Mathematica: it works whether you are using a
notebook interface or a text-based interface.

With a notebook interface, output is by In[3]:= Sqrt[x] + 1/(2 + Sqrtlyl)
default produced in StandardForm. 1

244y

With a text-based interface, OutputForm In[4]:= Sqrtlx] + 1/(2 + Sqrtly]) // OutputForm
is used instead.

Out[3]= \x +

Out[4]1//0OutputForm= Sqrt[x] + ———
2 + Sqrtlyl

With a notebook interface, the default form for both input and output is StandardForm.

The basic idea of StandardForm is to provide a precise but elegant representation of Mathematica
expressions, making use of special characters, two-dimensional positioning, and so on.

1
Both input and output are given here In[5]:= f ——dx
in StandardForm. (x3 +1)

-142x
ArcTan[75] 1 1)
Out[5]= + —Log[1+x] - —Logll -x+x°]
NG 3 6
ArcTan[ﬂ
. NG Log[1+x] Logll-x+x2]
An important feature of StandardForm In[6]:= + -
is that any output you get in this form V3 8 6
ou can also directl e as input. -
you irectly use as inpu ArcTan| i/?x]) .
Out[6]= + —Log[l+x] - —Log[l - x+x*]
NG 3 6

The precise nature of StandardForm prevents it from following all of the somewhat haphazard con-
ventions of traditional mathematical notation. Mathematica however also supports TraditionalForm,
which uses a large collection of rules to give a rather complete rendition of traditional mathematical
notation.

TraditionalForm uses lower-case In[7]:= f—-—-—-{-—— dx // TraditionalForm

names for functions, and puts their &2 +1)

arguments in parentheses rather than tan 2x-1 { 1

square brackets. Out[7]//TraditionalForm= T\E +3 log(x+ 1) - 3 log(x® —x+1)
Here are a few transformations made In[8]:= {Abs[x], ArcTan[x], BesselJ[0, x], Binomialli, jl} //

by TraditionalForm. TraditionalForm

Out[8]//TraditionalForm= {|x|, tan~! (x), Jo (x), (;)}

194 1. A Practical Introduction to Mathematica « 1.10 Input and Output in Notebooks

TraditionalForm is often useful for generating output that can be inserted directly into documents
which use traditional mathematical notation. But you should understand that TraditionalForm is
intended primarily for output: it does not have the kind of precision that is needed to provide reliable
input to Mathematica.

Thus, for example, in TraditionalForm, Ci(x) is the representation for both Ci[x] and
CosIntegrallx], so if this form appears on its own as input, Mathematica will have no idea which of
the two interpretations is the correct one.

In StandardForm, these three In[9]:= { Ci[1+x], CosIntegral[1+x], Ci(1+x) } // StandardForm
exPressmns are all .dlsplaYEd ma Out[9]//StandardForm= {Ci[1+x], CosIntegrall[l+x], Ci (1+x)}
unique and unambiguous way.
In TraditionalForm, however, the first In[10]:= { Ci[1+x], CosIntegral[i1+x], Ci(1+x) } // TraditionalForm

two are impossible to distinguish, and 0ut[107//TraditionalForm= (Ci 1. Citx + 1). Ci |
the third differs only in the presence of ut[10]//TraditionalForn= {Ci(x+ 1), CiCe+1), Citx+ D)

an extra space.

The ambiguities of TraditionalForm make it in general unsuitable for specifying input to the
Mathematica kernel. But at least for sufficiently simple cases, Mathematica does include various heuris-
tic rules for trying to interpret TraditionalForm expressions as Mathematica input.

Cells intended for input to the kernel
are assumed by default to contain Imfile e (\/;+i)+r I W
StandardForm expressions. *

out[1]= c(%*—'\/;)*-xl" j

Here the front end was specifically told

that input would be given in Inf17:= c[‘/;+l]+.-(,,) g}
TraditionalForm. The cell bracket has *

a jagged line to indicate the difficulties out[1]= c[%**l?] + Gamma [x] ﬂ
involved.

m The input is a copy or simple edit of previous output.
m The input has been converted from StandardForm, perhaps with simple edits.
m The input contains explicit hidden information giving its interpretation.

m The input contains only the simplest and most familiar notations.

Some situations in which TraditionalForm input can be expected to work.

Whenever Mathematica generates an expression in TraditionalForm, it automatically inserts various
hidden tags so that the expression can later be interpreted unambiguously if it is given as input. And

1.10.9 Forms of Input and Output 195

even if you edit the expression, the tags will often be left sufficiently undisturbed that unambiguous
interpretation will still be possible.

This generates output in In[11]:= ExplI Pi x] // TraditionalForm

TraditionalForm. ;
Out[11]//TraditionalForm= ¢'™*

Mathematica was told to expect In[12]:= €"* // StandardForm
TraditionalForm input here. The
input was copied from the previous
output line, and thus contains hidden
tags that ensure the correct
interpretation.

Out[12]//StandardForm= e'”*

Simple editing often does not disturb In[13]:= €*i™* [/ StandardForm

the hidden tags. Out[13]//StandardForm= @?%7*

If you enter a TraditionalForm expression from scratch, or import it from outside Mathematica,
then Mathematica will still do its best to guess what the expression means. When there are ambiguities,
what it typically does is to assume that you are using notation in whatever way is more common in
elementary mathematical applications.

dy (x)

In TraditionalForm input, this is In[14]:=
interpreted as a derivative.

// StandardForm

Out[14]//StandardForm= y' [x]

This is interpreted as an arc tangent. In[15]:= tan™"(x) // StandardForm
Out[15]//StandardForm= ArcTan[x]

This is interpreted as the square of a In[16]:= tan’(x) // StandardForm

tangent.
& Out[16]//StandardForm= Tan[x] 2

There is no particularly standard In[17]:= tan~2(x) // StandardForm
traditional interpretation for this;
Mathematica assumes that it is
1/Tan[x]"2.

Out[17]//StandardForm= Cot[x] 2

You should realize that TraditionalForm does not provide any kind of precise or complete way of
specifying Mathematica expressions. Nevertheless, for some elementary purposes it may be sufficient,
particularly if you use a few additional tricks.

196 1. A Practical Introduction to Mathematica « 1.10 Input and Output in Notebooks

Use x(y) for functions; x () for multiplication
m Use :ee: for the exponential constant E
m Use:ii: or:jj: for the imaginary unit I

m Use :dd: for differential operators in integrals and derivatives

A few tricks for TraditionalForm input.

With a space £ (1 + x) is interpreted In[18]:= f(1+x)+ g1+ x)//StandardForm
as multiplication. Without a space, Out[18]//StandardForm= £ (1+x) +g[1+x]
g(1 + x) is interpreted as a function.

The ordinary e is interpreted as a In[19]:= {37, €*"} // StandardForm

symbol e. The special "exponential &, 1157/ /6t andardForn= {637, 40.4473}
entered as :ee:, is interpreted as the

exponential constant.

H 1.10.10 Mixing Text and Formulas

The simplest way to mix text and formulas in a Mathematica notebook is to put each kind of material
in a separate cell. Sometimes, however, you may want to embed a formula within a cell of text, or
vice versa.

cmK (] or [mf9] begin entering a formula within text, or text within a
formula

cmK)| or [mf0| end entering a formula within text, or text within a formula

Entering a formula within text, or vice versa.

Here is a notebook with formulas
embEdded in a text Cell' This is a text cell, but it can contain formulas such as f\lT dx or — “’g“++” - mn(?v) + M The formulas]

3 3
flow with the text.

Mathematica notebooks often contain both formulas that are intended for actual evaluation by
Mathematica, and ones that are intended just to be read in a more passive way.

When you insert a formula in text, you can use the Convert to StandardForm and Convert to
TraditionalForm menu items within the formula to convert it to StandardForm or TraditionalForm.
StandardForm is normally appropriate whenever the formula is thought of as a Mathematica program
fragment.

1.10.11 Displaying and Printing Mathematica Notebooks 197

In general, however, you can use exactly the same mechanisms for entering formulas, whether or
not they will ultimately be given as Mathematica input.

You should realize, however, that to make the detailed typography of typical formulas look as good
as possible, Mathematica automatically does things such as inserting spaces around certain operators.
But these kinds of adjustments can potentially be inappropriate if you use notation in very different
ways from the ones Mathematica is expecting.

In such cases, you may have to make detailed typographical adjustments by hand, using the
mechanisms discussed on page 449.

H 1.10.11 Displaying and Printing Mathematica Notebooks

Depending on the purpose for which you are using a Mathematica notebook, you may want to change
its overall appearance. The front end allows you to specify independently the styles to be used for
display on the screen and for printing. Typically you can do this by choosing appropriate items in the
Format menu.

ScreenStyleEnvironment styles to be used for screen display

PrintingStyleEnvironment styles to be used for printed output

Working standard style definitions for screen display
Presentation style definitions for presentations
Condensed style definitions for high display density

Printout style definitions for printed output

Front end settings that define the global appearance of a notebook.

Here is a typical notebook as it appears
in working form on the screen. m A Symbolic Sum

Here is the input:

P
{n(m+a)?

Here is the output:

(615 +1435m+1090m® +332m°® + 35m* - 7272 - 150mn® - 105m? n* - 30m® 22 - 3m* 7) /
PolyGamma[1, 5+m]

(72 (1+m) (2+m) (3+m) (4+m)) + 7

L4 Lw oL A Lw L

198 1. A Practical Introduction to Mathematica « 1.10 Input and Output in Notebooks

Here is the same notebook with
condensed styles. m A Symbolic Sum

Here is the input:

Z +4)?
n(n+4)
=1

Here is the output:

615+1435m+1090m? +332m® + 35m* - 7272 - 150mx? - 105w 2 - 30w® n2 - 3m* x? . PolyGamma[1, 5+m]
72(1+m) (2+m) (3+m) (4+m) 4

2 T Y Ny T

Here is a preview of how the notebook
would appear when printed out. m A Symbolic Sum

Here is the input:

>
£ onm+a)’

Here is the output:

615+1435m+ 1090 m? + 332m® + 35m* - 7272 - 150 m x® - 105m? n% - 30w n2 - 3m* n .
72(1+m) (2+m) (3+m) (4+m)

PolyGammal[1, 5+m]
4

T T O Y[N

M 1.10.12 Creating Your Own Palettes

The Mathematica notebook front end comes with a collection of standard palettes. But it also allows
you to create your own palettes.

m Set up a blank palette using Create Table/Matrix/Palette under the Input menu
m Fill in the contents

m Make the palette active using Generate Palette from Selection under the File menu

The basic steps in creating a palette.

Create Table/Matrix/Palette will create a
blank palette. 8||=|a|g|]
2||=|a|g]

You can then insert whatever you want
into each button. | 1+6] 24v*| 5] o]]
L I T

1.10.12 Creating Your Own Palettes 199

The menu item Generate Palette from
Selection makes a separate active palette.

Clicking on a button in the palette now
inserts its contents into your notebook. ’

Create Table/Matrix/Palette set up a blank palette
Generate Palette from Selection ~ make a separate active palette
Generate Notebook from Palette convert a palette back into an editable notebook

Edit Button edit the script associated with a palette or button

Menu items for setting up palettes.

When you are creating a palette, you can use the same mechanisms to add columns and rows as
you can when you are creating any other kind of table, matrix or grid. Thus [crY,| will add a new
column of buttons, and [mf<!| (ConTROL-ENTER) Will add a new row.

button contents action

X replace current selection by X

text containing XmY replace current selection S by XSY

Contents of buttons.

In the simplest case, when you press a button in a palette what will happen is that the contents of
the button will be inserted into your notebook, replacing whatever your current selection was.

Sometimes however you may not simply want to overwrite your current selection, but rather you
may want to modify the selection in some way. As an example, you might want to wrap a function
like Expand around your current selection.

You can do this by setting up a button with contents Expand[m]. The m can be entered as :spl:
or \[SelectionPlaceholder]. In general, m serves as a placeholder for your current selection. When
you press a button that contains m, the m is first replaced by your current selection, and only then is
the result inserted into your notebook.

Here is a cell in which the current
selection is part of an expression. L+ (e (R]

200 1. A Practical Introduction to Mathematica « 1.10 Input and Output in Notebooks

Pressing a button containing
Expand[m] wraps Expand around the 1+ (1+0* +Expand[(2+1)°] b
current selection.

Mathematica allows you to associate any action you want with a button. You can set up some
common actions by using the Edit Button menu, having selected either a single button or a whole
palette.

Paste paste the contents of the button (default)
Evaluate paste then evaluate in place what has been pasted
EvaluateCell paste then evaluate the whole cell

CopyEvaluate copy the current selection into a new cell, then paste and
evaluate in place

CopyEvaluateCell copy the current selection into a new cell, then paste and
evaluate the whole cell

Typical actions for buttons.

With the default Paste setting for a button action, pressing the button modifies the contents of a
cell but does no evaluation. By choosing other button actions, however, you can tell Mathematica to
perform an evaluation every time you press the button.

With the button action Evaluate the result of this evaluation is made to overwrite your current
selection. This is useful if you want to set up a button which modifies parts of an expression in place,
say by applying Expand[m] to them.

The button action Evaluate performs evaluation only on whatever was pasted into your current
cell. The button action EvaluateCell, on the other hand, performs evaluation on the whole cell,
generating a new cell to show the result.

Here is an expression with a part
selected. 1+ @0t @ep? 3

This shows the result of pressing a
button containing Expand[m] with an 1+ (40" +Expana[(2+7)°] 3}
EvaluateCell button action. 9+ (40t +12y+6y7 +y° 3

Sometimes it is useful to be able to extract the current selection from a cell, and then operate on it
in a new cell. You can do this using the button actions CopyEvaluate and CopyEvaluateCell.

1.10.13 Setting Up Hyperlinks 201

Here is an expression with a part
selected. 1+ @0t +@ep)° 3

A button with a CopyEvaluateCell
button action copies the current 1+ et @ep? 3
selection into a new cell, then pastes ml1]:= Expand[(2+7)°] 3
the contents of the button, and then
performs an evaluation, putting the
result into a new cell.

out[1]= 8+12y+6y> +y° g

Create Table/Matrix/Palette set up a blank palette

Create Button set up a single button not in a palette

Generate Palette from Selection ~ make a separate window

Cell Active activate buttons within a cell in a notebook

Ways to create active elements in the front end.

Mathematica allows you to set up a wide range of active elements in the notebook front end. In the
most common case, you have a palette which consists of an array of buttons in a separate window.
But you can also have arrays of buttons, or even single buttons, within the cells of an ordinary
notebook.

In addition, you can make a button execute any action you want—performing computations in
the Mathematica kernel, or changing the configuration of notebooks in the front end. Section 2.11.6
discusses how to do this.

M 1.10.13 Setting Up Hyperlinks

Create Hyperlink make the selected object a hyperlink

Menu item for setting up hyperlinks.

A hyperlink is a special kind of button which jumps to another part of a notebook when it is pressed.
Typically hyperlinks are indicated in Mathematica by blue or underlined text.

To set up a hyperlink, just select the text or other object that you want to be a hyperlink. Then
choose the menu item Create Hyperlink and fill in the specification of where you want the destination
of the hyperlink to be.

202 1. A Practical Introduction to Mathematica « 1.10 Input and Output in Notebooks

H 1.10.14 Automatic Numbering

m Choose a cell style such as NumberedEquation

m Use the Create Automatic Numbering Object menu, with a counter name such as Section

Two ways to set up automatic numbering in a Mathematica notebook.

The input for each cell here is exactly
the same, but the cells contain an m 1. A Section j
element that displays as a
progressively larger number as one m 2. A Section]
goes through the notebook.
m 3. A Section]
These cells are in NumberedEquation
style. IL ax 8 j
x+1
fsm[x] dx @ j
x+1
j‘Log[x] +Exp[x] dx 3) j
x+1

H 1.10.15 Exposition in Mathematica Notebooks

Mathematica notebooks provide the basic technology that you need to be able to create a very wide
range of sophisticated interactive documents. But to get the best out of this technology you need to
develop an appropriate style of exposition.

Many people at first tend to use Mathematica notebooks either as simple worksheets containing a
sequence of input and output lines, or as on-screen versions of traditional books and other printed
material. But the most effective and productive uses of Mathematica notebooks tend to lie at neither one
of these extremes, and instead typically involve a fine-grained mixing of Mathematica input and output
with explanatory text. In most cases the single most important factor in obtaining such fine-grained
mixing is uniform use of the Mathematica language.

One might think that there would tend to be three kinds of material in a Mathematica notebook:
plain text, mathematical formulas, and computer code. But one of the key ideas of Mathematica is to
provide a single language that offers the best of both traditional mathematical formulas and computer
code.

In StandardForm, Mathematica expressions have the same kind of compactness and elegance as
traditional mathematical formulas. But unlike such formulas, Mathematica expressions are set up in a
completely consistent and uniform way. As a result, if you use Mathematica expressions, then regard-

1.10.15 Exposition in Mathematica Notebooks 203

less of your subject matter, you never have to go back and reexplain your basic notation: it is always
just the notation of the Mathematica language. In addition, if you set up your explanations in terms of
Mathematica expressions, then a reader of your notebook can immediately take what you have given,
and actually execute it as Mathematica input.

If one has spent many years working with traditional mathematical notation, then it takes a little
time to get used to seeing mathematical facts presented as StandardForm Mathematica expressions.
Indeed, at first one often has a tendency to try to use TraditionalForm whenever possible, perhaps
with hidden tags to indicate its interpretation. But quite soon one tends to evolve to a mixture of
StandardForm and TraditionalForm. And in the end it becomes clear that StandardForm alone is
for most purposes the most effective form of presentation.

In traditional mathematical exposition, there are many tricks for replacing chunks of text by frag-
ments of formulas. In StandardForm many of these same tricks can be used. But the fact that
Mathematica expressions can represent not only mathematical objects but also procedures and algo-
rithms increases greatly the extent to which chunks of text can be replaced by shorter and more precise
material.

204 1. A Practical Introduction to Mathematica « 1.11 Files and External Operations

1.11 Files and External Operations

H 1.11.1 Reading and Writing Mathematica Files

You can use files on your computer system to store definitions and results from Mathematica. The
most general approach is to store everything as plain text that is appropriate for input to Mathematica.
With this approach, a version of Mathematica running on one computer system produces files that can
be read by a version running on any computer system. In addition, such files can be manipulated by
other standard programs, such as text editors.

<< name read in a Mathematica input file
expr >> name output expr to a file as plain text
expr >>> name append expr to a file

!''name display the contents of a plain text file

Reading and writing files.

This expands (x +y)3, and outputs the In[1]:= Expand[(x + y)~3 1 >> tmp
result to a file called tmp.

Here are the contents of tmp. They can In[2]:= '!tmp

be used directly as input for

Mathematica. X3 F BAxN2Hy 4 SkxAy"2 + y3

This reads in tmp, evaluating the In[3]:= <<tmp

Mathematica input it contains. Out[3]= x®+3x%y+3xy?+y°3

If you are familiar with Unix or MS-DOS operating systems, you will recognize the Mathematica
redirection operators >>, >>> and << as being analogous to the shell operators >, >> and <.

The redirection operators >> and >>> are convenient for storing results you get from Mathematica.
The function Savel "name", f, g, ... 1 allows you to save definitions for variables and functions.

Save["name", f, g, ... 1 save definitions for variables or functions in a file

Saving definitions in plain text files.

Here is a definition for a function f. In[4]:= f[x_] := x*2 + ¢

This gives c the value 17. In[5]:=c =17
Out[5]= 17

1.11.1 Reading and Writing Mathematica Files 205

This saves the definition of f in the file In[6]:= Save["ftmp", £f]
ftmp.

Mathematica automatically saves both In[7]:= V'ftmp
the actual definition of f, and the

definition of ¢ on which it depends. flx]i=x2 +c

c =17
This clears the definitions of f and c. In[8]:= Clear[f, c]
You can reinstate the definitions you In[9]:= <<ftmp
saved simply by reading in the file out[9]= 17

ftmp.

file.m Mathematica expression file in plain text format
file.nb Mathematica notebook file

file.mx Mathematica definitions in DumpSave format

Typical names of Mathematica files.

If you use a notebook interface to Mathematica, then the Mathematica front end allows you to save
complete notebooks, including not only Mathematica input and output, but also text, graphics and
other material.

It is conventional to give Mathematica notebook files names that end in .nb, and most versions of
Mathematica enforce this convention.

When you open a notebook in the Mathematica front end, Mathematica will immediately display
the contents of the notebook, but it will not normally send any of these contents to the kernel for
evaluation until you explicitly request this to be done.

Within a Mathematica notebook, however, you can use the Cell menu in the front end to identify
certain cells as initialization cells, and if you do this, then the contents of these cells will automatically
be evaluated whenever you open the notebook.

The I in the cell bracket indicates that
the second cell is an initialization cell m Implementation]
that will be evaluated whenever the

. £[x_] :=Loglx] +Log[1-x])
notebook is opened. E

It is sometimes convenient to maintain Mathematica material both in a notebook which contains
explanatory text, and in a package which contains only raw Mathematica definitions. You can do this
by putting the Mathematica definitions into initialization cells in the notebook. Every time you save
the notebook, the front end will then allow you to save an associated .m file which contains only the
raw Mathematica definitions.

206 1. A Practical Introduction to Mathematica « 1.11 Files and External Operations

M 1.11.2 Advanced Topic: Finding and Manipulating Files

Although the details of how files are named and organized differ from one computer system to
another, Mathematica provides some fairly general mechanisms for finding and handling files.

Mathematica assumes that files on your computer system are organized in a collection of directories.
At any point, you have a current working directory. You can always refer to files in this directory just
by giving their names.

Directory[1 give your current working directory
SetDirectory["dir"] set your current working directory

FileNames[] list the files in your current working directory

FileNames["form"] list the files whose names match a certain form
<<name read in a file with the specified name
<<context® read in a file corresponding to the specified context
CopyFile["file,", "file,"]1 copy file, to file,

DeleteFile["file"] delete a file

Functions for finding and manipulating files.

This is the current working directory. In[1]:= Directoryl]
The form it has differs from one

Out[1]= /users/s
computer system to another. “ nsers/sy

This resets the current working In[2]:= SetDirectory["Examples"]
directory.

Out[2]= /users/sw/Examples

This gives a list of all files in your In[3]:= FileNames["Test*.m"]

current working directory whose names Out[3]= {Testi.m, Test2.m, TestFinal.m}
match the form Test*.m.

Although you usually want to create files only in your current working directory, you often need
to read in files from other directories. As a result, when you ask Mathematica to read in a file with a
particular name, Mathematica automatically searches a list of directories (specified by the value of the
search path variable $Path) to try and find a file with that name.

One issue in handling files in Mathematica is that the form of file and directory names varies between
computer systems. This means for example that names of files which contain standard Mathematica
packages may be quite different on different systems. Through a sequence of conventions, it is how-
ever possible to read in a standard Mathematica package with the same command on all systems. The
way this works is that each package defines a so-called Mathematica context, of the form name*name*.
On each system, all files are named in correspondence with the contexts they define. Then when you

1.11.3 Importing and Exporting Data

207

use the command <<name‘name* Mathematica automatically translates the context name into the file
name appropriate for your particular computer system.

FindList["file", "text"]

FindList[FileNames[], "text"]

give a list of all lines in a file that contain the
specified text

search in all files in your current directory

Searching for text in files.

This searches for all lines in the file
BookIndex containing diagrams.

In[4]:= FindList["BookIndex", "diagrams"]

Out[4]= {Ferrers diagrams: DiscreteMath'Combinatorica",
Hasse diagrams: DiscreteMath‘Combinatorica‘}

-l 1.11.3 Importing and Exporting Data

Import["file", "Table"]
Export["file", list, "Table"]

import a table of data from a file

export list to a file as a table of data

Importing and exporting tabular data.

This exports an array of numbers to
the file out.dat.

Here are the contents of the file
out.dat.

This imports the contents of out.dat
as a table of data.

In[1]:= Export["out.dat", {{5.7, 4.3}, {-1.2, 7.8}}]
Out[1]= out.dat

In[2]:= !'lout.dat

5.7 4.3

-1.2 7.8

In[3]:= Import["out.dat", "Table"]
Out[3]= {{5.7, 4.3}, {-1.2, 7.8}}

Import["file", "Table"] will handle many kinds of tabular data, automatically deducing the details
of the format whenever possible. Export["file", list, "Table"] writes out data separated by spaces,
with numbers given in C or Fortran-like form, as in 2.3E5 and so on.

Import["name.ext"]

Export["name.ext", expr]

import data assuming a format deduced from the file name

export data in a format deduced from the file name

Importing and exporting general data.

208 1. A Practical Introduction to Mathematica » 1.11 Files and External Operations

~ table formats "CSV", "TSV"
~ matrix formats "MAT", "HDF", "MTX"
+ specialized data formats "FITS", "SDTS"

Some common formats for tabular data.

Import and Export can handle not only tabular data, but also data corresponding to graphics,
sounds, expressions and even whole documents. Import and Export can often deduce the appropri-
ate format for data simply by looking at the extension of the file name for the file in which the data is
being stored. Sections 2.10.19 and 2.12.7 discuss in more detail how Import and Export work. Note
that you can also use Import and Export to manipulate raw files of binary data.

This imports a graphic in JPEG format. In[4]:= Import["turtle. jpg"]
Out[4]= -Graphics-

This displays the graphic. In[5]:= Show[%]

$ImportFormats import formats supported on your system

$ExportFormats export formats supported on your system

Finding the complete list of supported import and export formats.

-l 1.11.4 Exporting Graphics and Sounds

Mathematica allows you to export graphics and sounds in a wide variety of formats. If you use the
notebook front end for Mathematica, then you can typically just copy and paste graphics and sounds
directly into other programs using the standard mechanism available on your computer system.

1.11.5 Exporting Formulas from Notebooks 209

Export["name.ext", graphics] export graphics to a file in a format deduced from
the file name

Export["file", graphics, "format"] export graphics in the specified format

Export["!command", graphics, "format"] export graphics to an external command

Exporting Mathematica graphics and sounds.

= graphics formats "EPS", "TIFF", "GIF", "JPEG", "PNG", "PDF", "SVG", etc.
sound formats "SND", "WAV", "AIFF", "AU", etc.

Some common formats for graphics and sounds. Page 568 gives a complete list.

This generates a plot. In[1]:= Plot[Sin[x] + Sin[Sqrt[2] x], {x, 0, 10}]
2
1.5
1
0.5
2 4 /6\ 8 10
-0.5
-1
This exports the plot to a file in In[2]:= Export["sinplot.eps", %]

Encapsulated PostScript format. Display: :pserr:

PostScript language error:
Warning: substituting font Courier for WriCMTT9

Out[2]= sinplot.eps

H 1.11.5 Exporting Formulas from Notebooks

Here is a cell containing a formula.

ArcTan[*ZE] [oor14y] Loglt+x+x?] j
5 T s 5

This is what you get if you copy the VIN(-\(ArcTan[\(1 + 2 x\)\/\@3]\/\@3\) + Log[-1 + x]\/3

formula and paste it into an external - Logll + x + x\~2]1\/6\)

text-based program.

210 1. A Practical Introduction to Mathematica « 1.11 Files and External Operations

Pasting the text back into a notebook
immediately reproduces the original hecTan[5] Logl-14x] Logli+x+x?] j
formula. '8 3 6

Mathematica allows you to export formulas both textually and visually. You can use Export to tell
Mathematica to write a visual representation of a formula into a file.

Export["file.eps", ToBoxes[expr]l]
save the visual form of expr to a file in EPS format

Export["file", ToBoxes[expr], "format"]
save the visual form of expr in the specified format

Exporting expressions in visual form.

M 1.11.6 Generating TgX

Mathematica notebooks provide a sophisticated environment for creating technical documents. But
particularly if you want to merge your work with existing material in TgX, you may find it convenient
to use TeXForm to convert expressions in Mathematica into a form suitable for input to TgX.

TeXForm[expr] print expr in TeX input form

Mathematica output for TgX.

Here is an expression, printed in In[1]:= (x + y)*~2 / Sqrtlx yl
standard Mathematica form.)
Out[1]= M
VXy
Here is the expression in TgX input In[2]:= TeXForm[%]

form. Out[2]//TeXForm= \frac{{\left(x + y \right) }~2}{{\sqrt{x\,y}}}

TeXSave["file.tex"] save your complete current notebook in TgX input form

TeXSave["file. tex", "source.nb"] save a TEX version of the notebook source.nb

Converting complete notebooks to TeX.

1.11.7 Exchanging Material with the Web 21

In addition to being able to convert individual expressions to TgX, Mathematica also provides capa-
bilities for translating complete notebooks. These capabilities can usually be accessed from the Save As
Special menu in the notebook front end, where various options can be set.

-l 1.11.7 Exchanging Material with the Web

HTMLSave["file.html"] save your complete current notebook in HTML form

HTMLSavel["file.html", "source.nb"] save an HTML version of the notebook source.nb

Converting notebooks to HTML.

HTMLSave has many options that allow you to specify how notebooks should be converted for web
browsers with different capabilities. You can find details in the Additional Information section of the
online Reference Guide entry for HTMLSave.

+ MathMLForm[expr] print expr in MathML form

+ MathMLForm[StandardForm[expr]] use StandardForm rather than traditional
mathematical notation

+ ToExpression["string", MathMLForm] interpret a string of MathML as Mathematica input

Converting to and from MathML.

Here is an expression printed in In[1]:= MathMLForm[x~2/z]

MathML form. Out[1]//MathMLForm= <math>
<mfrac>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
<mi>z</mi>
</mfrac>
</math>

If you paste MathML into a Mathematica notebook, Mathematica will automatically try to convert
it to Mathematica input. You can copy an expression from a notebook as MathML using the Copy As
menu in the notebook front end.

212 1. A Practical Introduction to Mathematica « 1.11 Files and External Operations

+ Export["file.xml", expr] export in XML format
* Import["file.xm1"] import from XML
+ ImportString["string", "XML"] import data from a string of XML

XML importing and exporting.

Somewhat like Mathematica expressions, XML is a general format for representing data. Mathematica
automatically converts certain types of expressions to and from specific types of XML. MathML is one
example. Other examples include NotebookML for notebook expressions, and SVG for graphics.

If you ask Mathematica to import a generic piece of XML, it will produce a SymbolicXML ex-
pression. Each XML element of the form <elem attr='val’>data</elem> is translated to a Mathematica
SymbolicXML expression of the form XMLElement["elem", {"attr"->"val"}, {data}]. Once you have
imported a piece of XML as SymbolicXML, you can use Mathematica’s powerful symbolic program-
ming capabilities to manipulate the expression you get. You can then use Export to export the result
in XML form.

This generates a SymbolicXML In[2]:= ImportString["s", "XML"]
express1op, with an XMLElerFent Out[2]= XMLObject[Document] [{},
representing the a element in the XML XMLElement[a, {aa - va}, {s}1, {}]
string. ’ ’ ’
There are now two nested levels in the In[3]:= ImportStringl
SymbolicXML. "<a><b bb='1’>s8<b bb='2’'>ss", "XML"]
Out[3]= XMLObject[Document] [{},
XMLElement[a, {}, {XMLElement[b, {bb—> 1}, {ss}],
XMLElement[b, {bb— 2}, {ss}]1}], {}]
This does a simple transformation on In[4]:=%/."ss" -> XMLElement["c",{},{"xx"}]

the SymbolicXML. Out[4]= XMLObject[Document] [{},

XMLElement[a, {}, {XMLElement[b, {bb—> 1},
{XMLElement[c, {}, {xx}1}], XMLElement[b,
{bb - 2}, {XMLElement[c, {}, {xx}1}1}]1, {}]

This shows the result as an XML In[5]:= ExportString[%, "XML"]

string. Out[5]= <a>

<b bb='1'>
<c>xx</c>

<b bb='2'>
<c>xx</c>

1.11.8 Generating C and Fortran Expressions 213

M 1.11.8 Generating C and Fortran Expressions

If you have special-purpose programs written in C or Fortran, you may want to take formulas you
have generated in Mathematica and insert them into the source code of your programs. Mathematica
allows you to convert mathematical expressions into C and Fortran expressions.

CForm[expr] write out expr so it can be used in a C program

FortranForm[expr] write out expr for Fortran

Mathematica output for programming languages.

Here is an expression, written out in In[1]:= Expand[(1 + x + y)~2]

standard Mathematica form. Out[1]= 1+2x+x2 +2y+2xy+y?

Here is the expression in Fortran form. In[2]:= FortranForm[%]

Out[2]//FortranForm= 1 + 2%x + X**2 + 2%y + 2xx*y + y**2

Here is the same expression in C form. In[3]:= CForm[%]
Macros for objects like Power are
defined in the C header file mdefs.h
that comes with most versions of
Mathematica.

Out[3]//CForm= 1 + 2*x + Power(x,2) + 2%y + 2xx*y + Power(y,2)

You should realize that there are many differences between Mathematica and C or Fortran. As a
result, expressions you translate may not work exactly the same as they do in Mathematica. In addition,
there are so many differences in programming constructs that no attempt is made to translate these
automatically.

Compile[x, expr]l compile an expression into efficient internal code

A way to compile Mathematica expressions.

One of the common motivations for converting Mathematica expressions into C or Fortran is to try
to make them faster to evaluate numerically. But the single most important reason that C and Fortran
can potentially be more efficient than Mathematica is that in these languages one always specifies up
front what type each variable one uses will be—integer, real number, array, and so on.

The Mathematica function Compile makes such assumptions within Mathematica, and generates
highly efficient internal code. Usually this code runs not much if at all slower than custom C or
Fortran.

214 1. A Practical Introduction to Mathematica « 1.11 Files and External Operations

W 1.11.9 Splicing Mathematica Output into External Files

If you want to make use of Mathematica output in an external file such as a program or document,
you will often find it useful to “splice” the output automatically into the file.

Splice["file.mx"] splice Mathematica output into an external file named file.mx,
putting the results in the file file.x

Splice[“infile", "outfile"] splice Mathematica output into infile, sending the output to
outfile

Splicing Mathematica output into files.

The basic idea is to set up the definitions you need in a particular Mathematica session, then run
Splice to use the definitions you have made to produce the appropriate output to insert into the
external files.

#include "mdefs.h"

double f(x)
double x;

{

double y;

y = <* Integrate[Sin[x]~5, x] *> ;

return(2*xy - 1) ;
}

A simple C program containing a Mathematica formula.

#include "mdefs.h"

double f(x)
double x;

{

double y;

y = -5xCos(x)/8 + 5*Cos(3*x)/48 - Cos(5*x)/80 ;

return(2*xy - 1) ;
}

The C program after processing with Splice.

1.11.10 Running External Programs 215

M 1.11.10 Running External Programs

Although Mathematica does many things well, there are some things that are inevitably better done by
external programs. You can use Mathematica to control the external programs, or to analyze output
they generate.

On almost all computer systems, it is possible to run external programs directly from within Mathe-
matica. Mathematica communicates with the external programs through interprocess communication
mechanisms such as pipes.

In the simplest cases, the only communication you need is to send and receive plain text. You can
prepare input in Mathematica, then give it as the standard input for the external program. Or you can
take the standard output of the external program, and use it as input to Mathematica.

In general, Mathematica allows you to treat streams of data exchanged with external programs just
like files. In place of a file name, you give the external command to run, prefaced by an exclamation
point.

<<file read in a file

<<"lcommand" run an external command, and read in the output it
produces
expr >> "lcommand" feed the textual form of expr to an external command

ReadList["!command", Number] run an external command, and read in a list of the
numbers it produces

Some ways to communicate with external programs.

This feeds the expression x~2 + y~2 as In[1]:= x~2 + y~2 >> "1lpr"
input to the external command 1lpr,

which, on a typical Berkeley Unix

system, sends output to a printer.

With a text-based interface, putting ! at In[2]:= !squares 4
the beginning of a line causes the

11
remainder of the line to be executed as 2 4
an external command. squares is an 2 ?6
external program which prints numbers
and their squares.
This runs the external command In[3]:= ReadList["!squares 4", Number, RecordLists->True]
squares 4, then reads numbers from out[3]= {{1, 1}, {2, 4}, {3, 9}, {4, 16}}

the output it produces.

216 1. A Practical Introduction to Mathematica « 1.11 Files and External Operations

-l 1.11.11 MathLink

The previous section discussed how to exchange plain text with external programs. In many cases,
however, you will find it convenient to communicate with external programs at a higher level, and to
exchange more structured data with them.

On almost all computer systems, Mathematica supports the MathLink communication standard, which
allows higher-level communication between Mathematica and external programs. In order to use Math-
Link, an external program has to include some special source code, which is usually distributed with
Mathematica.

MathLink allows external programs both to call Mathematica, and to be called by Mathematica. Sec-
tion 2.13 discusses some of the details of MathLink. By using MathLink, you can, for example, treat
Mathematica essentially like a subroutine embedded inside an external program. Or you can create a
front end that implements your own user interface, and communicates with the Mathematica kernel
via MathLink.

You can also use MathLink to let Mathematica call individual functions inside an external program.
As described in Section 2.13, you can set up a MathLink template file to specify how particular functions
in Mathematica should call functions inside your external program. From the MathLink template file,
you can generate source code to include in your program. Then when you start your program, the ap-
propriate Mathematica definitions are automatically made, and when you call a particular Mathematica
function, code in your external program is executed.

Install["command"] start an external program and install Mathematica definitions
to call functions it contains

Uninstall[link] terminate an external program and uninstall definitions for
functions in it

Calling functions in external programs.

This starts the external program simul, In[1]:= Install["simul"]
and installs Mathematica definitions to

. . L Out[1]= LinkObject[simul, 5, 4]
call various functions in it.

Here is a usage message for a function In[2]:= ?srun

that was installed in Mathematica to call . . .
. N srun[{a, r, gamma}, x] performs a simulation with the
a function in the external program. specified parameters.

When you call this function, it executes In[3]:= srun[{3, 0, 7}, 5]
code in the external program. Out[3]= 6.78124

This terminates the simul program. In[4]:= Uninstall["simul"]
Out[4]= simul

1.11.11 MathLink 217

You can use MathLink to communicate with many types of programs, including with Mathematica
itself. There are versions of the MathLink library for a variety of common programming languages.
The J/Link system provides a standard way to integrate Mathematica with Java, based on MathLink.
With J/Link you can take any Java class, and immediately make its methods accessible as functions in
Mathematica.

218 1. A Practical Introduction to Mathematica « 1.12 Special Topic: The Internals of Mathematica

1.12 Special Topic: The Internals of Mathematica

H 1.12.1 Why You Do Not Usually Need to Know about Internals

Most of this book is concerned with explaining what Mathematica does, not how it does it. But the
purpose of this chapter is to say at least a little about how Mathematica does what it does. Appendix
A9 gives some more details.

You should realize at the outset that while knowing about the internals of Mathematica may be of
intellectual interest, it is usually much less important in practice than one might at first suppose.

Indeed, one of the main points of Mathematica is that it provides an environment where you
can perform mathematical and other operations without having to think in detail about how these
operations are actually carried out inside your computer.

Thus, for example, if you want to factor the polynomial x> — 1, you can do this just by giving
Mathematica the command Factor[x~15 - 1]; you do not have to know the fairly complicated details
of how such a factorization is actually carried out by the internal code of Mathematica.

Indeed, in almost all practical uses of Mathematica, issues about how Mathematica works inside turn
out to be largely irrelevant. For most purposes it suffices to view Mathematica simply as an abstract
system which performs certain specified mathematical and other operations.

You might think that knowing how Mathematica works inside would be necessary in determining
what answers it will give. But this is only very rarely the case. For the vast majority of the com-
putations that Mathematica does are completely specified by the definitions of mathematical or other
operations.

Thus, for example, 3~40 will always be 12157665459056928801, regardless of how Mathematica
internally computes this result.

There are some situations, however, where several different answers are all equally consistent with
the formal mathematical definitions. Thus, for example, in computing symbolic integrals, there are
often several different expressions which all yield the same derivative. Which of these expressions is
actually generated by Integrate can then depend on how Integrate works inside.

Here is the answer generated by In[1]:= Integrate[1/x + 1/x*2, x]
Integrate. 1

Out[1]= - P Log[x]
This is an equivalent expression that In[2]:= Together[%]

might have been generated if

Integrate worked differently inside. Out[2]= ~1+xLoglx]

X

1.12.1 Why You Do Not Usually Need to Know about Internals 219

In numerical computations, a similar phenomenon occurs. Thus, for example, FindRoot gives you
a root of a function. But if there are several roots, which root is actually returned depends on the
details of how FindRoot works inside.

This finds a particular root of In[3]:= FindRoot[Cos[x] + Sin[x], {x, 10.5}]
cos(x) + sin(x). Out[3]= {x - 14.9226}

With a different starting point, a In[4]:= FindRoot[Cos[x] + Sin[x], {x, 10.8}]
different root is found. Which root is Out[4]= {x—11.781}

found with each starting point depends
in detail on the internal algorithm
used.

The dependence on the details of internal algorithms can be more significant if you push approxi-
mate numerical computations to the limits of their validity.

Thus, for example, if you give NIntegrate a pathological integrand, whether it yields a meaningful
answer or not can depend on the details of the internal algorithm that it uses.

NIntegrate knows that this result is In[5]:= NIntegrate[Sin[1/x], {x, 0, 1}]
unre.hable, and can dependlon the . NIntegrate: :slucon:

details of the internal a1g0r1ﬂ1n1,80 it Numerical integration converging too slowly; suspect
prints Vvarnhqg messages. one of the following: singularity, value of the

integration being 0, oscillatory integrand, or
insufficient WorkingPrecision. If your integrand is
oscillatory try using the option Method->Oscillatory
in NIntegrate.

NIntegrate: :ncvb:
NIntegrate failed to converge to prescribed accuracy
after 7 recursive bisections in x near x = 0.0035126
8.

Out[5]= 0.504894

Traditional numerical computation systems have tended to follow the idea that all computations
should yield results that at least nominally have the same precision. A consequence of this idea is
that it is not sufficient just to look at a result to know whether it is accurate; you typically also have
to analyze the internal algorithm by which the result was found. This fact has tended to make people
believe that it is always important to know internal algorithms for numerical computations.

But with the approach that Mathematica takes, this is rarely the case. For Mathematica can usually
use its arbitrary-precision numerical computation capabilities to give results where every digit that is
generated follows the exact mathematical specification of the operation being performed.

Even though this is an approximate In[6]:= N[Pi, 30]

numerical computation, every digit is Out[6]= 3.14159265358979323846264338328
determined by the mathematical

definition for 7.

Once again, every digit here is In[7]:= N[Sin[10~50], 20]

determined by the mathematical Out[7]= -0.78967249342931008271
definition for sin(x).

220 1. A Practical Introduction to Mathematica « 1.12 Special Topic: The Internals of Mathematica

If you use machine-precision numbers, In[8]:= 8in[10.450]
Mathematica cannot give a reliable Out[8]= 0.705222
result, and the answer depends on the

details of the internal algorithm used.

It is a general characteristic that whenever the results you get can be affected by the details of
internal algorithms, you should not depend on these results. For if nothing else, different versions
of Mathematica may exhibit differences in these results, either because the algorithms operate slightly
differently on different computer systems, or because fundamentally different algorithms are used in
versions released at different times.

This is the result for sin(10°°) on one In[1]:= Sin[10.450]
type of computer. Out[1]= 0.705222
Here is the same calculation on another In[1]:= Sin[10.~50]

type of computer. Out[1]= -0.0528229

And here is the result obtained in In[1]:= 8in[10.~50]
Mathematica Version 1. Out[1]= 0.0937538

Particularly in more advanced applications of Mathematica, it may sometimes seem worthwhile to
try to analyze internal algorithms in order to predict which way of doing a given computation will
be the most efficient. And there are indeed occasionally major improvements that you will be able to
make in specific computations as a result of such analyses.

But most often the analyses will not be worthwhile. For the internals of Mathematica are quite
complicated, and even given a basic description of the algorithm used for a particular purpose, it is
usually extremely difficult to reach a reliable conclusion about how the detailed implementation of
this algorithm will actually behave in particular circumstances.

A typical problem is that Mathematica has many internal optimizations, and the efficiency of a
computation can be greatly affected by whether the details of the computation do or do not allow a
given internal optimization to be used.

M 1.12.2 Basic Internal Architecture

numbers sequences of binary digits
strings sequences of character code bytes or byte pairs
symbols pointers to the central table of symbols

general expressions sequences of pointers to the head and elements

Internal representations used by Mathematica.

1.12.2 Basic Internal Architecture 221

When you type input into Mathematica, a data structure is created in the memory of your computer to
represent the expression you have entered.

In general, different pieces of your expression will be stored at different places in memory. Thus,
for example, for a list such as {2, x, y + z} the “backbone” of the list will be stored at one place,
while each of the actual elements will be stored at a different place.

The backbone of the list then consists just of three “pointers” that specify the addresses in computer
memory at which the actual expressions that form the elements of the list are to be found. These
expressions then in turn contain pointers to their subexpressions. The chain of pointers ends when
one reaches an object such as a number or a string, which is stored directly as a pattern of bits in
computer memory.

Crucial to the operation of Mathematica is the notion of symbols such as x. Whenever x appears in
an expression, Mathematica represents it by a pointer. But the pointer is always to the same place in
computer memory—an entry in a central table of all symbols defined in your Mathematica session.

This table is a repository of all information about each symbol. It contains a pointer to a string
giving the symbol’s name, as well as pointers to expressions which give rules for evaluating the
symbol.

m Recycle memory as soon as the data in it is no longer referenced.

The basic principle of Mathematica memory management.

Every piece of memory used by Mathematica maintains a count of how many pointers currently
point to it. When this count drops to zero, Mathematica knows that the piece of memory is no longer
being referenced, and immediately makes the piece of memory available for something new.

This strategy essentially ensures that no memory is ever wasted, and that any piece of memory that
Mathematica uses is actually storing data that you need to access in your Mathematica session.

m Create an expression corresponding to the input you have given.
m Process the expression using all rules known for the objects in it.

m Generate output corresponding to the resulting expression.

The basic actions of Mathematica.

At the heart of Mathematica is a conceptually simple procedure known as the evaluator which takes
every function that appears in an expression and evaluates that function.

222 1. A Practical Introduction to Mathematica « 1.12 Special Topic: The Internals of Mathematica

When the function is one of the thousand or so that are built into Mathematica, what the evaluator
does is to execute directly internal code in the Mathematica system. This code is set up to perform the
operations corresponding to the function, and then to build a new expression representing the result.

m The built-in functions of Mathematica support universal computation.

The basic feature that makes Mathematica a self-contained system.

A crucial feature of the built-in functions in Mathematica is that they support universal computation.
What this means is that out of these functions you can construct programs that perform absolutely
any kinds of operation that are possible for a computer.

As it turns out, small subsets of Mathematica’s built-in functions would be quite sufficient to support
universal computation. But having the whole collection of functions makes it in practice easier to
construct the programs one needs.

The underlying point, however, is that because Mathematica supports universal computation you
never have to modify its built-in functions: all you have to do to perform a particular task is to
combine these functions in an appropriate way.

Universal computation is the basis for all standard computer languages. But many of these lan-
guages rely on the idea of compilation. If you use C or Fortran, for example, you first write your
program, then you compile it to generate machine code that can actually be executed on your
computer.

Mathematica does not require you to go through the compilation step: once you have input an
expression, the functions in the expression can immediately be executed.

Often Mathematica will preprocess expressions that you enter, arranging things so that subsequent
execution will be as efficient as possible. But such preprocessing never affects the results that are
generated, and can rarely be seen explicitly.

H 1.12.3 The Algorithms of Mathematica

The built-in functions of Mathematica implement a very large number of algorithms from computer
science and mathematics. Some of these algorithms are fairly old, but the vast majority had to be
created or at least modified specifically for Mathematica. Most of the more mathematical algorithms in
Mathematica ultimately carry out operations which at least at some time in the past were performed
by hand. In almost all cases, however, the algorithms use methods very different from those common
in hand calculation.

Symbolic integration provides an example. In hand calculation, symbolic integration is typically
done by a large number of tricks involving changes of variables and the like.

1.12.3 The Algorithms of Mathematica 223

But in Mathematica symbolic integration is performed by a fairly small number of very systematic
procedures. For indefinite integration, the idea of these procedures is to find the most general form
of the integral, then to differentiate this and try to match up undetermined coefficients.

Often this procedure produces at an intermediate stage immensely complicated algebraic expres-
sions, and sometimes very sophisticated kinds of mathematical functions. But the great advantage of
the procedure is that it is completely systematic, and its operation requires no special cleverness of
the kind that only a human could be expected to provide.

In having Mathematica do integrals, therefore, one can be confident that it will systematically get
results, but one cannot expect that the way these results are derived will have much at all to do with
the way they would be derived by hand.

The same is true with most of the mathematical algorithms in Mathematica. One striking feature
is that even for operations that are simple to describe, the systematic algorithms to perform these
operations in Mathematica involve fairly advanced mathematical or computational ideas.

Thus, for example, factoring a polynomial in x is first done modulo a prime such as 17 by finding
the null space of a matrix obtained by reducing high powers of x modulo the prime and the original
polynomial. Then factorization over the integers is achieved by “lifting” modulo successive powers
of the prime using a collection of intricate theorems in algebra and analysis.

The use of powerful systematic algorithms is important in making the built-in functions in Mathe-
matica able to handle difficult and general cases. But for easy cases that may be fairly common in
practice it is often possible to use simpler and more efficient algorithms.

As a result, built-in functions in Mathematica often have large numbers of extra pieces that handle
various kinds of special cases. These extra pieces can contribute greatly to the complexity of the
internal code, often taking what would otherwise be a five-page algorithm and making it hundreds
of pages long.

Most of the algorithms in Mathematica, including all their special cases, were explicitly constructed
by hand. But some algorithms were instead effectively created automatically by computer.

Many of the algorithms used for machine-precision numerical evaluation of mathematical functions
are examples. The main parts of such algorithms are formulas which are as short as possible but
which yield the best numerical approximations.

Most such formulas used in Mathematica were actually derived by Mathematica itself. Often many
months of computation were required, but the result was a short formula that can be used to evaluate
functions in an optimal way.

224 1. A Practical Introduction to Mathematica « 1.12 Special Topic: The Internals of Mathematica

-l 1.12.4 The Software Engineering of Mathematica

Mathematica is one of the more complex software systems ever constructed. Its source code is written
in a combination of C and Mathematica, and for Version 5, the code for the kernel consists of about
1.5 million lines of C and 150,000 lines of Mathematica. This corresponds to roughly 50 megabytes of
data, or some 50,000 printed pages.

The C code in Mathematica is actually written in a custom extension of C which supports certain
memory management and object-oriented features. The Mathematica code is optimized using Share
and DumpSave.

In the Mathematica kernel the breakdown of different parts of the code is roughly as follows:
language and system: 30%; numerical computation: 25%; algebraic computation: 25%; graphics and
kernel output: 20%.

Most of this code is fairly dense and algorithmic: those parts that are in effect simple procedures or
tables use minimal code since they tend to be written at a higher level—often directly in Mathematica.

The source code for the kernel, save a fraction of a percent, is identical for all computer systems on
which Mathematica runs.

For the front end, however, a significant amount of specialized code is needed to support each
different type of user interface environment. The front end contains about 650,000 lines of system-
independent C source code, of which roughly 150,000 lines are concerned with expression formatting.
Then there are between 50,000 and 100,000 lines of specific code customized for each user interface
environment.

Mathematica uses a client-server model of computing. The front end and kernel are connected via
MathLink—the same system as is used to communicate with other programs.

Within the C code portion of the Mathematica kernel, modularity and consistency are achieved by
having different parts communicate primarily by exchanging complete Mathematica expressions.

But it should be noted that even though different parts of the system are quite independent at the
level of source code, they have many algorithmic interdependencies. Thus, for example, it is common
for numerical functions to make extensive use of algebraic algorithms, or for graphics code to use
fairly advanced mathematical algorithms embodied in quite different Mathematica functions.

Since the beginning of its development in 1986, the effort spent directly on creating the source
code for Mathematica is a substantial fraction of a thousand man-years. In addition, a comparable or
somewhat larger effort has been spent on testing and verification.

The source code of Mathematica has changed greatly since Version 1 was released. The total number
of lines of code in the kernel grew from 150,000 in Version 1 to 350,000 in Version 2, 600,000 in Version
3, 800,000 in Version 4 and about 1.5 million in Version 5. In addition, at every stage existing code
has been revised—so that Version 5 has only a few percent of its code in common with Version 1.

1.12.5 Testing and Verification 225

Despite these changes in internal code, however, the user-level design of Mathematica has re-
mained compatible from Version 1 on. Much functionality has been added, but programs created for
Mathematica Version 1 will almost always run absolutely unchanged under Version 5.

H 1.12.5 Testing and Verification

Every version of Mathematica is subjected to a large amount of testing before it is released. The vast
majority of this testing is done by an automated system that is written in Mathematica.

The automated system feeds millions of pieces of input to Mathematica, and checks that the output
obtained from them is correct. Often there is some subtlety in doing such checking: one must account
for different behavior of randomized algorithms and for such issues as differences in machine-precision
arithmetic on different computers.

The test inputs used by the automated system are obtained in several ways:
m For every Mathematica function, inputs are devised that exercise both common and extreme cases.
m Inputs are devised to exercise each feature of the internal code.
m All the examples in this book and in other books about Mathematica are used.
m Standard numerical tables are optically scanned for test inputs.
m Formulas from all standard mathematical tables are entered.
m Exercises from textbooks are entered.

m For pairs of functions such as Integrate and D or Factor and Expand, random expressions are
generated and tested.

When tests are run, the automated testing system checks not only the results, but also side effects
such as messages, as well as memory usage and speed.

There is also a special instrumented version of Mathematica which is set up to perform internal con-
sistency tests. This version of Mathematica runs at a small fraction of the speed of the real Mathematica,
but at every step it checks internal memory consistency, interruptibility, and so on.

The instrumented version of Mathematica also records which pieces of Mathematica source code have
been accessed, allowing one to confirm that all of the various internal functions in Mathematica have
been exercised by the tests given.

All standard Mathematica tests are routinely run on each version of Mathematica, on each different
computer system. Depending on the speed of the computer system, these tests take a few days to a
few weeks of computer time.

In addition, huge numbers of tests based on random inputs are run for the equivalent of many
years of computer time on a sampling of different computer systems.

226 1. A Practical Introduction to Mathematica « 1.12 Special Topic: The Internals of Mathematica

Even with all this testing, however, it is inevitable in a system as complex as Mathematica that errors
will remain.

The standards of correctness for Mathematica are certainly much higher than for typical mathemati-
cal proofs. But just as long proofs will inevitably contain errors that go undetected for many years, so
also a complex software system such as Mathematica will contain errors that go undetected even after
millions of people have used it.

Nevertheless, particularly after all the testing that has been done on it, the probability that you will
actually discover an error in Mathematica in the course of your work is extremely low.

Doubtless there will be times when Mathematica does things you do not expect. But you should
realize that the probabilities are such that it is vastly more likely that there is something wrong with
your input to Mathematica or your understanding of what is happening than with the internal code of
the Mathematica system itself.

If you do believe that you have found a genuine error in Mathematica, then you should contact
Wolfram Research Technical Support, so that the error can be corrected in future versions.

Part 2

Part 1 introduced Mathematica by showing you how to use some of its
more common features. This part looks at Mathematica in a different way.
Instead of discussing individual features, it concentrates on the global
structure of Mathematica, and describes the framework into which all
the features fit.

When you first start doing calculations with Mathematica, you
will probably find it sufficient just to read the relevant parts of Part 1.
Howeuver, once you have some general familiarity with the Mathematica
system, you should make a point of reading this part.

This part describes the basic structure of the Mathematica language,
with which you can extend Mathematica, adding your own functions,
objects or other constructs. This part shows how Mathematica uses a
fairly small number of very powerful symbolic programming methods
to allow you to build up many different kinds of programs.

Most of this part assumes no specific prior knowledge of computer
science. Nevertheless, some of it ventures into some fairly complicated
issues. You can probably ignore these issues unless they specifically affect
programs you are writing.

If you are an expert on computer languages, you may be able to glean
some understanding of Mathematica by looking at the Reference Guide
at the end of this book. Nevertheless, to get a real appreciation for the

principles of Mathematica, you will have to read this part.

Principles of Mathematica

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.1

2.12

2.13

2.14

Expressions 230
Functional Operations 240
Patterns 259
Manipulating Lists 283
Transformation Rules and Definitions 299
Evaluation of Expressions 324
Modularity and the Naming of Things 378
Strings and Characters 406
Textual Input and Qutput 424
The Structure of Graphics and Sound 486
Manipulating Notebooks 572
Files and Streams 623
MathLink and External Program Communication . . . 657

Global Aspects of Mathematica Sessions 702

230 2. Principles of Mathematica « 2.1 Expressions

2.1 Expressions

H 2.1.1 Everything Is an Expression

Mathematica handles many different kinds of things: mathematical formulas, lists and graphics, to
name a few. Although they often look very different, Mathematica represents all of these things in one
uniform way. They are all expressions.

A prototypical example of a Mathematica expression is £[x, y1. You might use f[x, y] to represent
a mathematical function f(x,y). The function is named £, and it has two arguments, x and y.

You do not always have to write expressions in the form f[x, y, ... 1. For example, x + y is also
an expression. When you type in x + y, Mathematica converts it to the standard form Plus[x, yl.
Then, when it prints it out again, it gives it as x + y.

The same is true of other “operators”, such as ~ (Power) and / (Divide).

In fact, everything you type into Mathematica is treated as an expression.

x+y+z Plus[x, y, z]
xyz Times[x, y, z]
x*n Power[x, n]
{a, b, ¢} List[a, b, c]
a->b Rulela, bl
a=b Setla, bl

Some examples of Mathematica expressions.

You can see the full form of any expression by using FullForm[expr].

Here is an expression.

This is the full form of the expression.

Here is another expression.

Its full form has several nested pieces.

In[1]:=x+y + z
Out[1]= x+y+z

In[2]:= FullForm[%]
Out[2]//FullForm= Plus([x, y, z]

In[3]:=1+ x22 + (y + z)~2

Out[3]= 1+x°+ (y+z)2

In[4]:= FullForm[%]

Out[4]//FullForm= Plus[1, Power[x, 2], Power[Plusl[y, z], 21]

2.1.2 The Meaning of Expressions 231

The object f in an expression f[x, y, ... 1is known as the head of the expression. You can extract it
using Head[expr]. Particularly when you write programs in Mathematica, you will often want to test
the head of an expression to find out what kind of thing the expression is.

Head gives the “function name” f. In[5]:= Head[£[x, y1]
Out[5]= £

Here Head gives the name of the In[6]:= Head[a + b + c]

“operator”. Out[6]= Plus

Everything has a head. In[7]:= Head[{a, b, c}]

Out[7]= List

Numbers also have heads. In[8]:= Head[23432]
Out[8]= Integer

You can distinguish different kinds of In[9]:= Head[345.6]
numbers by their heads. Out[9]= Real

Head[expr] give the head of an expression: the fin f[x, y]

FullForm[expr] display an expression in the full form used by Mathematica

Functions for manipulating expressions.

H 2.1.2 The Meaning of Expressions

The notion of expressions is a crucial unifying principle in Mathematica. It is the fact that every object
in Mathematica has the same underlying structure that makes it possible for Mathematica to cover so
many areas with a comparatively small number of basic operations.

Although all expressions have the same basic structure, there are many different ways that expres-
sions can be used. Here are a few of the interpretations you can give to the parts of an expression.

232 2. Principles of Mathematica « 2.1 Expressions

meaning of f meaning of x, V, ... examples

Function arguments or parameters Sin[x], f[x, y]
Command arguments or parameters Expand[(x + 1)~2]
Operator operands x+y, a=b

Head elements {a, b, c}

Object type contents RGBColor[r, g, bl

Some interpretations of parts of expressions.

Expressions in Mathematica are often used to specify operations. So, for example, typing in 2 + 3
causes 2 and 3 to be added together, while Factor[x~6 - 1] performs factorization.

Perhaps an even more important use of expressions in Mathematica, however, is to maintain a struc-
ture, which can then be acted on by other functions. An expression like {a, b, c} does not specify
an operation. It merely maintains a list structure, which contains a collection of three elements. Other
functions, such as Reverse or Dot, can act on this structure.

The full form of the expression {a, b, c}is List[a, b, c]. The head List performs no operations.
Instead, its purpose is to serve as a “tag” to specify the “type” of the structure.

You can use expressions in Mathematica to create your own structures. For example, you might
want to represent points in three-dimensional space, specified by three coordinates. You could give
each point as point[x, y, z]. The “function” point again performs no operation. It serves merely
to collect the three coordinates together, and to label the resulting object as a point.

You can think of expressions like point[x, y, z] as being “packets of data”, tagged with a partic-
ular head. Even though all expressions have the same basic structure, you can distinguish different
“types” of expressions by giving them different heads. You can then set up transformation rules and
programs which treat different types of expressions in different ways.

H 2.1.3 Special Ways to Input Expressions

Mathematica allows you to use special notation for many common operators. For example, although
internally Mathematica represents a sum of two terms as Plus[x, y1, you can enter this expression in
the much more convenient form x + y.

The Mathematica language has a definite grammar which specifies how your input should be con-
verted to internal form. One aspect of the grammar is that it specifies how pieces of your input
should be grouped. For example, if you enter an expression such as a + b ~ ¢, the Mathematica gram-
mar specifies that this should be considered, following standard mathematical notation, as a + (b ~ c)
rather than (a + b) ~ c. Mathematica chooses this grouping because it treats the operator ~ as having

2.1.3 Special Ways to Input Expressions 233

a higher precedence than +. In general, the arguments of operators with higher precedence are grouped
before those of operators with lower precedence.

You should realize that absolutely every special input form in Mathematica is assigned a definite
precedence. This includes not only the traditional mathematical operators, but also forms such as ->,
:= or the semicolons used to separate expressions in a Mathematica program.

The table on pages 1024-1029 gives all the operators of Mathematica in order of decreasing prece-
dence. The precedence is arranged, where possible, to follow standard mathematical usage, and to
minimize the number of parentheses that are usually needed.

You will find, for example, that relational operators such as < have lower precedence than arith-
metic operators such as +. This means that you can write expressions such as x + y > 7 without using
parentheses.

There are nevertheless many cases where you do have to use parentheses. For example, since ; has
a lower precedence than =, you need to use parentheses to write x = ('a ; b). Mathematica interprets
the expression x =a ; b as (x =a) ; b. In general, it can never hurt to include extra parentheses,
but it can cause a great deal of trouble if you leave parentheses out, and Mathematica interprets your
input in a way you do not expect.

flx, y] standard form for f[x, y]
f@x prefix form for f[x]
x// f postfix form for f[x]
x~f~y infix form for f[x, yl

Four ways to write expressions in Mathematica.

There are several common types of operators in Mathematica. The + in x + y is an “infix” oper-
ator. The - in -p is a “prefix” operator. Even when you enter an expression such as f[x, y, ...]
Mathematica allows you to do it in ways that mimic infix, prefix and postfix forms.

This “postfix form” is exactly In[1]:=x +y //f
equivalent to f[x + yI. Out[1]= £[x+y]

You will often want to add functions In[2]:=3~(1/4) +1 //N

like N as “afterthoughts”, and give out[2]= 2.31607

them in postfix form.

It is sometimes easier to understand In[3]:= {a, b, c} ~Join~ {d, e}
what a function is doing when you out[3]= {a, b, c, d, e}

write it in infix form.

234 2. Principles of Mathematica « 2.1 Expressions

You should notice that // has very low precedence. If you put //f at the end of any expression
containing arithmetic or logical operators, the f is applied to the whole expression. So, for example,
x+y //f means f[x+y], not x+f[y].

The prefix form @ has a much higher precedence. £ @ x + y is equivalent to £[x] + y, not f[x + y].
You can write £[x + y] in prefix form as £ @ (x + y).

M 2.1.4 Parts of Expressions

Since lists are just a particular kind of expression, it will come as no surprise that you can refer to
parts of any expression much as you refer to parts of a list.

{a, b, c}[2]1]

This gets the second element in the list In[1]:
{a, b, c}. Out[1]

= b

You can use the same method to get In[2]:= (x + y + 2z)[[2]]

the second element in the sum out[2]= y

X+y+z

This gives the last element in the sum. In[3]:= (x +y + 2)[[-1]]
Out[3]= z

Part 0 is the head. In[4]:= (x + y + z)[[0]]

Out[4]= Plus

You can refer to parts of an expression such as f[glal, g[b]] just as you refer to parts of nested
lists.

This is part 1. In[5]:= flglal, glbl] [[1]]
Out[5]= glal

This is part {1,1}. In[6]:= flglal, glbl] [[1, 1]]
Out[6]= a

This extracts part {2,1} of the In[7]:= (1 + x~2) [[2, 1]]

expression 1 + x~2. outl7]= x

To see what part is {2,1}, you can In[8]:= FullForm[1 + x~2]

look at the full form of the expression. 0ut[8]//FullForm= Plus[1, Power[x, 2]]

You should realize that the assignment of indices to parts of expressions is done on the basis of
the internal Mathematica forms of the expression, as shown by FullForm. These forms do not always
correspond directly with what you see printed out. This is particularly true for algebraic expressions,
where Mathematica uses a standard internal form, but prints the expressions in special ways.

Here is the internal form of x / y. In[9]:= FullForm[x / y]
Out[9]//FullForm= Times[x, Power[y, -11]

2.1.4 Parts of Expressions

235

It is the internal form that is used in
specifying parts.

In[10]:= (x / y)[[2]]

1
Out[10]= —
y

You can manipulate parts of expressions just as you manipulate parts of lists.

This replaces the third part of

a + b+ c+dby x*2. Note that the
sum is automatically rearranged when
the replacement is done.

Here is an expression.

This is the full form of t.

This resets a part of the expression t.

Now the form of t has been changed.

In[11]:= ReplacePart[a + b + ¢ + d, x~2, 3]
Out[11]= a+b+d+x>

In[12]:=t =1+ (3 +x)*2 /¥

(3+x)°
Out[12]= 1+ ——

In[13]:= FullForm[t]

Out[13]//FullForm= Plus[1, Times[Power[Plus[3, x], 2], Powerl[y, -111]

In[14]:= t[[2, 1, 1]] = x
Out[14]= x

In[15]:= t

%2
Out[15]= 1+ 7

Partlexpr, n]l or exprl[nl]

ReplacePart[expr, elem, n]

the n™ part of expr

Partlexpr, {n;, ny, ... 31 or exprl[{n;, ny, ... }11]

a combination of parts of an expression

replace the n™ part of expr by elem

Functions for manipulating parts of expressions.

Section 1.2.4 discussed how you can use lists of indices to pick out several elements of a list at a

time. You can use the same procedure to pick out several parts in an expression at a time.

This picks out elements 2 and 4 in the

list, and gives a list of these elements.

This picks out parts 2 and 4 of the
sum, and gives a sum of these
elements.

In[16]:= {a, b, c, d, e}[[{2, 4}]]
Out[16]= {b, d}

In[17]:=(a+ b+ c +d + e)[[{2, 4}]]
Out[17]= b+d

Any part in an expression can be viewed as being an argument of some function. When you pick
out several parts by giving a list of indices, the parts are combined using the same function as in the

expression.

236

2. Principles of Mathematica « 2.1 Expressions

M 2.1.5 Manipulating Expressions like Lists

You can use most of the list operations discussed in Section 1.8 on any kind of Mathematica expression.
By using these operations, you can manipulate the structure of expressions in many ways.

Here is an expression that corresponds
to a sum of terms.

Take[t, 2] takes the first two elements
from t, just as if t were a list.

Length gives the number of elements
in t.

You can use FreeQlexpr, form] to test
whether form appears nowhere in expr.

This gives a list of the positions at
which x appears in t.

In[1]:=t =1+ x + x*2 + y~2
Out[1]= 1+x+x%+y?

In[2]:= Takel[t, 2]
Out[2]= 1+x

In[3]:= Length[t]
Out[3]= 4

In[4]:= FreeQ[t, x]
Out[4]= False

In[5]:= Position[t, x]
out[5]= {{2}, {3, 1}}

You should remember that all functions which manipulate the structure of expressions act on the
internal forms of these expressions. You can see these forms using FullForm[expr]. They may not be
what you would expect from the printed versions of the expressions.

Here is a function with four
arguments.

You can add an argument using
Append.

This reverses the arguments.

In[6]:= f[a, b, c, d]
Out[6]= f[a, b, c, d]

In[7]:= Append[%, el
Out[7]= fla, b, c, d, €]

In[8]:= Reversel[%]
Out[8]= fle, d, c, b, al

There are a few extra functions that can be used with expressions, as discussed in Section 2.2.10.

H 2.1.6 Expressions as Trees

Here is an expression in full form.

TreeForm prints out expressions to
show their “tree” structure.

In[1]:= FullForm[x~3 + (1 + x)~2]
Out[1]//FullForm= Plus[Power[x, 3], Power[Plus[1, x], 2]]

In[2]:= TreeForm[x»3 + (1 + x)~2]

Out[2]//TreeForm= Plus[| ,]
Power[x, 3] Power[| s 2]
Plus[1, x]

2.1.7 Levels in Expressions 237

You can think of any Mathematica expression as a tree. In the expression above, the top node in the
tree consists of a Plus. From this node come two “branches”, x~3 and (1 + x)~2. From the x~3 node,
there are then two branches, x and 3, which can be viewed as “leaves” of the tree.

This matrix is a simple tree with just In[3]:= TreeForm[{{a, b}, {c, d}}]

two levels.
Out[3]//TreeForm= List[l s]

List[a, b] Listl[c, d]

Here is a more complicated expression. In[4]:= {{a b, c d~2}, {x*3 y~4}}
Out[4]= {{ab, cd?}, {x}y*}}

The tree for this expression has several In[5]:= TreeForm[%]
levels. The representation of the tree
here was too long to fit on a single

line, so it had to be broken onto two List[I 5 |]

lines. Times[a, b]

Out[5]//TreeForm= List[| >

Times [c s
Power[d, 2]

I]
List[|]
Times[I , |
Power[x, 3] Powerly, 4]

The indices that label each part of an expression have a simple interpretation in terms of trees.
Descending from the top node of the tree, each index specifies which branch to take in order to reach
the part you want.

H 2.1.7 Levels in Expressions

The Part function allows you to access specific parts of Mathematica expressions. But particularly
when your expressions have fairly uniform structure, it is often convenient to be able to refer to a
whole collection of parts at the same time.

Levels provide a general way of specifying collections of parts in Mathematica expressions. Many
Mathematica functions allow you to specify the levels in an expression on which they should act.

Here is a simple expression, displayed In[1]:= (¢t = {x, {x, y}, y}) // TreeForm
in tree form.
Out[1]//TreeForm= List[x, | s y]
List[x, y]
This searches for x in the expression t In[2]:= Position[t, x, 1]
down to level 1. It finds only one outl2]= {{1}}

occurrence.

238 2. Principles of Mathematica « 2.1 Expressions

This searches down to level 2. Now it In[3]:= Position[t, x, 2]
finds both occurrences of x. out[3]= {{1}, {2, 1}}

This searches only at level 2. It finds In[4]:= Position[t, x, {2}]
just one occurrence of x. out[4]= {{2, 1}}

Position[expr, form, n]l give the positions at which form occurs in expr down to
level n

Position[expr, form, {nt] give the positions exactly at level n

Controlling Position using levels.

You can think of levels in expressions in terms of trees. The level of a particular part in an ex-
pression is simply the distance down the tree at which that part appears, with the top of the tree
considered as level 0.

It is equivalent to say that the parts which appear at level n are those that can be specified by a
sequence of exactly n indices.

n levels 1 through n
Infinity all levels (except 0)
{n} level n only

{n;, n,} levels n; through n,

Heads -> True include heads

Heads —> False exclude heads

Level specifications.

Here is an expression, displayed in tree In[5]:= (u = £[£[glal, al, a, h[al, £]) // TreeForm
form.

Out[5]//TreeForm= f[| ,a, | s f]
f[| , a] hlal
glal
This searches for a at levels from 2 In[6]:= Position[u, a, {2, Infinity}]
downwards. outl6]= {{1, 1, 1}, {1, 2}, {3, 1}}

This shows where f appears other than In[7]:= Position[u, f, Heads->False]
in the head of an expression. outl7]= {{4}}

2.1.7 Levels in Expressions

239

This includes occurrences of f in heads
of expressions.

In[8]:= Position[u, f, Heads->Truel
out[8]= {{0}, {1, 0}, {4}}

Levellexpr, lev]

Depth[expr]

a list of the parts of expr at the levels specified by lev

the total number of levels in expr

Testing and extracting levels.

This gives a list of all parts of u that
occur down to level 2.

Here are the parts specifically at
level 2.

In[9]:= Levellu, 2]
Out[9]= {glal, a, flglal, al, a, a, h[al, f}

In[10]:= Level[u, {2}]
Out[10]= {glal, a, a}

When you have got the hang of ordinary levels, you can try thinking about negative levels. Negative
levels label parts of expressions starting at the bottom of the tree. Level -1 contains all the leaves of
the tree: objects like symbols and numbers.

This shows the parts of u at level —1.

In[11]:= Level[u, {-1}]
Out[11]= {a, a, a, a, £}

You can think of expressions as having a “depth”, which is equal to the maximum number of levels
shown by TreeForm. In general, level -7 in an expression is defined to consist of all subexpressions

whose depth is n.
The depth of gla] is 2.

The parts of u at level -2 are those
that have depth exactly 2.

In[12]:= Depth[glal]
Out[12]= 2

In[13]:= Level[u, {-2}]
Out[13]= {glal, h[al}

240 2. Principles of Mathematica « 2.2 Functional Operations

2.2 Functional Operations

M 2.2.1 Function Names as Expressions

In an expression like f[x], the “function name” f is itself an expression, and you can treat it as you
would any other expression.

You can replace names of functions In[1]:= £f[x] + f[1 -x] /. £->¢g
using transformation rules. Out[1]= gl1-x] +glx]

Any assignments you have made are In[2]:= p1 = p2; pilx, yl
used on function names. out[2]= p2lx, y]

This defines a function which takes a In[3]:= pflf_, x_] := £f[x] + £[1 - x]
function name as an argument.

This gives Log as the function name to In[4]:= pflLog, ql
use. Out[4]= Logl[1l-ql +Loglql

The ability to treat the names of functions just like other kinds of expressions is an important
consequence of the symbolic nature of the Mathematica language. It makes possible the whole range
of functional operations discussed in the sections that follow.

Ordinary Mathematica functions such as Log or Integrate typically operate on data such as num-
bers and algebraic expressions. Mathematica functions that represent functional operations, however,
can operate not only on ordinary data, but also on functions themselves. Thus, for example, the func-
tional operation InverseFunction takes a Mathematica function name as an argument, and represents
the inverse of that function.

InverseFunction is a functional In[5]:= InverseFunction[ArcSin]
operation: it takes a Mathematica outl5]
function as an argument, and returns

another function which represents its

inverse.

Sin

The result obtained from In[6]:= %[x]
InverseFunction is a function which Out[6]= Sin[x]
you can apply to data.

You can also use InverseFunction in In[7]:= InverseFunction[f] [x]

a purely symbolic way. out[7]= £D [x]

There are many kinds of functional operations in Mathematica. Some represent mathematical oper-
ations; others represent various kinds of procedures and algorithms.

Unless you are familiar with advanced symbolic languages, you will probably not recognize most
of the functional operations discussed in the sections that follow. At first, the operations may seem

2.2.2 Applying Functions Repeatedly 241

difficult to understand. But it is worth persisting. Functional operations provide one of the most
conceptually and practically efficient ways to use Mathematica.

H 2.2.2 Applying Functions Repeatedly

Many programs you write will involve operations that need to be iterated several times. Nest and
NestList are powerful constructs for doing this.

Nest[f, x, n] apply the function f nested n times to x
NestList[f, x, n] generate the list {x, f[x], f[f[x1], ... }, where f is nested

up to n deep
Applying functions of one argument repeatedly.
Nest[f, x, n] takes the “name” f of a In[1]:= Nest[£f, x, 4]
function, and applies the function n Out[1]= £[£[£[£[x]11]]
times to x.
This makes a list of each successive In[2]:= NestList[f, x, 4]
nesting. Out[2]= {x, £[x], £[£f[x]], £L£[£[x]1]], £CE[£0£[x1]1]1]1}
Here is a simple function. In[3]:= reciplx_] := 1/(1 + x)
You can iterate the function using In[4]:= Nest[recip, x, 3]
Nest. 1

Out[4]=

T
oz

Nest and NestList allow you to apply functions a fixed number of times. Often you may
want to apply functions until the result no longer changes. You can do this using FixedPoint and
FixedPointList.

FixedPoint[f, x] apply the function f repeatedly until the result no longer
changes

FixedPointList[f, x] generate the list {x, f[x]1, f[f[x1], ... }, stopping when the
elements no longer change

Applying functions until the result no longer changes.

Here is a function that takes one step In[5]:= newton3[x_] := N[1/2 (x + 3/x)]
in Newton’s approximation to V3.

242

2. Principles of Mathematica « 2.2 Functional Operations

Here are five successive iterates of the
function, starting at x = 1.

Using the function FixedPoint, you
can automatically continue applying
newton3 until the result no longer
changes.

Here is the sequence of results.

In[6]:= NestList[newton3, 1.0, 5]
Out[6]= {1.,2.,1.75, 1.73214, 1.73205, 1.73205}

In[7]:= FixedPoint[newton3, 1.0]
Out[7]= 1.73205

In[8]:= FixedPointList[newton3, 1.0]
out[8]= {1., 2., 1.75, 1.73214, 1.73205, 1.73205, 1.73205}

NestWhile[f, x, test]

NestWhileList[f, x, fest]

NestWhile[f, x, test, m], NestWhileList[f, x, test, m]

NestWhile[f, x, test, A11], NestWhileList[f, x, test, All]

apply the function f repeatedly until applying test to the
result no longer yields True

generate the list {x, f[x], f[f[x1], ... }, stopping when
applying test to the result no longer yields True

supply the m most recent results as arguments for test at
each step

supply all results so far as arguments for test

Applying functions repeatedly until a test fails.

Here is a function which divides a
number by 2.

This repeatedly applies divide2 until
the result is no longer an even number.

This repeatedly applies newton3,
stopping when two successive results
are no longer considered unequal, just
as in FixedPointList.

This goes on until the first time a result
that has been seen before reappears.

In[9]:= divide2[n_] := n/2

In[10]:= NestWhileList[divide2, 123456, EvenQ]
Out[10]= {123456, 61728, 30864, 15432, 7716, 3858, 1929}

In[11]:= NestWhileList[newton3, 1.0, Unequal, 2]

Out[11]= {1., 2., 1.75, 1.73214, 1.73205, 1.73205, 1.73205}

In[12]:= NestWhileList[Mod[5 #, 7]%, 1, Unequal, All]
Out[12]= {1, 5, 4, 6, 2, 3, 1}

Operations such as Nest take a function f of one argument, and apply it repeatedly. At each step,
they use the result of the previous step as the new argument of f.

It is important to generalize this notion to functions of two arguments. You can again apply the
function repeatedly, but now each result you get supplies only one of the new arguments you need.
A convenient approach is to get the other argument at each step from the successive elements of a list.

2.2.3 Applying Functions to Lists and Other Expressions 243

FoldListlf, x, {a, b, ... }1 create the list {x, f[x, al, f[f[x, al, b1, ... }

Fold[f, x, {a, b, ... }1 give the last element of the list produced by
FoldList[f, x, {a, b, ... }]

Ways to repeatedly apply functions of two arguments.

Here is an example of what FoldList In[13]:= FoldList[f, x, {a, b, c}]

does. out[13]= {x, f[x, al, £[f[x, al, b], £[£f[f[x, al, b], cl}
Fold gives the last element of the list In[14]:= Fold[f, x, {a, b, c}]

produced by FoldList. Out[14]= £[£[£[x, al, b], c]

This gives a list of cumulative sums. In[15]:= FoldList[Plus, 0, {a, b, c}]

Out[15]= {0, a, a+b, a+b+c}

Using Fold and FoldList you can write many elegant and efficient programs in Mathematica. In
some cases, you may find it helpful to think of Fold and FoldList as producing a simple nesting of
a family of functions indexed by their second argument.

This defines a function nextdigit. In[16]:= nextdigit[a_, b_] :=10a + b

This is now like the built-in function In[17]:= fromdigits[digits_] := Fold[nextdigit, 0, digits]
FromDigits.

Here is an example of the function in In[18]:= fromdigits[{1, 3, 7, 2, 9, 1}]

action. Out[18]= 137291

H 2.2.3 Applying Functions to Lists and Other Expressions

In an expression like f[{a, b, c}] you are giving a list as the argument to a function. Often you
need instead to apply a function directly to the elements of a list, rather than to the list as a whole.
You can do this in Mathematica using Apply.

This makes each element of the list an In[1]:= Applylf, {a, b, c}]
argument of the function f. out[1]= f[a, b, c]

This gives Plus[a, b, c] which yields In[2]:= Apply[Plus, {a, b, c}]
the sum of the elements in the list. Out[2]= a+b+c

Here is the definition of the statistical In[3]:= mean[list_] := Apply[Plus, 1list] / Length[list]
mean, written using Apply.

244

2. Principles of Mathematica « 2.2 Functional Operations

Applylf, {a, b, ... }1 apply f to a list, giving f[a, b, ...]
Applylf, expr] or f@@ expr apply f to the top level of an expression
Applylf, expr, {1}]1 or f@e@e@ expr apply f at the first level in an expression
Applylf, expr, lev]l apply f at the specified levels in an expression

Applying functions to lists and other expressions.

What Apply does in general is to
replace the head of an expression with
the function you specify. Here it
replaces Plus by List.

Here is a matrix.

Using Apply without an explicit level
specification replaces the top-level list
with f.

This applies f only to parts of m at
level 1.

This applies f at levels 0 through 1.

In[4]:= Apply[List, a + b + c]
Out[4]= {a, b, c}

In[5]:=m = {{a, b, c}, {b, c, d}}
Out[5]= {{a, b, c}, {b, c, d}}

In[6]:= Apply[£, m]
Out[6]= f[{a, b, c}, {b, c, d}]
In[7]:= Applyl[f, m, {1}]

Out[7]= {fla, b, cI, £[b, c, d1}

In[8]:= Apply[£f, m, {0, 1}]
Out[8]= f£lf[a, b, c], f[b, c, d1]

Hl 2.2.4 Applying Functions to Parts of Expressions

If you have a list of elements, it is often important to be able to apply a function separately to each
of the elements. You can do this in Mathematica using Map.

This applies f separately to each
element in a list.

This defines a function which takes the
first two elements from a list.

You can use Map to apply take2 to
each element of a list.

In[1]:= Mapl£f, {a, b, c}]
Out[1]= {f[al, £[b], £lcl}

In[2]:= take2[list_] := Take[list, 2]

In[3]:= Map[take2, {{1, 3, 4}, {5, 6, 7}, {2, 1, 6, 6}}]
out[3]= {{1, 3}, {5, 6}, {2, 1}}

Maplf, {a, b, ... }]

apply f to each element in a list, giving {f[al, f[b], ... }

Applying a function to each element in a list.

2.2.4 Applying Functions to Parts of Expressions 245

What Maplf, expr] effectively does is to “wrap” the function f around each element of the expression
expr. You can use Map on any expression, not just a list.

This applies f to each element in the In[4]:= Map[f, a + b + c]

sum. Out[4]= f[a] +£f[b] +£[c]

This applies Sqrt to each argument In[5]:= Map[Sqrt, glx~2, x~3]]
f g.

og Out[5]= g[\/x2 R \/x3]

Maplf, expr] applies f to the first level of parts in expr. You can use MapAll[f, expr] to apply f to
all the parts of expr.

This defines a 2 x 2 matrix m. In[6]:=m = {{a, b}, {c, d}}
out[6]= {{a, b}, {c, d}}

Map applies £ to the first level of m, in In[7]:= Map[£, m]

this case the rows of the matrix. out[7]= {f[{a, b}, £[{c, d}1}

MapAll applies f at all levels in m. If In[8]:= MapAll[f, m]

you look carefully at this expression, Out[8]= f[{f[{f[a], £[b]}], f[{flc], £[d1}]}]
you will see an f wrapped around

every part.

In general, you can use level specifications as described on page 238 to tell Map to which parts of
an expression to apply your function.

This applies f only to the parts of m at In[9]:= Map[£f, m, {2}]
level 2. out[9]= {{f[al, £[b]}, {f[c], £[dI}}

Setting the option Heads->True wraps In[10]:= Mapl[£f, m, Heads->Truel

f around the head of each part, as well Out[10]= £[List] [£[{a, b}], £[{c, d}1]
as its elements.

Maplf, expr] or f/@expr apply f to the first-level parts of expr
MapAll[f, expr]l or f//@expr apply f to all parts of expr
Maplf, expr, lev] apply f to each part of expr at levels specified by lev

Ways to apply a function to different parts of expressions.

Level specifications allow you to tell Map to which levels of parts in an expression you want a
function applied. With MapAt, however, you can instead give an explicit list of parts where you want
a function applied. You specify each part by giving its indices, as discussed in Section 2.1.4.

Here is a 2 x 3 matrix. In[11]:= mm = {{a, b, ¢}, {b, c, d}}
out[11]= {{a, b, c}, {b, c, d}}

246 2. Principles of Mathematica « 2.2 Functional Operations

This applies f to parts {1, 2} and In[12]:= MapAt[f, mm, {{1, 2}, {2, 3}}]
2, 3k out[12]= {{a, £[b], c}, {b, c, £[d1}}
This gives a list of the positions at In[13]:= Position[mm, b]

which b occurs in mm. out[13]= {{1, 2}, {2, 1}}

You can feed the list of positions you In[14]:= MapAt[f, mm, %]

get from Position directly into MapAt. out[14]= {{a, £[b], c}, {£[b], c, d}}

To avoid ambiguity, you must put each In[15]:= MapAt[f, {a, b, c, d}, {{2}, {3}}]
part specification in a list, even when it Out[15]= {a, £[b], £[c], d}
involves only one index. ’ ’ ’

MapAtlf, expr, {part,, part,, ... }1 apply f to specified parts of expr

Applying a function to specific parts of an expression.

Here is an expression. In[16]:=t =1+ (3 +x)*2/ x
(3+x)°
Out[16]= 1+ ——
This is the full form of t. In[17]:= FullForm[t]

Out[17]//FullForm= Plus[1, Times[Power[x, -1], Power[Plus[3, x], 2]1]]

You can use MapAt on any expression. In[18]:= MapAt[f, t, {{2, 1, 1}, {2, 2}}]
Remember that parts are numbered on)
the basis of the full forms of _ f[(3+X)]
! Out[18]= 1+ ——— "=
expressions. fx]

MapIndexed[f, expr] apply f to the elements of an expression, giving the part
specification of each element as a second argument to f

MapIndexed[f, expr, lev]l apply f to parts at specified levels, giving the list of indices
for each part as a second argument to f

Applying a function to parts and their indices.

This applies f to each element in a list, In[19]:= MapIndexed[f, {a, b, c}]

g;zgr‘lgd t:fglilfr‘ggtji tff‘e element as a out[19]= {f[a, {1}], £b, {2}], flc, {3}1}

This applies £ to both levels in a In[20]:= MapIndexed[f, {{a, b}, {c, d}}, 2]

matrix. out[20]= {£[{fla, {1, 1}], £[b, {1, 2}1}, {1}],
£[{flc, {2, 1}1, £d, {2, 211}, {21}

2.2.4 Applying Functions to Parts of Expressions 247

Map allows you to apply a function of one argument to parts of an expression. Sometimes, however,
you may instead want to apply a function of several arguments to corresponding parts of several
different expressions. You can do this using MapThread.

MapThread[f, {expr,, expr,, ... }]1 apply f to corresponding elements in each of the expr;
MapThread[f, {expr,, expr,, ... }, lev] apply f to parts of the expr; at the specified level

Applying a function to several expressions at once.

This applies f to corresponding pairs In[21]:= MapThread[f, {{a, b, c}, {ap, bp, cp}}]

of list elements. Out[21]= {f[a, ap] , f[b, bp] , f[C, CP]}

MapThread works with any number of In[22]:= MapThread[f, {{a, b}, {ap, bp}, {app, bpp}}]
expressions, so long as they have the Out[22]= {f[a, ap, appl, £[b, bp, bppl}

same structure.

Functions like Map allow you to create expressions with parts modified. Sometimes you simply
want to go through an expression, and apply a particular function to some parts of it, without building
a new expression. A typical case is when the function you apply has certain “side effects”, such as
making assignments, or generating output.

Scanl[f, expr] evaluate f applied to each element of expr in turn

Scanlf, expr, lev] evaluate f applied to parts of expr on levels specified by lev

Evaluating functions on parts of expressions.

Map constructs a new list in which f£ In[23]:= Map[f, {a, b, c}]
has l?een applied to each element of out[23]= {f[al, £b], £[c1}
the list.
Scan evaluates the result of applying a In[24]:= Scan[Print, {a, b, c}]
function to each element, but does not a
construct a new expression. b

C
Scan visits the parts of an expression In[25]:= Scan[Print, 1 + x~2, Infinity]
in a depth-first walk, with the leaves 1
visited first. X

2

2
X

248

2. Principles of Mathematica « 2.2 Functional Operations

Hl 2.2.5 Pure Functions

Function[x, body]

Function[{x;, x2, ... }, body]
body &

a pure function in which x is replaced by any argument you
provide

a pure function that takes several arguments

a pure function in which arguments are specified as # or #1,
#2, #3, etc.

Pure functions.

When you use functional operations such as Nest and Map, you always have to specify a function to
apply. In all the examples above, we have used the “name” of a function to specify the function. Pure
functions allow you to give functions which can be applied to arguments, without having to define

explicit names for the functions.
This defines a function h.
Having defined h, you can now use its

name in Map.

Here is a way to get the same result
using a pure function.

In[1]:=h[x_] := £[x] + glx]
In[2]:= Map[h, {a, b, c}]
Out[2]= {f[a]l +glal, £[b]l +glbl, flc] +glcl}

In[3]:= Map[£[#] + g[#] &, {a, b, c}]
Out[3]= {f[a]l +glal, £[bl +glbl, flc]l +glcl}

There are several equivalent ways to write pure functions in Mathematica. The idea in all cases is to
construct an object which, when supplied with appropriate arguments, computes a particular function.
Thus, for example, if fun is a pure function, then funlal evaluates the function with argument a.

Here is a pure function which
represents the operation of squaring.

Supplying the argument n to the pure
function yields the square of n.

In[4]:= Function[x, x~2]

Out[4]= Function[x, x°]

In[5]:= %[n]
Out[5]= n?

You can use a pure function wherever you would usually give the name of a function.

You can use a pure function in Map.

Or in Nest.

This sets up a pure function with two
arguments and then applies the
function to the arguments a and b.

In[6]:= Map[Function[x, x*2], a + b + c]

Out[6]= a® +Db? +c?

In[7]:= Nest[Functionl[q, 1/(1+q)], x, 3]

1
1

T
oy

Out[7]=

In[8]:= Function[{x, y}, x~2 + y~3] [a, D]
Out[8]= a®+1b°

2.2.5 Pure Functions 249

If you are going to use a particular function repeatedly, then you can define the function using
flx_1 := body, and refer to the function by its name f. On the other hand, if you only intend to use
a function once, you will probably find it better to give the function in pure function form, without
ever naming it.

If you are familiar with formal logic or the LISP programming language, you will recognize Mathe-
matica pure functions as being like A expressions or anonymous functions. Pure functions are also
close to the pure mathematical notion of operators.

the first variable in a pure function

#n the n'™ variable in a pure function

the sequence of all variables in a pure function

##n the sequence of variables starting with the n'" one

Short forms for pure functions.

Just as the name of a function is irrelevant if you do not intend to refer to the function again, so
also the names of arguments in a pure function are irrelevant. Mathematica allows you to avoid using
explicit names for the arguments of pure functions, and instead to specify the arguments by giving
“slot numbers” #n. In a Mathematica pure function, #n stands for the n'" argument you supply. #
stands for the first argument.

#~2 & is a short form for a pure In[9]:= Mapl #2 &, a + b + c]

function that squares its argument. Out[9]= a2 +b2 +c2

This applies a function that takes the In[10]:= Map[Take[#, 2]&, {{2, 1, 7}, {4, 1, 5}, {3, 1, 2}}]
first two elements from each list. By outf10]= {{2, 1}, {4, 1}, {3, 1}}

using a pure function, you avoid o

having to define the function

separately.

Using short forms for pure functions, In[11]:= fromdigits[digits_] := Fold[(10 #1 + #2)&, 0, digits]
you can simplify the definition of
fromdigits given on page 243.

When you use short forms for pure functions, it is very important that you do not forget the
ampersand. If you leave the ampersand out, Mathematica will not know that the expression you give
is to be used as a pure function.

When you use the ampersand notation for pure functions, you must be careful about the grouping
of pieces in your input. As shown on page 1029 the ampersand notation has fairly low precedence,
which means that you can type expressions like #1 + #2 & without parentheses. On the other hand,
if you want, for example, to set an option to be a pure function, you need to use parentheses, as in
option => (fun &).

250 2. Principles of Mathematica « 2.2 Functional Operations

Pure functions in Mathematica can take any number of arguments. You can use ## to stand for all
the arguments that are given, and ##n to stand for the n'" and subsequent arguments.

stands for all arguments. In[12]:= f[##, ##1& [x, yl
Out[12]= flx,y, x, y]

##2 stands for all arguments except the In[13]:= Apply[f[##2, #1]&, {{a, b, c}, {ap, bp}}, {1}]
first one. Out[13]= {f[b, c, al, £[bp, apl}

Ml 2.2.6 Building Lists from Functions

Array[f, n] generate a length n list of the form {f[1], f[2], ... }

Array[f, {n;, np, ... }1 generate an 1n; x 11, x ... nested list, each of whose entries
consists of f applied to its indices

NestList[f, x, n] generate a list of the form {x, f[x]1, f[f[x11, ... }, where f
is nested up to n deep

FoldList[f, x, {a, b, ... }] generate a list of the form {x, f[x, al, f[f[x, 4], b1, ... }
ComposeList[{f,, f,, ... }, x] generate a list of the form {x, f;[x1, f,[f,[x1], ... }

Making lists from functions.

This makes a list of 5 elements, each of In[1]:= Array[p, 5]

the form pli]. out[1]= {p[11, p[2], p[3], p[4], p[561}
Here is another way to produce the In[2]:= Tablelp[il, {i, 5}]

same list. out[2]= {p[1], pl2], p[3], pl4l, p[51}
This produces a list whose elements In[3]:= Array[# + #~2 &, 5]

are i+ 1%, out[3]= {2, 6, 12, 20, 30}

This generates a 2 x 3 matrix whose In[4]:= Array[m, {2, 3}]

entries are m[i, ;). out[4]= {{mnl1, 11, m[1, 21, m[1, 31},

{m[2, 11, m[2, 2], m[2, 313}

This generates a 3 x 3 matrix whose In[5]:= Array[Plus[##]~2 &, {3, 3}]

elemepts. are the squares of the sums out[5]= {{a, 9, 16}, {9, 16, 25}, {16, 25, 36}}
of their indices.

NestList and FoldList were discussed in Section 2.2.2. Particularly by using them with pure
functions, you can construct some very elegant and efficient Mathematica programs.

This gives a list of results obtained by In[6]:= NestList[D[#, x]&, x*n, 3]

X) - 0o
successively differentiating x”* with Outl6]= {x*, nx™, (-1+m) nx?™, (-2+1) (-1+n) nx37}
respect to x.

2.2.8 Expressions with Heads That Are Not Symbols 251

W 2.2.7 Selecting Parts of Expressions with Functions

Section 1.2.4 showed how you can pick out elements of lists based on their positions. Often, however,
you will need to select elements based not on where they are, but rather on what they are.

Selectl[list, f1 selects elements of list using the function f as a criterion. Select applies f to each
element of list in turn, and keeps only those for which the result is True.

This selects the elements of the list for In[1]:= Select[{2, 15, 1, a, 16, 17}, # > 4 &]
Which the pure function yields True, out[1]= {15, 16, 17}
ie., those numerically greater than 4.

You can use Select to pick out pieces of any expression, not just elements of a list.

This gives a sum of terms involving x, In[2]:= t = Expand[(x + y + z)~2]

y and z. Out[2]= x®> +2xy+y? +2xz+2yz+2°

You can use Select to pick out only In[3]:= Select[t, FreeQ[#, x]&]
those terms in the sum that do not

_ .2 2
involve the symbol x. Out[3]= y° +2yz+z

Selectlexpr, f1 select the elements in expr for which the function f gives
True

Selectlexpr, f, n]1 select the first n elements in expr for which the function f
gives True

Selecting pieces of expressions.

Section 2.3.5 discusses some “predicates” that are often used as criteria in Select.

This gives the first element which In[4]:= Select[{-1, 3, 10, 12, 14}, # > 3 &, 1]
satisfies the criterion you specify. Out[4]= {10}

-l 2.2.8 Expressions with Heads That Are Not Symbols

In most cases, you want the head f of a Mathematica expression like f[x] to be a single symbol. There
are, however, some important applications of heads that are not symbols.

This expression has £[3] as a head. In[1]:= £[31[x, y]
You can use heads like this tﬂo out[1]= £[31[x, y]
represent “indexed functions”.

You can use any expression as a head. In[2]:= (a + b)[x]
Remember to put in the necessary Out[2]= (a+b)[x]
parentheses.

252 2. Principles of Mathematica « 2.2 Functional Operations

One case where we have already encountered the use of complicated expressions as heads is in
working with pure functions in Section 2.2.5. By giving Function[vars, body] as the head of an
expression, you specify a function of the arguments to be evaluated.

With the head Function[x, x~2], the In[3]:= Function[x, x~2] [a + b]

value of the expression is the square of

the argument. Out[3]= (a+b)>

There are several constructs in Mathematica which work much like pure functions, but which repre-
sent specific kinds of functions, typically numerical ones. In all cases, the basic mechanism involves
giving a head which contains complete information about the function you want to use.

Function[vars, bodyllargs] pure function

InterpolatingFunction[datallargs] approximate numerical function (generated by
Interpolation and NDSolve)

CompiledFunction[datallargs] compiled numerical function (generated by Compile)

+ LinearSolveFunction[datal[vec] matrix solution function (generated by LinearSolve)

Some expressions which have heads that are not symbols.

NDSolve returns a list of rules that give In[4]:= NDSolvel{y’’'[x] == y[x], y[0]==y’[0]==1}, y, {x, 0, 5}]

Ybés tan InterpolatingFunction Out[4]= {{y - InterpolatingFunction[{{0., 5.}}, <>]}}
object.

Here is the InterpolatingFunction In[5]:=y /. First[%]

object. Out[5]= InterpolatingFunction[{{0., 5.}}, <>]

You can use the In[6]:= % [3.8]

InterpolatingFunction object as a Out[6]= 44.7012

head to get numerical approximations
to values of the function y.

Another important use of more complicated expressions as heads is in implementing functionals and
functional operators in mathematics.

As one example, consider the operation of differentiation. As will be discussed in Section 3.5.4, an
expression like £’ represents a derivative function, obtained from f by applying a functional operator to
it. In Mathematica, £' is represented as Derivative[1][£]: the “functional operator” Derivative[1]
is applied to f to give another function, represented as f’.

This expression has a head which In[7]:= £'[x] // FullForm

represents the application of the Out[7]//FullForm= Derivative[1] [£] [x]
functional operator” Derivative[1]

to the “function” f£.

2.2.9 Advanced Topic: Working with Operators 253

You can replace the head £’ with In[8]:=% /. £' -> fp
another head, such as fp. This

’ Out[8]= £
effectively takes fp to be a “derivative ut(6]= fplx]
function” obtained from f.

M 2.2.9 Advanced Topic: Working with Operators

You can think of an expression like f[x] as being formed by applying an operator f to the expression
x. You can think of an expression like f[g[x]1] as the result of composing the operators f and g, and
applying the result to x.

Composition[f, g, ... 1 the composition of functions f, g, ...
InverseFunction[f] the inverse of a function f

Identity the identity function

Some functional operations.

This represents the composition of the In[1]:= Composition[f, g, h]

functions £, g and h. Out[1]= Composition[f, g, hl]

You can manipulate compositions of In[2]:= InverseFunction[Composition[%, ql]

functions symbolically. Out[2]= Composition[qV, hC¥, gD, £C1]

The composition is evaluated explicitly In[3]:= %[x]
when you supply a specific argument. Out[3]= qP D [gD (£ [x]11]

You can get the sum of two expressions in Mathematica just by typing x + y. Sometimes it is also
worthwhile to consider performing operations like addition on operators.

You can think of this as containing a In[4]:= (£ + g)[x]

sum of two operators f and g. Out[4]= (f+g) [x]

Using Through, you can convert the In[5]:= Through[%, Plus]

expression to a more explicit form. Out[5]= £[x] +glx]

This corresponds to the mathematical In[6]:= Identity + (D[#, x]&)
9

operator 1 + 7. Out[6]= Identity+ (3 #1 &)

Mathematica does not automatically In[7]:= % [x~2]

apply the separate pieces of the

) Out[7]= (Identity+ (8 #1&)) [x2]
operator to an expression.

You can use Through to apply the In[8]:= Throughl[%, Plus]

operator. Out[8]= 2x+x>

254 2. Principles of Mathematica « 2.2 Functional Operations

Identitylexpr] the identity function
Through[plf,, f,1[x]1, g1 give p[f;[x]1, f,[x1] if p is the same as g
Operatelp, f[x1] give p[fl1lx]
Operatelp, f[x1, n] apply p at level n in f
MapAlllp, expr, Heads—->Truel apply p to all parts of expr, including heads

Operations for working with operators.

This has a complicated expression as a In[9]:=t = ((1 + a)(1 + b))[x]
head. out[o]= ((1+a) (1+b))[x]
Functions like Expand do not In[10]:= Expand[%]
automatically go inside heads of Out[10]= ((1+a) (1+1b)) [x]
expressions.

With the Heads option set to True, In[11]:= MapAll[Expand, t, Heads->Truel]
MapAll goes inside heads. Out[11]= (1+a+b+ab) [x]

The replacement operator /. does go In[12]:=t /. a->1

inside heads of expressions. Out[12]= (2 (1+b)) [x]

You can use Operate to apply a In[13]:= Operatel[p, t]

functlor} specifically to the head of an Out[13]= pl(1+a) (1+Db)] [x]
expression.

-l 2.2.10 Structural Operations

Mathematica contains some powerful primitives for making structural changes to expressions. You can
use these primitives both to implement mathematical properties such as associativity and distributivity,
and to provide the basis for some succinct and efficient programs.

This section describes various operations that you can explicitly perform on expressions. Section
2.6.3 will describe how some of these operations can be performed automatically on all expressions
with a particular head by assigning appropriate attributes to that head.

You can use the Mathematica function Sort[expr] to sort elements not only of lists, but of expres-
sions with any head. In this way, you can implement the mathematical properties of commutativity
or symmetry for arbitrary functions.

You can use Sort to put the arguments In[1]:= Sort[flc, a, b]]
of any function into a standard order. out[1]= f[a, b, c]

2.2.10 Structural Operations

255

Sort[expr]

Sort[expr, pred]

+ Ordering[expr]
+ Orderinglexpr, nl
+ Orderinglexpr, n, pred]

OrderedQ[expr]

Order[expr,, expr,]

sort the elements of a list or other expression into a standard
order

sort using the function pred to determine whether pairs are
in order

give the ordering of elements when sorted
give the ordering of the first n elements when sorted

use the function pred to determine whether pairs are in
order

give True if the elements of expr are in standard order, and
False otherwise

give 1 if expr, comes before expr, in standard order, and -1
if it comes after

Sorting into order.

The second argument to Sort is a
function used to determine whether
pairs are in order. This sorts numbers
into descending order.

This sorting criterion puts elements
that do not depend on x before those
that do.

In[2]:= Sort[{5, 1, 8, 2}, (#2 < #1)&]
Out[2]= {8, 5, 2, 1}

In[3]:= Sort[{x~2, y, x+y, y-2}, FreeQ[#1, x]&]
Out[3]= {y, -2+y, x+y, x?}

Flatten[expr]
Flatten[expr, nl
Flatten[expr, n, hl

FlattenAt[expr, il

flatten out all nested functions with the same head as expr
flatten at most n levels of nesting

flatten functions with head h

flatten only the i™" element of expr

Flattening out expressions.

Flatten removes nested occurrences of
a function.

You can use Flatten to “splice”
sequences of elements into lists or
other expressions.

In[4]:= Flatten[f[a, f[b, c], £[£[d]1]]]
Out[4]= fla, b, c, d]

In[5]:= Flatten[{a, f[b, c], f[a, b, d]}, 1, £]
Out[5]= {a, b, c, a, b, d}

You can use Flatten to implement the mathematical property of associativity. The function
Distribute allows you to implement properties such as distributivity and linearity.

256 2. Principles of Mathematica « 2.2 Functional Operations

Distributelf[a + b+ ..., ... 11 distribute f over sums to give fl[a, ... 1+ f[b, ... 1+ ...
Distributelf[args], g1 distribute f over any arguments which have head g
Distributelexpr, g, f1 distribute only when the head is f

Distributelexpr, g, f, gp, fp]l distribute f over g, replacing them with fp and gp,
respectively

Applying distributive laws.

This “distributes” f over a + b. In[6]:= Distribute[f£[a + b]]
Out[6]= f[al +£[b]

Here is a more complicated example. In[7]:= Distribute[f[a + b, c + d]]

Out[7]= f[a, c] +fla, d] +f[b, c] +£[b, d]

In general, if f is distributive over Plus, then an expression like f[a + b] can be “expanded” to give
flal + f[b]. The function Expand does this kind of expansion for standard algebraic operators such
as Times. Distribute allows you to perform the same kind of expansion for arbitrary operators.

Expand uses the distributivity of Times In[8]:= Expand[(a + b) (c +4d)]

over Plus to perform algebraic Out[8]= ac+bc+ad+bd

expansions.

This applies distributivity over lists, In[9]:= Distribute[f[{a, b}, {c, d}], List]
rather than sums. The result contains Out[9]= {fla, c1, £[a, 41, £[b, <1, £[b, d]}

all possible pairs of arguments.

This distributes over lists, but does so In[10]:= Distribute[f[{a, b}, {c, d}], List, £]

only if 'the head of the whole Out[10]= {f[a, c1, £la, d1, £[b, c], £[b, d1}

expression is f.

This distributes over lists, making sure In[11]:= Distribute[f[{a, b}, {c, d}], List, £, gp, fp]

that the head of the whole expression
Out[11]= f ,cl, f , dl, fplb, , fplb, d
is £. In the result, it uses gp in place ut[11]= gplfpla, cl, fpla, dl. fplb, cl, £pl 1

of List, and fp in place of f.

Related to Distribute is the function Thread. What Thread effectively does is to apply a function
in parallel to all the elements of a list or other expression.

Thread[f[{a;, a2}, {b1, bp}1] thread f over lists to give {f[a;, bi]1, flaz, by1}
Thread[f[args], g1 thread f over objects with head g in args

Functions for threading expressions.

2.2.10 Structural Operations

257

Here is a function whose arguments
are lists.

Thread applies the function “in
parallel” to each element of the lists.

Arguments that are not lists get
repeated.

In[12]:= f[{al, a2}, {bl, b2}]
Out[12]= f[{al, a2}, {b1, b2}]

In[13]:= Thread[%]
Out[13]= {f[al, b1], f[a2, b2]}

In[14]:= Thread[f[{al, a2}, {b1, b2}, c, d]]
Out[14]= {f[al, b1, c, d], fl[a2, b2, c, d]}

As mentioned in Section 1.8.1, and discussed in more detail in Section 2.6.3, many built-in Mathe-
matica functions have the property of being “listable”, so that they are automatically threaded over

any lists that appear as arguments.

Built-in mathematical functions such as
Log are listable, so that they are
automatically threaded over lists.

Log is, however, not automatically
threaded over equations.

You can use Thread to get functions
applied to both sides of an equation.

In[15]:= Log[{a, b, c}]
Out[15]= {Loglal, Log[bl, Loglcl}

In[16]:= Loglx ==yl
Out[16]= Loglx ==y]

In[17]:= Thread[%, Equall
Out[17]= Loglx] == Logly]

Outerl[f, list;, list;]

Inner(f, list,, list,, g1

generalized outer product

generalized inner product

Generalized outer and inner products.

Outerl(f, list;, list,] takes all possible combinations of elements from list; and list;, and combines
them with f. Outer can be viewed as a generalization of a Cartesian product for tensors, as discussed

in Section 3.7.11.

Outer forms all possible combinations
of elements, and applies f to them.

Here Outer produces a
lower-triangular Boolean matrix.

You can use Outer on any sequence of
expressions with the same head.

In[18]:= Outer[£f, {a, b}, {1, 2, 3}]
Out[18]= {{f[a, 1], fla, 21, £f[a, 313,

{f[b, 11, £[b, 2], £[b, 3]1}}
In[19]:= Outer[Greater, {1, 2, 3}, {1, 2, 3}]
Out[19]= {{False, False, False},

{True, False, False}, {True, True, False}}
In[20]:= Outer[g, f[a, bl, f[c, d]]
Out[20]= flflgla, c]l, gla, d11, £lglb, c], glb, d11]

Outer, like Distribute, constructs all possible combinations of elements. On the other hand,
Inner, like Thread, constructs only combinations of elements that have corresponding positions in the

expressions it acts on.

258

2. Principles of Mathematica « 2.2 Functional Operations

Here is a structure built by Inner.

Inner is a generalization of Dot.

M 2.2.11 Sequences

The function Flatten allows you to
explicitly flatten out all sublists.

FlattenAt lets you specify at what

positions you want sublists flattened.

Sequence objects automatically get
spliced in, and do not require any
explicit flattening.

In[21]:= Inner[£, {a, b}, {c, d}, gl
Out[21]= glfla, c], £[b, d]]

In[22]:= Inner[Times, {a, b}, {c, d}, Plus]
Out[22]= ac+bd

In[1]:= Flatten[{a, {b, c}, {d, e}}]
Out[1]= {a, b, c, d, e}

In[2]:= FlattenAt[{a, {b, c}, {d, e}}, 2]
Out[2]= {a, b, c, {d, e}}

In[3]:= {a, Sequencel[b, c], Sequenceld, el}
Out[3]= {a, b, c, d, e}

Sequencele;, e, ...

a sequence of arguments that will automatically be spliced
into any function

Representing sequences of arguments in functions.

Sequence works in any function.

This includes functions with special
input forms.

Here is a common way that Sequence

is used.

In[4]:= f[Sequencela, b], c]
Out[4]= f[a, b, c]

In[5]:= a == Sequence[b, c]
Out[5]= a==b==c

In[6]:={a, b, f[x, y1, glwl, flz, y1} /. £->Sequence
Out[6]= {a, b, x, vy, glwl, z, y}

2.3.1 Introduction 259

2.3 Patterns

M 2.3.1 Introduction

Patterns are used throughout Mathematica to represent classes of expressions. A simple example of
a pattern is the expression f[x_]. This pattern represents the class of expressions with the form
flanything].

The main power of patterns comes from the fact that many operations in Mathematica can be done
not only with single expressions, but also with patterns that represent whole classes of expressions.
You can use patterns in transformation In[1]:= £f[al + £[b] /. £[x_]1 -> x~2

rules to specify how classes of

. Out[1]= a® +b?
expressions should be transformed. ut[1]= a

You can use patterns to find the In[2]:= Position[{f[a], g[bl, flcl}, £f[x_]]
positions of all expressions in a out2]= {{1}, {3}}
particular class.

The basic object that appears in almost all Mathematica patterns is _ (traditionally called “blank” by
Mathematica programmers). The fundamental rule is simply that _ stands for any expression. On most
keyboards the _ underscore character appears as the shifted version of the - dash character.

Thus, for example, the pattern £[_] stands for any expression of the form f[anything]l. The pattern
f[x_] also stands for any expression of the form f[anything], but gives the name x to the expression
anything, allowing you to refer to it on the right-hand side of a transformation rule.

You can put blanks anywhere in an expression. What you get is a pattern which matches all
expressions that can be made by “filling in the blanks” in any way.

f[n_] £ with any argument, named n

f[n_, m_] f with two arguments, named n and m

x*n_ x to any power, with the power named n
X_“n_ any expression to any power
a_+b_ asum of two expressions

{ai_, a2_} a list of two expressions

fln_, n_] £ with two identical arguments

Some examples of patterns.

260 2. Principles of Mathematica « 2.3 Patterns

You can construct patterns for In[3]:= f[{a, b}] + £[c] /. £f[{x_, y_}] -> plx + y]
expressions with any structure. Out[3]= £[c] +pla+b]

One of the most common uses of patterns is for “destructuring” function arguments. If you make
a definition for f[1ist_], then you need to use functions like Part explicitly in order to pick out
elements of the list. But if you know for example that the list will always have two elements, then it
is usually much more convenient instead to give a definition instead for £[{x_, y_}]. Then you can
refer to the elements of the list directly as x and y. In addition, Mathematica will not use the definition
you have given unless the argument of f really is of the required form of a list of two expressions.
Here is one way to define a function In[4]:= gllist_] := Part[list, 1] ~ Part[list, 2]
which takes a list of two elements, and

evaluates the first element raised to the
power of the second element.

Here is a much more elegant way to In[5]:=hl{x_, y_.}] :=x~y
make the definition, using a pattern.

A crucial point to understand is that Mathematica patterns represent classes of expressions with a
given structure. One pattern will match a particular expression if the structure of the pattern is the
same as the structure of the expression, in the sense that by filling in blanks in the pattern you can get
the expression. Even though two expressions may be mathematically equal, they cannot be represented
by the same Mathematica pattern unless they have the same structure.

Thus, for example, the pattern (1 + x_)~2 can stand for expressions like (1 + a)~2 or (1 + b~3)~2
that have the same structure. However, it cannot stand for the expression 1 + 2 a + a~2. Although
this expression is mathematically equal to (1 + a)~2, it does not have the same structure as the pattern
(1 +x_)~2.

The fact that patterns in Mathematica specify the structure of expressions is crucial in making it
possible to set up transformation rules which change the structure of expressions, while leaving them
mathematically equal.

It is worth realizing that in general it would be quite impossible for Mathematica to match patterns
by mathematical, rather than structural, equivalence. In the case of expressions like (1 + a)»~2 and
1+ 2 a + a~2, you can determine equivalence just by using functions like Expand and Factor. But, as
discussed on page 327 there is no general way to find out whether an arbitrary pair of mathematical
expressions are equal.

As another example, the pattern x~_ will match the expression x~2. It will not, however, match the
expression 1, even though this could be considered as x~0. Section 2.3.9 will discuss how to construct
a pattern for which this particular case will match. But you should understand that in all cases pattern
matching in Mathematica is fundamentally structural.

The x~n_ matches only x~2 and x~3. 1 In[6]:= {1, x, x~2, x~3} /. x*n_ -> r[n]

and x can mathematically be written as
out[6]= {1, x, r[2], r[3]}
x", but do not have the same structure.

2.3.2 Finding Expressions That Match a Pattern 261

Another point to realize is that the structure Mathematica uses in pattern matching is the full form
of expressions printed by FullForm. Thus, for example, an object such as 1/x, whose full form is
Power[x, -1] will be matched by the pattern x_~n_, but not by the pattern x_/y_, whose full form is
Times[x_, Power[y_, -11]. Again, Section 2.3.9 will discuss how you can construct patterns which
can match all these cases.

The expressions in the list contain In[7]:= {a/b, 1/b~2, 2/b~2} /. brn_ -> d[n]

explicit powers of b, so the Out[7]= {ad[-1], d[-2], 2d[-2]}
transformation rule can be applied.

Here is the full form of the list. In[8]:= FullForm[{a/b, 1/b~2, 2/b~2}]

Out[8]//FullForm= List[Times[a, Power[b, -1]11],
Power[b, -2], Times[2, Power[b, -2]]]

Although Mathematica does not use mathematical equivalences such as x! = x when matching
patterns, it does use certain structural equivalences. Thus, for example, Mathematica takes account of
properties such as commutativity and associativity in pattern matching.

To apply this transformation rule, In[9]:= fla + b] + £[a + c] + £[b + d] /.
Mathematica makes use of the fla + x_] + f[c + y_]1 -> plx, y]
commutativity and associativity of

dition Out[9]= £[b+d] +plb, al

The discussion so far has considered only pattern objects such as x_ which can stand for any single
expression. In later subsections, we discuss the constructs that Mathematica uses to extend and restrict
the classes of expressions represented by patterns.

H 2.3.2 Finding Expressions That Match a Pattern

Casesllist, form] give the elements of list that match form
Countl[list, form] give the number of elements in list that match form
Position[list, form, {1}]1 give the positions of elements in /ist that match form

Select[list, test] give the elements of list on which test gives True

Picking out elements that match a pattern.

This gives the elements of the list In[1]:= Cases[{3, 4, x, x~2, x~3}, x~_]
which match the pattern x~_. outl1]= =2, x°}

Here is the total number of elements In[2]:= Count[{3, 4, x, x~2, x~3}, x~_]
which match the pattern. out[2]= 2

You can apply functions like Cases not only to lists, but to expressions of any kind. In addition, you
can specify the level of parts at which you want to look.

262

2. Principles of Mathematica « 2.3 Patterns

Caseslexpr, lhs—>rhs]

Casesl[expr, lhs—>rhs, lev]

Countl[expr, form, lev]

Position[expr, form, lev]

find elements of expr that match lhs, and give a list of the
results of applying the transformation rule to them

test parts of expr at levels specified by lev

give the total number of parts that match form at levels
specified by lev

give the positions of parts that match form at levels specified
by lev

Searching for parts of expressions that match a

This returns a list of the exponents n.

The pattern _Integer matches any
integer. This gives a list of integers
appearing at any level.

pattern.

In[3]:= Cases[{3, 4, x, x~2, x~3}, x*n_ -> n]
Out[3]= {2, 3}

In[4]:= Cases[{3, 4, x, x*2, x~3}, _Integer, Infinity]
Out[4]= {3, 4, 2, 3}

Caseslexpr, form, lev, n]

Position[expr, form, lev, nl

find only the first n parts that match form

give the positions of the first n parts that match form

Limiting the number of parts to search for.

This gives the positions of the first two
powers of x appearing at any level.

The positions are specified in exactly
the form used by functions such as
Extract and ReplacePart discussed in
Section 1.8.

In[5]:= Position[{4, 4 + x*~a, x~b, 6 + x~5}, x~_, Infinity, 2]
out[5]= {{2, 2}, {3}}

In[6]:= ReplacePart[{4, 4 + x*a, x~b, 6 + x~5}, zzz, ¥]
Out[6]= {4, 4+2zz, zzz, 6+x°}

DeleteCases[expr, form]

DeleteCasesl[expr, form, lev]

delete elements of expr that match form

delete parts of expr that match form at levels specified by lev

Deleting parts of expressions that match a pattern.

This deletes the elements which match
X~ n_.
This deletes all integers appearing at
any level.

In[7]:= DeleteCases[{3, 4, x, x*2, x~3}, x~n_]
Out[7]= {3, 4, x}

In[8]:= DeleteCases[{3, 4, x, 2+x, 3+x}, _Integer, Infinity]
Out[8]= {x, x, x}

2.3.3 Naming Pieces of Patterns 263

ReplaceList[expr, lhs => rhs] find all ways that expr can match Ilhs

Finding arrangements of an expression that match a pattern.

This finds all ways that the sum can be In[9]:= ReplacelList[a + b + ¢, x_ + y_ -> glx, yl]

written in two parts. out[9]= {gla, b+cl, glb, a+cl, glc, a+b],
gla+b, cl, gla+c, bl, glb+c, al}

This finds all pairs of identical In[10]:= Replacelist[{a, b, b, b, ¢, ¢, a},
elements. The pattern stands for {__,x_,x_, ___}->x]

any sequence of elements. out[10]= {b, b, c}

M 2.3.3 Naming Pieces of Patterns

Particularly when you use transformation rules, you often need to name pieces of patterns. An object
like x_ stands for any expression, but gives the expression the name x. You can then, for example,
use this name on the right-hand side of a transformation rule.

An important point is that when you use x_, Mathematica requires that all occurrences of blanks
with the same name x in a particular expression must stand for the same expression.

Thus f[x_, x_1 can only stand for expressions in which the two arguments of f are exactly the
same. £[_, _], on the other hand, can stand for any expression of the form f[x, y], where x and y
need not be the same.

The transformation rule applies only to In[1]:= {f[a, al, f[a, bl} /. £f[x_, x_]1 -> plx]
cases whgre the two arguments of f Out[1]= {plal, £[a, bl}
are identical.

Mathematica allows you to give names not just to single blanks, but to any piece of a pattern. The
object x:pattern in general represents a pattern which is assigned the name x. In transformation rules,
you can use this mechanism to name exactly those pieces of a pattern that you need to refer to on the
right-hand side of the rule.

any expression
X_ any expression, to be named x

x:pattern an expression to be named x, matching pattern

Patterns with names.

264 2. Principles of Mathematica « 2.3 Patterns

This gives a name to the complete In[2]:= f[la~b] /. £flx:_~_1 -> p[x]
form _~_ so you can refer to it as a _ b

whole on the right-hand side of the Out[2]= pla’]
transformation rule.

Here the exponent is named n, while In[3]:= £[a~b] /. £f[x:_~n_] -> p[x, n]

the whole object is x. Out[3]= pla®, b]

When you give the same name to two pieces of a pattern, you constrain the pattern to match only
those expressions in which the corresponding pieces are identical.
Here the pattern matches both cases. In[4]:= {£[h[4], h[4]], £[h[4], n[511} /. £[h[_], h[_1] ->q
Out[4]= {q, q}

Now both arguments of f are In[5]:= {£[h[4], n[4]1], £[h[4], h[511} /. £f[x:h[_]1, x_]1 -> r[x]

constrained to be the same, and only out[5]= {r[n[4]], £[hl4], h[5]1}
the first case matches. ’ ’

Ml 2.3.4 Specifying Types of Expression in Patterns

You can tell a lot about what “type” of expression something is by looking at its head. Thus, for
example, an integer has head Integer, while a list has head List.

In a pattern, _h and x_h represent expressions that are constrained to have head h. Thus, for
example, _Integer represents any integer, while _List represents any list.

x_h an expression with head &
x_Integer an integer
x_Real an approximate real number
x_Complex a complex number
x_List alist

x_Symbol a symbol

Patterns for objects with specified heads.

This replaces just those elements that In[1]:= {a, 4, 5, b} /. x_Integer -> p[x]
are integers. Out[1]= {a, pl4], p[5], b}

You can think of making an assignment for f[x_Integer] as like defining a function f that must
take an argument of “type” Integer.

This defines a value for the function In[2]:= gamma[n_Integer] := (n - 1)!
gamma when its argument is an integer.

2.3.5 Putting Constraints on Patterns

265

The definition applies only when the
argument of gamma is an integer.

The object 4. has head Real, so the
definition does not apply.

This defines values for expressions
with integer exponents.

The definition is used only when the
exponent is an integer.

In[3]:= gamma[4] + gamma[x]
Out[3]= 6+ gamma [x]

In[4]:= gamma[4.]
Out[4]= gammal[4.]

In[5]:= d[x_~n_Integer] := n x~(n-1)

In[6]:= d[x~4] + d[(a+b)~3] + d[x~(1/2)]

Out[6]= 3 (a+b)? +4x® +d[x]

-l 2.3.5 Putting Constraints on Patterns

Mathematica provides a general mechanism for specifying constraints on patterns. All you need do is
to put /; condition at the end of a pattern to signify that it applies only when the specified condition

s

is True. You can read the operator /; as “slash-semi”, “whenever” or “provided that”.

pattern /; condition
lhs :> rhs /; condition

lhs := rhs /; condition

a pattern that matches only when a condition is satisfied
a rule that applies only when a condition is satisfied

a definition that applies only when a condition is satisfied

Putting conditions on patterns and transformation rules.

This gives a definition for fac that
applies only when its argument n is
positive.

The definition for fac is used only
when the argument is positive.

This gives the negative elements in the
list.

In[1]:= fac[n_ /; n > 0] :=n!

In[2]:= fac[6] + fac[-4]
Out[2]= 720+ fac[-4]

In[3]:= Cases[{3, -4, 5, -2}, x_/; x < 0]
Out[3]= {-4, -2}

You can use /; on whole definitions and transformation rules, as well as on individual patterns. In
general, you can put /; condition at the end of any := definition or :> rule to tell Mathematica that the
definition or rule applies only when the specified condition holds. Note that /; conditions should not
usually be put at the end of = definitions or -> rules, since they will then be evaluated immediately,

as discussed in Section 2.5.8.

Here is another way to give a
definition which applies only when its
argument n is positive.

In[4]:= fac2[n_] :=n! /; n >0

266 2. Principles of Mathematica « 2.3 Patterns

Once again, the factorial functions In[5]:= fac2[6] + fac2[-4]
evaluate; .only when their arguments Out[5]= 720+ fac2[-4]
are positive.

You can use the /; operator to implement arbitrary mathematical constraints on the applicability
of rules. In typical cases, you give patterns which structurally match a wide range of expressions, but
then use mathematical constraints to reduce the range of expressions to a much smaller set.

This rule applies only to expressions In[6]:=vlx_, 1 - x_] := p[x]
that have the structure v[x_, 1 - x_].

This expression has the appropriate In[7]:= vlar2, 1 - a~2]
structure, so the rule applies. Out[7]= pla?]

This expression, while mathematically In[8]:= v[4, -3]

of the correct form, does not have the Out[8]= v[4, -3]

appropriate structure, so the rule does

not apply.

This rule applies to any expression of In[9]:=wlx_, y_.] :=pl[x] /; y==1-x

the form wlx_, y_1, with the added
restriction that y == 1 - x.

The new rule does apply to this In[10]:= wl4, -3]
expression. Out[10]= pl4]

In setting up patterns and transformation rules, there is often a choice of where to put /; con-
ditions. For example, you can put a /; condition on the right-hand side of a rule in the form
lhs :> rhs /; condition, or you can put it on the left-hand side in the form lhs /; condition -> rhs. You
may also be able to insert the condition inside the expression lhs. The only constraint is that all the
names of patterns that you use in a particular condition must appear in the pattern to which the
condition is attached. If this is not the case, then some of the names needed to evaluate the condition
may not yet have been “bound” in the pattern-matching process. If this happens, then Mathematica
uses the global values for the corresponding variables, rather than the values determined by pattern
matching.

Thus, for example, the condition in f[x_, y_] /; (x + y < 2) will use values for x and y that are
found by matching f[x_, y_1, but the condition in f[x_ /; x + y < 2, y_] will use the global value
for y, rather than the one found by matching the pattern.

As long as you make sure that the appropriate names are defined, it is usually most efficient to
put /; conditions on the smallest possible parts of patterns. The reason for this is that Mathematica
matches pieces of patterns sequentially, and the sooner it finds a /; condition which fails, the sooner
it can reject a match.

Putting the /; condition around the x_ In[11]:= Cases[{z[1, 1], z[-1, 1], z[-2, 2]}, z[x_ /; x < 0, y_1]

is slightly more efficient than putting it outl11]= {z[-1, 11, z[-2, 2]}
around the whole pattern. T ’

2.3.5 Putting Constraints on Patterns

You need to put parentheses around
the /; piece in a case like this.

It is common to use /; to set up patterns and transformation rules that apply only to expressions
with certain properties. There is a collection of functions built into Mathematica for testing the proper-
that functions of this kind have names that end with the letter

ties of expressions. It is a convention

In[12]:={1 +a, 2 +a, -3+a} /. (x_/; x <0) +a->plx]
Out[12]= {1+a, 2+a, p[-3]}

Q, indicating that they “ask a question”.

IntegerQLexpr]

EvenQ[expr]

0ddQlexpr]

PrimeQ[expr]

NumberQ[expr]

NumericQ[expr]
PolynomialQlexpr, {x, x2, ... }]
VectorQ[expr]

MatrixQlLexpr]

+ ArrayQlexpr, d]

integer

even number

odd number

prime number

explicit number of any kind
numeric quantity
polynomial in xj, xy, ...

a list representing a vector

a list of lists representing a matrix

VectorQ[expr, NumericQ], MatrixQlexpr, NumericQ]

vectors and matrices where all elements are numeric

VectorQLexpr, test], MatrixQLexpr, test]

vectors and matrices for which the function test yields
True on every element

full array with depth matching 4

Some functions for testing mathematical properties of expressions.

The rule applies to all elements of the
list that are numbers.

This definition applies only to vectors
of integers.

The definition is now used only in the
first case.

In[13]:= {2.3, 4, 7/8, a, b} /. (x_ /; NumberQ[x]) -> x~2
Out[13]= {5.29, 16 29 v}
u = . 5 Y a,

In[14]:= mi[list_] := list~2 /; VectorQ[list, IntegerQ]

In[15]:= {mi[{2, 3}], mi[{2.1, 2.2}], mi[{a, b}]}
Out[15]= {{4, 9}, mi[{2.1, 2.2}], mi[{a, b}]}

268 2. Principles of Mathematica « 2.3 Patterns

An important feature of all the Mathematica property-testing functions whose names end in Q is that
they always return False if they cannot determine whether the expression you give has a particular
property.

4561 is an integer, so this returns True. In[16]:= IntegerQ[4561]

Out[16]= True

In[17]:= IntegerQ[x]
Out[17]= False

This returns False, since x is not
known to be an integer.

In some cases, you can explicitly specify the results that property-testing functions should give.
Thus, with a definition such as x /: IntegerQ[x] = True, as discussed in Section 2.5.10, Mathematica
will assume that x is an integer. This means that if you explicitly ask for IntegerQ[x], you will now
get True, rather than False. However, Mathematica does not automatically propagate assertions, so it
cannot determine for example that IntegerQ[x~2] is True. You must load an appropriate Mathematica
package to make this possible.

SameQ[x, y] or x === x and y are identical

UnsameQ[x, y] or x=!=y x and y are not identical
OrderedQ[{a, b, ... }]1 a, b, ... are in standard order
MemberQ[expr, form] form matches an element of expr
FreeQ[expr, form]l form matches nothing in expr
MatchQlexpr, form] expr matches the pattern form
ValueQ[expr] a value has been defined for expr

AtomQlexpr] expr has no subexpressions

Some functions for testing structural properties of expressions.

With ==, the equation remains in
symbolic form; === yields False unless
the expressions are manifestly equal.

The expression n is not a member of the
list {x, x~n}.

However, {x, x~n} is not completely
free of n.

You can use FreeQ to define a
“linearity” rule for h.

In[18]:= {x ==y, x === y}
Out[18]= {x ==y, False}

In[19]:= MemberQ[{x, x~n}, n]
Out[19]= False

In[20]:= FreeQ[{x, x~n}, n]
Out[20]= False

In[21]:=hla_b_, x_]

:= a h[b, x] /; FreeQ[a, x]

2.3.6 Patterns Involving Alternatives

269

Terms free of x are pulled out of
each h.

In[22]:=h[a b x, x] + h[2 (1+x) x~2, x]
Out[22]= abhlx, x] +2h[x® (1 +x), x]

pattern ? test

a pattern which matches an expression only if test yields
True when applied to the expression

Another way to constrain patterns.

The construction pattern /; condition allows you to evaluate a condition involving pattern names to

determine whether there is a match. The construction pattern 7 test instead applies a function test to
the whole expression matched by pattern to determine whether there is a match. Using 7 instead of
/; sometimes leads to more succinct definitions.

With this definition matches for x_ are
tested with the function NumberQ.

The definition applies only when p has
a numerical argument.

Here is a more complicated definition.
Do not forget the parentheses around
the pure function.

The definition applies only in certain
cases.

In[23]:= p[x_?NumberQ] := x~2
In[24]:= p[4.5] + p[3/2] + plul
Out[24]= 22.5+p[ul

In[25]:= q[{x_Integer, y_Integer} ?
(Function[v, v.v > 41)] := qplx + y]

In[26]:= {q[{3, 4}], q[{1, 1}], q[{-5, -7}1}
Out[26]= {qp[7], q[{1, 1}]1, qp[-12]}

H 2.3.6 Patterns Involving Alternatives

patt, | patt, | ...

a pattern that can have one of several forms

Specifying patterns that involve alternatives.

This defines h to give p when its
argument is either a or b.

The first two cases give p.

You can also use alternatives in
transformation rules.

Here is another example, in which one
of the alternatives is itself a pattern.

In[1]:=h[a | b] :=p

In[2]:= {h[a], h[b], h[c], h[4]}
Out[2]= {p, p, hlcl, hldl}

In[3]:={a, b, c,d} /. (alb) ->p

Out[3]= {p, p, c, d}

In[4]:= {1, x, x*2, x~3, y*2} /. (x | x~_) -> q
out[4]= {1, q, q, q, y*}

270 2. Principles of Mathematica « 2.3 Patterns

When you use alternatives in patterns, you should make sure that the same set of names appear in
each alternative. When a pattern like (a[x_] | b[x_]) matches an expression, there will always be a
definite expression that corresponds to the object x. On the other hand, if you try to match a pattern
like (alx_1 | bly_1), then there will be a definite expression corresponding either to x, or to y, but
not to both. As a result, you cannot use x and y to refer to definite expressions, for example on the
right-hand side of a transformation rule.

Here £ is used to name the head, In[5]:= {al[2], b[3], c[4], al[51} /. (£f:(alb))[x_]1 -> r[£f, x]
which can be either a or b. Out[5]= {r[a, 21, rlb, 31, c[4], rla, 51}

H 2.3.7 Flat and Orderless Functions

Although Mathematica matches patterns in a purely structural fashion, its notion of structural equiv-
alence is quite sophisticated. In particular, it takes account of properties such as commutativity and
associativity in functions like Plus and Times.

This means, for example, that Mathematica considers the expressions x + y and y + x equivalent for
the purposes of pattern matching. As a result, a pattern like glx_ + y_, x_] can match not only
gla + b, a], but also gla + b, b].

This expression has exactly the same In[1]:= gla + b, al /. glx_ + y_, x_]1 -> plx, y]
form as the pattern. Out[1]= pla, b]

In this case, the expression has to be In[2]:= gla + b, b] /. glx_ +y_, x_1 -> plx, y]
put in the form g[b + a, b] in order out[2]= plb, a

to have the same structure as the ’
pattern.

Whenever Mathematica encounters an orderless or commutative function such as Plus or Times in a
pattern, it effectively tests all the possible orders of arguments to try and find a match. Sometimes,
there may be several orderings that lead to matches. In such cases, Mathematica just uses the first
ordering it finds. For example, h[x_ + y_, x_ + z_] could match h[a + b, a + b] with x—a, y-b,
z—b or with x—-b, y—a, z—a. Mathematica tries the case x—a, y—b, z—b first, and so uses this match.

This can match either with x - a or In[3]:=h[a +b, a+ bl /. hlx_ +y_, x_ +z_] -> plx, y, z]
Wlth x - b Mathematzca tries x — a Out[3]= pla, b, b]
first, and so uses this match.

ReplaceList shows both possible In[4]:= ReplaceList[h[a + b, a + b],
matches. hix_ +y_, x_ +z_] -> plx, y, 2]]

Out[4]= {pla, b, bl, plb, a, al}

As discussed in Section 2.6.3, Mathematica allows you to assign certain attributes to functions,
which specify how those functions should be treated in evaluation and pattern matching. Functions
can for example be assigned the attribute Orderless, which specifies that they should be treated as
commutative or symmetric, and allows their arguments to be rearranged in trying to match patterns.

2.3.7 Flat and Orderless Functions 271

Orderless commutative function: f[b, c, al, etc., are equivalent to

fla, b, c]

Flat associative function: f[f[a], b], etc., are equivalent to

fla, bl

Oneldentity f[f[al], etc., are equivalent to a

Attributes[f] give the attributes assigned to f
SetAttributes[f, attr] add attr to the attributes of f

ClearAttributes[f, attr] remove attr from the attributes of f

Some attributes that can be assigned to functions.

Plus has attributes Orderless and In[5]:= Attributes[Plus]

Flat, as well as others. Out[5]= {Flat, Listable, NumericFunction,

Oneldentity, Orderless, Protected}

This defines q to be an orderless or In[6]:= SetAttributes[q, Orderless]
commutative function.

The arguments of q are automatically In[7]:= qlb, a, cl
sorted into order. out[7]= qla, b, c]

Mathematica rearranges the arguments In[8]:= flqla, bl, q[b, c11 /.
of q functions to find a match. flqlx_, y_1, alx_, z_1]1 -> plx, y, 2]

Out[8]= plb, a, c]

In addition to being orderless, functions like Plus and Times also have the property of being flat
or associative. This means that you can effectively “parenthesize” their arguments in any way, so that,
for example, x + (y + z) is equivalent to x + y + z, and so on.

Mathematica takes account of flatness in matching patterns. As a result, a pattern like g[x_ + y_]
can match gla + b+ c], withx s aand y - (b + c).

The argument of g is written as In[9]:=gla+b+cl /. glx_ +y_]1->plx, yl
a + (b + c¢) so as to match the pattern. Out[9]= pla, b+c]

If there are no other constraints, In[10]:=gla + b+ c +d]l /. glx_ +y_1 -> plx, yl
Mathematica will match x_ to the first

Out[10]= pla, b+c+d]
element of the sum. P

This shows all the possible matches. In[11]:= ReplaceList[gla + b + c], glx_ + y_] -> plx, yl]

Out[11]= {pla, b+cl, plb, a+cl, plc, a+b],
pla+b, cl, pla+tc, bl, plb+c, al}

272 2. Principles of Mathematica « 2.3 Patterns

Here x_ is forced to match b + d. In[12]:=gla+b+c+d, b+d] /. glx_ +y_, x_]1 -> plx, yl
Out[12]= p[b+d, a+c]

Mathematica can usually apply a transformation rule to a function only if the pattern in the rule
covers all the arguments in the function. However, if you have a flat function, it is sometimes possible
to apply transformation rules even though not all the arguments are covered.

This rule applies even though it does In[13]:=a+b+c /. a+c->p

not cover all the terms in the sum. Out[13]= b+p

This combines two of the terms in the In[14]:= ulal + ulb] + vlc] + v[d] /. ulx_] + uly_] -> ulx + y]
sum. Out[14]= ula+b] +v[c] +v[d]

Functions like Plus and Times are both flat and orderless. There are, however, some functions,
such as Dot, which are flat, but not orderless.

Both x_ and y_ can match any In[15]:=a . b .c.d .a.b/. x_.y_.x_->plx, y]
sequence of terms in the dot product. Out[15]= pla.b, c.d]

This assigns the attribute Flat to the In[16]:= SetAttributes[r, Flat]
function r.
Mathematica writes the expression in In[17]:= r[a, b, a,] /. r[x_, x_] -> rp[x]

the form r[r[a, b], rl[a, bl] to

Out[17]=
match the pattern. ut[17]= rplria, bl]

Mathematica writes this expression in In[18]:= r[a, b, b, ¢] /. r[x_, x_] -> rp[x]
the form rl[a, rl[r[b], r[bl]l, c] to Out[18]= rla, rplr[bl], c]
match the pattern.
In an ordinary function that is not flat, a pattern such as x_ matches an individual argument of
the function. But in a function f[a, b, c, ...] that is flat, x_ can match objects such as f[b, c] which
effectively correspond to a sequence of arguments. However, in the case where x_ matches a single
argument in a flat function, the question comes up as to whether the object it matches is really just
the argument a itself, or f[al. Mathematica chooses the first of these cases if the function carries the
attribute OneIdentity, and chooses the second case otherwise.

This adds the attribute OneIdentity to In[19]:= SetAttributes[r, Oneldentity]
the function r.

Now x_ matches individual arguments, In[20]:= r[a, b, b, c] /. r[x_, x_] -> rplx]
without r wrapped around them. Out[20]= rla, rplbl, c]

The functions Plus, Times and Dot all have the attribute OneIdentity, reflecting the fact that
Plus[x] is equivalent to x, and so on. However, in representing mathematical objects, it is often
convenient to deal with flat functions that do not have the attribute OneIdentity.

2.3.8 Functions with Variable Numbers of Arquments 273

M 2.3.8 Functions with Variable Numbers of Arguments

Unless f is a flat function, a pattern like f[x_, y_1] stands only for instances of the function with exactly
two arguments. Sometimes you need to set up patterns that can allow any number of arguments.

You can do this using multiple blanks. While a single blank such as x_ stands for a single Mathematica
expression, a double blank such as x__ stands for a sequence of one or more expressions.

Here x__ stands for the sequence of In[1]:= £[a, b, c¢] /. £f[x__]1 -> plx, x, x]

expressions (a, b, c). Out[1]= pla, b, c,a, b, c, a, b, cl]

——_» %X_, c___] :=nhh[x] n[a, b, c]

Here is a more complicated definition, Inf2]:=hla___, x_, b
which picks out pairs of duplicated
elements in h.

The definition is applied twice, picking In[3]:=hn[2, 3, 2, 4, 5, 3]
out the two paired elements. Out[3]= h[4, 5] hh[2] hh[3]

for sequences of zero or more expressions. You should be very careful whenever you use triple
blank patterns. It is easy to make a mistake that can lead to an infinite loop. For example, if you
define p[x_, y___] := plx] q[y], then typing in p[a] will lead to an infinite loop, with y repeatedly
matching a sequence with zero elements. Unless you are sure you want to include the case of zero
elements, you should always use double blanks rather than triple blanks.

“Double blanks” stand for sequences of one or more expressions. “Triple blanks” stand

any single expression
X any single expression, to be named x
any sequence of one or more expressions
x sequence named x
x__h sequence of expressions, all of whose heads are h
any sequence of zero or more expressions
x sequence of zero or more expressions named x

x___h sequence of zero or more expressions, all of whose heads
are h

More kinds of pattern objects.

Notice that with flat functions such as Plus and Times, Mathematica automatically handles variable
numbers of arguments, so you do not explicitly need to use double or triple blanks, as discussed in
Section 2.3.7.

274

2. Principles of Mathematica « 2.3 Patterns

When you use multiple blanks, there are often several matches that are possible for a particular
expression. In general, Mathematica tries first those matches that assign the shortest sequences of
arguments to the first multiple blanks that appear in the pattern.

This gives a list of all the matches that
Mathematica tries.

Many kinds of enumeration can be
done by using ReplaceList with
various kinds of patterns.

This effectively enumerates all sublists
with at least one element.

In[4]:= Replacelist[£[a, b, c, d], £f[x__, y__]1 -> gl{x}, {y}]]
Out[4]= {gl{a}, {b, c, d}],

gl{a, b}, {c, d}]1, gl{a, b, c}, {d}1}
In[5]:= ReplaceList[f[a, b, c, d], £[___, x__1 -> glx]]
Out[5]= {gla, b, c, d], glb, c, dl, glc, dl, gldl}

In[6]:= ReplaceList[f[a, b, c, d], £[___, x__, ___1 -> g[x]]

out[6]= {glal, gla, bl, glbl, gla, b, cl, glb, c],
glcl, gla, b, ¢, 4], glb, ¢, d], glc, d], gldl}

Ml 2.3.9 Optional and Default Arguments

Sometimes you may want to set up functions where certain arguments, if omitted, are given “default
values”. The pattern x_:v stands for an object that can be omitted, and if so, will be replaced by the

default value v.

This defines a function j with a
required argument x, and optional
arguments y and z, with default values
1 and 2, respectively.

The default value of z is used here.

Now the default values of both y and
z are used.

In[1]:= jlx_, y_:1, z_:2] := jplx, y, 2]

In[2]:= jla, b]
Out[2]= jpla, b, 2]

In[3]:= jlal
Out[3]= jpla, 1, 2]

an expression which, if omitted, is taken to have default
value v

an expression with head / and default value v

an expression with a built-in default value

Pattern objects with default values.

Some common Mathematica functions have built-in default values for their arguments. In such cases,
you need not explicitly give the default value in x_:v, but instead you can use the more convenient

notation x_.

in which a built-in default value is assumed.

2.3.10 Setting Up Functions with Optional Arguments 275

x_+y_. default for yis 0

x_y_. default for yis 1

x_~y_. default for y is 1
Some patterns with optional pieces.
Here a matches the pattern x_ + y_. In[4]:= {f[a], f[a + b1} /. £f[x_ + y_.]1 -> plx, y]
with y taken to have the default out[4]= {pla, 01, plb, al}

value 0.

Because Plus is a flat function, a pattern such as x_ + y_ can match a sum with any number of
terms. This pattern cannot, however, match a single term such as a. However, the pattern x_ + y_.
contains an optional piece, and can match either an explicit sum of terms in which both x_ and y_
appear, or a single term x_, with y taken to be 0.

Using constructs such as x_., you can easily construct single patterns that match expressions with
several different structures. This is particularly useful when you want to match several mathematically
equal forms that do not have the same structure.

The pattern matches g[a~2], but not In[5]:= {gla~2], gla + b1} /. g[x_~n_] -> p[x, n]
gla + bl. Outl5]= {pla, 21, gla+bl}

By giving a pattern in which the In[6]:= {gla~2], gla + b1} /. glx_~n_.]1 -> p[x, n]
exponent is optional, you can match out[6]= {pla, 2], pla+b, 11}

both cases. T ’

The pattern a_. + b_. x_ matches any In[7]:= linla_. + b_. x_, x_] := pla, bl

linear function of x_.

In this case, b - 1. In[8]:=1in[1 + x, x]
out[8]= pl1, 1]

Here b - 1 and a —» 0. In[9]:= lin[y, yl
Out[9]= pl0, 1]

Standard Mathematica functions such as Plus and Times have built-in default values for their
arguments. You can also set up defaults for your own functions, as described in Section A.5.1.

H 2.3.10 Setting Up Functions with Optional Arguments

When you define a complicated function, you will often want to let some of the arguments of the
function be “optional”. If you do not give those arguments explicitly, you want them to take on
certain “default” values.

Built-in Mathematica functions use two basic methods for dealing with optional arguments. You can
choose between the same two methods when you define your own functions in Mathematica.

276 2. Principles of Mathematica « 2.3 Patterns

The first method is to have the meaning of each argument determined by its position, and then
to allow one to drop arguments, replacing them by default values. Almost all built-in Mathematica
functions that use this method drop arguments from the end. For example, the built-in function
Flattenl[list, n] allows you to drop the second argument, which is taken to have a default value of
Infinity.

You can implement this kind of “positional” argument using _: patterns.

flx_, k_:kdef]l := value a typical definition for a function whose second argument is
optional, with default value kdef

Defining a function with positional arguments.

This defines a function with an In[1]:= f[1list_, n_:Infinity] := £0[list, n]
optional second argument. When the

second argument is omitted, it is taken

to have the default value Infinity.

Here is a function with two optional In[2]:= £x[1list_, n1_:1, n2_:2] := £x0[1list, nl1, n2]
arguments.
Mathematica assumes that arguments In[3]:= £x[k, m]

are dropped from the end. As a result
m here gives the value of n1, while n2
has its default value of 2.

Out[3]= £x0[k, m, 2]

The second method that built-in Mathematica functions use for dealing with optional arguments is
to give explicit names to the optional arguments, and then to allow their values to be given using
transformation rules. This method is particularly convenient for functions like Plot which have a very
large number of optional parameters, only a few of which usually need to be set in any particular
instance.

The typical arrangement is that values for “named” optional arguments can be specified by includ-
ing the appropriate transformation rules at the end of the arguments to a particular function. Thus,
for example, the rule PlotJoined->True, which specifies the setting for the named optional argument
PlotJoined, could appear as ListPlot[list, PlotJoined->True].

When you set up named optional arguments for a function f, it is conventional to store the default
values of these arguments as a list of transformation rules assigned to Options[f].

2.3.11 Repeated Patterns

277

flx_, opts___] := value

name /. {opts} /. Options[f]

a typical definition for a function with zero or more named
optional arguments

replacements used to get the value of a named optional
argument in the body of the function

Named arguments.

This sets up default values for two
named optional arguments opt1l and
opt2 in the function fn.

This gives the default value for opti.

The rule opt1->3 is applied first, so
the default rule for opt1 in
Options[fn] is not used.

Here is the definition for a function fn
which allows zero or more named
optional arguments to be specified.

With no optional arguments specified,
the default rule for opt2 is used.

If you explicitly give a rule for opt2, it
will be used before the default rules
stored in Options[fn] are tried.

M 2.3.11 Repeated Patterns

In[4]:= Options[fn] = { optl -> 1, opt2 -> 2 }
Out[4]= {optl->1, opt2->2}

In[5]:= optl /. Options[£fn]
Out[5]= 1

In[6]:= optl /. opt1->3 /. Options[£fn]
Out[6]= 3

In[7]:= fn[x_, opts___] := k[x, opt2/.{opts}/.Options[£fn]]

In[8]:= £n[4]
Out[8]= k[4, 2]

In[9]:= fn[4, opt2->7]
Out[9]= k[4, 7]

expr. .

expr. ..

a pattern or other expression repeated one or more times

a pattern or other expression repeated zero or more times

Repeated patterns.

Multiple blanks such as x_

allow you to give patterns in which sequences of arbitrary expressions
can occur. The Mathematica pattern repetition operators . .

and ... allow you to construct patterns in

which particular forms can be repeated any number of times. Thus, for example, f[a. .] represents
any expression of the form f[al, f[a, al, f[a, a, a] and so on.

The pattern f[a..] allows the
argument a to be repeated any number
of times.

In[1]:= Cases[{ f[a]l, f[a, b, al, f[a, a, al }, f[a..]]
Out[1]= {f[al, fla, a, al}

278

2. Principles of Mathematica « 2.3 Patterns

This pattern allows any number of a
arguments, followed by any number of
b arguments.

Here each argument can be either a
or b.

You can use ..

In[2]:= Cases[{ f[a], f[a, a, b], f[a, b, al, f[a, b, b] },
fla.., b..]]

Out[2]= {f[a, a, b], f[a, b, b]}

In[3]:= Cases[{ f[a], f[a, b, al, fl[a, c, al }, f[(a | b)..]]
Out[3]= {f[al, fla, b, al}

and ... to represent repetitions of any pattern. If the pattern contains named parts,

then each instance of these parts must be identical.

This defines a function whose
argument must consist of a list of
pairs.

The definition applies in this case.

With this definition, the second
elements of all the pairs must be the
same.

The definition applies in this case.

Ml 2.3.12 Verbatim Patterns

In[4]:= vlx:{{_, _}..}] := Transpose[x]

In[5]:= v[{{al, b1}, {a2, b2}, {a3, b3}}]
out[5]= {{al, a2, a3}, {b1, b2, b3}}

In[6]:= valx:{{_, n_}..}] := Transpose[x]

In[7]:= va[{{a, 2}, {b, 2}, {c, 2}}]
Out[7]= {{a, b, c}, {2, 2, 2}}

Verbatim[expr]

an expression that must be matched verbatim

Verbatim patterns.

Here the x

expression.

in the rule matches any

The Verbatim tells Mathematica that
only the exact expression x_ should be
matched.

In[1]:= {£[2], £[al, £[x_], £[y_1} /. £[x_] -> x~2
out[1]= {4, a%, x_2, y_2}

In[2]:= {£[2], £[al, £[x_], £[y_1} /. £f[Verbatim[x_]] -> x~2
Out[2]= {£[2], £[al, x*, £[y_1}

W 2.3.13 Patterns for Some Common Types of Expression

Using the objects described above, you can set up patterns for many kinds of expressions. In all cases,
you must remember that the patterns must represent the structure of the expressions in Mathematica

internal form, as shown by FullForm.

2.3.13 Patterns for Some Common Types of Expression

279

Especially for some common kinds of expressions, the standard output format used by Mathematica
is not particularly close to the full internal form. But it is the internal form that you must use in

setting up patterns.

n_Integer
x_Real
z_Complex
Complex[x_, y_]

Complex[x_Integer, y_Integer]

(r_Rational | r_Integer)
Rationalln_, d_]

(x_ /; NumberQ[x] && Im[x]1==0)
(x_ /; NumberQ[x])

an integer n

an approximate real number x
a complex number z

a complex number x + iy

a complex number where both real and imaginary
parts are integers

rational number or integer r

a rational number 5

a real number of any kind

a number of any kind

Some typical patterns for numbers.

Here are the full forms of some
numbers.

The rule picks out each piece of the
complex numbers.

The fact that these expressions have
different full forms means that you
cannot use x_ + I y_ to match a
complex number.

The pattern here matches both ordinary
integers, and complex numbers where
both the real and imaginary parts are
integers.

As discussed in Section 1.4.1, Mathematica

In[1]:= {2, 2.5, 2.5 + I, 2/7} // FullForm
Out[1]//FullForm= List[2, 2.5, Complex[2.5", 1], Rationall[2, 71]

In[2]:=4{2.5 - I, 3 + I} /. Complex[x_, y_] -> plx, yl
Out[2]= {p[2.5, -1], p[3, 11}

In[3]:={2.5 - I, x + I y} // FullForm
Out[3]//FullForm= List[Complex[2.5%, -1],

Plus([x, Times[Complex[0, 1], y11]

In[4]:= Cases[{2.5-1,2,3+I,2-0.51I,2+21I},

_Integer | Complex[_Integer, _Integer]]

Out[4]= {2, 3+1, 2+21}

puts all algebraic expressions into a standard form, in

which they are written essentially as a sum of products of powers. In addition, ratios are converted
into products of powers, with denominator terms having negative exponents, and differences are
converted into sums with negated terms. To construct patterns for algebraic expressions, you must
use this standard form. This form often differs from the way Mathematica prints out the algebraic
expressions. But in all cases, you can find the full internal form using FullForm[expr].

280

2. Principles of Mathematica « 2.3 Patterns

Here is a typical algebraic expression.

This

is the full internal form of the

expression.

This

is what you get by applying a

transformation rule to all powers in the
expression.

In[5]:=-1/2~2 - z/y + 2 (x z)~2 y

..t = 2 2
Out[5]= _—ZT_—}_f—+2x yz

In[6]:= FullForm[%]

Out[6]//FullForm= Plus[Times[-1, Power[z, -2]1],
Times[-1, Powerl[y, -11, z],
Times[2, Power[x, 2], y, Power[z, 2]]1]

In[7]:
Out[7]= -zely, -1]1 -elz, -2]1 +2yelx, 2] e[z, 2]

% /. x_~n_ -> e[x, n]

X_+y_
X_+y_.

n_Integer x_

a_. +b_. x_

X_~n_

X_~n_

a_. +b_. x_+c_. x_"2

a sum of two or more terms

a single term or a sum of terms

an expression with an explicit integer multiplier
a linear expression a + bx

x" with n #0, 1

x" with n # 0

a quadratic expression with non-zero linear term

Some typical patterns for algebraic expressions.

This
of x.

pattern picks out linear functions

In[8]:={1, a, x, 2 x, 1 +2x} /. a_. +b_.

Out[8]= {1, a, pl0, 11, pl[0, 21, p[1, 2]}

x -> pla, bl

x_List or x:{___}

x_List /; VectorQ[x]

x_List /; VectorQ[x, NumberQ]
x:{___List} or x:{{___}...}
x_List /; MatrixQ[x]

x_List /; MatrixQ[x, NumberQ]
x:{{, _F.. 3

a list

a vector containing no sublists
a vector of numbers

a list of lists

a matrix containing no sublists
a matrix of numbers

a list of pairs

Some typical patterns for lists.

2.3.14 An Example: Defining Your Own Integration Function 281

This defines a function whose
argument must be a list containing lists
with either one or two elements.

In[9]:=hlx:{ ({_} | {_, _B)... }] :=q

The definition applies in the second
and third cases.

In[10]:= {h[{a, b}], h[{{a}, {b}}], h[{{a}, {b, c}}]1}
Out[10]= {h[{a, b}, q, q}

H 2.3.14 An Example: Defining Your Own Integration Function

Now that we have introduced the basic features of patterns in Mathematica, we can use them to give
a more or less complete example. We will show how you could define your own simple integration
function in Mathematica.

From a mathematical point of view, the integration function is defined by a sequence of mathemat-
ical relations. By setting up transformation rules for patterns, you can implement these mathematical
relations quite directly in Mathematica.

mathematical form Mathematica definition

[y+2dx = [ydx+ [zdx

integrately_ +z_, x_] :=
integrately, x] + integrate[z, x]

[cydx = c [ydx (c independent of x)

integratelc_ y_, x_] :=
c integrately, x] /; FreeQlc, x]

fcdx =cx integratelc_, x_] :=c x /; FreeQlc, x]
fx” dx = x:'::), n+ -1 integrate[x_~n_., x_] :=x~(n+1)/(n+1) /;

FreeQ[n, x] && n != -1

1 _ log(ax+b)
f ax+b dx =

- integrate[1/(a_. x_+b_.), x_] :=

Logla x + b]l/a /; FreeQl{a,b}, x]

fe”“b dx = %e““h integrate[Expla_. x_ +b_.1, x_] :=

Expla x + bl/a /; FreeQ[{a,b}, x]

Definitions for an integration function.

This implements the linearity relation
for integrals:

J+2dx = [ydx+ [zdx.

In[1]:= integrately_ + z_, x_] :=
integrate[y, x] + integrate[z, x]

282 2. Principles of Mathematica « 2.3 Patterns

The associativity of Plus makes the In[2]:= integrate[a x + b x*2 + 3, x]
linearity relation work with any

. Out[2]= integrate[3, x] +
number of terms in the sum. &

integrate[ax, x] +integrate[b x2, x]

This makes integrate pull out factors In[3]:= integratelc_ y_, x_] := c integrately, x] /; FreeQlc, x]
that are independent of the integration

variable x.

Mathematica tests each term in each In[4]:= integrate[a x + b x*2 + 3, x]

product to see whether it satisfies the Out[4]= integrate[3, x] +

FreeQ condition, and so can be pulled i ' . 2

out aintegrate[x, x] +bintegrate[x*, x]

This gives the integral fcdx =cx of a In[5]:= integrate[c_, x_] := c x /; FreeQ[c, x]

constant.

Now the constant term in the sum can In[6]:= integrate[a x + b x*2 + 3, x]

be integrated. Out[6]= 3x+aintegrate[x, x] +bintegrate [x?, x]

This gives the standard formula for the In[7]:= integrate[x_~n_., x_] :=

integral of x". By using the pattern x~(n+1)/(n+1) /; FreeQ[n, x] && n '= -1
x_~n_., rather than x_~n_, we include

the case of x! = x.

Now this integral can be done In[8]:= integrate[a x + b x~2 + 3, x]
completely. ax® by

Out[8]= 3x+ + 3
Of course, the built-in integration In[9]:= Integratela x + b x~2 + 3, x]
function Integrate (with a capital I) 2 R
could have done the integral anyway. Out[9]= 3x+ o+ bx

3

Here is the rule for integrating the In[10]:= integrate[1/(a_. x_ +b_.), x_] :=
reciprocal of a linear function. The Logla x + bl/a /; FreeQ[{a,b}, x]

pattern a_. x_ + b_. stands for any
linear function of x.

Here both a and b take on their In[11]:= integrate[1/x, x]
default values. Out[11]= Loglx]
Here is a more complicated case. The In[12]:= integrate[1/(2 p x - 1), x]

symbol a now matches 2 p. Log[-1+2px]

2p

Out[12]

You can go on and add many more In[13]:= integrate[Expla_. x_+b_.]1, x_] :=
rules for integration. Here is a rule for Expla x + bl/a /; FreeQ[{a,b}, x]
integrating exponentials.

2.4.1 Constructing Lists 283

2.4 Manipulating Lists

‘Il 2.4.1 Constructing Lists

Lists are widely used in Mathematica, and there are many ways to construct them.

Range[n] the list {1, 2, 3, ... , n}
Tablelexpr, {i, n}]1 the values of expr with i from 1 to n
Array[f, n] the list {fT11, fT21, ... , finl}
NestList[f, x, n] {x, flx]1, fIflx1], ... } with up to n nestings

+ Normal[SparseArray[{i;->v;, ... }, nl]
a length 7 list with element i; being vy

Applyl[List, fle;, €2, ... 11 the list {e;, ez, ... }

Some explicit ways to construct lists.

This gives a table of the first five In[1]:= Table[2~i, {i, 5}]
powers of two. out[1]= {2, 4, 8, 16, 32}
Here is another way to get the same In[2]:= Array[2~# &, 5]
result. out[2]= {2, 4, 8, 16, 32}
This gives a similar list. In[3]:= NestList[2 #&, 1, 5]

out[3]= {1, 2, 4, 8, 16, 32}

SparseArray lets you specify values at In[4]:= Normal[SparseArray[{3->x, 4->y}, 5]]
particular positions. out[4]= {0, 0, x, y, O}

You can also use patterns to specify In[5]:= Normal[SparseArray[{i_ -> 2~i}, 5]]
values. out[5]= {2, 4, 8, 16, 32}

Often you will know in advance how long a list is supposed to be, and how each of its elements
should be generated. And often you may get one list from another.

284 2. Principles of Mathematica « 2.4 Manipulating Lists

Maplf, list] apply f to each element of list
MapIndexed[f, list] give flelem, {i}] for the i element
Casesllist, form] give elements of list that match form
Select[list, test] select elements for which test[elem] is True

listL[{iy, ip, ... }1] or Partllist, {i;, ip, ... }]
give a list of the specified parts of list

Constructing lists from other lists.

This selects elements larger than 5. In[6]:= Select[{1, 3, 6, 8, 10}, # > 5&]
Out[6]= {6, 8, 10}

This explicitly picks out numbered In[7]:= {a, b, c, d}[[{2, 1, 4}]]
parts. out[7]= {b, a, d}

Sometimes you may want to accumulate a list of results during the execution of a program. You
can do this using Sow and Reap.

* Sow[wval]l sow the value val for the nearest enclosing Reap

* Reaplexpr] evaluate expr, returning also a list of values sown by Sow

Using Sow and Reap.

This program iteratively squares a In[8]:= Nest[#~2%, 2, 5]

number. Out[8]= 4294967296

This does the same computation, but In[9]:= Reap[Nest[(If[# > 1000, Sow[#]]; #~2) &, 2, 6]]
accumulating a list of intermediate Out[9]= {18446744073709551616, {{65536, 4294967296} }}

results above 1000.

An alternative but less efficient approach involves introducing a temporary variable, then starting
with t = {}, and successively using AppendTolt, elem].

2.4.2 Manipulating Lists by Their Indices

285

-l 2.4.2 Manipulating Lists by Their Indices

Part[list, spec] or list[[spec]]

part or parts of a list

Part[list, spec,, spec,, ... 1 or list[[spec,, spec,, ... 1]

part or parts of a nested list

-n
{, i, ... }
A1l

the n' part from the beginning
the n™ part from the end
a list of parts

all parts

Getting parts of lists.

This gives a list of parts 1 and 3.

Here is a nested list.
This gives a list of its first and third
parts.

This gives a list of the first part of
each of these.

And this gives a list of the first two
parts.

This gives the second part of all
sublists.

You can always reset one or more pieces of a list by doing an assignment like m[[... 1] = value.

This resets part 1,2 of m.

This is now the form of m.

This resets part 1 to x and part 3 to y.

This resets parts 1 and 3 both to p.

In[1]:= {a, b, c, d}[[{1, 3}]]

out[1]= {a, c}

In[2]:=m = {{a, b, c}, {d, e}, {f, g, h}};
In[3]:=ml[[{1, 3}]]

Out[3]= {{a, b, c}, {f, g, h}}

In[4]:=m[[{1, 3}, 1]]
out[4]= {a, f}

In[5]:=m[[{1, 3}, {1, 2}]]
Out[5]= {{a, b}, {£f, g}}

In[6]:= m[[A11, 2]]
Out[6]= {b, e, g}

In[7]:=ml[1, 2]] = x
Out[7]= x

In[8]:=m
Out[8]= {{a, x, c}, {4, e}, {f, g, h}}

In[9]:=m[[{1, 3}]]1 ={x, y}; m
out[9]= {x, {d, e}, y}

In[10]:=m[[{1, 3}]] =p; m
Out[10]= {p, {d, e}, p}

286 2. Principles of Mathematica « 2.4 Manipulating Lists
This restores the original form of m. In[11]:=m = {{a, b, c}, {d, e}, {f, g, b}};
This now resets all parts specified by In[12]:=ml[{1, 3}, {1, 2}]11 =x; m

m[[{1, 3}, {1, 2}]11.

You can use Range to indicate all
indices in a given range.

Out[12]= {{x, x, c}, {d, e}, {x, x, h}}

In[13]:= m[[Range[1, 3], 2]1 =y; m
Out[13]= {{x, y, c}, {d, y}, {x, y, h}}

It is sometimes useful to think of a nested list as being laid out in space, with each element being
at a coordinate position given by its indices. There is then a direct geometrical interpretation for
list[[spec, , spec,, ... 11. If a given spec, is a single integer, then it represents extracting a single slice
in the k™" dimension, while if it is a list, it represents extracting a list of parallel slices. The final result
for list[[spec,, spec,, ... 11 is then the collection of elements obtained by slicing in each successive

dimension.

Here is a nested list laid out as a
two-dimensional array.

This picks out rows 1 and 3, then
columns 1 and 2.

In[14]:= (m = {{a, b, c}, {d, e, £}, {g, h, i}}) // TableForm

a b c
Out[14]//TableForm= d e f
g h i

In[15]:= m[[{1, 3}, {1, 2}]] // TableForm

b

a
Out[15]//TableForm= e h

Part is set up to make it easy to pick out structured slices of nested lists. Sometimes, however,
you may want to pick out arbitrary collections of individual parts. You can do this conveniently with

Extract.

Part[list, {i;, 12,

Extractl[list, {ii, i2,

... }1 the list {list[[i11]1, listCLi1], ... }
... }1 the element list[[i;, i, ... 1]

Part[list, spec,, spec,, ...

Extractllist, {{i;, i2, ... }, {j;» jp» --- }» ... }]

1 parts specified by successive slicing

the list of individual parts
{listlliy, ia, ... 11, listC0j,, jp» ... 11, ... }

Getting slices versus lists of individual

parts.

This extracts the individual parts 1,3 In[16]:= Extract[m, {{1, 3}, {1, 2}}]

and 1,2.

out[16]= {c, b}

An important feature of Extract is that it takes lists of part positions in the same form as they are
returned by functions like Position.

2.4.2 Manipulating Lists by Their Indices 287

This sets up a nested list. In[17]:=m = {{a[1], al2], b[1]1}, {b[2], c[1]1}, {{b[31}}};
This gives a list of positions in m. In[18]:= Position[m, b[_]]

out[18]= {{1, 3}, {2, 1}, {3, 1, 1}}

This extracts the elements at those In[19]:= Extractlm, %]
positions. out[19]= {b[1], b[2], b31}

Takel[list, spec] take the specified parts of a list
Dropllist, spec] drop the specified parts of a list

Takel[list, spec,, spec,, ... 1, Dropllist, spec,, spec,, ...]
take or drop specified parts at each level in nested lists

n the first n elements
-n the last n elements
{n} element n only
{m, n} elements m through n (inclusive)
{m, n, s+ elements m through = in steps of s
A1l all parts

None no parts

Taking and dropping sequences of elements in lists.

This takes every second element In[20]:= Take[{a, b, ¢, d, e, £, g}, {2, -1, 2}]
starting at position 2. out[20]= {b, d, £}
This drops every second element. In[21]:= Drop[{a, b, ¢, 4, e, £, g}, {2, -1, 2}]

Out[21]= {a, c, e, g}

Much like Part, Take and Drop can be viewed as picking out sequences of slices at successive
levels in a nested list. You can use Take and Drop to work with blocks of elements in arrays.

Here is a 3 x 3 array. In[22]:= (m = {{a, b, ¢}, {d, e, £}, {g, h, i}}) // TableForm
a b c
Out[22]//TableForm= d e £
g h i
Here is the first 2 x 2 subarray. In[23]:= Take[m, 2, 2] // TableForm
b

a
Out[23]//TableForm= d o

288

2. Principles of Mathematica « 2.4 Manipulating Lists

This takes all elements in the first two
columns.

This leaves no elements from the first
two columns.

In[24]:= Take[m, All, 2] // TableForm

a b
Out[24]//TableForm= d e
g h

In[25]:= Droplm, None, 2] // TableForm

C

Out[25]//TableForm= £
i

Prependl[list, elem]
Append[list, elem]
Insert[list, elem, i]
Insertllist, elem, {i, j, ... }]
Deletel[list, i]

Deletellist, {i, j, ... }]

add element at the beginning of list
add element at the end of list
insert element at position i

insert at position i, j, ...

delete the element at position i

delete at position 7, j, ...

Adding and deleting elements in lists.

This makes the 2,1 element of the list
be x.

This deletes the element again.

In[26]:= Insert[{{a, b, c}, {d, e}}, x, {2, 1}]

Out[26]= {{a, b, c}, {x, d, e}}

In[27]:= Deletel%, {2, 1}]
Out[27]= {{a, b, c}, {d, e}}

ReplacePartl[list, new, il

ReplacePart[list, new, {i, j, ..

ReplacePartl[list, new, {{i;, j,;, ... }, {i2, ...
replace all parts list[[iy, j., ... 11 with new

ReplacePart[list, new, {{ij, ...

replace the element at position 7 in list with new

.}

replace list[[i, j, ... 11 with new

Iy aan 2]

) JR B S P

replace part list[[i, ... 11 with new[[n;]1]

Replacing parts of lists.

This replaces the third element in the
list with x.

In[28]:= ReplacePart[{a, b, c, d}, x, 3]
Out[28]= {a, b, x, d}

2.4.3 Nested Lists 289

This replaces the first and fourth parts In[29]:= ReplacePart[{a, b, c, d}, x, {{1}, {4}}]
Qf thg list. Notice the peed for double out[29]= {x, b, c, x}
lists in specifying multiple parts to

replace.
Here is a 3 x 3 identity matrix. In[30]:= IdentityMatrix[3]

out[30]= {{1, 0, 0}, {0, 1, 0}, {0, O, 1}}
This replaces the 2,2 component of the In[31]:= ReplacePart[%, x, {2, 2}]

matrix by x. out[31]= {{1, 0, 0}, {0, x, 0}, {0, 0, 1}}

Il 2.4.3 Nested Lists

{list,, list,, ... } list of lists
Tablelexpr, {i, m}, {j, n}, ... 1 m x n x... table of values of expr
Array[f, {m, n, ... }1 m x n x... array of values fi, j, ...]

+ Normal[SparseArray[{{iy, j,,... } > v, ... }, {m, n, ... }]1]
m x n x... array with element {is, j ,... } being vs

Outerlf, list;, list,, ... 1 generalized outer product with elements combined using f

Ways to construct nested lists.

This generates a table corresponding to In[1]:= Table[x~i + j, {i, 2}, {j, 3}]
a 2 x 3 nested list. Outl1]= {{1+x, 2+x, 3+x}, {1+x2, 2+x2, 3+x2}}

This generates an array corresponding In[2]:= Array[x~#1 + #2 &, {2, 3}]

to the same nested list. Outl2]= {{1+x, 2+x, 3+x}, {1+x2, 2+%%, 3+x°}}

Elements not explicitly specified in the In[3]:= Normal[SparseArray[{{1, 3} -> 3 + x}, {2, 3}]]
sparse array are taken to be 0. out[3]= {{0, 0, 3+x}, {0, 0, O}}

Each element in the final list contains In[4]:= Outer[£f, {a, b}, {c, d}]
one element from each input list. Out[4]= {{f[a, c], £[a, d]}, {£[b, c], £[b, d]}}

Functions like Array, SparseArray and Outer always generate full arrays, in which all sublists at a
particular level are the same length.

290 2. Principles of Mathematica « 2.4 Manipulating Lists
Dimensions[list] the dimensions of a full array

* ArrayQ[list] test whether all sublists at a given level are the same length

+ ArrayDepth[list] the depth to which all sublists are the same length

Functions for full arrays.

Mathematica can handle arbitrary nested lists. There is no need for the lists to form a full array.
You can easily generate ragged arrays using Table.

This generates a triangular array.

In[5]:= Table[x~i + j, {i, 3}, {j, i}]
Out[5]= {{1+x}, {1+x°, 2+x%}, {1+x3, 2+%%, 3+x°}}

Flatten[/ist]

Flatten[list, n]

flatten out all levels of list

flatten out the top 7 levels

Flattening out sublists.

This generates a 2 x 3 array.

Flatten in effect puts elements in
lexicographic order of their indices.

In[6]:= Arrayl[a, {2, 3}]

Oout[6]= {{al1, 1], alt, 21, al1, 313},
{al2, 1], al2, 21, a[2, 313}

In[7]:= Flatten[%]
Out[7]= {al1, 1], al1, 21, al1, 3], al2, 1], al2, 21, a[2, 31}

Transposel[/list]

Transposellist, {n;, ny, ... }]

transpose the top two levels of list

put the k™ level in list at level n

Transposing levels in nested lists.

This generates a 2 x 2 x 2 array.

This permutes levels so that level 3
appears at level 1.

This restores the original array.

In[8]:= Array[a, {2, 2, 2}]

out[8]= {{{al1, 1, 1], al1, 1, 21}, {al1, 2, 11, al1, 2, 213},
{{al2, 1, 11, al2, 1, 213}, {al2, 2, 11, al2, 2, 21}}}

In[9]:= Transpose[%, {3, 1, 2}]

out[9]= {{{alt, 1, 1], al2, 1, 11}, {alt, 1, 21, al2, 1, 2133},
{{alt, 2, 11, al2, 2, 113}, {al1, 2, 21, al2, 2, 21}}}

In[10]:= Transposel%, {2, 3, 1}]

out[10]= {{{al1, 1, 1], a1, 1, 2]}, {all, 2, 1], al1, 2, 2]}},
{{al2, 1, 11, al2, 1, 21}, {al2, 2, 11, al2, 2, 21}}}

2.4.3 Nested Lists

291

Maplf, list, {n}]
Applylf, list, {n}]
MapIndexedl[f, list, {n}]

map f across elements at level n
apply f to the elements at level n

map f onto parts at level n and their indices

Applying functions in nested lists.

Here is a nested list.

This maps a function f at level 2.

This applies the function at level 2.

This applies £ to both parts and their
indices.

In[11]:=m = {{{a, b}, {c, d}}, {{e, £}, {g, b}, {i}}};
In[12]:= Map[f, m, {2}]
Out[12]= {{f[{a, b}], £l{c, d}1},
{f[{e, £}1, £[{g, h}], £[{i}]}}
In[13]:= Apply[f, m, {2}]
Out[13]= {{fla, bl, flc, d1}, {fle, f1, flg, hl, £[il1}}

In[14]:= MapIndexed[f, m, {2}]
Out[14]= {{f[{a, b}, {1, 1}, £[{c, d}, {1, 2}13,

{fl{e, £}, {2, 131,
£l{g, b}, {2, 2}1, £[{i}, {2, 3}1}}

Partitionl[list, {n;, ny, ...
PadLeftl[list, {n, ny, ...
PadRight[list, {n;, n,, ...
RotateLeft[list, {n, ny, ...

RotateRightl[list, {n;, ny, ...

]
]
3]
3]
]

partition into 7; x 11, x ... blocks

pad on the left to make an n; x 11, x ... array
pad on the right to make an 7 x 1, x... array
rotate 1 places to the left at level k

rotate ny places to the right at level k

Operations on nested lists.

Here is a nested list.
This rotates different amounts at each

level.

This pads with zeros to make a
2x3x 3 array.

In[15]:=m = {{{a, b, c}, {4, e}}, {{f, g}, {h}, {i}}};

In[16]:= RotateLeft[m, {0, 1, -1}]
Out[16]= {{{e, d}, {c, a, b}}, {{n}, {i}, {g, £33}

In[17]:= PadRight[%, {2, 3, 3}]

Out[17]= {{{e, d, 0}, {c, a, b}, {0, 0, 0}},
{{h, 0, 0}, {1, 0, 0}, {g, £, 0}}}

292

2. Principles of Mathematica « 2.4 Manipulating Lists

Il 2.4.4 Partitioning and Padding Lists

Partition[list, n]

Partitionl[list, n, d]

partition list into sublists of length n

partition into sublists with offset d

Split[list]
Split[list, test]

split list into runs of identical elements

split into runs with adjacent elements satisfying test

Partitioning elements in a list.

This partitions in blocks of 3.

This partitions in blocks of 3 with
offset 1.

The offset can be larger than the block
size.

This splits into runs of identical
elements.

This splits into runs where adjacent
elements are unequal.

In[1]:= Partition[{a, b, ¢, d, e, £}, 3]
Out[1]= {{a, b, c}, {d, e, f}}

In[2]:= Partition[{a, b, ¢, d, e, £}, 3, 1]
Out[2]= {{a, b, c}, {b, c, d}, {c, d, e}, {d, e, £}}

In[3]:= Partition[{a, b, ¢, d, e, £}, 2, 3]
Out[3]= {{a, b}, {d, e}}

In[4]:= Split[{1, 4, 1, 1, 1, 2, 2, 3, 3}]
out[4]= {{1}, {4}, {1, 1, 13}, {2, 2}, {3, 3}}

In[5]:= splitl{1, 4, 1, 1, 1, 2, 2, 3, 3}, Unequall
out[5]= {{1, 4, 1}, {1}, {1, 2}, {2, 3}, {3}}

Partition in effect goes through a list, grouping successive elements into sublists. By default it does
not include any sublists that would “overhang” the original list.

This stops before any overhang occurs.

The same is true here.

In[6]:= Partition[{a, b, c, d, e}, 2]
Out[6]= {{a, b}, {c, d}}

In[7]:= Partition[{a, b, ¢, d, e}, 3, 1]
Out[7]= {{a, b, c}, {b, c, d}, {c, d, e}}

You can tell Partition to include sublists that overhang the ends of the original list. By default, it
fills in additional elements by treating the original list as cyclic. It can also treat it as being padded

with elements that you specify.
This includes additional sublists,

treating the original list as cyclic.

Now the original list is treated as
being padded with the element x.

In[8]:= Partition[{a, b, ¢, d, e}, 3, 1, {1, 1}]
Out[8]= {{a, b, c}, {b, ¢, d}, {c, d, e}, {d, e, a}, {e, a, b}}

In[9]:= Partition[{a, b, ¢, d, e}, 3, 1, {1, 1}, x]
Out[9]= {{a, b, c}, {b, c, d}, {c, d, e}, {d, e, x}, {e, x, x}}

2.4.4 Partitioning and Padding Lists 293

This pads cyclically with elements x In[10]:= Partition[{a, b, c, d, e}, 3, 1, {1, 1}, {x, y}]

and y. Out[10]= {{a, b, ¢}, {b, ¢, d}, {c, d, e}, {d, e, ¥y}, {e, y, x}}
This introduces no padding, yielding In[11]:= Partitionl[{a, b, c, d, e}, 3, 1, {1, 1}, {}]

sublists of differing lengths. Outl11]= {{a, b, c}, {b, c, d}, {c, d, e}, {d, e}, {e}}

You can think of Partition as extracting sublists by sliding a template along and picking out
elements from the original list. You can tell Partition where to start and stop this process.

This gives all sublists that overlap the In[12]:= Partition[{a, b, ¢, d}, 3, 1, {-1, 1}, x]

original list. out[12]= {{x, x, a}, {x, a, b}, {a, b, c},
{b, c, d}, {c, d, x}, {d, x, x}}

This allows overlaps only at the In[13]:= Partition[{a, b, c, d}, 3, 1, {-1, -1}, x]
beginning. out[13]= {{x, x, a}, {x, a, b}, {a, b, c}, {b, c, d}}

Partition[list, n, d] or Partition[list, n, d, {1, -1}]
keep only sublists with no overhangs

Partition[list, n, d, {1, 1}]1 allow an overhang at the end
Partition[list, n, d, {-1, -1}] allow an overhang at the beginning
Partition[list, n, d, {-1, 1}] allow overhangs at both the beginning and end

Partition[list, n, d, {ky, kr}] specify alignments of first and last sublists

Partition[list, n, d, spec] pad by cyclically repeating elements in [ist
Partition[list, n, d, spec, x] pad by repeating the element x

Partition[list, n, d, spec, {x;, x2, ... }]
pad by cyclically repeating the x;

Partition[list, n, d, spec, {}] use no padding

Specifying alignment and padding.

An alignment specification {k;, kr} tells Partition to give the sequence of sublists in which the
first element of the original list appears at position kj, in the first sublist, and the last element of the
original list appears at position kg in the last sublist.

This makes a appear at position 1 in In[14]:= Partition[{a, b, ¢, d}, 3, 1, {1, 1}, x]
the first sublist. Out[14]= {{a, b, c}, {b, c, d}, {c, d, =}, {d, x, x}}

294

2. Principles of Mathematica « 2.4 Manipulating Lists

This makes a appear at position 2 in
the first sublist.

Here a is in effect made to appear first
at position 4.

This fills in padding cyclically from the
list given.

In[15]:= Partition[{a, b, ¢, d}, 3, 1, {2, 1}, x]
Out[15]= {{x, a, b}, {a, b, c}, {b, ¢, d}, {c, 4, x}, {4, x, x}}

In[16]:= Partition[{a, b, ¢, d}, 3, 1, {4, 1}, x]
Out[16]= {{x, x, x}, {x, x, a}, {x, a, b},

{a, b, c}, {b, ¢, d}, {c, d, x}, {d, x, x}}
In[17]:= Partition[{a, b, ¢, d}, 3, 1, {4, 1}, {x, y}]

out[17]= {{y, x, y}, {x, y, a}, {y, a, b},
{a, b, c}, {b, ¢, d}, {c, d, x}, {d, x, y}}

Functions like ListConvolve use the same alignment and padding specifications as Partition.

In some cases it may be convenient to insert explicit padding into a list. You can do this using

PadLeft and PadRight.

PadLeft[list, n]
PadLeft[list, n, x]
.. 1]
PadLeft[list, n, list]

PadLeft[list, n, {x1, x2,

PadLeftl[list, n, padding, m]

pad to length n by inserting zeros on the left
pad by repeating the element x

pad by cyclically repeating the x;

pad by cyclically repeating list

leave a margin of m elements on the right

PadRight[list, 1]

pad by inserting zeros on the right

Padding a list.

This pads the list to make it length 6.

This cyclically inserts {x, y} as the
padding.

This also leaves a margin of 3 on the
right.

In[18]:= PadLeft[{a, b, c}, 6]
Out[18]= {0, 0, 0, a, b, c}

In[19]:= PadLeft[{a, b, c}, 6, {x, y}]
Out[19]= {x, vy, x, a, b, c}

In[20]:= PadLeft[{a, b, c}, 10, {x, y}, 3]
Out[20]= {y, x, ¥y, x,a, b, c, x,y, x}

PadLeft, PadRight and Partition can all be used on nested lists.

This creates a 3 x 3 array.

This partitions the array into 2 x 2
blocks with offset 1.

In[21]:= PadLeft[{{a, b}, {e}, {£f}}, {3, 3}, x]
out[21]= {{x, a, b}, {x, x, e}, {x, x, f}}

In[22]:= Partition[%, {2, 2}, {1, 1}]

out[22]= {{{{x, a}, {x, x}}, {{a, b}, {x, e}}},
{{{x, =}, {x, x}}, {{x, e}, {x, £}}}}

2.4.5 Sparse Arrays 295

If you give a nested list as a padding specification, its elements are picked up cyclically at each
level.

This cyclically fills in copies of the In[23]:= PadLeft[{{a, b}, {e}, {£f}}, {4, 4}, {{x, y}, {z, w}}]
padding list. Out[23]= {{x,y, %, y}, {z, w, a, b}, {x, v, x, e}, {z, w, z, £}}
Here is a list containing only padding. In[24]:= PadLeft[{{}}, {4, 4}, {{x, y}, {z, w}}]

Out[24]= {{x, y, x, y}, {z, w, z, w}, {x, y, x, y}, {2z, w, z, w}}

‘l 2.4.5 Sparse Arrays

Lists are normally specified in Mathematica just by giving explicit lists of their elements. But partic-
ularly in working with large arrays, it is often useful instead to be able to say what the values of
elements are only at certain positions, with all other elements taken to have a default value, usually
zero. You can do this in Mathematica using SparseArray objects.

{e1, ep, ... }, {{ey,enns ...}, ...}, ... ordinary lists

+ SparseArray[{pos, -> val,, pos, -> valy, ... }] sparse arrays

Ordinary lists and sparse arrays.

This specifies a sparse array. In[1]:= SparseArray[{2->a, 5->b}]
Out[1]= SparseArray[<2>, {5}]

Here it is as an ordinary list. In[2]:= Normall[%]
Out[2]= {0, a, 0, 0, b}

This specifies a two-dimensional sparse In[3]:= SparseArray[{{1,2}->a, {3,2}->b, {3,3}->c}]
array. Out[3]= SparseArray[<3>, {3, 3}]

Here it is an ordinary list of lists. In[4]:= Normall[%]
Out[4]= {{0, a, 0}, {0, 0, 0}, {0, b, c}}

296

2. Principles of Mathematica « 2.4 Manipulating Lists

+ SparseArray[list]

+ SparseArrayldata, {d;, dy, ... }]

sparse array version of list

+ SparseArray[{pos,->val;, pos,~>valy, ... }]

sparse array with values val; at positions pos;

+ SparseArray[{pos,, pos,, ... }->{val;, valy, ... }]

the same sparse array

d; xd, x ... sparse array

+ SparseArrayldata, dims, vall] sparse array with default value val
+ Normallarray]l ordinary list version of array
* ArrayRules[array] position-value rules for array

Creating and converting sparse arrays.

This generates a sparse array version
of a list.

This converts back to an ordinary list.

This makes a length 7 sparse array
with default value x.

Here is the corresponding ordinary list.

This shows the rules used in the sparse
array.

In[5]:= SparseArray[{a, b, c, d}]
Out[5]= SparseArray[<4>, {4}]

In[6]:= Normal[%]
Out[6]= {a, b, c, d}

In[7]:= SparseArray[{3->a, 5->b}, 7, x]
Out[7]= SparseArray[<2>, {7}, x]

In[8]:= Normal[%]
Out[8]= {x, x, a, x, b, x, X}

In[9]:= ArrayRules[%%]
Out[9]= {{3}—>a, {6} b, {_}>x}

An important feature of SparseArray is that the positions you specify can be patterns.

This specifies a 4 x4 sparse array with
1 at every position matching {i_, i_}.

The result is a 4 x 4 identity matrix.

Here is an identity matrix with an
extra element.

This makes the whole third column
be a.

In[10]:= SparseArray[{i_, i_} -> 1, {4, 4}]
Out[10]= SparseArrayl[<4>, {4, 4}]

In[11]:= Normall[%]
out[11]= {{1, 0, O, 0}, {0, 1, 0, O}, {0, O, 1, O}, {0, O, O, 1}}

In[12]:= Normal[SparseArray[{{1, 3}->a, {i_, i_}->1}, {4, 4}]]
out[12]= {{1, 0, a, O}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, O, 1}}

In[13]:= Normal[SparseArray[{{_, 3}->a, {i_, i_}->1}, {4, 4}]]
out[13]= {{1, 0, a, 0}, {0, 1, a, 0}, {0, O, a, 0O}, {0, 0, a, 1}}

2.4.5 Sparse Arrays 297

You can think of SparseArray[rules] as taking all possible position specifications, then applying
rules to determine values in each case. As usual, rules given earlier in the list will be tried first.

This generates a random diagonal In[14]:= Normal[SparseArray[{{i_, i_} :> Random[]}, {3, 3}]]
matrix. Out[14]= {{0.0560708, 0, 0}, {0, 0.6303, 0}, {0, 0, 0.359894}}
You can have rules where values In[15]:= Normal[SparseArray[i_ -> i~2, 10]]

depend on indices. out[15]= {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

This fills in even-numbered positions In[16]:= Normal[SparseArray[{_?EvenQ->p, i_->i~2}, 10]]

with p. out[16]= {1, p, 9, p, 25, p, 49, p, 81, p}

You can use patterns involving In[17]:= Normal[SparseArray[{1|3, 2|4}->a, {4, 4}]]
alternatives. out[17]= {{0, a, 0, a}, {0, 0, 0, O}, {0, a, 0, a}, {0, 0, 0, O}}
You can also give conditions on In[18]:= Normal[SparseArray[i_/;3<i<7 -> p, 10]]

patterns. out[18]= {0, 0, 0, p, p, p, 0, 0, 0, O}

This makes a band-diagonal matrix. In[19]:= Normal[SparseArray[{{i_, j_} /;

Abs[i - jl1 <2 ->1i+ j}, {5, 5}]]
out[19]= {{2, 3, 0, 0, 0%}, {3, 4, 5, 0, 0},
{0, 5,6, 7,0}, {0,0, 7,8, 9}, {0,0,0,9, 10}}

For many purposes, Mathematica treats SparseArray objects just like the ordinary lists to which
they correspond. Thus, for example, if you ask for parts of a sparse array object, Mathematica will
operate as if you had asked for parts in the corresponding ordinary list.

This generates a sparse array object. In[20]:= s = SparseArray[{2->a, 4->b, 5->c}, 10]
Out[20]= SparseArray[<3>, {10}]

Here is the corresponding ordinary list. In[21]:= Normalls]
Out[21]= {0, a, 0, b, c, 0, 0, 0, 0, O}

Parts of the sparse array are just like In[22]:= s[[2]]

parts of the corresponding ordinary out[22]= a

list.

This part has the default value 0. In[23]:= s[[3]]
Out[23]= 0O

Many operations treat SparseArray objects just like ordinary lists. When possible, they give sparse
arrays as results.
This gives a sparse array. In[24]:=3 s + x
Out[24]= SparseArray[<3>, {10}, x]

Here is the corresponding ordinary list. In[25]:= Normall[%]

Out[25]= {x, 3a+x, x, 3b+x, 3c+Xx, X, X, X, X, X}

298 2. Principles of Mathematica « 2.4 Manipulating Lists

Dot works directly with sparse array In[26]:=s . s

objects. Out[26]= a® +Db? +c?
You can mix sparse arrays and In[27]:=s . Range[10]
ordinary lists. Out[27]= 2a+4b+5c

Mathematica represents sparse arrays as expressions with head SparseArray. Whenever a sparse
array is evaluated, it is automatically converted to an optimized standard form with structure
SparseArray[Automatic, dims, val, ...].

This structure is, however, rarely evident, since even operations like Length are set up to give
results for the corresponding ordinary list, not for the raw SparseArray expression structure.
This generates a sparse array. In[28]:= t = SparseArray[{1->a, 5->b}, 10]
Out[28]= SparseArray[<2>, {10}]
Here is the underlying optimized In[29]:= InputForm[}]
expression structure.

Out[29]//InputForm= SparseArray[Automatic, {10}, O,
{1, {{o, 1, 1, 1,1, 2, 2, 2, 2, 2, 2}, {}}, {a, b}}]

Length gives the length of the In[30]:= Length[t]
corresponding ordinary list. Out[30]= 10
Map also operates on individual values. In[31]:= Normal[Map[f, t]]

Out[31]= {f[a], £[0], £[0], £[0],
£[bl, £[0]1, £[0], £[0], £[0], £[01}

2.5.1 Applying Transformation Rules 299

2.5 Transformation Rules and Definitions

H 2.5.1 Applying Transformation Rules

expr /. lhs => rhs apply a transformation rule to expr

expr /. {lhsy => rhsy, lhsy => rhsy, ... }
try a sequence of rules on each part of expr

Applying transformation rules.

The replacement operator /. In[1]:=x+y /. x ->3
(pronounged “slash-dot”) applies rules Out[1]= 3+y

to expressions.

You can give a list of rules to apply. In[2]:=x+y /. {x ->a, y->b}
Each rule will be tried once on each out[2]= a+b

part of the expression.

expr /. {rules;, rules;, ... } give a list of the results from applying each of the rules; to

expr
Applying lists of transformation rules.
If you give a list of lists of rules, you In[3]:=x+y /. {{x ->1, y -> 2}, {x->4, y->2}}
get a list of results. out[3]= {3, 6}
Functions such as Solve and NSolve In[4]:= Solve[x~3 - 5x*2 +2x + 8 == 0, x]
return lists whose elements are lists of Outl4]= {{x- -1}, {x- 2}, {x > 4}}

rules, each representing a solution.

When you apply these rules, you get a In[5]:=x~2+6 /. %
list of results, one corresponding to out[5]= {7, 10, 22}
each solution. T

When you use expr /. rules, each rule is tried in turn on each part of expr. As soon as a rule applies,
the appropriate transformation is made, and the resulting part is returned.

The rule for x~3 is tried first; if it does In[6]:= {x~2, x~3, x*4} /. {x*3 -> u, x*n_ -> p[nl}
not apply, the rule for x~n_ is used. out[6]= {p[2], u, pl4l}

A result is returned as soon as the rule In[7]:=hlx + h[y]]l /. hlu_] -> ur2
has been applied, so the inner instance

2
of h is not replaced. Out[7]= CGx+hlyD)

The replacement expr /. rules tries each rule just once on each part of expr.

300 2. Principles of Mathematica « 2.5 Transformation Rules and Definitions

Since each rule is tried just once, this In[8]:={x~2, y~3} /. {x >y, y -> x}
serves to swap x and y. o2,)

Out[8]

You can use this notation to apply one In[9]:=x~2 /. x> {1 +y) /. y->b
set of rules, followed by another.

Out[9]= (1+b)°

Sometimes you may need to go on applying rules over and over again, until the expression
you are working on no longer changes. You can do this using the repeated replacement operation
expr //. rules (or ReplaceRepeated[expr, rules]).

expr /. rules try rules once on each part of expr

expr //. rules try rules repeatedly until the result no longer changes

Single and repeated rule application.

With the single replacement operator In[10]:= x*2 + y~6 /. {x -> 2 + a, a -> 3}
/. each rule is tried only once on each

= 2, .6
part of the expression. Out[10]= (2+a)" +y

With the repeated replacement operator In[11]:= x~2 + y~6 //. {x -> 2 + a, a -> 3}
//. the rules are tried repeatedly until

. Out[11]= 25+y®
the expression no longer changes. utl11]= 25+y

Here the rule is applied only once. In[12]:= logla b c d] /. loglx_ y_] -> loglx] + logly]l
Out[12]= loglal +logl[bcdl

With the repeated replacement In[13]:= logla b ¢ d] //. loglx_ y_]1 -> loglx] + logly]
operator, the rule is applied repeatedly, outf137= 1 Tog[b] +1 1og[d
until the result no longer changes. ut(13]= loglal +1oglel +loglc] +1logld]

When you use //. (pronounced “slash-slash-dot”), Mathematica repeatedly passes through your
expression, trying each of the rules given. It goes on doing this until it gets the same result on two
successive passes.

If you give a set of rules that is circular, then //. can keep on getting different results forever. In
practice, the maximum number of passes that //. makes on a particular expression is determined by
the setting for the option MaxIterations. If you want to keep going for as long as possible, you can
use ReplaceRepeatedlexpr, rules, MaxIterations -> Infinity]. You can always stop by explicitly
interrupting Mathematica.

By setting the option MaxIterations, In[14]:= ReplaceRepeated[x, x -> x + 1, MaxIterations -> 1000]
you can explicitly tell . ReplaceRepeated: :rrlim:
ReplaceRepeated how many times to Exiting after x scanned 1000 times.

try the rules you give.
y you s Out[14]= 1000+ x

2.5.1 Applying Transformation Rules 301

The replacement operators /. and //. share the feature that they try each rule on every subpart of
your expression. On the other hand, Replacelexpr, rules] tries the rules only on the whole of expr,
and not on any of its subparts.

You can use Replace, together with functions like Map and MapAt, to control exactly which
parts of an expression a replacement is applied to. Remember that you can use the function

ReplacePart[expr, new, pos] to replace part of an expression with a specific object.

The operator /. applies rules to all
subparts of an expression.

Without a level specification, Replace
applies rules only to the whole
expression.

No replacement is done here.

This applies rules down to level 2, and
so replaces x.

In[15]:=x~2 /. x => a
Out[15]= a?

In[16]:= Replace[x*2, x*2 -> b]
Out[16]= b

In[17]:= Replace[x*2, x -> a]
Out[17]= x*

In[18]:= Replace[x*2, x -> a, 2]
Out[18]= a2

expr /. rules
Replacelexpr, rules]

Replacelexpr, rules, levspec]

apply rules to all subparts of expr
apply rules to the whole of expr only

apply rules to parts of expr on levels specified by levspec

Applying rules to whole expressions.

Replace returns the result from using
the first rule that applies.

Replacelist gives a list of the results
from every rule that applies.

If a single rule can be applied in
several ways, ReplaceList gives a list
of all the results.

This gives a list of ways of breaking
the original list in two.

This finds all sublists that are flanked
by the same element.

In[19]:= Replace[f[u], {£f[x_] -> x~2, £[x_] -> x~3}]
Out[19]= u?

In[20]:= ReplaceList[£[u], {f[x_] -> x~2, £[x_] -> x~3}]
Out[20]= {u?, u®}

In[21]:= ReplaceList[a + b + ¢, x_ + y_ -> glx, yl]

Out[21]= {gla, b+c], glb, a+c], glc, a+b],
gla+b, cl, gla+c, bl, glb+c, al}

In[22]:= ReplaceList[{a, b, c, d}, {x__, y__} -> gl{x}, {y}]]
Out[22]= {gl[{a}, {b, c, d}],
gl{a, b}, {c, d}]1, gl{a, b, c}, {d}1}
In[23]:= ReplaceList[{a, b, ¢, a, 4, b, d},
{__,x_, y__, x_, ___} -> glx, {y}]]
Out[23]= {gla, {b, c}], glb, {c, a, d}], gld, {b}1}

302 2. Principles of Mathematica « 2.5 Transformation Rules and Definitions

Replacelexpr, rules] apply rules in one way only

ReplaceListlexpr, rules] apply rules in all possible ways

Applying rules in one way or all possible ways.

H 2.5.2 Manipulating Sets of Transformation Rules

You can manipulate lists of transformation rules in Mathematica just like other symbolic expressions.
It is common to assign a name to a rule or set of rules.

This assigns the “name” sinexp to the In[1]:= sinexp = Sin[2 x_] -> 2 Sin[x] Cos[x]

trigonometric expansion rule. Out[1]= Sin[2x_] = 2Cos[x] Sin[x]

You can now request the rule “by In[2]:= 8in[2 (1 + x)~2] /. sinexp
name”.

Out[2]= 2 Cos[(l +x)2:| Sin[(i + x)z]

You can use lists of rules to represent mathematical and other relations. Typically you will find it
convenient to give names to the lists, so that you can easily specify the list you want in a particular
case.

In most situations, it is only one rule from any given list that actually applies to a particular
expression. Nevertheless, the /. operator tests each of the rules in the list in turn. If the list is very
long, this process can take a long time.

Mathematica allows you to preprocess lists of rules so that /. can operate more quickly on them.
You can take any list of rules and apply the function Dispatch to them. The result is a representation
of the original list of rules, but including dispatch tables which allow /. to “dispatch” to potentially
applicable rules immediately, rather than testing all the rules in turn.

Here is a list of rules for the first five In[3]:= facs = Table[f[i] -> i!, {i, 5}]
factorials. out[3]= {f[1] > 1, £[2]1 »2, £[3] =6, £[4] - 24, £[5] -» 120}

This sets up dispatch tables that make In[4]:= dfacs = Dispatch[facs]

the rules faster to use. Out[4]= Dispatch[{f[1] -1, £[2] -2, £[3] > 6,
£[4] - 24, £[5] -» 120}, -DispatchTables -]

You can apply the rules using the /. In[5]:= £[4] /. dfacs
operator. Out[5]= 24

2.5.3 Making Definitions 303

Dispatchlrules] create a representation of a list of rules that includes
dispatch tables

expr /. drules apply rules that include dispatch tables

Creating and using dispatch tables.

For long lists of rules, you will find that setting up dispatch tables makes replacement operations
much faster. This is particularly true when your rules are for individual symbols or other expressions
that do not involve pattern objects. Once you have built dispatch tables in such cases, you will find
that the /. operator takes a time that is more or less independent of the number of rules you have.
Without dispatch tables, however, /. will take a time directly proportional to the total number of
rules.

M 2.5.3 Making Definitions

The replacement operator /. allows you to apply transformation rules to a specific expression. Often,
however, you want to have transformation rules automatically applied whenever possible.

You can do this by assigning explicit values to Mathematica expressions and patterns. Each assign-
ment specifies a transformation rule to be applied whenever an expression of the appropriate form
occurs.

expr /. lhs => rhs apply a transformation rule to a specific expression

Ihs = rhs assign a value which defines a transformation rule to be
used whenever possible

Manual and automatic application of transformation rules.

This applies a transformation rule for x In[1]:=(1 +x)~6 /. x >3 - a

to a specific expression.
P p Out[1]= (4-a)°

By assigning a value to x, you tell In[2]:=x=3 - a
Mathematica to apply a transformation Out[2]=
rule for x whenever possible.

3-a

Now x is transformed automatically. In[3]:= (1 + x)~7
Out[3]= (4-a)"
You should realize that except inside constructs like Module and Block, all assignments you make

in a Mathematica session are permanent. They continue to be used for the duration of the session,
unless you explicitly clear or overwrite them.

304 2. Principles of Mathematica « 2.5 Transformation Rules and Definitions

The fact that assignments are permanent means that they must be made with care. Probably the
single most common mistake in using Mathematica is to make an assignment for a variable like x at
one point in your session, and then later to use x having forgotten about the assignment you made.

There are several ways to avoid this kind of mistake. First, you should avoid using assignments
whenever possible, and instead use more controlled constructs such as the /. replacement operator.
Second, you should explicitly use the deassignment operator =. or the function Clear to remove
values you have assigned when you have finished with them.

Another important way to avoid mistakes is to think particularly carefully before assigning values
to variables with common or simple names. You will often want to use a variable such as x as a
symbolic parameter. But if you make an assignment such as x = 3, then x will be replaced by 3
whenever it occurs, and you can no longer use x as a symbolic parameter.

In general, you should be sure not to assign permanent values to any variables that you might
want to use for more than one purpose. If at one point in your session you wanted the variable c to
stand for the speed of light, you might assign it a value such as 3.%10~8. But then you cannot use
c later in your session to stand, say, for an undetermined coefficient. One way to avoid this kind of
problem is to make assignments only for variables with more explicit names, such as Speed0fLight.

x =. remove the value assigned to the object x
Clear[x, y, ... 1 clear all the values of x, y, ...
Removing assignments.
This does not give what you might In[4]:= Factor[x~2 - 1]

expect, because x still has the value

k ¢ Out[4]= (-4+a) (-2+a)
you assigned it above.

This removes any value assigned to x. In[5]:= Clear[x]

Now this gives the result you expect. In[6]:= Factor[x~2 - 1]

Out[6]= (-1+x) (1+x)

Ml 2.5.4 Special Forms of Assignment

Particularly when you write procedural programs in Mathematica, you will often need to modify the
value of a particular variable repeatedly. You can always do this by constructing the new value
and explicitly performing an assignment such as x = value. Mathematica, however, provides special
notations for incrementing the values of variables, and for some other common cases.

2.5.4 Special Forms of Assignment

305

i++

++1
—i

i+=di

increment the value of i by 1
decrement i

pre-increment i
pre-decrement i

add di to the value of i
subtract di from i

multiply x by ¢

divide x by ¢

Modifying values of variables.

This assigns the value 7x to the
variable t.

This increments the value of t by 18x.

The value of t has been modified.

This sets t to 8, multiplies its value by
7, then gives the final value of t.

The value of i++ is the value of i
before the increment is done.

The value of ++i is the value of i after
the increment.

In[1]:=t = Tx
Out[1]= Tx

In[2]:= t += 18x

Out[2]= 25x
In[3]:=t
Out[3]= 25x

In[4]:=t =8; t *=7; t
Out[4]= 56

In[5]:= i=5; Print[i++]; Print[i]

In[6]:= i=5; Print[++i]; Print[i]

x =y = value
{x, y} = {value, , value,}

{x, vy ={y, «}

assign the same value to both x and y
assign different values to x and y

interchange the values of x and y

Assigning values to several variables at a time.

This assigns the value 5 to x and 8
to y.

In[7]:= {x, y} = {5, 8}
Out[7]= {5, 8}

306 2. Principles of Mathematica « 2.5 Transformation Rules and Definitions

This interchanges the values of x
and y.

Now x has value 8.

And y has value 5.

You can use assignments to lists to
permute values of variables in any
way.

In[8]:= {x, y} = {y, x}
Out[8]= {8, 5}

In[9]:=x
Out[9]= 8
In[10]:=y
Out[10]= 5

In[11]:={a, b, ¢} ={1, 2, 3}; {b, a, ¢} = {a, c, b}; {a, b, c}
Outf11]= {3, 1, 2}

When you write programs in Mathematica, you will sometimes find it convenient to take a list, and
successively add elements to it. You can do this using the functions PrependTo and AppendTo.

PrependTol[v, elem]
AppendTo[v, elem]

v ={v, elem}

prepend elem to the value of v
append elem

make a nested list containing elem

Assignments for modifying lists.

This assigns the value of v to be the
list {6, 7, 9}.

This appends the element 11 to the
value of v.

Now the value of v has been modified.

In[12]:=v = {5, 7, 9}
Out[12]= {5, 7, 9}

In[13]:= AppendTo[v, 11]
Out[13]= {5, 7, 9, 11}

In[14]:= v
Out[14]= {5, 7, 9, 11}

Although AppendTol[v, elem] is always equivalent to v = Append[v, elem], it is often a convenient
notation. However, you should realize that because of the way Mathematica stores lists, it is usually
less efficient to add a sequence of elements to a particular list than to create a nested structure that
consists, for example, of lists of length 2 at each level. When you have built up such a structure, you
can always reduce it to a single list using Flatten.

This sets up a nested list structure
for w.

You can use Flatten to unravel the
structure.

In[15]:=w = {1}; Dol w = {w, k~2}, {k, 1, 4} 1; w
Out[15]= {{{{{1}, 1}, 43}, 9}, 16}

In[16]:= Flatten[w]
Out[16]= {1, 1, 4, 9, 16}

2.5.5 Making Definitions for Indexed Objects 307

W 2.5.5 Making Definitions for Indexed Objects

In many kinds of calculations, you need to set up “arrays” which contain sequences of expressions,
each specified by a certain index. One way to implement arrays in Mathematica is by using lists.
You can define a list, say a = {x, y, z, ... }, then access its elements using a[[i]], or modify them
using al[i]1] = value. This approach has a drawback, however, in that it requires you to fill in all the
elements when you first create the list.

Often, it is more convenient to set up arrays in which you can fill in only those elements that you
need at a particular time. You can do this by making definitions for expressions such as a[i].

This defines a value for a[1]. In[1]:=al[1]l =9
Out[1]= 9
This defines a value for a[2]. In[2]:=a[2] =7
Out[2]= 7
This shows all the values you have In[3]:= 7a
defined for expressions associated with
Global‘a
a so far.
al1]l = 9
al2] = 7
You can define a value for a[5], even In[4]:=a[5]1 =0
though you have not yet given values out[4]= 0
to a[3] and al[4].
This generates a list of the values of In[5]:= Table[al[i], {i, 5}]
the a[i].

Out[5]= {9, 7, a[3], a[4], 0}

You can think of the expression a[i] as being like an “indexed” or “subscripted” variable.

ali] = value add or overwrite a value
alil access a value
alil =. remove a value
7a show all defined values
Clear[a] clear all defined values

Tablelal[i], {i, 1, n}] or Arrayla, n]
convert to an explicit List

Manipulating indexed variables.

308 2. Principles of Mathematica « 2.5 Transformation Rules and Definitions

When you have an expression of the form ali], there is no requirement that the “index” i be a
number. In fact, Mathematica allows the index to be any expression whatsoever. By using indices that
are symbols, you can for example build up simple databases in Mathematica.

This defines the “object” area with In[6]:= arealsquare] = 1
“index” square to have value 1. out[6]= 1
This adds another result to the area In[7]:= arealtriangle] = 1/2
“database”. 1

Out[7]= —

ut[7] 5
Here are the entries in the area In[8]:= 7area

far.
database so fa Global‘area

areal[square] = 1
areal[triangle] = 1/2
You can use these definitions wherever In[9]:= 4 area[square] + area[pentagon]

you want. You have not yet assigned a

Out[9]= 4+ t
value for area[pentagon]. " area[pentagon]

Hl 2.5.6 Making Definitions for Functions

Section 1.7.1 discussed how you can define functions in Mathematica. In a typical case, you would type
in £[x_] = x~2 to define a function f. (Actually, the definitions in Section 1.7.1 used the := operator,
rather than the = one. Section 2.5.8 will explain exactly when to use each of the := and = operators.)

The definition f[x_] = x~2 specifies that whenever Mathematica encounters an expression which
matches the pattern £[x_], it should replace the expression by x~2. Since the pattern f£[x_] matches
all expressions of the form f[anything], the definition applies to functions f with any “argument”.

Function definitions like f[x_] = x~2 can be compared with definitions like f[a] = b for indexed
variables discussed in the previous subsection. The definition f[a] = b specifies that whenever the
particular expression f[al occurs, it is to be replaced by b. But the definition says nothing about
expressions such as £[y], where f appears with another “index”.

To define a “function”, you need to specify values for expressions of the form f[x], where the
argument x can be anything. You can do this by giving a definition for the pattern £[x_], where the
pattern object x_ stands for any expression.

flx] = value definition for a specific expression x

flx_1 = value definition for any expression, referred to as x

The difference between defining an indexed variable and a function.

2.5.6 Making Definitions for Functions 309

Making definitions for £[2] or f[al can be thought of as being like giving values to various
elements of an “array” named f. Making a definition for f[x_1] is like giving a value for a set of
“array elements” with arbitrary “indices”. In fact, you can actually think of any function as being like
an array with an arbitrarily variable index.

In mathematical terms, you can think of f as a mapping. When you define values for, say, f[1]
and £[2], you specify the image of this mapping for various discrete points in its domain. Defining
a value for £[x_] specifies the image of £ on a continuum of points.

This defines a transformation rule for In[1]:= £f[x] = u
the specific expression £[x]. out[1]= u
When the specific expression f£[x] In[2]:= £[x] + £[y]

appears, it is replaced by u. Other
expressions of the form f[argument]
are, however, not modified.

Out[2]= u+£[y]

This defines a value for f with any In[3]:= £[x_] = x~2
expression as an “argument”. Out[3]= %2
The old definition for the specific In[4]:= £[x] + £[y]

expression £[x] is still used, but the
new general definition for £[x_] is
now used to find a value for £[y].

Out[4]= u+y?

This removes all definitions for f. In[5]:= Clear[f]

Mathematica allows you to define transformation rules for any expression or pattern. You can mix
definitions for specific expressions such as £[1] or f[a] with definitions for patterns such as f[x_].

Many kinds of mathematical functions can be set up by mixing specific and general definitions in
Mathematica. As an example, consider the factorial function. This particular function is in fact built
into Mathematica (it is written n!). But you can use Mathematica definitions to set up the function for
yourself.

The standard mathematical definition for the factorial function can be entered almost directly into
Mathematica, in the form: f[n_] :=n £[n-1]; £[1] = 1. This definition specifies that for any n, £[n]
should be replaced by n £[n-11], except that when 7 is 1, £[1] should simply be replaced by 1.

Here is the value of the factorial In[6]:= £f[1] =1
function with argument 1. out[6]= 1
Here is the general recursion relation In[7]:= £[n_] :=n £[n-1]

for the factorial function.

Now you can use these definitions to In[8]:= £[10]
find values for the factorial function. Out[8]= 3628800
The results are the same as you get In[9]:= 10!

from the built-in version of factorial. Out[9]= 3628800

310 2. Principles of Mathematica « 2.5 Transformation Rules and Definitions

W 2.5.7 The Ordering of Definitions

When you make a sequence of definitions in Mathematica, some may be more general than others.
Mathematica follows the principle of trying to put more general definitions after more specific ones.
This means that special cases of rules are typically tried before more general cases.

This behavior is crucial to the factorial function example given in the previous section. Regardless
of the order in which you entered them, Mathematica will always put the rule for the special case £[1]
ahead of the rule for the general case f[n_]. This means that when Mathematica looks for the value
of an expression of the form f[n], it tries the special case £[1] first, and only if this does not apply,
it tries the general case f[n_]. As a result, when you ask for £[5], Mathematica will keep on using
the general rule until the “end condition” rule for £[1] applies.

m Mathematica tries to put specific definitions before more general definitions.

Treatment of definitions in Mathematica.

If Mathematica did not follow the principle of putting special rules before more general ones, then
the special rules would always be “shadowed” by more general ones. In the factorial example, if the
rule for f[n_] was ahead of the rule for f[1], then even when Mathematica tried to evaluate £[1], it
would use the general £[n_] rule, and it would never find the special £[1] rule.

Here is a general definition for £[n_]. In[1]:= £[n_] := n £[n-1]

Here is a definition for the special case In[2]:= £[1]1 =1
i1l out[2]= 1
Mathematica puts the special case before In[3]:= 7%
the general one. Clobal‘f
f[1] =1
f[n_] := n*xf[n - 1]

In the factorial function example used above, it is clear which rule is more general. Often, however,
there is no definite ordering in generality of the rules you give. In such cases, Mathematica simply
tries the rules in the order you give them.

These rules have no definite ordering In[4]:= loglx_ y_] := loglx] + loglyl ; loglx_~n_] := n logl[x]
in generality.

Mathematica stores the rules in the In[5]:= 7log

order you gave them.
Global‘log

logl(x_)*(y_)] := loglx] + logly]
log[(x_)~(n_)] := n*xlog[x]

This rule is a special case of the rule In[6]:= log[2 x_] := loglx] + log2
for loglx_ y_1.

2.5.8 Immediate and Delayed Definitions 311

Mathematica puts the special rule before In[7]:= ?log

the more general one.
Global‘log

logl2#(x_)] := logl[x] + log2
logl(x_)*(y_)1 := loglx] + loglyl
logl(x_)~(n_)] := nxlog[x]

Although in many practical cases, Mathematica can recognize when one rule is more general than
another, you should realize that this is not always possible. For example, if two rules both contain
complicated /; conditions, it may not be possible to work out which is more general, and, in fact,
there may not be a definite ordering. Whenever the appropriate ordering is not clear, Mathematica
stores rules in the order you give them.

H 2.5.8 Immediate and Delayed Definitions

You may have noticed that there are two different ways to make assignments in Mathematica: lhs = rhs
and [hs :=rhs. The basic difference between these forms is when the expression rhs is evaluated.
Ihs = rhs is an immediate assignment, in which rhs is evaluated at the time when the assignment is
made. lhs := rhs, on the other hand, is a delayed assignment, in which rhs is not evaluated when the
assignment is made, but is instead evaluated each time the value of Ihs is requested.

lhs = rhs (immediate assignment) rhs is evaluated when the assignment is made

lhs := rhs (delayed assignment) rhs is evaluated each time the value of ks is requested

The two types of assignments in Mathematica.

This uses the := operator to define the In[1]:= ex[x_] := Expand[(1 + x)~2]
function ex.

Because := was used, the definition is In[2]:= Tex
maintained in an unevaluated form.
Global‘ex

ex[x_] := Expand[(1 + x)~2]

When you make an assignment with In[3]:= iex[x_] = Expand[(1 + x)~2]
the = operator, the right-hand side is

X R = 1+ +x2
evaluated immediately. Out[3]= 1+2x+x

The definition now stored is the result In[4]:= 7iex

f the E d command.
of the Expand command Clobal‘iex

iex[x_] = 1 + 2xx + x~2

When you execute ex, the Expand is In[5]:= ex[y + 2]

performed. Out[5]= 9+6y+y?

312 2. Principles of Mathematica « 2.5 Transformation Rules and Definitions

iex simply substitutes its argument In[6]:= iex[y + 2]
into the already expanded form, giving

a different answer. Out[6]= 1+2(2+y) +(2+y)°

As you can see from the example above, both = and := can be useful in defining functions, but
they have different meanings, and you must be careful about which one to use in a particular case.

One rule of thumb is the following. If you think of an assignment as giving the final “value” of an
expression, use the = operator. If instead you think of the assignment as specifying a “command” for
finding the value, use the := operator. If in doubt, it is usually better to use the := operator than the
= one.

lhs = rhs rhs is intended to be the “final value” of lhs
(e.g., flx_1 =1 - x~2)

Ihs :=rhs rhs gives a “command” or “program” to be executed
whenever you ask for the value of lhs
(e.g., £[x_] := Expand[1 - x~2])

Interpretations of assignments with the = and := operators.

Although := is probably used more often than = in defining functions, there is one important case
in which you must use = to define a function. If you do a calculation, and get an answer in terms of
a symbolic parameter x, you often want to go on and find results for various specific values of x. One
way to do this is to use the /. operator to apply appropriate rules for x in each case. It is usually
more convenient however, to use = to define a function whose argument is x.

Here is an expression involving x. In[7]:= D[Log[Sin[x]]~2, x]

Out[7]= 2Cot[x] Log[Sin[x]]

This defines a function whose In[8]:= dloglx_] = %
argument is the value to be taken Out[8]= 2Cot[x] Log[Sin[x]]
for x.

Here is the result when x is taken to In[9]:= dlog[1 + a]

be 1 + a.

Out[9]= 2Cot[1+al Logl[Sin[1+all

An important point to notice in the example above is that there is nothing special about the name
x that appears in the x_ pattern. It is just a symbol, indistinguishable from an x that appears in any
other expression.

flx_1 =expr define a function which gives the value expr for any
particular value of x

Defining functions for evaluating expressions.

2.5.8 Immediate and Delayed Definitions 313

You can use = and := not only to define functions, but also to assign values to variables. If you
type x = value, then value is immediately evaluated, and the result is assigned to x. On the other
hand, if you type x := value, then value is not immediately evaluated. Instead, it is maintained in an
unevaluated form, and is evaluated afresh each time x is used.

This evaluates Random[] to find a In[10]:= r1 = Random[]

psgudorandom number, then assigns Out[10]= 0.0560708
this number to ri.

Here Random[] is maintained in an In[11]:= r2 := Random[]
unevaluated form, to be evaluated
afresh each time r2 is used.
Here are values for r1 and r2. In[12]:= {r1, r2}
Out[12]= {0.0560708, 0.6303}

The value of r1 never changes. Every In[13]:= {r1, r2}

time r2 is used, however, a new Out[13]= {0.0560708, 0.359894}
pseudorandom number is generated.

The distinction between immediate and delayed assignments is particularly important when you
set up chains of assignments.

This defines a to be 1. In[14]:=a =1
Out[14]= 1

Here a + 2 is evaluated to give 3, and In[15]:=ri =a + 2

the result is assigned to be the value out[15]= 3

of ri.

Here a + 2 is maintained in an In[16]:=rd := a + 2

unevaluated form, to be evaluated
every time the value of rd is

requested.

In this case, ri and rd give the same In[17]:= {ri, rd}

values. out[17]= {3, 3}

Now the value of a is changed. In[18]:=a =2
Out[18]= 2

Now rd uses the new value for a, In[19]:= {ri, rd}

while ri keeps its original value. out[19]= {3, 4}

You can use delayed assignments such as ¢ := rhs to set up variables whose values you can find in
a variety of different “environments”. Every time you ask for ¢, the expression rhs is evaluated using
the current values of the objects on which it depends.

The right-hand side of the delayed In[20]:=t := {a, Factor[x~a - 1]}
assignment is maintained in an
unevaluated form.

314 2. Principles of Mathematica « 2.5 Transformation Rules and Definitions

This sets a to 4, then finds the value In[21]:=a=4; t
of t. Out[21]= {4, (-1+x) (1+x) (1 +x2)}

Here a is 6. In[22]:=a =6; t
Out[22]= {6, (-1+x) (1+x) (1 -x+x%) (1 +x+x%)}

In the example above, the symbol a acts as a “global variable”, whose value affects the value of
t. When you have a large number of parameters, many of which change only occasionally, you may
find this kind of setup convenient. However, you should realize that implicit or hidden dependence
of one variable on others can often become quite confusing. When possible, you should make all
dependencies explicit, by defining functions which take all necessary parameters as arguments.

lhs => rhs rhs is evaluated when the rule is given

lhs :> rhs rhs is evaluated when the rule is used

Two types of transformation rules in Mathematica.

Just as you can make immediate and delayed assignments in Mathematica, so you can also set up
immediate and delayed transformation rules.

The right-hand side of this rule is In[23]:= £[x_] -> Expand[(1 + x)~2]

evaluated when you give the rule. Out[23]= £[x.] >1+2x+x>

A rule like this is probably not In[24]:= £[x_] -> Expand[x]
particularly useful. Out[24]= £[x.] - x
Here the right-hand side of the rule is In[25]:= £[x_] :> Expand[x]
maintained in an unevaluated form, to

4 Out[25]= £ = E d
be evaluated every time the rule is ue(26]= flx_] > Expand(x]
used.

Applying the rule causes the expansion In[26]:= £[(1 + p)~2] /. £[x_] :> Expand[x]

to be done. Out[26]= 1+2p+p>

In analogy with assignments, you should typically use -> when you want to replace an expression
with a definite value, and you should use :> when you want to give a command for finding the
value.

M 2.5.9 Functions That Remember Values They Have Found

When you make a function definition using :=, the value of the function is recomputed every time
you ask for it. In some kinds of calculations, you may end up asking for the same function value
many times. You can save time in these cases by having Mathematica remember all the function values
it finds. Here is an “idiom” for defining a function that does this.

2.5.9 Functions That Remember Values They Have Found 315

flx_] := f[x] = rhs define a function which remembers values that it finds

Defining a function that remembers values it finds.

This defines a function £ which stores In[1]:= £[x_] := £f[x] = f[x - 1] + f[x - 2]
all values that it finds.
Here are the end conditions for the In[2]:= £[0] = £[1] =1
recursive function f. out[2]= 1
Here is the original definition of £. In[3]:= 7f
Global“f
f[1] =1
f[0] = 1

flx_ 1 := f[x] = f[x - 1] + f[x - 2]

This computes £[5]. The computation In[4]:= £[5]
involves finding the sequence of values out[4]= 8
£[51, £[4], ... f[2].

All the values of £ found so far are In[5]:= 7f
explicitly stored. Clobal
f[1] =
f[0] =
f[2] =
£[3] =
f[4] =
f[5] =
flx_1 := flx] = flx - 1] + f[x - 2]

o O W N =

If you ask for £[5] again, Mathematica In[6]:= £[5]
can just look up the value immediately; out[6]= 8
it does not have to recompute it.

You can see how a definition like f[x_] := f[x] = £[x-1] + £[x-2] works. The function f[x_] is
defined to be the “program” f[x] = f[x-1] + £[x-2]. When you ask for a value of the function f,
the “program” is executed. The program first calculates the value of £[x-1] + £[x-2], then saves the
result as f[x].

It is often a good idea to use functions that remember values when you implement mathematical
recursion relations in Mathematica. In a typical case, a recursion relation gives the value of a function f
with an integer argument x in terms of values of the same function with arguments x — 1, x — 2, etc.
The Fibonacci function definition f(x) = f(x — 1) + f(x — 2) used above is an example of this kind of
recursion relation. The point is that if you calculate say f(10) by just applying the recursion relation
over and over again, you end up having to recalculate quantities like f(5) many times. In a case like

316 2. Principles of Mathematica « 2.5 Transformation Rules and Definitions

this, it is therefore better just to remember the value of f(5), and look it up when you need it, rather
than having to recalculate it.

There is of course a trade-off involved in remembering values. It is faster to find a particular value,
but it takes more memory space to store all of them. You should usually define functions to remember
values only if the total number of different values that will be produced is comparatively small, or
the expense of recomputing them is very great.

H 2.5.10 Associating Definitions with Different Symbols

When you make a definition in the form flargs] = rhs or flargs] := rhs, Mathematica associates your
definition with the object f. This means, for example, that such definitions are displayed when you
type 7f. In general, definitions for expressions in which the symbol f appears as the head are termed
downvalues of f.

Mathematica however also supports upvalues, which allow definitions to be associated with symbols
that do not appear directly as their head.

Consider for example a definition like Exp[glx_1] := rhs. One possibility is that this definition
could be associated with the symbol Exp, and considered as a downvalue of Exp. This is however
probably not the best thing either from the point of view of organization or efficiency.

Better is to consider Exp[g[x_1] := rhs to be associated with g, and to correspond to an upvalue
of g.

flargs] :
flglargs1, ... 1 ~:=rhs define an upvalue for g

rhs define a downvalue for f

Associating definitions with different symbols.

This is taken to define a downvalue In[1]:= £lglx_1] := fglx]
for f.
You can see the definition when you In[2]:= 7%
ask about f.
Global‘f

flglx_11 := fglx]

This defines an upvalue for g. In[3]:= Explglx_1] ~:= expglx]
The definition is associated with g. In[4]:= 7g
Global‘g

Explglx_1] ~:= expglx]

2.5.10 Associating Definitions with Different Symbols 317

It is not associated with Exp. In[5]:= ?7Exp

Exp[z] is the exponential function.
Attributes[Exp] = {Listable, NumericFunction, Protected,
ReadProtected}

The definition is used to evaluate this In[6]:= Explg[5]1]
expression. 0ut[6]= expgl5]

In simple cases, you will get the same answers to calculations whether you give a definition for
flglx11 as a downvalue for f or an upvalue for g. However, one of the two choices is usually much
more natural and efficient than the other.

A good rule of thumb is that a definition for f[g[x]] should be given as an upvalue for g in cases
where the function f is more common than g. Thus, for example, in the case of Exp[g[x]], Exp is a
built-in Mathematica function, while g is presumably a function you have added. In such a case, you
will typically think of definitions for Exp[g[x]1] as giving relations satisfied by g. As a result, it is
more natural to treat the definitions as upvalues for g than as downvalues for Exp.

This gives the definition as an upvalue In[7]:=g/: glx_1 + gly_] := gplusl[x, yl

for g.
Here are the definitions for g so far. In[8]:= 7g

Global‘g

Explglx_1] ~:= expglx]

glx_1 + gly_1 ~:= gplus[x, yl
The definition for a sum of g’s is used In[9]:= g[5] + g[7]

whenever possible. Out[9]= gplus[5, 7]

Since the full form of the pattern glx_] + gly_] is Plus[glx_1, gly_1]1, a definition for this
pattern could be given as a downvalue for Plus. It is almost always better, however, to give the
definition as an upvalue for g.

In general, whenever Mathematica encounters a particular function, it tries all the definitions you
have given for that function. If you had made the definition for g[x_1 + gly_] a downvalue for Plus,
then Mathematica would have tried this definition whenever Plus occurs. The definition would thus
be tested every time Mathematica added expressions together, making this very common operation
slower in all cases.

However, by giving a definition for g[x_]1 + gly_1 as an upvalue for g, you associate the definition
with g. In this case, Mathematica only tries the definition when it finds a g inside a function such
as Plus. Since g presumably occurs much less frequently than Plus, this is a much more efficient
procedure.

318 2. Principles of Mathematica « 2.5 Transformation Rules and Definitions

flg]1 ~=value or flglargs1]l ~= value
make assignments to be associated with g, rather than f

flg] ~:=value or flglargs1] ~:= value

make delayed assignments associated with g

flarg,, arg,, ... 1 ~=value make assignments associated with the heads of all the arg;

Shorter ways to define upvalues.

A typical use of upvalues is in setting up a “database” of properties of a particular object. With
upvalues, you can associate each definition you make with the object that it concerns, rather than with
the property you are specifying.

This defines an upvalue for square In[10]:= arealsquare] ~= 1
which gives its area. out[10]= 1

This adds a definition for the In[11]:= perimeter[square] ~= 4
perimeter. out[11]= 4

Both definitions are now associated In[12]:= ?square

with the object square.
Global‘square

areal[square] ~= 1
perimeter[square] ~= 4
In general, you can associate definitions for an expression with any symbol that occurs at a suffi-
ciently high level in the expression. With an expression of the form f[args], you can define an upvalue
for a symbol g so long as either g itself, or an object with head g, occurs in args. If ¢ occurs at a lower
level in an expression, however, you cannot associate definitions with it.

g occurs as the head of an argument, In[13]:=g/: hlwlx_], gly_11 := huglx, yl
so0 you can associate a definition with

it.

Here g appears too deep in the In[14]:= g/: hlwlglx_1]1, y_] := hwlx, yl
left-hand side for you to associate a TagSetDelayed: : tagpos:

definition with it. Tag g in hlwlglx_11, y_]
is too deep for an assigned rule to be found.

Out[14]= $Failed

2.5.10 Associating Definitions with Different Symbols 319

fL ... 1:=rhs downvalue for f

f/: flgl ... 110 ... 1 :=rhs downvalue for f
g/:fl ..., g,...1:=rhs upvalue for g
g/:fl...,gl...1,...]1:=rhs wupvalue for g

Possible positions for symbols in definitions.

As discussed in Section 2.1.2, you can use Mathematica symbols as “tags”, to indicate the “type” of
an expression. For example, complex numbers in Mathematica are represented internally in the form
Complex[x, y], where the symbol Complex serves as a tag to indicate that the object is a complex
number.

Upvalues provide a convenient mechanism for specifying how operations act on objects that are
tagged to have a certain type. For example, you might want to introduce a class of abstract mathe-
matical objects of type quat. You can represent each object of this type by a Mathematica expression
of the form quat[data].

In a typical case, you might want quat objects to have special properties with respect to arithmetic
operations such as addition and multiplication. You can set up such properties by defining upvalues
for quat with respect to Plus and Times.

This defines an upvalue for quat with In[15]:= quat[x_] + quat[y_] ~:= quat[x + y]
respect to Plus.

The upvalue you have defined is used In[16]:= quat[a] + quat[b] + quat[c]
to simplify this expression. Out[16]= quat[a+b+c]

When you define an upvalue for quat with respect to an operation like Plus, what you are effec-
tively doing is to extend the domain of the Plus operation to include quat objects. You are telling
Mathematica to use special rules for addition in the case where the things to be added together are
quat objects.

In defining addition for quat objects, you could always have a special addition operation, say
quatPlus, to which you assign an appropriate downvalue. It is usually much more convenient, how-
ever, to use the standard Mathematica Plus operation to represent addition, but then to “overload”
this operation by specifying special behavior when quat objects are encountered.

You can think of upvalues as a way to implement certain aspects of object-oriented programming.
A symbol like quat represents a particular type of object. Then the various upvalues for quat specify
“methods” that define how quat objects should behave under certain operations, or on receipt of
certain “messages”.

320

2. Principles of Mathematica « 2.5 Transformation Rules and Definitions

-l 2.5.11 Defining Numerical Values

If you make a definition such as f[x_] := value, Mathematica will use the value you give for any f
function it encounters. In some cases, however, you may want to define a value that is to be used
specifically when you ask for numerical values.

expr = value

Nlexpr] = value

define a value to be used whenever possible

define a value to be used for numerical approximation

Defining ordinary and numerical values.

This defines a numerical value for the

function f.

Defining the numerical value does not
tell Mathematica anything about the

ordinary value of f.

If you ask for a numerical

approximation, however, Mathematica
uses the numerical values you have

defined.

In[1]:= N[£[x_1] := Sum[x~-i/i~2, {i, 20}]

In[2]:= £[2] + £[5]
Out[2]= £[2] +£[5]

In[3]:= N[%]
Out[3]= 0.793244

You can define numerical values for both functions and symbols. The numerical values are used
by all numerical Mathematica functions, including NIntegrate, FindRoot and so on.

Nlexpr] = value

+ Nlexpr, {n, Infinity}] = value

define a numerical value to be used when default
numerical precision is requested

define a numerical value to be used when n-digit precision
and any accuracy is requested

Defining numerical values that depend on numerical precision.

This defines a numerical value for the

symbol const, using 4n +

5 terms in

the product for n-digit precision.

Here is the value of const, computed

to 30-digit precision using
you specified.

the value

In[4]:= N[const, {n_, Infinity}] := Product[1 - 2~-i, {i, 2, 4n + 5}]

In[5]:= N[const, 30]
Out[5]= 0.577576190173204842557799443858

Mathematica treats numerical values essentially like upvalues. When you define a numerical value
for f, Mathematica effectively enters your definition as an upvalue for f with respect to the numerical

evaluation operation N.

2.5.12 Modifying Built-in Functions 321

M 2.5.12 Modifying Built-in Functions

Mathematica allows you to define transformation rules for any expression. You can define such rules
not only for functions that you add to Mathematica, but also for intrinsic functions that are already
built into Mathematica. As a result, you can enhance, or modify, the features of built-in Mathematica
functions.

This capability is powerful, but potentially dangerous. Mathematica will always follow the rules you
give it. This means that if the rules you give are incorrect, then Mathematica will give you incorrect
answers.

To avoid the possibility of changing built-in functions by mistake, Mathematica “protects” all built-in
functions from redefinition. If you want to give a definition for a built-in function, you have to remove
the protection first. After you give the definition, you should usually restore the protection, to prevent
future mistakes.

Unprotect[f] remove protection

Protect[f] add protection

Protection for functions.

Built-in functions are usually In[1]:= Logl7] = 2
“protected”, so you cannot redefine Set::write: Tag Log in Log[7] is Protected.
them.
Out[1]= 2
This removes protection for Log. In[2]:= Unprotect[Log]
Out[2]= {Log}
Now you can give your own In[3]:= Logl7] = 2
definitions for Log. This particular Out[3]= 2

definition is not mathematically correct,
but Mathematica will still allow you to
give it.

Mathematica will use your definitions In[4]:= Logl7] + Logl3]
whenever.1t can, whether they are Out[4]= 2+Logl[3]
mathematically correct or not.

This removes the incorrect definition In[5]:= Logl7] =.
for Log.
This restores the protection for Log. In[6]:= Protect[Log]

Out[6]= {Log}

Definitions you give can override built-in features of Mathematica. In general, Mathematica tries to
use your definitions before it uses built-in definitions.

322 2. Principles of Mathematica « 2.5 Transformation Rules and Definitions

The rules that are built into Mathematica are intended to be appropriate for the broadest range of
calculations. In specific cases, however, you may not like what the built-in rules do. In such cases,
you can give your own rules to override the ones that are built in.

There is a built-in rule for simplifying In[7]:= ExplLoglyl]

Exp[Loglexprl]. out[7]= y

You can give your own rule for In[8]:= (

Exp[Loglexprl], overriding the built-in Unprotect[Exp] ;

rule. Exp[Log[expr_]] := exploglexpr] ;
Protect[Exp] ;

)

Now your rule is used, rather than the In[9]:= ExplLoglyl]
built-in one. Out[9]= explogly]

H 2.5.13 Advanced Topic: Manipulating Value Lists

DownValues[f] give the list of downvalues of f
UpValues[f] give the list of upvalues of f
DownValues[f] = rules set the downvalues of f

UpValues[f] = rules set the upvalues of f

Finding and setting values of symbols.

Mathematica effectively stores all definitions you give as lists of transformation rules. When a particular
symbol is encountered, the lists of rules associated with it are tried.

Under most circumstances, you do not need direct access to the actual transformation rules asso-
ciated with definitions you have given. Instead, you can simply use lhs = rhs and lhs =. to add and
remove rules. In some cases, however, you may find it useful to have direct access to the actual rules.

Here is a definition for f. In[1]:= £[x_] := x~2
This gives the explicit rule In[2]:= DownValues[£]
corresponding to the definition you

Out[2]= {HoldPattern[f[x_]] = x%}
made for f.

Notice that the rules returned by DownValues and UpValues are set up so that neither their left-
nor right-hand sides get evaluated. The left-hand sides are wrapped in HoldPattern, and the rules
are delayed, so that the right-hand sides are not immediately evaluated.

As discussed in Section 2.5.6, Mathematica tries to order definitions so that more specific ones appear
before more general ones. In general, however, there is no unique way to make this ordering, and

2.5.13 Advanced Topic: Manipulating Value Lists 323

you may want to choose a different ordering from the one that Mathematica chooses by default. You
can do this by reordering the list of rules obtained from DownValues or UpValues.

Here are some definitions for the In[3]:=glx_ +y_] :=gplx, y1 ; glx_y_] := gmlx, y]
object g.
This shows the default ordering used In[4]:= DownValues[g]

for the definitions. Out[4]= {HoldPatternlglx_+y_11= gplx, yl,

HoldPattern[g[x_y_1] = gm[x, y1}

This reverses the order of the In[5]:= DownValues[g] = Reverse[DownValues[g]]

definitions for g. Out[5]= {HoldPattern[glx_y_1]1 = gm[x, yI,

HoldPattern[g[x_+y_1]1 = gplx, yl}

324 2. Principles of Mathematica « 2.6 Evaluation of Expressions

2.6 Evaluation of Expressions

Ml 2.6.1 Principles of Evaluation

The fundamental operation that Mathematica performs is evaluation. Whenever you enter an expression,
Mathematica evaluates the expression, then returns the result.

Evaluation in Mathematica works by applying a sequence of definitions. The definitions can either
be ones you explicitly entered, or ones that are built into Mathematica.

Thus, for example, Mathematica evaluates the expression 6 + 7 using a built-in procedure for adding
integers. Similarly, Mathematica evaluates the algebraic expression x - 3x + 1 using a built-in simplifi-
cation procedure. If you had made the definition x = 5, then Mathematica would use this definition to
reduce x - 3x + 1 to -9.

The two most central concepts in Mathematica are probably expressions and evaluation. Section 2.1
discussed how all the different kinds of objects that Mathematica handles are represented in a uniform
way using expressions. This section describes how all the operations that Mathematica can perform
can also be viewed in a uniform way as examples of evaluation.

Computation 5+6 — 11
Simplification x-3x+1 — 1 -2x

Execution x=5 — 5

Some interpretations of evaluation.

Mathematica is an infinite evaluation system. When you enter an expression, Mathematica will keep
on using definitions it knows until it gets a result to which no definitions apply.

This defines x1 in terms of x2, and In[1]:=x1 =x2+2 ; x2=7

then defines x2. out[1]= 7

If you ask for x1, Mathematica uses all In[2]:= x1

the definitions it knows to give you a out[2]= 9

result.

Here is a recursive definition in which In[3]:= fac[1] = 1 ; fac[n_] := n fac[n-1]

the factorial function is defined in
terms of itself.

If you ask for fac[10], Mathematica In[4]:= fac[10]
will keep on applying the definitions Out[4]= 3628800
you have given until the result it gets

no longer changes.

2.6.2 Reducing Expressions to Their Standard Form 325

When Mathematica has used all the definitions it knows, it gives whatever expression it has obtained
as the result. Sometimes the result may be an object such as a number. But usually the result is an
expression in which some objects are represented in a symbolic form.

In[5]:= £[3] + 4£[3] + 1
Out[5]= 1+5£[3]

Mathematica uses its built-in definitions
for simplifying sums, but knows no
definitions for £[3], so leaves this in
symbolic form.

Mathematica follows the principle of applying definitions until the result it gets no longer changes.
This means that if you take the final result that Mathematica gives, and enter it as Mathematica input,

you will get back the same result again. (There are some subtle cases discussed in Section 2.6.13 in
which this does not occur.)

In[6]:=1 + 5 £[3]
Out[6]= 1+5£[3]

If you type in a result from
Mathematica, you get back the same
expression again.

At any given time, Mathematica can only use those definitions that it knows at that time. If you
add more definitions later, however, Mathematica will be able to use these. The results you get from
Mathematica may change in this case.

Here is a new definition for the In[7]:= £[x_] = x»2
function f.)

Out[7]= x
With the new definition, the results In[8]:=1 + 5 £[3]
you get can change. Out[8]= 46

The simplest examples of evaluation involve using definitions such as f[x_] = x~2 which trans-
form one expression directly into another. But evaluation is also the process used to execute programs
written in Mathematica. Thus, for example, if you have a procedure consisting of a sequence of Mathe-
matica expressions, some perhaps representing conditionals and loops, the execution of this procedure
corresponds to the evaluation of these expressions. Sometimes the evaluation process may involve
evaluating a particular expression several times, as in a loop.

The expression Print[zzzz] is
evaluated three times during the
evaluation of the Do expression.

In[9]:= Do[Print[zzzz], {3}]

2zzz
2zzz

Z2zzz

M 2.6.2 Reducing Expressions to Their Standard Form

The built-in functions in Mathematica operate in a wide variety of ways. But many of the mathemat-
ical functions share an important approach: they are set up so as to reduce classes of mathematical
expressions to standard forms.

The built-in definitions for the Plus function, for example, are set up to write any sum of terms in a
standard unparenthesized form. The associativity of addition means that expressions like (a + b) + c,
a+(b+c)and a+ b+ c are all equivalent. But for many purposes it is convenient for all these

326 2. Principles of Mathematica « 2.6 Evaluation of Expressions

forms to be reduced to the single standard form a + b + c. The built-in definitions for Plus are set
up to do this.
Through the built-in definitions for In[1]:=(a +Db) + ¢

Plus, this expression .is reduced to a Out[1]= a+b+c
standard unparenthesized form.

Whenever Mathematica knows that a function is associative, it tries to remove parentheses (or nested
invocations of the function) to get the function into a standard “flattened” form.

A function like addition is not only associative, but also commutative, which means that expressions
like a + ¢ + band a + b + ¢ with terms in different orders are equal. Once again, Mathematica tries to
put all such expressions into a “standard” form. The standard form it chooses is the one in which all
the terms are in a definite order, corresponding roughly to alphabetical order.

Mathematica sorts the terms in this sum In[2]:=c+a+b
into a standard order. Out[2]= a+b+c

flat (associative) f[fla, bl, c] is equivalent to fla, b, c], etc.

orderless (commutative) f[b, a] is equivalent to f[a, bl, etc.

Two important properties that Mathematica uses in reducing certain functions to standard form.

There are several reasons to try to put expressions into standard forms. The most important is that
if two expressions are really in standard form, it is obvious whether or not they are equal.

When the two sums are put into In[3]:= fla + ¢ + b] - flc + a + b]
standard order, they are immediately out[3]= 0

seen to be equal, so that two f’s

cancel, leaving the result 0.

You could imagine finding out whether a + ¢ + b was equal to ¢ + a + b by testing all possible
orderings of each sum. It is clear that simply reducing both sums to standard form is a much more
efficient procedure.

One might think that Mathematica should somehow automatically reduce all mathematical expres-
sions to a single standard canonical form. With all but the simplest kinds of expressions, however, it
is quite easy to see that you do not want the same standard form for all purposes.

For polynomials, for example, there are two obvious standard forms, which are good for different
purposes. The first standard form for a polynomial is a simple sum of terms, as would be generated
in Mathematica by applying the function Expand. This standard form is most appropriate if you need
to add and subtract polynomials.

2.6.3 Attributes 327

There is, however, another possible standard form that you can use for polynomials. By applying
Factor, you can write any polynomial as a product of irreducible factors. This canonical form is
useful if you want to do operations like division.

Expanded and factored forms are in a sense both equally good standard forms for polynomials.
Which one you decide to use simply depends on what you want to use it for. As a result, Mathematica
does not automatically put polynomials into one of these two forms. Instead, it gives you functions
like Expand and Factor that allow you explicitly to put polynomials in whatever form you want.

Here is a list of two polynomials that In[4]:=t ={x*2 -1, (x + 1)(x - 1)}
are mathematically equal. Out[4]= {-1+x%, (-1+%) (1+x1)}

You can write both of them in In[5]:= Expand[t]

expanded form just by applying o 2 5
Expand. In this form, the equality of Out[6]= {-1+x%, ~1+x°}
the polynomials is obvious.

You can also see that the polynomials In[6]:= Factor[t]

are equal by writing them both in Out[6]= {(-1+%) (1+%), (-1+%) (1+x)}

factored form.
Although it is clear that you do not always want expressions reduced to the same standard form,

you may wonder whether it is at least possible to reduce all expressions to some standard form.

There is a basic result in the mathematical theory of computation which shows that this is, in fact,
not always possible. You cannot guarantee that any finite sequence of transformations will take any
two arbitrarily chosen expressions to a standard form.

In a sense, this is not particularly surprising. If you could in fact reduce all mathematical expres-
sions to a standard form, then it would be quite easy to tell whether any two expressions were equal.
The fact that so many of the difficult problems of mathematics can be stated as questions about the
equality of expressions suggests that this can in fact be difficult.

Ml 2.6.3 Attributes

Definitions such as f[x_] = x~2 specify values for functions. Sometimes, however, you need to specify
general properties of functions, without necessarily giving explicit values.

Mathematica provides a selection of attributes that you can use to specify various properties of
functions. For example, you can use the attribute Flat to specify that a particular function is “flat”,
so that nested invocations are automatically flattened, and it behaves as if it were associative.

328

2. Principles of Mathematica « 2.6 Evaluation of Expressions

This assigns the attribute Flat to the
function f.

Now f behaves as a flat, or associative,
function, so that nested invocations are
automatically flattened.

In[1]:= SetAttributes[f, Flat]

In[2]:= £[£[a, b], c]
Out[2]= f[a, b, c]

Attributes like Flat can affect not only evaluation, but also operations such as pattern matching.
If you give definitions or transformation rules for a function, you must be sure to have specified the

attributes of the function first.

Here is a definition for the flat
function f£.

Because f is flat, the definition is
automatically applied to every
subsequence of arguments.

In[3]:= f[x_, x_] := £[x]

In[4]:= f[a, a, a, b, b, b, ¢, c]
Out[4]= f[a, b, c]

Attributes([f]

Attributes[f] = {attr;, attrp, ... }
Attributes[f] = {3
SetAttributes[f, attr]

ClearAttributesl[f, attr]

give the attributes of f

set the attributes of f

set f to have no attributes
add attr to the attributes of f

remove attr from the attributes of f

Manipulating attributes of symbols.

This shows the attributes assigned to f.

In[5]:= Attributes[f]

Out[5]= {Flat}

This removes the attributes assigned
to f.

In[6]:= Attributes[f] = { }
Out[6]= {}

2.6.3 Attributes

329

Orderless orderless, commutative function (arguments are sorted into
standard order)
Flat flat, associative function (arguments are “flattened out”)
OneIdentity f[f[all, etc. are equivalent to a for pattern matching
Listable fis automatically “threaded” over lists that appear as
arguments (e.g., f[{a,b}] becomes {f[al, f[b1})
Constant all derivatives of f are zero
NumericFunction fis assumed to have a numerical value when its arguments
are numeric quantities
Protected values of f cannot be changed
Locked attributes of f cannot be changed
ReadProtected values of f cannot be read
HoldFirst the first argument of f is not evaluated
HoldRest all but the first argument of f is not evaluated
HoldAll none of the arguments of f are evaluated
HoldAllComplete the arguments of f are treated as completely inert
NHoldFirst the first argument of f is not affected by N
NHoldRest all but the first argument of f is not affected by N
NHoldAll none of the arguments of f are affected by N
SequenceHold Sequence objects appearing in the arguments of f are not
flattened out
Temporary fis a local variable, removed when no longer used
Stub Needs is automatically called if f is ever explicitly input

The complete list of attributes for symbols in Mathematica.

Here are the attributes for the built-in
function Plus.

In[7]:= Attributes[Plus]

Out[7]= {Flat, Listable, NumericFunction,
OneIdentity, Orderless, Protected}

An important attribute assigned to built-in mathematical functions in Mathematica is the attribute

Listable. This attribute specifies that a function should automatically be distributed or “threaded”
over lists that appear as its arguments. This means that the function effectively gets applied separately
to each element in any lists that appear as its arguments.

330 2. Principles of Mathematica « 2.6 Evaluation of Expressions

The built-in Log function is Listable. In[8]:= Logl{5, 8, 11}]
Out[8]= {Logl[5], Logl8], Logl[111}

This defines the function p to be In[9]:= SetAttributes[p, Listable]
listable.

Now p is automatically threaded over In[10]:= p[{a, b, c}, d]

lists that appear as its arguments. out[10]= {pla, a1, plb, a1, plc, d}

Many of the attributes you can assign to functions in Mathematica directly affect the evaluation
of those functions. Some attributes, however, affect only other aspects of the treatment of func-
tions. For example, the attribute OneIdentity affects only pattern matching, as discussed in Section
2.3.7. Similarly, the attribute Constant is only relevant in differentiation, and operations that rely on
differentiation.

The Protected attribute affects assignments. Mathematica does not allow you to make any def-
inition associated with a symbol that carries this attribute. The functions Protect and Unprotect
discussed in Section 2.5.12 can be used as alternatives to SetAttributes and ClearAttributes to set
and clear this attribute. As discussed in Section 2.5.12 most built-in Mathematica objects are initially
protected so that you do not make definitions for them by mistake.

Here is a definition for the function g. In[11]:=glx_1 =x + 1
Out[11]= 1+x

This sets the Protected attribute for g. In[12]:= Protectlg]
Out[12]= {g}

Now you cannot modify the definition In[13]:= glx_1 = x

of g. Set::write: Tag g in glx_] is Protected.

Out[13]= x

You can usually see the definitions you have made for a particular symbol by typing ?f, or by
using a variety of built-in Mathematica functions. However, if you set the attribute ReadProtected,
Mathematica will not allow you to look at the definition of a particular symbol. It will nevertheless
continue to use the definitions in performing evaluation.

Although you cannot modify it, you In[14]:= 7g

can still look at the definition of g.
Global‘g

Attributes[g] = {Protected}

glx_1=1+x

This sets the ReadProtected attribute In[15]:= SetAttributes[g, ReadProtected]
for g.
Now you can no longer read the In[16]:= 7g

definition of g. Global‘g

Attributes[g] = {Protected, ReadProtected}

2.6.3 Attributes 331

Functions like SetAttributes and ClearAttributes usually allow you to modify the attributes of
a symbol in any way. However, if you once set the Locked attribute on a symbol, then Mathematica
will not allow you to modify the attributes of that symbol for the remainder of your Mathematica
session. Using the Locked attribute in addition to Protected or ReadProtected, you can arrange for
it to be impossible for users to modify or read definitions.

Clear[f] remove values for f, but not attributes

ClearAll[f] remove both values and attributes of f

Clearing values and attributes.

This clears values and attributes of p In[17]:= ClearAll[p]
which was given attribute Listable

above.

Now p is no longer listable. In[18]:= p[{a, b, c}, dl]

Out[18]= pl{a, b, c}, d]

By defining attributes for a function you specify properties that Mathematica should assume when-
ever that function appears. Often, however, you want to assume the properties only in a particular
instance. In such cases, you will be better off not to use attributes, but instead to call a particular
function to implement the transformation associated with the attributes.

By explicitly calling Thread, you can In[19]:= Thread[p[{a, b, c}, dl]
implement the transformation that Out[197= d b. d d
would be done automatically if p were ut(19]= {pla, dl, plb, dl, ple, 1}
listable.

Orderless Sort[f[args]]
Flat Flatten[f[args]]
Listable Thread[f[args]]

Constant Dt[expr, Constants—>f]

Functions that perform transformations associated with some attributes.

Attributes in Mathematica can only be permanently defined for single symbols. However, Mathemat-
ica also allows you to set up pure functions which behave as if they carry attributes.

332 2. Principles of Mathematica « 2.6 Evaluation of Expressions

Function[wvars, body, {attr;, ... }] a pure function with attributes attry, ...

Pure functions with attributes.

This pure function applies p to the In[20]:= Function[{x}, p[x]] [{a, b, c}]

whole list. Out[20]= pl{a, b, c}]

By adding the attribute Listable, the In[21]:= Function[{x}, p[x], {Listable}] [{a, b, c}]
function gets distributed over the out[21]= {plal, p[bl, plcl}

elements of the list before applying p.

Ml 2.6.4 The Standard Evaluation Procedure

This section describes the standard procedure used by Mathematica to evaluate expressions. This proce-
dure is the one followed for most kinds of expressions. There are however some kinds of expressions,
such as those used to represent Mathematica programs and control structures, which are evaluated in a
non-standard way. The treatment of such expressions is discussed in the sections that follow this one.

In the standard evaluation procedure, Mathematica first evaluates the head of an expression, and
then evaluates each element of the expressions. These elements are in general themselves expressions,
to which the same evaluation procedure is recursively applied.

The three Print functions are In[1]:= {Print[1], Print[2], Print[3]}
evaluated in turn, each printing its 1
argument, then returning the value 2
Null. 3

Out[1]= {Null, Null, Null}

This assigns the symbol ps to be Plus. In[2]:= ps = Plus
Out[2]= Plus

The head ps is evaluated first, so this In[3]:= pslpsla, bl, c]
expression behaves just like a sum of Out[3]= a+b+c
terms.

As soon as Mathematica has evaluated the head of an expression, it sees whether the head is
a symbol that has attributes. If the symbol has the attributes Orderless, Flat or Listable, then
immediately after evaluating the elements of the expression Mathematica performs the transformations
associated with these attributes.

The next step in the standard evaluation procedure is to use definitions that Mathematica knows for
the expression it is evaluating. Mathematica first tries to use definitions that you have made, and if
there are none that apply, it tries built-in definitions.

If Mathematica finds a definition that applies, it performs the corresponding transformation on the
expression. The result is another expression, which must then in turn be evaluated according to the
standard evaluation procedure.

2.6.4 The Standard Evaluation Procedure 333

m Evaluate the head of the expression.

m Evaluate each element in turn.

m Apply transformations associated with the attributes Orderless, Listable and Flat.
m Apply any definitions that you have given.

m Apply any built-in definitions.

m Evaluate the result.

The standard evaluation procedure.

As discussed in Section 2.6.1, Mathematica follows the principle that each expression is evaluated
until no further definitions apply. This means that Mathematica must continue re-evaluating results
until it gets an expression which remains unchanged through the evaluation procedure.

Here is an example that shows how the standard evaluation procedure works on a simple expres-
sion. We assume that a = 7.

2ax+a”2+1 hereis the original expression

Plus[Times[2, a, x], Power[a, 2], 1]
this is the internal form

Times[2, a, x] this is evaluated first
Times[2, 7, x] a is evaluated to give 7

Times[14, x] built-in definitions for Times give this result

Power[a, 2] this is evaluated next
Power[7, 2] here is the result after evaluating a

49 built-in definitions for Power give this result

Plus[Times[14, x], 49, 1] here is the result after the arguments of Plus have been
evaluated

Plus[50, Times[14, x]] built-in definitions for Plus give this result

50 + 14 x the result is printed like this

A simple example of evaluation in Mathematica.

334 2. Principles of Mathematica « 2.6 Evaluation of Expressions

Mathematica provides various ways to “trace” the evaluation process, as discussed in Section 2.6.11.
The function Trace[expr] gives a nested list showing each subexpression generated during evalua-
tion. (Note that the standard evaluation traverses the expression tree in a depth-first way, so that the
smallest subparts of the expression appear first in the results of Trace.)

First set a to 7. In[4]:=a=T7

Out[4]= 7
This gives a nested list of all the In[5]:= Trace[2 a x + a*2 + 1]
subexpressions generated during the out[5]= {{{a, 7}, 27x, 14x}

evaluation of the expression. a, 7}, 7%, 49}, 14x+49+1, 50+ 14x}

The order in which Mathematica applies different kinds of definitions is important. The fact that
Mathematica applies definitions you have given before it applies built-in definitions means that you
can give definitions which override the built-in ones, as discussed in Section 2.5.12.

This expression is evaluated using the In[6]:= ArcSin[1]
built-in definition for ArcSin. P
Out[6]= —
2
You can give your own definitions for In[7]:= Unprotect[ArcSin]; ArcSin[1] = 5Pi/2;
ArcSin. You need to remove the
protection attribute first.
Your definition is used before the one In[8]:= ArcSin[1]
that is built in.
5rn
Out[8]= -

As discussed in Section 2.5.10, you can associate definitions with symbols either as upvalues or
downvalues. Mathematica always tries upvalue definitions before downvalue ones.

If you have an expression like f[g[x1], there are in general two sets of definitions that could
apply: downvalues associated with f, and upvalues associated with g. Mathematica tries the definitions
associated with ¢ before those associated with f.

This ordering follows the general strategy of trying specific definitions before more general ones.
By applying upvalues associated with arguments before applying downvalues associated with a func-
tion, Mathematica allows you to make definitions for special arguments which override the general
definitions for the function with any arguments.

This defines a rule for f[g[x_1], to be In[9]:= £/: £lglx_1] := frule[x]
associated with f.

This defines a rule for f[glx_1], to be In[10]:=g/: £flglx_1] := grulelx]
associated with g.

The rule associated with g is tried In[11]:= £[g[2]]
before the rule associated with f. Out[11]= grule[2]

2.6.4 The Standard Evaluation Procedure 335

If you remove rules associated with g, In[12]:= Clear[g] ; £flgl1]]
the rule associated with f is used. Out[12]= frule[1]

m Definitions associated with g are applied before definitions associated with f in the expression

Flglx11.

The order in which definitions are applied.

Most functions such as Plus that are built into Mathematica have downvalues. There are, however,
some objects in Mathematica which have built-in upvalues. For example, SeriesData objects, which
represent power series, have built-in upvalues with respect to various mathematical operations.

For an expression like f[g[x1], the complete sequence of definitions that are tried in the standard
evaluation procedure is:

m Definitions you have given associated with g;
m Built-in definitions associated with g;
m Definitions you have given associated with f;
m Built-in definitions associated with f.

The fact that upvalues are used before downvalues is important in many situations. In a typical
case, you might want to define an operation such as composition. If you give upvalues for vari-
ous objects with respect to composition, these upvalues will be used whenever such objects appear.
However, you can also give a general procedure for composition, to be used if no special objects are
present. You can give this procedure as a downvalue for composition. Since downvalues are tried
after upvalues, the general procedure will be used only if no objects with upvalues are present.

Here is a definition associated with q In[13]:=q/: complqlx_], q[y_1] := qcomp[x, y]
for composition of “q objects”.

Here is a general rule for composition, In[14]:= complf_[x_], £_[y_1] := gencomp[f, x, y]
associated with comp.

If you compose two q objects, the rule In[15]:= comp[ql[1], q[2]]
associated with q is used. Out[15]= qcompl1, 2]

If you compose r objects, the general In[16]:= comp[r[1], r[2]]

rule associated with comp is used. Out[16]= gencomplr, 1, 2]

In general, there can be several objects that have upvalues in a particular expression. Mathematica
first looks at the head of the expression, and tries any upvalues associated with it. Then it successively
looks at each element of the expression, trying any upvalues that exist. Mathematica performs this
procedure first for upvalues that you have explicitly defined, and then for upvalues that are built in.

336 2. Principles of Mathematica « 2.6 Evaluation of Expressions

The procedure means that in a sequence of elements, upvalues associated with earlier elements take
precedence over those associated with later elements.

This defines an upvalue for p with In[17]:=p/: cl1___, p[x_1, r___1 := cplx, {1, r}]
respect to c.

This defines an upvalue for q. In[18]:=q/: c[1___, qlx_]1, r___] := cqlx, {1, r}]
Which upvalue is used depends on In[19]:= {clpl[1], q[21], clql1], p[211}

which occurs first in the sequence of Out[19]= {cpl1, {q[2]1}], cqlt, {p[21}1}

arguments to c.

H 2.6.5 Non-Standard Evaluation

While most built-in Mathematica functions follow the standard evaluation procedure, some important
ones do not. For example, most of the Mathematica functions associated with the construction and
execution of programs use non-standard evaluation procedures. In typical cases, the functions either
never evaluate some of their arguments, or do so in a special way under their own control.

x =y do not evaluate the left-hand side
If[p, a, bl evaluate a if p is True, and b if it is False
Dolexpr, {n}1 evaluate expr n times
Plot[f, {x, ... }]1 evaluate f with a sequence of numerical values for x

Function[{x}, body]l do not evaluate until the function is applied

Some functions that use non-standard evaluation procedures.

When you give a definition such as a = 1, Mathematica does not evaluate the a that appears on the
left-hand side. You can see that there would be trouble if the a was evaluated. The reason is that if
you had previously set a = 7, then evaluating a in the definition a = 1 would put the definition into
the nonsensical form 7 = 1.

In the standard evaluation procedure, each argument of a function is evaluated in turn. This is pre-
vented by setting the attributes HoldFirst, HoldRest and HoldAll. These attributes make Mathematica
“hold” particular arguments in an unevaluated form.

2.6.5 Non-Standard Evaluation 337

HoldFirst do not evaluate the first argument
HoldRest evaluate only the first argument

HoldAll evaluate none of the arguments

Attributes for holding function arguments in unevaluated form.

With the standard evaluation In[1]:= £f[1 + 1, 2 + 4]
procedure, all arguments to a function Out[1]= £[2, 6]
are evaluated.

This assigns the attribute HoldFirst In[2]:= SetAttributes[h, HoldFirst]
to h.
The first argument to h is now held in In[3]:=h[1 + 1, 2 + 4]

an unevaluated form. Out[3]= h[1+1, 6]

When you use the first argument to h In[4]:=h[1 +1, 2+ 4] /. hlx_, y_]1 -> x*y
like this, it will get evaluated. Out[4]= 64
Built-in functions like Set carry In[5]:= Attributes[Set]

attributes such as HoldFirst. Out[5]= {HoldFirst, Protected, SequenceHold}

Even though a function may have attributes which specify that it should hold certain arguments
unevaluated, you can always explicitly tell Mathematica to evaluate those arguments by giving the
arguments in the form Evaluate[arg].

Evaluate effectively overrides the In[6]:= h[Evaluate[1 + 1], 2 + 4]

HoldFirst attribute, and causes the Out[6]= h[2, 6]
first argument to be evaluated.

flEvaluatelarg]l]l evaluate arg immediately, even though attributes of f may
specify that it should be held

Forcing the evaluation of function arguments.

By holding its arguments, a function can control when those arguments are evaluated. By using
Evaluate, you can force the arguments to be evaluated immediately, rather than being evaluated
under the control of the function. This capability is useful in a number of circumstances.

One example discussed on page 132 occurs when plotting graphs of expressions. The Mathematica
Plot function holds unevaluated the expression you are going to plot, then evaluates it at a sequence
of numerical positions. In some cases, you may instead want to evaluate the expression immediately,
and have Plot work with the evaluated form. For example, if you want to plot a list of functions

338 2. Principles of Mathematica « 2.6 Evaluation of Expressions

generated by Table, then you will want the Table operation done immediately, rather than being
done every time a point is to be plotted.

Evaluate causes the list of functions to In[7]:= Plot[
be constructed immediately, rather than Evaluate[Table[Sin[n x], {n, 1, 3}1],
being constructed at each value of x {x, 0, 2Pi}]

chosen by Plot.

There are a number of built-in Mathematica functions which, like Plot, are set up to hold some of
their arguments. You can always override this behavior using Evaluate.

The Mathematica Set function holds its In[8]:=a =D

first argument, so the symbol a is not out[8]= b

evaluated in this case.

You can make Set evaluate its first In[9]:= Evaluate[al = 6
argument using Evaluate. In this case, out[9]= 6

the result is the object which is the
value of a, namely b is set to 6.

b has now been set to 6. In[10]:= b
Out[10]= 6

In most cases, you want all expressions you give to Mathematica to be evaluated. Sometimes,
however, you may want to prevent the evaluation of certain expressions. For example, if you want
to manipulate pieces of a Mathematica program symbolically, then you must prevent those pieces from
being evaluated while you are manipulating them.

You can use the functions Hold and HoldForm to keep expressions unevaluated. These functions
work simply by carrying the attribute HoldA11, which prevents their arguments from being evaluated.
The functions provide “wrappers” inside which expressions remain unevaluated.

The difference between Hold[expr] and HoldForm[expr] is that in standard Mathematica output
format, Hold is printed explicitly, while HoldForm is not. If you look at the full internal Mathematica
form, you can however see both functions.

Hold maintains expressions in an In[11]:= Hold[1 + 1]
unevaluated form. Out[11]= Hold[1+1]

2.6.5 Non-Standard Evaluation

339

HoldForm also keeps expressions
unevaluated, but is invisible in
standard Mathematica output format.

HoldForm is still present internally.

The function ReleaseHold removes
Hold and HoldForm, so the expressions
they contain get evaluated.

In[12]:= HoldForm[1 + 1]
Out[12]= 1+1

In[13]:= FullForm[%]
Out[13]//FullForm= HoldForm[Plus[1, 1]]

In[14]:= ReleaseHold[%]
Out[14]= 2

Hold[expr]
HoldComplete[expr]

HoldForm[expr]
ReleaseHold[expr]

Extract[expr, index, Hold]

keep expr unevaluated

keep expr unevaluated and prevent upvalues associated with
expr from being used

keep expr unevaluated, and print without HoldForm
remove Hold and HoldForm in expr

get a part of expr, wrapping it with Hold to prevent
evaluation

ReplacePart[expr, Hold[valuel, index, 1]

replace part of expr, extracting value without evaluating it

Functions for handling unevaluated expressions.

Parts of expressions are usually
evaluated as soon as you extract them.

This extracts a part and immediately
wraps it with Hold, so it does not get
evaluated.

The last argument of 1 tells
ReplacePart to extract the first part of
Hold[7 + 8] before inserting it.

In[15]:= Extract[Hold[1 + 1, 2 + 3], 2]
Out[15]= 5

In[16]:= Extract[Hold[1 + 1, 2 + 3], 2, Hold]
Out[16]= Hold[2+ 3]

In[17]:= ReplacePart[Hold[1 + 1, 2 + 3], Hold[7 + 8], 2, 1]
Out[17]= Hold[1+1, 7+8]

f[... , Unevaluated[expr], ...]

give expr unevaluated as an argument to f

Temporary prevention of argument evaluation.

1 + 1 evaluates to 2, and Length[2]
gives 0.

In[18]:= Length[1 + 1]
Out[18]= 0O

340 2. Principles of Mathematica « 2.6 Evaluation of Expressions

This gives the unevaluated form 1 + 1 In[19]:= Length[Unevaluated[1 + 1]]
as the argument of Length. Out[19]= 2

Unevaluated[expr] effectively works by temporarily giving a function an attribute like HoldFirst,
and then supplying expr as an argument to the function.

SequenceHold do not flatten out Sequence objects that appear as
arguments

HoldAllComplete treat all arguments as completely inert

Attributes for preventing other aspects of evaluation.

By setting the attribute HoldA1l, you can prevent Mathematica from evaluating the arguments of a
function. But even with this attribute set, Mathematica will still do some transformations on the argu-
ments. By setting SequenceHold you can prevent it from flattening out Sequence objects that appear in
the arguments. And by setting HoldAl1lComplete you can also inhibit the stripping of Unevaluated,
and prevent Mathematica from using any upvalues it finds associated with the arguments.

H 2.6.6 Evaluation in Patterns, Rules and Definitions

There are a number of important interactions in Mathematica between evaluation and pattern match-
ing. The first observation is that pattern matching is usually done on expressions that have already
been at least partly evaluated. As a result, it is usually appropriate that the patterns to which these
expressions are matched should themselves be evaluated.

The fact that the pattern is evaluated In[1]:= £[k~2] /. £[x_~(1 + 1)] -> p[x]
means that it matches the expression Out[1]= plk]
given.

The right-hand side of the /; condition In[2]:= £f[{a, b}] /. £fl[list_ /; Length[list] > 1] -> list~2
is not evaluatgd until it is used during out[2]= {a%, b’}
pattern matching.

There are some cases, however, where you may want to keep all or part of a pattern unevaluated.
You can do this by wrapping the parts you do not want to evaluate with HoldPattern. In general,

whenever HoldPattern[patt] appears within a pattern, this form is taken to be equivalent to patt for
the purpose of pattern matching, but the expression patt is maintained unevaluated.

HoldPattern[patt] equivalent to patt for pattern matching, with patt kept
unevaluated

Preventing evaluation in patterns.

2.6.6 Evaluation in Patterns, Rules and Definitions 341

One application for HoldPattern is in specifying patterns which can apply to unevaluated expres-
sions, or expressions held in an unevaluated form.

HoldPattern keeps the 1 + 1 from
being evaluated, and allows it to match
the 1 + 1 on the left-hand side of the
/. operator.

In[3]:= Hold[u[1 + 1]] /. HoldPattern[1 + 1] -> x
Out[3]= Hold[ulx]]

Notice that while functions like Hold prevent evaluation of expressions, they do not affect the
manipulation of parts of those expressions with /. and other operators.

This defines values for r whenever its
argument is not an atomic object.

According to the definition, expressions
like r[3] are left unchanged.

However, the pattern r[x_] is
transformed according to the definition
for r.

You need to wrap HoldPattern around
r[x_] to prevent it from being
evaluated.

In[4]:=r[x_] := x~2 /; 'AtomQ[x]

In[5]:= r[3]
Out[5]= r[3]

In[6]:=r[x_]
Out[6]= x_?

In[7]:= {r[3], r[5]} /. HoldPattern[r[x_]] -> x
Out[7]= {3, 5}

As illustrated above, the left-hand sides of transformation rules such as lhs -> rhs are usually

evaluated immediately, since the rules are usually applied to expressions which have already been
evaluated. The right-hand side of Ihs -> rhs is also evaluated immediately. With the delayed rule
Ihs :> rhs, however, the expression rhs is not evaluated.

The right-hand side is evaluated
immediately in -> but not :> rules.

Here are the results of applying the

In[8]:={{x ->1+ 1}, {x :> 1 + 1}}
Out[8]= {{x—-2}, {x>1+1}}

In[9]:= {x~2, Hold[x1} /. %

rules. The right-hand side of the :>
rule gets inserted inside the Hold
without evaluation.

Out[9]= {{4, Hold[2]}, {4, Hold[1+1]}}

lhs => rhs
lhs :> rhs

evaluate both Ihs and rhs

evaluate lhs but not rhs

Evaluation in transformation rules.

While the left-hand sides of transformation rules are usually evaluated, the left-hand sides of defi-
nitions are usually not. The reason for the difference is as follows. Transformation rules are typically
applied using /. to expressions that have already been evaluated. Definitions, however, are used
during the evaluation of expressions, and are applied to expressions that have not yet been completely

342 2. Principles of Mathematica « 2.6 Evaluation of Expressions

evaluated. To work on such expressions, the left-hand sides of definitions must be maintained in a
form that is at least partially unevaluated.

Definitions for symbols are the simplest case. As discussed in the previous section, a symbol on
the left-hand side of a definition such as x = value is not evaluated. If x had previously been assigned
a value y, then if the left-hand side of x = value were evaluated, it would turn into the quite unrelated
definition y = value.

Here is a definition. The symbol on In[10]:= k = w[3]
the left-hand side is not evaluated. Out[10]= w[3]
This redefines the symbol. In[11]:= k = w[4]

Out[11]= w([4]

If you evaluate the left-hand side, then In[12]:= Evaluate[k] = w[5]
you define not the symbol k, but the Outf12]=
value w[4] of the symbol k. uel12]= wls]
Now w[4] has value w[5]. In[13]:= wl4]
Out[13]= w[5]

Although individual symbols that appear on the left-hand sides of definitions are not evaluated,
more complicated expressions are partially evaluated. In an expression such as f[args] on the left-hand
side of a definition, the args are evaluated.

The 1 + 1 is evaluated, so that a value In[14]:=gl1 +1]1 =5

is defined for g[2]. Out[14]= 5

This shows the value defined for g. In[15]:= 7g
Global‘g
gl2] = 5

You can see why the arguments of a function that appears on the left-hand side of a definition
must be evaluated by considering how the definition is used during the evaluation of an expression.
As discussed in Section 2.6.1, when Mathematica evaluates a function, it first evaluates each of the
arguments, then tries to find definitions for the function. As a result, by the time Mathematica applies
any definition you have given for a function, the arguments of the function must already have been
evaluated. An exception to this occurs when the function in question has attributes which specify that
it should hold some of its arguments unevaluated.

2.6.7 Ewvaluation in Iteration Functions 343

symbol = value symbol is not evaluated; value is evaluated

symbol := value neither symbol nor value is evaluated
flargs] = value args are evaluated; left-hand side as a whole is not
f[HoldPatternl[argl] = value flarg] is assigned, without evaluating arg

Evaluate[lhs] = value left-hand side is evaluated completely

Evaluation in definitions.

While in most cases it is appropriate for the arguments of a function that appears on the left-hand
side of a definition to be evaluated, there are some situations in which you do not want this to happen.
In such cases, you can wrap HoldPattern around the parts that you do not want to be evaluated.

M 2.6.7 Evaluation in Iteration Functions

The built-in Mathematica iteration functions such as Table and Sum, as well as Plot and Plot3D,
evaluate their arguments in a slightly special way.

When evaluating an expression like Table[f, {i, imax}], the first step, as discussed on page 390,
is to make the value of 7 local. Next, the limit imax in the iterator specification is evaluated. The
expression f is maintained in an unevaluated form, but is repeatedly evaluated as a succession of
values are assigned to i. When this is finished, the global value of i is restored.

The function Random[] is evaluated In[1]:= Table[Random[], {4}]

four separate times here, so four out[1]= {0.0560708, 0.6303, 0.359894, 0.871377}
different pseudorandom numbers are

generated.

This evaluates Random[] before In[2]:= Table[Evaluate[Random[1], {4}]

feeding it to Table. The result is a list

; . Out[2]= {0.858645, 0.858645, 0.858645, 0.858645}
of four identical numbers.

In most cases, it is convenient for the function f in an expression like Table[f, {i, imax}] to be
maintained in an unevaluated form until specific values have been assigned to i. This is true in
particular if a complete symbolic form for f valid for any i cannot be found.

This defines fac to give the factorial In[3]:= fac[n_Integer] := n! ; fac[x_] := NaN
when it has an integer argument, and

to give NaN (standing for “Not a

Number”) otherwise.

In this form, fac[i] is not evaluated In[4]:= Table[fac[i], {i, 5}]
unt.il an explﬁcit integer value has been outf4]= {1, 2, 6, 24, 120}
assigned to i.

344 2. Principles of Mathematica « 2.6 Evaluation of Expressions

Using Evaluate forces fac[i] to be In[5]:= Table[Evaluate[fac[i]], {i, 5}]
eve.iluated with i left as a symbolic Out[5]= {NaN, Nal, NaN, NaN, NaN}
object.
In cases where a complete symbolic form for f with arbitrary i in expressions such as
Tablelf, {i, imax}] can be found, it is often more efficient to compute this form first, and then feed
it to Table. You can do this using Table[Evaluatel[f], {i, imax}].

The Sum in this case is evaluated In[6]:= Table[Sum[i~k, {k, 4}], {i, 8}]
separately for each value of i. out[6]= {4, 30, 120, 340, 780, 1554, 2800, 4680}

It is however possible to get a In[7]:= sum[i~k, {k, 4}]
symbolic formula for the sum, valid for

. Out[7]= i+i2+i%+i?
any value of i.

By inserting Evaluate, you tell In[8]:= Table[Evaluate[Sum[i~k, {k, 4}1]1, {i, 8}]

Mathemqtzca first to e\.raluate the sum Out[8]= {4, 30, 120, 340, 780, 1554, 2800, 4680}
symbolically, then to iterate over i.

Tablelf, {i, imax}] keep f unevaluated until specific values are assigned to i

Table[Evaluate[f], {i, imax}] evaluate f first with i left symbolic

Evaluation in iteration functions.

As discussed on page 132, it is convenient to use Evaluate when you plot a graph of a function or
a list of functions. This causes the symbolic form of the function or list to be found first, before the
iteration begins.

2.6.8 Conditionals 345

H 2.6.8 Conditionals

Mathematica provides various ways to set up conditionals, which specify that particular expressions
should be evaluated only if certain conditions hold.

Ihs :=rhs /; test use the definition only if fest evaluates to True
If[test, then, else] evaluate then if test is True, and else if it is False

Whichl[test,, value;, test, ... 1 evaluate the test; in turn, giving the value associated with
the first one that is True

Switchlexpr, form,, valuey, form,, ...]
compare expr with each of the form;, giving the value
associated with the first form it matches

Switchlexpr, form,, value,, form,, ... , _, defl
use def as a default value

Conditional constructs.

The test gives False, so the “else” In[1]:= I£f[7 > 8, x, y]
expression y is returned. Out[1]= y
Only the “else” expression is evaluated In[2]:= I£f[7 > 8, Print[x], Print[y]]

in this case.
y

When you write programs in Mathematica, you will often have a choice between making a single
definition whose right-hand side involves several branches controlled by If functions, or making
several definitions, each controlled by an appropriate /; condition. By using several definitions, you
can often produce programs that are both clearer, and easier to modify.

This defines a step function, with value In[3]:= £f[x_] := If[x > 0, 1, -1]
1 for x > 0, and -1 otherwise.

This defines the positive part of the In[4]:=glx_1:=1/; x>0
step function using a /; condition.
Here is the negative part of the step In[5]:=glx_.] :=-1/; x<=0
function.
This shows the complete definition In[6]:= g
using /; conditions.
Global‘g
glx.]:=1/;%x>0
glx_1 :=-1/; x<=0

The function If provides a way to choose between two alternatives. Often, however, there will be
more than two alternatives. One way to handle this is to use a nested set of If functions. Usually,
however, it is instead better to use functions like Which and Switch.

346

2. Principles of Mathematica « 2.6 Evaluation of Expressions

This defines a function with three
regions. Using True as the third test
makes this the default case.

This uses the first case in the Which.

This uses the third case.

This defines a function that depends on
the values of its argument modulo 3.

Mod[7, 3] is 1, so this uses the second
case in the Switch.

17 matches neither 0 nor 1, but does
match _.

In[7]:= h[x_] := Which[x < 0, x*2, x > 5, x~3, True, 0]

In[8]:= h[-5]
Out[8]= 25

In[9]:= h[2]
Out[9]= 0

In[10]:= r[x_] := Switch[Mod[x, 3], 0, a, 1, b, 2, c]

In[11]:
Out[11]

r[7]
b

In[12]:= Switch[17, 0, a, 1, b, _, q]
Out[12]= q

An important point about symbolic systems such as Mathematica is that the conditions you give
may yield neither True nor False. Thus, for example, the condition x == y does not yield True or
False unless x and y have specific values, such as numerical ones.

In this case, the test gives neither True
nor False, so both branches in the If
remain unevaluated.

You can add a special fourth argument
to If, which is used if the test does
not yield True or False.

In[13]:= If[x ==y, a, b]
Out[13]= Ifl[x==y, a, bl

In[14]:= If[x ==y, a, b, c]
Out[14]= c

If[test, then, else, unknown] a form of If which includes the expression to use if test

is neither True nor False

TrueQlexpr] give True if expr is True, and False otherwise

lhs === rhs or SameQ[lhs, rhs] give True if lhs and rhs are identical, and False
otherwise
lhs ='= rhs or UnsameQ[lhs, rhs] give True if lhs and rhs are not identical, and False
otherwise

MatchQlexpr, form] give True if the pattern form matches expr, and give

False otherwise

Functions for dealing with symbolic conditions.

Mathematica leaves this as a symbolic
equation.

In[15]:=x ==y
Out[15]= x =y

2.6.8 Conditionals 347

Unless expr is manifestly True, In[16]:= TrueQ[x == y]
TrueQLexpr] effectively assumes that Out[16]= False

expr is False.

Unlike ==, === tests whether two In[17]:=x ===y
expressions are manifestly identical. In Out[17]= False

this case, they are not.

The main difference between lhs === rhs and lhs == rhs is that === always returns True or False,
whereas == can leave its input in symbolic form, representing a symbolic equation, as discussed in
Section 1.5.5. You should typically use === when you want to test the structure of an expression, and
== if you want to test mathematical equality. The Mathematica pattern matcher effectively uses === to

determine when one literal expression matches another.

You can use === to test the structure of In[18]:= Head[a + b + c] === Times
expressions. Out[18]= False

The == operator gives a less useful In[19]:= Head[a + b + c] == Times
result. Out[19]= Plus == Times

In setting up conditionals, you will often need to use combinations of tests, such as
test; && test, && An important point is that the result from this combination of tests will be False
if any of the test; yield False. Mathematica always evaluates the test; in turn, stopping if any of the
test; yield False.

expr, && expr, && expr, evaluate until one of the expr; is found to be False

expr, || expr, || expr, evaluate until one of the expr; is found to be True

Evaluation of logical expressions.

This function involves a combination of In[20]:= t[x_] := (x '= 0 && 1/x < 3)
two tests.
Here both tests are evaluated. In[21]:= t[2]

Out[21]= True

Here the first test yields False, so the In[22]:
second test is not tried. The second Out[22]= False
test would involve 1/0, and would

generate an error.

t[0]

The way that Mathematica evaluates logical expressions allows you to combine sequences of tests
where later tests may make sense only if the earlier ones are satisfied. The behavior, which is analo-
gous to that found in languages such as C, is convenient in constructing many kinds of Mathematica
programs.

348 2. Principles of Mathematica « 2.6 Evaluation of Expressions

l 2.6.9 Loops and Control Structures

The execution of a Mathematica program involves the evaluation of a sequence of Mathematica expres-
sions. In simple programs, the expressions to be evaluated may be separated by semicolons, and
evaluated one after another. Often, however, you need to evaluate expressions several times, in some
kind of “loop”.

Dolexpr, {i, imax}] evaluate expr repetitively, with i varying from 1 to imax in
steps of 1

Dolexpr, {i, imin, imax, di}] evaluate expr with i varying from imin to imax in steps of di

Dolexpr, {n}] evaluate expr n times

Simple looping constructs.

This evaluates Print[i~2], with i In[1]:= Do[Print[i~2], {i, 4}]
running from 1 to 4. 1

4

9

16
This executes an assignment for t in a In[2]:=t =x; Do[t =1/(1 + k t), {k, 2, 6, 2}]; t
loop with k running from 2 to 6 in 1
steps of 2. Out[2]= 5

14

FEFY

The way iteration is specified in Do is exactly the same as in functions like Table and Sum. Just as
in those functions, you can set up several nested loops by giving a sequence of iteration specifications
to Do.

This loops over values of i from 1 to In[3]:= Do[Print[{i, j}], {i, 4}, {j, i-1}]
4, and for each value of i, loops over 2. 1}
j from 1 to i-1. {3, 1}

Sometimes you may want to repeat a particular operation a certain number of times, without
changing the value of an iteration variable. You can specify this kind of repetition in Do just as you
can in Table and other iteration functions.

This repeats the assignment In[4]:= t = x; Dolt = 1/(1+t), {3}]; ¢
t = 1/(1+t) three times. 1
Out[4]= I
1+ T
1+
You can put a procedure inside Do. In[5]:= t = 67; Do[Print[t]; t = Floor[t/2], {3}]
67
33

16

2.6.9 Loops and Control Structures 349

Nest[f, expr, n]l apply f to expr n times

FixedPoint[f, expr] start with expr, and apply f repeatedly until the result no
longer changes

NestWhile[f, expr, test] start with expr, and apply f repeatedly until applying fest to
the result no longer yields True

Applying functions repetitively.

Do allows you to repeat operations by evaluating a particular expression many times with different
values for iteration variables. Often, however, you can make more elegant and efficient programs
using the functional programming constructs discussed in Section 2.2.2. Nest[f, x, n], for example,
allows you to apply a function repeatedly to an expression.

This nests f three times. In[6]:= Nest[f, x, 3]
Out[6]= f[£f[f[x]11]

By nesting a pure function, you can get In[7]:= Nest[Functionl[t, 1/(1+t)], x, 3]
the same result as in the example with 1
Do above. Out[7]=

1+ T4+x

Nest allows you to apply a function a specified number of times. Sometimes, however, you may
simply want to go on applying a function until the results you get no longer change. You can do this
using FixedPoint[f, x1].

FixedPoint goes on applying a In[8]:= FixedPoint[Function[t, Print[t]; Floor[t/2]], 67]
function until the result no longer 67
changes. 33

16

8

4

2

1

0

Out[8]= 0

You can use FixedPoint to imitate the evaluation process in Mathematica, or the operation of
functions such as expr //. rules. FixedPoint goes on until two successive results it gets are the same.
NestWhile allows you to go on until an arbitrary function no longer yields True.

350 2. Principles of Mathematica « 2.6 Evaluation of Expressions

Catchlexpr] evaluate expr until Throw[value] is encountered, then return
value

Catchlexpr, form] evaluate expr until Throw[value, tag] is encountered, where
form matches tag

Catchlexpr, form, f1 return flvalue, tag] instead of value

Non-local control of evaluation.

When the Throw is encountered, In[9]:= Catch[Do[Print[i]; If[i > 3, Throw[il]l, {i, 10}]]
evaluation stops, and the current value 1
of i is returned as the value of the 2
i 3
enclosing Catch. 3
Out[9]= 4

Throw and Catch provide a flexible way to control the process of evaluation in Mathematica. The
basic idea is that whenever a Throw is encountered, the evaluation that is then being done is stopped,
and Mathematica immediately returns to the nearest appropriate enclosing Catch.

Scan applies the function Print to In[10]:= Scan[Print, {7, 6, 5, 4}]
each successive element in the list, and 7
in the end just returns Null. 6
5
4
The evaluation of Scan stops as soon In[11]:= Catch[Scan[(Print[#];
as Throw is encountered, and the If[# < 6, Throw[#11)&, {7, 6, 5, 4}1]
enclosing Catch returns as its value the 7
argument of Throw. 6
5
Out[11]= 5
The same result is obtained with Map, In[12]:= Catch[Map[(Print[#];
even though Map would have returned If[# < 6, Throw[#]11)&, {7, 6, 5, 4}]1]
a list if its evaluation had not been 7
stopped by encountering a Throw. 6
5
Out[12]= 5

You can use Throw and Catch to divert the operation of functional programming constructs, allow-
ing for example the evaluation of such constructs to continue only until some condition has been met.
Note that if you stop evaluation using Throw, then the structure of the result you get may be quite
different from what you would have got if you had allowed the evaluation to complete.

Here is a list generated by repeated In[13]:= NestList[1/(# + 1)&, -2.5, 6]
application of a function. out[13]= {-2.5, -0.666667, 3., 0.25, 0.8, 0.555556, 0.642857}

2.6.9 Loops and Control Structures 351

Since there is no Throw encountered, In[14]:= Catch[NestList[1/(# + 1)&, -2.5, 6]]

the result here is just as before. Out[14]= {-2.5, -0.666667, 3., 0.25, 0.8, 0.555556, 0.642857}
Now the evaluation of the NestList is In[15]:= Catch[NestList

diverted, and the single number given [If[# > 1, Throw[#], 1/(# + 1)]&, -2.5, 6]]
as the argument of Throw is returned. Out[15]= 3.

Throw and Catch operate in a completely global way: it does not matter how or where a Throw is
generated—it will always stop evaluation and return to the enclosing Catch.

The Throw stops the evaluation of f, In[16]:= Catch[£[Throw[a 11 1]
an.d causes the Catch to return just a, Out[16]= a
with no trace of f left.

This defines a function which generates In[17]:= glx_] := If[x > 10, Throw[overflow], x!]
a Throw when its argument is larger

than 10.

No Throw is generated here. In[18]:= Catchl[g[4]]
Out[18]= 24

But here the Throw generated inside In[19]:= Catch[g[40]]

the evaluation of g returns to the Out[19]= overflow

enclosing Catch.

In small programs, it is often adequate to use Throw[wvalue] and Catch[expr] in their simplest form.
But particularly if you write larger programs that contain many separate pieces, it is usually much
better to use Throw[value, tag] and Catchlexpr, form]. By keeping the expressions tag and form local
to a particular piece of your program, you can then ensure that your Throw and Catch will also
operate only within that piece.

Here the Throw is caught by the inner In[20]:= Catch[£ [Catch[Throw[x, al, a]l], b]
Catch. Out[20]= £[x]

But here it is caught only by the outer In[21]:= Catch[£ [Catch[Throw[x, bl, a]l], b]
Catch. Out[21]= x

You can use patterns in specifying the In[22]:= Catch[Throwlx, al, a | b]

tags which a particular Catch should Out[22]= x

catch.

This keeps the tag a completely local. In[23]:= Module[{a}, Catch[Throw[x, al, al]

Out[23]= x

You should realize that there is no need for the tag that appears in Throw to be a constant; in
general it can be any expression.

Here the inner Catch catches all throws In[24]:= Catch[Do[Catch[Throw[i~2, i], n_ /; n < 4],
with tags less than 4, and continues {i, 10} 1, _1
the Do. But as soon as the tag reaches Out[24]= 16

4, the outer Catch is needed.

352 2. Principles of Mathematica « 2.6 Evaluation of Expressions

When you use Catchlexpr, form] with Throwl[ovalue, tag], the value returned by Catch is simply
the expression value given in the Throw. If you use Catchlexpr, form, f1, however, then the value
returned by Catch is instead fLovalue, tag].

Here £ is applied to the value and tag In[25]:= Catch[Throw[x, a], a, £]
in the Throw. Out[25]= £[x, a]

If there is no Throw, f is never used. In[26]:= Catch[x, a, f]
Out[26]= x

Whilel[test, body] evaluate body repetitively, so long as test is True

For[start, test, incr, body]l evaluate start, then repetitively evaluate body and incr, until
test fails

General loop constructs.

Functions like Do, Nest and FixedPoint provide structured ways to make loops in Mathematica
programs, while Throw and Catch provide opportunities for modifying this structure. Sometimes,
however, you may want to create loops that even from the outset have less structure. And in such
cases, you may find it convenient to use the functions While and For, which perform operations
repeatedly, stopping when a specified condition fails to be true.

The While loop continues until the In[27]:=n = 17; While[(n = Floor[n/2]) != 0, Print[n]]
condition fails. 8

4

2

1
The functions While and For in Mathematica are similar to the control structures while and for in
languages such as C. Notice, however, that there are a number of important differences. For example,
the roles of comma and semicolon are reversed in Mathematica For loops relative to C language ones.

This is a very common form for a For In[28]:= For[i=1, i < 4, i++, Print[i]]
loop. i++ increments the value of i. 1

2

3
Here is a more complicated For loop. In[29]:= For[i=1; t=x, i*2 < 10, i++, t = t~2 + i;
Notice that the loop terminates as soon Print[t]]
as the test i~2 < 10 fails. 9

1+ x

22
2+ 1 +x)

222
3+ @2+ 1 +x))
In Mathematica, both While and For always evaluate the loop test before evaluating the body of
the loop. As soon as the loop test fails to be True, While and For terminate. The body of the loop is
thus only evaluated in situations where the loop test is True.

2.6.9 Loops and Control Structures 353

The loop test fails immediately, so the In[30]:= While[False, Print[x]]
body of the loop is never evaluated.

In a While or For loop, or in general in any Mathematica procedure, the Mathematica expressions
you give are evaluated in a definite sequence. You can think of this sequence as defining the “flow of
control” in the execution of a Mathematica program.

In most cases, you should try to keep the flow of control in your Mathematica programs as simple
as possible. The more the flow of control depends for example on specific values generated during
the execution of the program, the more difficult you will typically find it to understand the structure
and operation of the program.

Functional programming constructs typically involve very simple flow of control. While and For
loops are always more complicated, since they are set up to make the flow of control depend on the
values of the expressions given as tests. Nevertheless, even in such loops, the flow of control does
not usually depend on the values of expressions given in the body of the loop.

In some cases, however, you may need to construct Mathematica programs in which the flow of
control is affected by values generated during the execution of a procedure or of the body of a loop.
One way to do this, which fits in with functional programming ideas, is to use Throw and Catch.
But Mathematica also provides various functions for modifying the flow of control which work like in
languages such as C.

Break[] exit the nearest enclosing loop
Continue[1 go to the next step in the current loop

Return[expr] return the value expr, exiting all procedures and loops in a
function

Goto[name]l go to the element Label[name] in the current procedure

Throwl[value]l return value as the value of the nearest enclosing Catch
(non-local return)

Control flow functions.

The Break[1 causes the loop to In[31]:=t = 1; Do[t *= k; Print[t];
terminate as soon as t exceeds 19. If[t > 19, Break[]], {k, 10}]

NN

354 2. Principles of Mathematica « 2.6 Evaluation of Expressions

When k < 3, the Continue[] causes In[32]:=t =1; Do[t *= k; Print[t];
the loop to be continued, without If[k < 3, Continue[]]; t += 2, {k, 10}]
executing t += 2. 1

2

6

32

170
1032
7238
57920
521298
5213000

Return[expr] allows you to exit a particular function, returning a value. You can think of Throw
as a kind of non-local return which allows you to exit a whole sequence of nested functions. Such
behavior can be convenient for handling certain error conditions.

Here is an example of the use of In[33]:= f[x_] :=

Return. This particular procedure (If[x > 5, Return[bigl]; t = x~3; Return[t - 7])
could equally well have been written

without using Return.

When the argument is greater than 5, In[34]:= £[10]

the first Return in the procedure is Out[34]= big

used.

This function “throws” error if its In[35]:= h[x_] := If[x < 0, Throw[error], Sqrt[x]]

argument is negative.

No Throw is generated here. In[36]:= Catch[h[6] + 2]

Out[36]= 2+/6

But in this case a Throw is generated, In[37]:= Catch[h[-6] + 2]
and the whole Catch returns the value Out[37]= error
error.

Functions like Continue[] and Break[] allow you to “transfer control” to the beginning or end of
a loop in a Mathematica program. Sometimes you may instead need to transfer control to a particular
element in a Mathematica procedure. If you give a Label as an element in a procedure, you can use
Goto to transfer control to this element.

This goes on looping until q exceeds 6. In[38]:= (q = 2; Labellbeginl]; Printl[ql; q += 3;
If[q < 6, Goto[begin]])
2
5

Note that you can use Goto in a particular Mathematica procedure only when the Label it specifies
occurs as an element of the same Mathematica procedure. In general, use of Goto reduces the degree
of structure that can readily be perceived in a program, and therefore makes the operation of the
program more difficult to understand.

2.6.10 Collecting Expressions During Evaluation 355

-l 2.6.10 Collecting Expressions During Evaluation

In many computations one is concerned only with the final result of evaluating the expression given
as input. But sometimes one also wants to collect expressions that were generated in the course of
the evaluation. You can do this using Sow and Reap.

N Sow[val]

i Reaplexpr]

sow the value val for the nearest enclosing Reap

evaluate expr, returning also a list of values sown by Sow

Using Sow and Reap.

Here the output contains only the final
result.

Here two intermediate results are also
given.

This computes a sum, collecting all
terms that are even.

In[1]:=a = 3; a += a*2 + 1; a = Sqrt[a + a~2]
Out[1]= /182
In[2]:= Reap[Sow[a = 3]; a += Sow[a~2 + 1]; a = Sqrt[a + a~2]]

out[2]= {\/182, {{3, 10}}}

In[3]:= Reap[Sum[If[EvenQ[#], Sow[#], #1& [i~2 + 1], {i, 10}]]
Out[3]= {395, {{2, 10, 26, 50, 82}}}

Like Throw and Catch, Sow and Reap can be used anywhere in a computation.

This defines a function that can do a
Sow.

This nests the function, reaping all
cases below 1/2.

In[4]:= £f[x_] := (If[x < 1/2, Sow[x1]; 3.5 x (1 - x))

In[5]:= Reap[Nest[£f, 0.8, 10]]

Out[5]= {0.868312,
{{0.415332, 0.446472, 0.408785, 0.456285}}}

+

Reaplexpr, {form,, form,, ... }]

+ Reaplexpr, {form,, ... }, f]

+ Sowl[wal, tag]l sow wval with a tag to indicate when to reap
+ Sowl[val, {tag,, tag,, ... }1 sow wval for each of the tag;
+ Reaplexpr, form] reap all values whose tags match form

make separate lists for each of the form;

apply f to each distinct tag and list of values

Sowing and reaping with tags.

This reaps only values sown with
tag x.

In[6]:= Reap[Sow[1, x]; Sow[2, y]; Sow[3, x], x]
out[6]= {3, {{1, 3}}}

356

2. Principles of Mathematica « 2.6 Evaluation of Expressions

Here 1 is sown twice with tag x.

Values sown with different tags always
appear in different sublists.

The makes a sublist for each form of
tag being reaped.

This applies f to each distinct tag and
list of values.

The tags can be part of the
computation.

In[7]:= Reap[Sow[1, {x, x}]; Sow[2, y]; Sow[3, x], x]
Out[7]= {3, {{1, 1, 3}}}

In[8]:= Reap[Sow[1, {x, x}]; Sow[2, y]; Sow[3, x]]
out[8]= {3, {{1, 1, 3}, {2}}}

In[9]:= Reap[Sow[1, {x, x}]; Sow[2, y]; Sow[3, x], {x, x, y}]
out[9]= {3, {{{1, 1, 3}}, {{1, 1, 3}}, {{2}}}}

In[10]:= Reap[Sow[1, {x, x}]; Sow[2, y]; Sow[3, x], _, £f]
outf[10]= {3, {f[x, {1, 1, 3}1, fly, {2}1}}

In[11]:= Reap[Do[Sow[i/j, GCD[i, j11, {i, 4}, {j, i}]]

outf117= {wa11, {{1, 2, 3, % a, %} {1, 2, 13, {13}}

H 2.6.11 Advanced Topic: Tracing Evaluation

The standard way in which Mathematica works is to take any expression you give as input, evaluate
the expression completely, and then return the result. When you are trying to understand what
Mathematica is doing, however, it is often worthwhile to look not just at the final result of evaluation,
but also at intermediate steps in the evaluation process.

Tracelexpr]

Tracelexpr, form]

generate a list of all expressions used in the evaluation of
expr

include only expressions which match the pattern form

Tracing the evaluation of expressions.

The expression 1 + 1 is evaluated
immediately to 2.

The 2~3 is evaluated before the
addition is done.

The evaluation of each subexpression is
shown in a separate sublist.

In[1]:= Trace[l + 1]
Out[1]= {1+1, 2}

In[2]:= Trace[2~3 + 4]
out[2]= {{2%, 8}, 8+4, 12}

In[3]:= Trace[2~3 + 472 + 1]
out[3]= {{2°, 8}, {42, 16}, 8+16+1, 25}

Trace[expr] gives a list which includes all the intermediate expressions involved in the evaluation
of expr. Except in rather simple cases, however, the number of intermediate expressions generated in
this way is typically very large, and the list returned by Trace is difficult to understand.

2.6.11 Advanced Topic: Tracing Evaluation 357

Tracelexpr, form] allows you to “filter” the expressions that Trace records, keeping only those
which match the pattern form.

Here is a recursive definition of a In[4]:= fac[n_] := n fac[n-1]; fac[1] =1

factorial function. out[4]= 1

This gives all the intermediate In[5]:= Trace[fac[3]]

expressions generated in thg evaluation Out[5]= {fac[3], 3fac[3-1], {{3-1, 2}, fac[2], 2fac[2-1],
of fac[3]. The result is qulte {{2-1, 1}, fac[1], 1}, 21, 2}, 32, 6}

complicated. T T T

This shows only intermediate In[6]:= Trace[fac[3], fac[n_]]

expressions of the form fac[n_]. Out[6]= {fac[3], {fac[2], {fac[1]1}}}

You can specify any pattern in Trace. In[7]:= Trace[fac[10], fac[n_/;n > 5]]

Out[7]= {fac[10], {fac[9], {fac[8], {fac[7], {fac[61}}}}}

Tracelexpr, form] effectively works by intercepting every expression that is about to be evaluated
during the evaluation of expr, and picking out those that match the pattern form.

If you want to trace “calls” to a function like fac, you can do so simply by telling Trace to pick
out expressions of the form fac[n_]. You can also use patterns like £f[n_, 2] to pick out calls with
particular argument structure.

A typical Mathematica program, however, consists not only of “function calls” like fac[n], but
also of other elements, such as assignments to variables, control structures, and so on. All of these
elements are represented as expressions. As a result, you can use patterns in Trace to pick out any
kind of Mathematica program element. Thus, for example, you can use a pattern like k = _ to pick out
all assignments to the symbol k.

This shows the sequence of In[8]:= Trace[(k=2; For[i=1, i<4, i++, k = i/k]; k), k=_]
assignments made for k.

outfel= {te=23, {{k= 5}, =43, {x=2}}}

Tracelexpr, form] can pick out expressions that occur at any time in the evaluation of expr. The
expressions need not, for example, appear directly in the form of expr that you give. They may instead
occur, say, during the evaluation of functions that are called as part of the evaluation of expr.

Here is a function definition. In[9]:=h[n_] := (k=n/2; Dolk = i/k, {i, n}]; k)

You can look for expressions generated In[10]:= Trace[h[3], k=_]
during the evaluation of h.

outf10]= {{ = -‘2—} {{x= %} =3}, {k=13}}

Trace allows you to monitor intermediate steps in the evaluation not only of functions that you
define, but also of some functions that are built into Mathematica. You should realize, however, that the
specific sequence of intermediate steps followed by built-in Mathematica functions depends in detail
on their implementation and optimization in a particular version of Mathematica.

358 2. Principles of Mathematica « 2.6 Evaluation of Expressions

Tracelexpr, fl___11 show all calls to the function f
Tracelexpr, i = _1 show assignments to i
Tracelexpr, _ = _1 show all assignments

Tracelexpr, Message[___]] show messages generated

Some ways to use Trace.

The function Trace returns a list that represents the “history” of a Mathematica computation. The
expressions in the list are given in the order that they were generated during the computation. In
most cases, the list returned by Trace has a nested structure, which represents the “structure” of the
computation.

The basic idea is that each sublist in the list returned by Trace represents the “evaluation chain”
for a particular Mathematica expression. The elements of this chain correspond to different forms of
the same expression. Usually, however, the evaluation of one expression requires the evaluation of
a number of other expressions, often subexpressions. Each subsidiary evaluation is represented by a
sublist in the structure returned by Trace.

Here is a sequence of assignments. In[11]:= a[1] = a[2]; a[2] = a[3]; a[3] = a[4]
Out[11]= a[4]

This yields an evaluation chain In[12]:= Tracel[a[1]]
reflecting the sequence of outf12]= {al[1], al[2], a[3], al4]}
transformations for a[i] used.
The successive forms generated in the In[13]:= Tracely + x + y]
simplification of y + x + y show up as Out[13]= {y+x+ . +92
successive elements in its evaluation “ *x+y, x+yty, x+2y}
chain.
Each argument of the function f has a In[14]:= Trace[f[1 + 1, 2 + 3, 4 + 5]]
sepa'rate evaluation chain, given in a Outf14]= {{1+1, 2}, {2+3, 5}, {4+5, 9}, £[2, 5, 91}
sublist.
The evaluation chain for each In[15]:= Tracelx x + y y]
b . . 4
subexpression is given in a separate out[15]= {{xx, x2}, {yy, y°}, %% +3°}
sublist.
Tracing the evaluation of a nested In[16]:= Trace[£f[£[£[1 + 1]]]]
expression yields a nested list. Out[16]= {{{{1+1, 2}, £[21}, £[£[211}, £[£[£[2]111}

There are two basic ways that subsidiary evaluations can be required during the evaluation of
a Mathematica expression. The first way is that the expression may contain subexpressions, each of
which has to be evaluated. The second way is that there may be rules for the evaluation of the ex-
pression that involve other expressions which themselves must be evaluated. Both kinds of subsidiary
evaluations are represented by sublists in the structure returned by Trace.

2.6.11 Advanced Topic: Tracing Evaluation 359

The subsidiary evaluations here come In[17]:= Trace[f[g[1 + 1], 2 + 3]]

gl:l)éngevaluatlon of the arguments of £ Out[17]= {{{1+1, 2}, g[2]}, {2+3, 5}, £lgl2], 51}
Here is a function with a condition In[18]:= fe[n_] :=n + 1 /; EvenQ[n]

attached.

The evaluation of fe[6] involves a In[19]:= Trace[fe[6]]

subsidiary evaluation associated with Out[19]= {fel[6], {{EvenQ[6], True}, RuleCondition[

the condition. $ConditionHold[$ConditionHold[6 + 111, Truel,
$ConditionHold[$ConditionHold[6+ 111}, 6+1, 7}

You often get nested lists when you trace the evaluation of functions that are defined “recursively”
in terms of other instances of themselves. The reason is typically that each new instance of the
function appears as a subexpression in the expressions obtained by evaluating previous instances of
the function.

Thus, for example, with the definition fac[n_] :=n fac[n-1], the evaluation of fac[6] yields the
expression 6 fac[5], which contains fac[5] as a subexpression.

The successive instances of fac In[20]:= Trace[fac[6], fac[_]]

gengrated appear in successively nested Out[20]= {fac[6],

sublists. {fac[5], {facl4], {fac[3], {fac[2], {fac[11}}}}}}
With this definition, fp[n-1] is In[21]:= fp[n_] := fp[n - 11 /; n > 1

obtained directly as the value of fp[n].

fpln] never appears in a In[22]:= Trace[fp[6], fp[_1]

subexpre;smn, so no sublists are Out[22]= {fpl6], tpl6-11, £p[5], fp[5-11, fpl4], fpl4-11,
generated. £p[3], £p(3-1], £p[2], fp[2-1], £p[1]}

Here is the recursive definition of the In[23]:= fib[n_] := fib[n - 1] + fib[n - 2]

Fibonacci numbers.

Here are the end conditions for the In[24]:= £ib[0] = £fib[1] =1

recursion. Out[24]= 1

This shows all the steps in the In[25]:= Trace[£ib[5], fib[_1]

recursive evaluation of fib[5]. Out[25]= {£ib[5], {fib[4],

{£fib[3], {fib[2], {fib[11}, {fib[01}}, {fib[11}},
{fiv[2], {fib[1]1}, {fib[0]1}}},
{£ib[3], {fib[2], {£fib[1]}, {£fib[0]1}}, {fib[1]1}}}

Each step in the evaluation of any Mathematica expression can be thought of as the result of applying
a particular transformation rule. As discussed in Section 2.5.10, all the rules that Mathematica knows
are associated with specific symbols or “tags”. You can use Tracel[expr, f] to see all the steps in
the evaluation of expr that are performed using transformation rules associated with the symbol f. In
this case, Trace gives not only the expressions to which each rule is applied, but also the results of
applying the rules.

360 2. Principles of Mathematica « 2.6 Evaluation of Expressions

In general, Trace[expr, form] picks out all the steps in the evaluation of expr where form matches
either the expression about to be evaluated, or the tag associated with the rule used.

Tracel[expr, f1 show all evaluations which use transformation rules
associated with the symbol f

Tracelexpr, f | g1 show all evaluations associated with either f or g

Tracing evaluations associated with particular tags.

This shows only intermediate In[26]:= Trace[fac[3], fac[_]]
expressions that match fac[_]. Out[26]= {fac[3], {fac[2], {fac[1]1}}}
This shows all evaluations that use In[27]:= Trace[fac[3], fac]

transformation rules associated with Out[27]= {fac[3], 3fac[3-1],

the symbol fac. {fac[2], 2 fac[2-1], {fac[1], 1}}}

Here is a rule for the log function. In[28]:= loglx_ y_] := loglx] + loglyl

This traces the evaluation of In[29]:
logla b ¢ d], showing all
transformations associated with log.

Trace[logl[a b c d], logl

Out[29]= {loglabcd], loglal +1loglbcdl, {loglbcdl,
log[b]l +loglcdl, {loglcdl, loglcl +logldl}}}

Tracelexpr, form, TraceOn -> oform]
switch on tracing only within forms matching oform

Tracelexpr, form, Trace0ff -> oform]
switch off tracing within any form matching oform

Switching off tracing inside certain forms.

Tracelexpr, form] allows you to trace expressions matching form generated at any point in the
evaluation of expr. Sometimes, you may want to trace only expressions generated during certain parts
of the evaluation of expr.

By setting the option TraceOn -> oform, you can specify that tracing should be done only during
the evaluation of forms which match oform. Similarly, by setting Trace0ff -> oform, you can specify
that tracing should be switched off during the evaluation of forms which match oform.

This shows all steps in the evaluation. In[30]:= Trace[log[fac[2] x]]

Out[30]= {{{fac[2], 2fac[2-1], {{2-1, 1}, fac[1], 1},
21, 2}, 2x}, logl2x], log[2] +log[x]1}

2.6.11 Advanced Topic: Tracing Evaluation 361

This shows only those steps that occur
during the evaluation of fac.

This shows only those steps that do not
occur during the evaluation of fac.

In[31]:= Trace[log[fac[2] x], TraceOn -> fac]
Out[31]= {{{fac[2], 2fac[2-1],
{{2-1, 1}, fac[1], 1}, 21, 2}}}
In[32]:= Trace[log[fac[2] x], TraceOff -> fac]
Out[32]= {{{fac[2], 2}, 2x}, logl2x], log[2] +loglx]1}

Tracelexpr, lhs => rhs]

find all expressions matching lhs that arise during the
evaluation of expr, and replace them with rhs

Applying rules to expressions encountered during evaluation.

This tells Trace to return only the
arguments of fib used in the
evaluation of fib[5].

In[33]:= Trace[fib[5], fib[n_] -> n]

out[33]= {5, {4, {3, {2, {1}, {03}, {1}}, {2, {1}, {0}}},
{3, {2, {1}, {03}, {13}

A powerful aspect of the Mathematica Trace function is that the object it returns is basically a

standard Mathematica expression which you can manipulate using other Mathematica functions. One
important point to realize, however, is that Trace wraps all expressions that appear in the list it
produces with HoldForm to prevent them from being evaluated. The HoldForm is not displayed in
standard Mathematica output format, but it is still present in the internal structure of the expression.

This shows the expressions generated
at intermediate stages in the evaluation
process.

The expressions are wrapped with
HoldForm to prevent them from
evaluating.

In standard Mathematica output format,
it is sometimes difficult to tell which
lists are associated with the structure
returned by Trace, and which are
expressions being evaluated.

Looking at the input form resolves any
ambiguities.

When you use a transformation rule in
Trace, the result is evaluated before
being wrapped with HoldForm.

In[34]:= Trace[1l + 3~2]
Out[34]= {{3%, 9}, 1+9, 10}

In[35]:= Trace[1 + 322] // InputForm
Out[35]//InputForm= {{HoldForm[3~2], HoldForm[9]}, HoldForm[1 + 9],
HoldForm[10]1}

In[36]:= Trace[{1 + 1, 2 + 3}]
Out[36]= {{1+1, 2}, {2+3, 5}, {2, 5}}

In[37]:= InputForm[%]
Out[37]//InputForm= {{HoldForm[1 + 1], HoldForm[2]},
{HoldForm[2 + 3], HoldForm[5]}, HoldForm[{2, 5}1}

In[38]:= Trace[fac[4], fac[n_] -> n + 1]
Out[38]= {5, {4, {3, {2}}}}

For sophisticated computations, the list structures returned by Trace can be quite complicated.
When you use Tracelexpr, form], Trace will include as elements in the lists only those expressions

362 2. Principles of Mathematica « 2.6 Evaluation of Expressions

which match the pattern form. But whatever pattern you give, the nesting structure of the lists remains
the same.

This shows all occurrences of fib[_] In[39]:= Trace[£ib[3], fib[_]]
in the evaluation of £ib[3]. 0ut[39]= {£ib[3], {£ib[2], {£ib[1]}, {£ib[01}}, {£ib[11}}

This shows only occurrences of fib[1], In[40]:= Trace[fib[3], fib[1]]
but the nesting of the lists is the same Out[407= {{{£ib[11}}, {fib[11}}
as for fib[_].

You can set the option TraceDepth -> n to tell Trace to include only lists nested at most n levels
deep. In this way, you can often pick out the “big steps” in a computation, without seeing the
details. Note that by setting TraceDepth or Trace0ff you can avoid looking at many of the steps in
a computation, and thereby significantly speed up the operation of Trace for that computation.

This shows only steps that appear in In[41]:= Trace[£ib[3], £ib[_], TraceDepth->2]
lists nested at most two levels deep. Out[41]= {£ib[3], {fib[1]}}

Tracelexpr, form, TraceDepth -> n] trace the evaluation of expr, ignoring steps that lead to
lists nested more than 7 levels deep

Restricting the depth of tracing.

When you use Tracelexpr, form], you get a list of all the expressions which match form pro-
duced during the evaluation of expr. Sometimes it is useful to see not only these expressions, but
also the results that were obtained by evaluating them. You can do this by setting the option
TraceForward -> True in Trace.

This shows not only expressions which In[42]:= Trace[fac[4], fac[_], TraceForward->Truel

match fac[_], but also the results of pyyrg07- frac(4], {saclsl, {facl2], {facl1], 1}, 2}, 63, 24}
evaluating those expressions.

Expressions picked out using Tracelexpr, form] typically lie in the middle of an evaluation chain.
By setting TraceForward -> True, you tell Trace to include also the expression obtained at the end
of the evaluation chain. If you set TraceForward -> All, Trace will include all the expressions that
occur after the expression matching form on the evaluation chain.

With TraceForward->Al11l, all elements In[43]:= Trace[fac[4], fac[_], TraceForward->All]
ol? the ev}a:luatlon chain afteli tge one Out[43]= {fac[4], 4fac[4-1],
that matches fac[_] are included. {fac[3], 3fac[3-1], {fac[2], 2fac[2-1],

{fac[1], 1}, 21, 2}, 32, 6}, 46, 24}

By setting the option TraceForward, you can effectively see what happens to a particular form of
expression during an evaluation. Sometimes, however, you want to find out not what happens to a
particular expression, but instead how that expression was generated. You can do this by setting the

2.6.11 Advanced Topic: Tracing Evaluation 363

option TraceBackward. What TraceBackward does is to show you what preceded a particular form of
expression on an evaluation chain.

This shows that the number 120 came In[44]:= Trace[fac[10], 120, TraceBackward->True]
from the evaluation of fac[5] during Out[44]= {{{{{{fac[5], 120}}}}}}

the evaluation of fac[10]. ’

Here is the whole evaluation chain In[45]:= Trace[fac[10], 120, TraceBackward->All]
associated with the generation of the Out[45]= {{{{{{fac[5], 5fac[5-1], 524, 120}}}}}}

number 120.

TraceForward and TraceBackward allow you to look forward and backward in a particular evalua-
tion chain. Sometimes, you may also want to look at the evaluation chains within which the particular
evaluation chain occurs. You can do this using TraceAbove. If you set the option TraceAbove -> True,
then Trace will include the initial and final expressions in all the relevant evaluation chains. With
TraceAbove —-> All, Trace includes all the expressions in all these evaluation chains.

This includes the initial and final In[46]:= Trace[fac[7], 120, TraceAbove->True]

expressions in all eval.uatlon chamg Out[46]= {fac[7], {fac[6], {fac[5], 120}, 720}, 5040}
which contain the chain that contains

120.

This shows all the ways that £ib[2] is In[47]:= Trace[£fib[5], £fib[2], TraceAbove->True]
generated during the evaluation of Out[47]= {£ib[5]

£ib[5]. ;

{fib[4], {£fib[3], {fib[2], 2}, 3}, {fiv[2], 2}, 5},
{fib[3], {fib[2], 2}, 3}, 8}

Tracelexpr, form, opts] trace the evaluation of expr using the specified options

TraceForward -> True include the final expression in the evaluation chain
containing form

TraceForward -> A11 include all expressions following form in the evaluation
chain

TraceBackward -> True include the first expression in the evaluation chain
containing form

TraceBackward -> All include all expressions preceding form in the evaluation
chain

TraceAbove -> True include the first and last expressions in all evaluation chains
which contain the chain containing form

TraceAbove -> A1l include all expressions in all evaluation chains which
contain the chain containing form

Option settings for including extra steps in trace lists.

364 2. Principles of Mathematica « 2.6 Evaluation of Expressions

The basic way that Tracel[expr, ...] works is to intercept each expression encountered during the
evaluation of expr, and then to use various criteria to determine whether this expression should be
recorded. Normally, however, Trace intercepts expressions only after function arguments have been
evaluated. By setting TraceOriginal -> True, you can get Trace also to look at expressions before
function arguments have been evaluated.

This includes expressions which match In[48]:= Trace[fac[3], fac[_], TraceOriginal -> Truel

tac[_] both before and after argument 5, ry07. (fac[3], {fac[3-1], fac[2], {fac[2-1], fac[11}}}
evaluation.

The list structure produced by Trace normally includes only expressions that constitute steps in
non-trivial evaluation chains. Thus, for example, individual symbols that evaluate to themselves are
not normally included. Nevertheless, if you set TraceOriginal -> True, then Trace looks at abso-
lutely every expression involved in the evaluation process, including those that have trivial evaluation
chains.

In this case, Trace includes absolutely In[49]:= Trace[fac[1], TraceOriginal -> Truel]

all expr.essions{ even those with trivial Out[49]= {fac[1], {fac}, {1}, fac[1], 1}
evaluation chains.

option name default value

TraceForward False whether to show expressions following form in the evaluation
chain

TraceBackward False whether to show expressions preceding form in the evaluation
chain

TraceAbove False whether to show evaluation chains leading to the evaluation

chain containing form

TraceOriginal False whether to look at expressions before their heads and arguments
are evaluated

Additional options for Trace.

When you use Trace to study the execution of a program, there is an issue about how local vari-
ables in the program should be treated. As discussed in Section 2.7.3, Mathematica scoping constructs
such as Module create symbols with new names to represent local variables. Thus, even if you called
a variable x in the original code for your program, the variable may effectively be renamed x$nnn
when the program is executed.

Tracelexpr, form] is set up so that by default a symbol x that appears in form will match all
symbols with names of the form x$nnn that arise in the execution of expr. As a result, you can
for example use Trace[expr, x = _] to trace assignment to all variables, local and global, that were
named x in your original program.

2.6.11 Advanced Topic: Tracing Evaluation 365

Tracelexpr, form, MatchLocalNames -> False]
include all steps in the execution of expr that match form,
with no replacements for local variable names allowed

Preventing the matching of local variables.

In some cases, you may want to trace only the global variable x, and not any local variables that
were originally named x. You can do this by setting the option MatchLocalNames -> False.

This traces assignments to all variables In[50]:= Trace[Module[{x}, x = 5], x = _]

with names of the form x$nnn. Out[507= {{x$1=5}}

This traces assignments only to the In[51]:= Trace[Module[{x}, x = 5], x = _,

specific global variable x. MatchLocalNames -> Falsel
Out[51]= {}

The function Trace performs a complete computation, then returns a structure which represents the
history of the computation. Particularly in very long computations, it is however sometimes useful to
see traces of the computation as it proceeds. The function TracePrint works essentially like Trace,
except that it prints expressions when it encounters them, rather than saving up all of the expressions
to create a list structure.

This prints expressions encountered in In[52]:= TracePrint[£ib[3], £ib[_1]

the evaluation of fib[3]. £1b[3]
fib[3 - 1]
fib[2]
fib[2 - 1]
fib[1]
fib[2 - 2]
fib[0]
fib[3 - 2]
fib[1]

Out[52]= 3

The sequence of expressions printed by TracePrint corresponds to the sequence of expressions
given in the list structure returned by Trace. Indentation in the output from TracePrint corresponds
to nesting in the list structure from Trace. You can use the Trace options TraceOn, Trace0ff and
TraceForward in TracePrint. However, since TracePrint produces output as it goes, it cannot
support the option TraceBackward. In addition, TracePrint is set up so that TraceOriginal is
effectively always set to True.

366 2. Principles of Mathematica « 2.6 Evaluation of Expressions

Tracelexpr, ... 1 trace the evaluation of expr, returning a list structure
containing the expressions encountered

TracePrint[expr, ... 1 trace the evaluation of expr, printing the expressions
encountered
TraceDialoglexpr, ... 1 trace the evaluation of expr, initiating a dialog when each

specified expression is encountered

TraceScanl[f, expr, ... 1 trace the evaluation of expr, applying f to HoldForm of each
expression encountered

Functions for tracing evaluation.

This enters a dialog when fac[5] is In[53]:= TraceDialog[fac[10], fac[5]]
enC(antered,dluqng the evaluation of TraceDialog: :dgbgn: Entering Dialog; use Return[] to exit.
fac[10].

Out[54]= fac[5]
Inside the dialog you can for example In[55]:= Stack[]

find out where you are by looking at

Out[55]= {TraceDialog, Times,
the “stack”. &

Times, Times, Times, Times, fac}

This returns from the dialog, and gives In[56]:= Return[]
the final result from the evaluation of

TraceDialog: :dgend: Exiting Dialog.
fac[10].

Out[53]= 3628800

The function TraceDialog effectively allows you to stop in the middle of a computation, and
interact with the Mathematica environment that exists at that time. You can for example find values of
intermediate variables in the computation, and even reset those values. There are however a number
of subtleties, mostly associated with pattern and module variables.

What TraceDialog does is to call the function Dialog on a sequence of expressions. The Dialog
function is discussed in detail in Section 2.14.2. When you call Dialog, you are effectively starting a
subsidiary Mathematica session with its own sequence of input and output lines.

In general, you may need to apply arbitrary functions to the expressions you get while tracing
an evaluation. TraceScanlf, expr, ...] applies f to each expression that arises. The expression is
wrapped with HoldForm to prevent it from evaluating.

In TraceScanl[f, expr, ...], the function f is applied to expressions before they are evaluated.
TraceScanl[f, expr, patt, fp] applies f before evaluation, and fp after evaluation.

2.6.12 Advanced Topic: The Evaluation Stack 367

H 2.6.12 Advanced Topic: The Evaluation Stack

Throughout any computation, Mathematica maintains an evaluation stack containing the expressions it
is currently evaluating. You can use the function Stack to look at the stack. This means, for example,
that if you interrupt Mathematica in the middle of a computation, you can use Stack to find out what
Mathematica is doing.

The expression that Mathematica most recently started to evaluate always appears as the last element
of the evaluation stack. The previous elements of the stack are the other expressions whose evaluation
is currently in progress.

Thus at the point when x is being evaluated, the stack associated with the evaluation of an
expression like f[g[x1] will have the form {f[g[x11, g[x1, x}.

Stack[_] gives the expressions that are In[1]:= flgl Print[Stack[_1] 11 ;

bei luated at the time when it i
o Y e o inslug?ﬁgv‘ihsnpiii {£lglPrint[Stack[_1111; , flgl[Print[Stack[_111],

function. g[Print[Stack[_]1], Print[Stack[_]1]}

Stack[] gives the tags associated with In[2]:= £[g[Print[Stack[1] 1] ;
the evaluations that are being done

when it is called. {CompoundExpression, f, g, Print}

In general, you can think of the evaluation stack as showing what functions called what other
functions to get to the point Mathematica is at in your computation. The sequence of expressions
corresponds to the first elements in the successively nested lists returned by Trace with the option
TraceAbove set to True.

Stack[1 give a list of the tags associated with evaluations that are
currently being done

Stack[_] give a list of all expressions currently being evaluated

Stack[form] include only expressions which match form

Looking at the evaluation stack.

It is rather rare to call Stack directly in your main Mathematica session. More often, you will want
to call Stack in the middle of a computation. Typically, you can do this from within a dialog, or
subsidiary session, as discussed in Section 2.14.2.

Here is the standard recursive In[3]:= fac[1] = 1; fac[n_] := n fac[n-1]
definition of the factorial function.

This evaluates fac[10], starting a In[4]:= TraceDialog[fac[10], fac[4]]

dlalog when it encounters fac[4]. TraceDialog: :dgbgn: Entering Dialog; use Return[] to exit.

Out[5]= fac[4]

368 2. Principles of Mathematica « 2.6 Evaluation of Expressions

This shows what objects were being In[6]:= Stack[]

evaluated when the dialog was started. Out[6]= {TraceDialog, Times, Times,

Times, Times, Times, Times, fac}
This ends the dialog. In[7]:= Return[]
TraceDialog::dgend: Exiting Dialog.

Out[4]= 3628800

In the simplest cases, the Mathematica evaluation stack is set up to record all expressions cur-
rently being evaluated. Under some circumstances, however, this may be inconvenient. For example,
executing Print[Stack[1] will always show a stack with Print as the last function.

The function StackInhibit allows you to avoid this kind of problem. StackInhibit[expr] evalu-
ates expr without modifying the stack.

StackInhibit prevents Print from In[5]:= £f[gl StackInhibit[Print[Stack[111 1] ;

being included on the stack. Out[5]= {CompoundExpression, f, g}

Functions like TraceDialog automatically call StackInhibit each time they start a dialog. This
means that Stack does not show functions that are called within the dialog, only those outside.

StackInhibit[expr] evaluate expr without modifying the stack
StackBegin[expr] evaluate expr with a fresh stack

StackComplete[expr] evaluate expr with intermediate expressions in evaluation
chains included on the stack

Controlling the evaluation stack.

By using StackInhibit and StackBegin, you can control which parts of the evaluation process
are recorded on the stack. StackBegin[expr] evaluates expr, starting a fresh stack. This means that
during the evaluation of expr, the stack does not include anything outside the StackBegin. Functions
like TraceDialoglexpr, ... 1 call StackBegin before they begin evaluating expr, so that the stack
shows how expr is evaluated, but not how TraceDialog was called.

StackBegin[expr] uses a fresh stack in In[6]:= £[StackBegin[g[h[StackInhibit[Print[Stack[111 11 1 1]
the evaluation of expr. &, n}

Out[6]= flglh[Nullll]

Stack normally shows you only those expressions that are currently being evaluated. As a result,
it includes only the latest form of each expression. Sometimes, however, you may find it useful also
to see earlier forms of the expressions. You can do this using StackComplete.

What StackCompletel[expr] effectively does is to keep on the stack the complete evaluation chain
for each expression that is currently being evaluated. In this case, the stack corresponds to the
sequence of expressions obtained from Trace with the option TraceBackward -> All as well as
TraceAbove —> True.

2.6.13 Advanced Topic: Controlling Infinite Evaluation 369

M 2.6.13 Advanced Topic: Controlling Infinite Evaluation

The general principle that Mathematica follows in evaluating expressions is to go on applying trans-
formation rules until the expressions no longer change. This means, for example, that if you make an
assignment like x = x + 1, Mathematica should go into an infinite loop. In fact, Mathematica stops after
a definite number of steps, determined by the value of the global variable $RecursionLimit. You can
always stop Mathematica earlier by explicitly interrupting it.

This assignment could cause an infinite In[1]:=x=x+1
loop. Mathematica stops after a number
of steps determined by

$RecursionLimit.

$RecursionLimit::reclim: Recursion depth of 256 exceeded.

Out[1]= 255+Hold[1 +x]
When Mathematica stops without In[2]:= ReleaseHold[%]
finishing evaluation, it returns a held
result. You can continue the evaluation
by explicitly calling ReleaseHold.

$RecursionLimit::reclim: Recursion depth of 256 exceeded.

Out[2]= 510 +Hold[1 +x]

$Recursionlimit maximum depth of the evaluation stack

$IterationLimit maximum length of an evaluation chain

Global variables that limit infinite evaluation.

Here is a circular definition, whose In[3]:= {a, b} = {b, a}

evaluation is stopped by

. L. $IterationLimit::itlim: Iteration limit of 4096 exceeded.
$IterationLimit.

$IterationLimit::itlim: Iteration limit of 4096 exceeded.

Out[3]= {Hold[b], Hold[al}

The variables $RecursionLimit and $IterationLimit control the two basic ways that an evalua-
tion can become infinite in Mathematica. $RecursionLimit limits the maximum depth of the evaluation
stack, or equivalently, the maximum nesting depth that would occur in the list structure produced
by Trace. $IterationLimit limits the maximum length of any particular evaluation chain, or the
maximum length of any single list in the structure produced by Trace.

$Recursionlimit and $IterationLimit are by default set to values that are appropriate for most
computations, and most computer systems. You can, however, reset these variables to any integer
(above a lower limit), or to Infinity. Note that on most computer systems, you should never set
$RecursionLimit = Infinity, as discussed on page 715.

This resets $RecursionlLimit and
$IterationLimit to 20.

Now infinite definitions like this are
stopped after just 20 steps.

In[4]:= $RecursionLimit = $IterationLimit = 20

Out[4]= 20

In[5]:= t = {t}

$RecursionlLimit::reclim: Recursion depth of 20 exceeded.

Out[5]= {{{{{{{{{{{{{{{{{{{Ho1d [{t} 1} 3333} 1333} } 333} }}}

370 2. Principles of Mathematica « 2.6 Evaluation of Expressions

Without an end condition, this In[6]:= fn[n_] := {fn[n-1], n}
recursive definition leads to infinite

computations.

A fairly large structure is built up In[7]:= £n[10]

before the conlptuatu)n s StOFﬂDQd. $RecursionlLimit::reclim: Recursion depth of 20 exceeded.

Out[7]= {{{{{{{{{{{{{{{{{{{Ho1d[fn[-8-1]], -8}, -7}, -6},
-5}, -4}, -3}, -2}, -1}, 0}, 1}, 2},
3}, 4}, 5}, 6}, 7}, 8}, 9}, 10}
Here is another recursive definition. In[8]:= fm[n_] := fm[n - 1]
In this case, no complicated structure is In[9]:= £m[0]

built up, and the computation is

N . $IterationLimit::itlim: Iteration limit of 20 exceeded.
stopped by $IterationLimit.

Out[9]= Hold[fm[-19-1]]

It is important to realize that infinite loops can take up not only time but also computer memory.
Computations limited by $IterationLimit do not normally build up large intermediate structures.
But those limited by $RecursionLimit often do. In many cases, the size of the structures produced is
a linear function of the value of $RecursionLimit. But in some cases, the size can grow exponentially,
or worse, with $RecursionLimit.

An assignment like x = x + 1 is obviously circular. When you set up more complicated recursive
definitions, however, it can be much more difficult to be sure that the recursion terminates, and that
you will not end up in an infinite loop. The main thing to check is that the right-hand sides of your
transformation rules will always be different from the left-hand sides. This ensures that evaluation will
always “make progress”, and Mathematica will not simply end up applying the same transformation
rule to the same expression over and over again.

Some of the trickiest cases occur when you have rules that depend on complicated /; conditions
(see Section 2.3.5). One particularly awkward case is when the condition involves a “global variable”.
Mathematica may think that the evaluation is finished because the expression did not change. However,
a side effect of some other operation could change the value of the global variable, and so should lead
to a new result in the evaluation. The best way to avoid this kind of difficulty is not to use global
variables in /; conditions. If all else fails, you can type Updatels] to tell Mathematica to update all
expressions involving s. Updatel 1] tells Mathematica to update absolutely all expressions.

H 2.6.14 Advanced Topic: Interrupts and Aborts

Section 1.3.12 described how you can interrupt a Mathematica computation by pressing appropriate
keys on your keyboard.

In some cases, you may want to simulate such interrupts from within a Mathematica program. In
general, executing Interrupt[] has the same effect as pressing interrupt keys. On a typical system,
a menu of options is displayed, as discussed in Section 1.3.12.

2.6.14 Advanced Topic: Interrupts and Aborts 371

Interrupt[1 interrupt a computation
Abort[] abort a computation

CheckAbortlexpr, failexpr] evaluate expr and return the result, or failexpr if an abort
occurs

AbortProtect[expr] evaluate expr, masking the effect of aborts until the
evaluation is complete

Interrupts and aborts.

The function Abort[] has the same effect as interrupting a computation, and selecting the abort
option in the interrupt menu.

You can use Abort[] to implement an “emergency stop” in a program. In almost all cases,
however, you should try to use functions like Return and Throw, which lead to more controlled
behavior.

Abort terminates the computation, so In[1]:= Print[al; Abort[]; Print[b]

only the first Print is executed. a

Out[1]= $Aborted

If you abort at any point during the evaluation of a Mathematica expression, Mathematica normally
abandons the evaluation of the whole expression, and returns the value $Aborted.

You can, however, “catch” aborts using the function CheckAbort. If an abort occurs during the
evaluation of expr in CheckAbort[expr, failexpr], then CheckAbort returns failexpr, but the abort prop-
agates no further. Functions like Dialog use CheckAbort in this way to contain the effect of aborts.

CheckAbort catches the abort, prints c In[2]:= CheckAbort[Print[a]; Abort[]; Print[b], Print[c]; aborted]
and returns the value aborted. a
c

Out[2]= aborted

The effect of the Abort is contained by In[3]:= CheckAbort[Print[a]l; Abort[], Print[c]; aborted]; Print[b]

CheckAbort, so b is printed. a

c
b

When you construct sophisticated programs in Mathematica, you may sometimes want to guarantee
that a particular section of code in a program cannot be aborted, either interactively or by calling
Abort. The function AbortProtect allows you to evaluate an expression, saving up any aborts until
after the evaluation of the expression is complete.

372 2. Principles of Mathematica « 2.6 Evaluation of Expressions

The Abort is saved up until In[4]:= AbortProtect[Abort[]; Print[all; Print[b]

AbortProtect is finished.
a

Out[4]= $Aborted

The CheckAbort sees the abort, but In[5]:= AbortProtect[Abort[]; CheckAbort[Print[a], x]]; Print[b]

does not propagate it further. b

Even inside AbortProtect, CheckAbort will see any aborts that occur, and will return the ap-
propriate failexpr. Unless this failexpr itself contains Abort[1, the aborts will be “absorbed” by the
CheckAbort.

M 2.6.15 Compiling Mathematica Expressions

If you make a definition like f[x_] := x Sin[x], Mathematica will store the expression x Sin[x] in
a form that can be evaluated for any x. Then when you give a particular value for x, Mathematica
substitutes this value into x Sin[x], and evaluates the result. The internal code that Mathematica uses
to perform this evaluation is set up to work equally well whether the value you give for x is a number,
a list, an algebraic object, or any other kind of expression.

Having to take account of all these possibilities inevitably makes the evaluation process slower.
However, if Mathematica could assume that x will be a machine number, then it could avoid many
steps, and potentially evaluate an expression like x Sin[x] much more quickly.

Using Compile, you can construct compiled functions in Mathematica, which evaluate Mathemat-
ica expressions assuming that all the parameters which appear are numbers (or logical variables).
Compile[{x;, x2, ... }, expr] takes an expression expr and returns a “compiled function” which
evaluates this expression when given arguments xi, xy,

In general, Compile creates a CompiledFunction object which contains a sequence of simple in-
structions for evaluating the compiled function. The instructions are chosen to be close to those found
in the machine code of a typical computer, and can thus be executed quickly.

Compile[{x;, xp, ... }, expr] create a compiled function which evaluates expr for
numerical values of the x;

Creating compiled functions.

This defines £ to be a pure function In[1]:= £ = Function[{x}, x Sin[x]]
which evaluates x Sin[x] for any x. Out[1]= Function[{x}, xSin[x]]
This creates a compiled function for In[2]:= fc = Compile[{x}, x Sin[x]]

evaluating x Sin[x]. Out[2]= CompiledFunction[{x}, xSin[x], -CompiledCode-]

2.6.15 Compiling Mathematica Expressions 373

f and fc yield the same results, but fc In[3]:= {£[2.5], £fc[2.5]}
runs faster when the argument you Out[3]= {1.49618, 1.49618}
give is a number. ' T

Compile is useful in situations where you have to evaluate a particular numerical or logical expres-
sion many times. By taking the time to call Compile, you can get a compiled function which can be
executed more quickly than an ordinary Mathematica function.

For simple expressions such as x Sin[x], there is usually little difference between the execution
speed for ordinary and compiled functions. However, as the size of the expressions involved increases,
the advantage of compilation also increases. For large expressions, compilation can speed up execution
by a factor as large as 20.

Compilation makes the biggest difference for expressions containing a large number of simple, say
arithmetic, functions. For more complicated functions, such as BesselK or Eigenvalues, most of the
computation time is spent executing internal Mathematica algorithms, on which compilation has no
effect.

This creates a compiled function for In[4]:= pc = Compile[{x}, Evaluate[LegendreP[10, x]]]
finding values of the tenth Legendre

polynomial. The Evaluate tells Out[4]= COmpiledFunction[{x},

Mathematica to construct the polynomial 63 3465%2 15015x* 45045 x%°
explicitly before doing compilation. 256 Vo6 128 T 128
109395 x® . 46189 x1° CompiledCod]

556 s ~CompiledCode

This finds the value of the tenth In[5]:= pc[0.4]

Legendre polynomial with argument out[5]= 0.0968391

0.4.

This uses built-in numerical code. In[6]:= LegendreP[10, 0.4]

Out[6]= 0.0968391

Even though you can use compilation to speed up numerical functions that you write, you should
still try to use built-in Mathematica functions whenever possible. Built-in functions will usually run
faster than any compiled Mathematica programs you can create. In addition, they typically use more
extensive algorithms, with more complete control over numerical precision and so on.

You should realize that built-in Mathematica functions quite often themselves use Compile. Thus, for
example, NIntegrate by default automatically uses Compile on the expression you tell it to integrate.
Similarly, functions like Plot and Plot3D use Compile on the expressions you ask them to plot.
Built-in functions that use Compile typically have the option Compiled. Setting Compiled -> False
tells the functions not to use Compile.

374

2. Principles of Mathematica « 2.6 Evaluation of Expressions

Compile[{{x;, ti}, {x2, 2}, ... }, expr]

Compile[{{x;, 1, m1}, {x2, t2, m}, ... }, expr]

compile expr assuming that x; is of type t;

compile expr assuming that x; is a rank n; array of objects
each of type t;

Compilel[vars, expr, {{p,, pt;}, ... }]

compile expr, assuming that subexpressions which match p;
are of type pt;

_Integer
_Real
_Complex

True | False

machine-size integer
machine-precision approximate real number
machine-precision approximate complex number

logical variable

Specifying types for compilation.

Compile works by making assumptions about the types of objects that occur in evaluating the
expression you give. The default assumption is that all variables in the expression are approximate

real numbers.

Compile nevertheless also allows integers, complex numbers and logical variables (True or False),
as well as arrays of numbers. You can specify the type of a particular variable by giving a pattern
which matches only values that have that type. Thus, for example, you can use the pattern _Integer
to specify the integer type. Similarly, you can use True | False to specify a logical variable that must

be either True or False.

This compiles the expression 5 i + j
with the assumption that i and j are
integers.

This yields an integer result.

This compiles an expression that
performs an operation on a matrix of
integers.

The list operations are now carried out
in a compiled way, and the result is an
integer.

In[7]:= Compile[{{i, _Integer}, {j, _Integer}}, 5 i + jl
Out[7]= CompiledFunction[{i, j}, 5i+ j, ~CompiledCode-]

In[8]:= %[8, 7]
Out[8]= 47

In[9]:= Compile[{{m, _Integer, 2}}, Apply[Plus, Flatten[m]]]

Out[9]= CompiledFunction[{m},
Plus @@ Flatten[m], -CompiledCode-]

In[10]:= %[{{1, 2, 3}, {7, 8, 9}}]
Out[10]= 30

2.6.15 Compiling Mathematica Expressions 375

The types that Compile handles correspond essentially to the types that computers typically handle
at a machine-code level. Thus, for example, Compile can handle approximate real numbers that have
machine precision, but it cannot handle arbitrary-precision numbers. In addition, if you specify that
a particular variable is an integer, Compile generates code only for the case when the integer is of
“machine size”, typically between +23!.

When the expression you ask to compile involves only standard arithmetic and logical operations,
Compile can deduce the types of objects generated at every step simply from the types of the input
variables. However, if you call other functions, Compile will typically not know what type of value
they return. If you do not specify otherwise, Compile assumes that any other function yields an
approximate real number value. You can, however, also give an explicit list of patterns, specifying
what type to assume for an expression that matches a particular pattern.

This defines a function which yields an In[11]:= com[i_] := Binomial[2i, i]
integer result when given an integer

argument.
This compiles x~com[i] using the In[12]:= Compile[{x, {i, _Integer}}, x~com[i],
assumption that com[_] is always an {{com[_], _Integer}}]
integer. [i]

Out[12]= CompiledFunction[{x, i}, x*°"**', -CompiledCode-]
This evaluates the compiled function. In[13]:= %[5.6, 1]

Out[13]= 31.36

The idea of Compile is to create a function which is optimized for certain types of arguments.
Compile is nevertheless set up so that the functions it creates work with whatever types of arguments
they are given. When the optimization cannot be used, a standard Mathematica expression is evaluated
to find the value of the function.

Here is a compiled function for taking In[14]:= sq = Compile[{x}, Sqrt[x]]

the square root of a variable.
d Out[14]= CompiledFunction[{x}, Vx, —CompiledCode—]

If you give a real number argument, In[15]:= sq[4.5]

optimized code is used. Out[15]= 2.12132

The compiled code cannot be used, so In[16]:= sq[1 + u]

Mathematica prints a warning, then just CompiledFunction: :cfsa:

evaluates the Orlglnal SymbOhC Argument 1 + u at position 1 should be a
expression. machine-size real number.

Out[16]= /1+u

The compiled code generated by Compile must make assumptions not only about the types of
arguments you will supply, but also about the types of all objects that arise during the execution of
the code. Sometimes these types depend on the actual values of the arguments you specify. Thus, for
example, Sqrt[x] yields a real number result for real x if x is not negative, but yields a complex
number if x is negative.

376 2. Principles of Mathematica « 2.6 Evaluation of Expressions

Compile always makes a definite assumption about the type returned by a particular function. If
this assumption turns out to be invalid in a particular case when the code generated by Compile is
executed, then Mathematica simply abandons the compiled code in this case, and evaluates an ordinary
Mathematica expression to get the result.

The compiled code does not expect a In[17]:= sql-4.5]

complex number, so Mathematica has to CompiledFunction: :cfn:

revert to explicitly evaluating the Numerical error encountered at instruction 2;
origina] symbo]ic expressjon_ proceeding with uncompiled evaluation.

Out[17]= 0.+2.121321

An important feature of Compile is that it can handle not only mathematical expressions, but
also various simple Mathematica programs. Thus, for example, Compile can handle conditionals and
control flow structures.

In all cases, Compilel[wvars, expr] holds its arguments unevaluated. This means that you can explic-
itly give a “program” as the expression to compile.

This creates a compiled version of a In[18]:= newt = Compile[{x, {n, _Integer}},

Mathematica program which implements Module[{t}, t = x; Dol[t = (t + x/t)/2, {n}]; t]
Newton’s approximation to square]

roots.

Out[18]= CompiledFunction[{x, n},
Module[{t}, t=x; Do[t = % (c+), 3]s ¢],

—CompiledCode—]

This executes the compiled code. In[19]:= newt[2.4, 6]
Out[19]= 1.54919

H 2.6.16 Advanced Topic: Manipulating Compiled Code

If you use compiled code created by Compile only within Mathematica itself, then you should never
need to know the details of its internal form. Nevertheless, the compiled code can be represented by
an ordinary Mathematica expression, and it is sometimes useful to manipulate it.

For example, you can take compiled code generated by Compile, and feed it to external programs
or devices. You can also create CompiledFunction objects yourself, then execute them in Mathematica.

In all of these cases, you need to know the internal form of CompiledFunction objects. The first
element of a CompiledFunction object is always a list of patterns which specifies the types of argu-
ments accepted by the object. The fifth element of a CompiledFunction object is a Mathematica pure
function that is used if the compiled code instruction stream fails for any reason to give a result.

2.6.16 Advanced Topic: Manipulating Compiled Code 377

CompiledFunction[{arg,, arg,, ... }, {reg,, reg,, ... }, {ny, ni, ny, ne, n;}, instr, func]
compiled code taking arguments of type arg; and executing
the instruction stream instr using ny registers of type k

The structure of a compiled code object.

This shows the explicit form of the In[1]:= Compile[{x}, x~2] // InputForm
compiled code generated by Compile. Out[1]//InputForm= CompiledFunction[{_Real}, {{3, 0, 0}, {3, 0, 1}},
{0, 0, 2, 0, 0}, {{1, 5}, {29, 0, 0, 1}, {2}},

Function[{x}, x~2], Evaluate]

The instruction stream in a CompiledFunction object consists of a list of instructions for a simple
idealized computer. The computer is assumed to have numbered “registers”, on which operations
can be performed. There are five basic types of registers: logical, integer, real, complex and tensor.
For each of these basic types it is then possible to have either a single scalar register or an array
of registers of any rank. A list of the total number of registers of each type required to evaluate a
particular CompiledFunction object is given as the second element of the object.

The actual instructions in the compiled code object are given as lists. The first element is an integer
“opcode” which specifies what operation should be performed. Subsequent elements are either the
numbers of registers of particular types, or literal constants. Typically the last element of the list is
the number of a “destination register”, into which the result of the operation should be put.

378 2. Principles of Mathematica « 2.7 Modularity and the Naming of Things

2.7 Modularity and the Naming of Things

Ml 2.7.1 Modules and Local Variables

Mathematica normally assumes that all your variables are global. This means that every time you use
a name like x, Mathematica normally assumes that you are referring to the same object.

Particularly when you write programs, however, you may not want all your variables to be global.
You may, for example, want to use the name x to refer to two quite different variables in two different
programs. In this case, you need the x in each program to be treated as a local variable.

You can set up local variables in Mathematica using modules. Within each module, you can give a
list of variables which are to be treated as local to the module.

Module[{x, y, ... }, body]l a module with local variables x, y, ...

Creating modules in Mathematica.

This defines the global variable t to In[1]:=t = 17
have value 17. Out[1]= 17
The t inside the module is local, so it In[2]:= Module[{t}, t=8; Print[t]]
can be treated independently of the
8
global t.
The global t still has value 17. In[3]:= ¢
Out[3]= 17

The most common way that modules are used is to set up temporary or intermediate variables
inside functions you define. It is important to make sure that such variables are kept local. If they
are not, then you will run into trouble whenever their names happen to coincide with the names of
other variables.

The intermediate variable t is specified In[4]:= £[v_] := Module[{t}, t = (1 + v)~2; t = Expand[t]]
to be local to the module.
This runs the function f. In[5]:= f[a + b]

Out[5]= 1+2a+a’+2b+2ab+b?

The global t still has value 17. In[6]:= t
Out[6]= 17

You can treat local variables in modules just like other symbols. Thus, for example, you can use
them as names for local functions, you can assign attributes to them, and so on.

2.7.1 Modules and Local Variables 379

This sets up a module which defines a In[7]:= gfac1l0[k_] :=

local function f. Module[{f, n}, f[1] =1; £f[n_] :=k + n £f[n-1]; £[10]]
In this case, the local function f is just In[8]:= gfac10[0]

an ordinary factorial. Out[8]= 3628800

In this case, f is set up as a In[9]:= gfac10[2]

generalized factorial. Out[9]= 8841802

When you set up a local variable in a module, Mathematica initially assigns no value to the variable.
This means that you can use the variable in a purely symbolic way, even if there was a global value
defined for the variable outside the module.

This uses the global value of t defined In[10]:= Expand[(1 + t)~3]
above, and so yields a number. Out[10]= 5832

Here Length simply receives a number In[11]:= Length[Expand[(1 + t)~3]]
as its argument. Out[11]= 0O

The local variable t has no value, so it In[12]:= Module[{t}, Length[Expand[(1 + t)~3]1]]
acts as a symbol, and Expand produces out[12]= 4
the anticipated algebraic result.

Module[{x = xp, ¥ =y,, ... }, body]l] a module with initial values for local variables

Assigning initial values to local variables.

This specifies t to be a local variable, In[13]:= glu_] := Module[{ t =u }, t += t/(1 + u)]
with initial value u.

This uses the definition of g. In[14]:= glal

a
Out[14]= a+
1+a

You can define initial values for any of the local variables in a module. The initial values are always
evaluated before the module is executed. As a result, even if a variable x is defined as local to the
module, the global x will be used if it appears in an expression for an initial value.

The initial value of u is taken to be the In[15]:= Module[{t = 6, u = t}, u~2]
global value of t. Out[15]= 289

lhs := Modulelwars, rhs /; cond] share local variables between rhs and cond

Using local variables in definitions with conditions.

380 2. Principles of Mathematica « 2.7 Modularity and the Naming of Things

When you set up /; conditions for definitions, you often need to introduce temporary variables.
In many cases, you may want to share these temporary variables with the body of the right-hand side
of the definition. Mathematica allows you to enclose the whole right-hand side of your definition in a
module, including the condition.

This defines a function with a In[16]:= h[x_] := Module[{t}, t*2 -1 /; (t =x - 4) > 1]
condition attached.

Mathematica shares the value of the In[17]:= h[10]
local variable t between the condition Out[17]= 35
and the body of the right-hand side.

Hl 2.7.2 Local Constants

With[{x =x0, ¥ =y,, ... }, body]l define local constants x, y, ...

Defining local constants.

Module allows you to set up local variables, to which you can assign any sequence of values. Of-
ten, however, all you really need are local constants, to which you assign a value only once. The
Mathematica With construct allows you to set up such local constants.

This defines a global value for t. In[1]:=t =17
Out[1]= 17
This defines a function using t as a In[2]:=wlx_] := With[{t = x + 1}, t + t~3]

local constant.
This uses the definition of w. In[3]:= wlal
Out[3]= 1+a+(1+a)°
t still has its global value. In[4]:= ¢
Out[4]= 17
Just as in Module, the initial values you define in With are evaluated before the With is executed.

The expression t + 1 which gives the In[5]:= With[{t = t + 1}, t~2]
value of the local constant t is out[5]= 324
evaluated using the global t.

The way With[{x = xo, ... }, body] works is to take body, and replace every occurrence of x, etc.
in it by x¢, etc. You can think of With as a generalization of the /. operator, suitable for application
to Mathematica code instead of other expressions.

This replaces x with a. In[6]:= With[{x = a}, x = 5]
Out[6]= 5

2.7.3 How Modules Work 381

After the replacement, the body of the In[7]:= a

With is a = 5, so a gets the global out[7]= 5

value 5.

This clears the value of a. In[8]:= Clear[a]

In some respects, With is like a special case of Module, in which each local variable is assigned a
value exactly once.

One of the main reasons for using With rather than Module is that it typically makes the Mathematica
programs you write easier to understand. In a module, if you see a local variable x at a particular
point, you potentially have to trace through all of the code in the module to work out the value of
x at that point. In a With construct, however, you can always find out the value of a local constant
simply by looking at the initial list of values, without having to trace through specific code.

If you have several With constructs, it is always the innermost one for a particular variable that is
in effect. You can mix Module and With. The general rule is that the innermost one for a particular
variable is the one that is in effect.

With nested With constructs, the In[9]:= With[{t = 8}, With[{t = 9}, t~2]]
innermost one is always the one in out[9]= 81

effect.

You can mix Module and With In[10]:= Module[{t = 8}, With[{t = 9}, t~2]]
constructs. Out[10]= 81

Local variables in inner constructs do In[11]:= With[{t = a}, With[{u = b}, t + u]]
not mask ones outside unless the Out[11]= a+b

names conflict.

Except for the question of when x and body are evaluated, With[{x = xo}, body] works essentially
like body /. x => xo. However, With behaves in a special way when the expression body itself contains
With or Module constructs. The main issue is to prevent the local constants in the various With
constructs from conflicting with each other, or with global objects. The details of how this is done are
discussed in Section 2.7.3.

The y in the inner With is renamed to In[12]:= With[{x = 2 + y}, Hold[With[{y = 4}, x + y1]]
lgofsgslnt it from conflicting with the Out[12]= Hold[With[{y$ =4}, (2+y) +y$]]
y.

M 2.7.3 How Modules Work

The way modules work in Mathematica is basically very simple. Every time any module is used, a
new symbol is created to represent each of its local variables. The new symbol is given a unique name
which cannot conflict with any other names. The name is formed by taking the name you specify for
the local variable, followed by $, with a unique “serial number” appended.

The serial number is found from the value of the global variable $ModuleNumber. This variable
counts the total number of times any Module of any form has been used.

382 2. Principles of Mathematica « 2.7 Modularity and the Naming of Things

m Module generates symbols with names of the form x$nnn to represent each local variable.

The basic principle of modules in Mathematica.

This shows the symbol generated for t In[1]:= Module[{t}, Print[t]]
within the module.

t$1
The symbols are different every time In[2]:= Module[{t, u}, Print[t]; Print[u]]
any module is used. +$2

u$2

For most purposes, you will never have to deal directly with the actual symbols generated inside
modules. However, if for example you start up a dialog while a module is being executed, then
you will see these symbols. The same is true whenever you use functions like Trace to watch the
evaluation of modules.

You see the symbols that are generated In[3]:= Trace[Module[{t}, t = 3]]

inside modules when you use Trace. Out[3]= {Module[{t}, t=3], {t$3=3, 3}, 3}
This starts a dialog inside a module. In[4]:= Module[{t}, t = 6; Dialog[1]

Inside the dialog, you see the symbols In[5]:= Stack[_]

generated for local variables such as t. Out[5]= {Module[{t}, t =6; Dialog[l]

t$4 = 6; Dialog[], Dialog[l}

You can work with these symbols as In[6]:= t$4 + 1

you would with any other symbols. Out[6]= T

This returns from the dialog. In[7]:= Return[t$4 ~ 2]
Out[4]= 36

Under some circumstances, it is convenient explicitly to return symbols that are generated inside
modules.

You can explicitly return symbols that In[5]:= Module[{t}, t]
are generated inside modules. Out[5]= t$6
You can treat these symbols as you In[6]:= }~2 + 1

would any others. 2
Out[6]= 1+t$6

Unique[x] generate a new symbol with a unique name of the form
x$nnn

Unique[{x, y, ... }] generate a list of new symbols

Generating new symbols with unique names.

2.7.3 How Modules Work 383

The function Unique allows you to generate new symbols in the same way as Module does.
Each time you call Unique, $ModuleNumber is incremented, so that the names of new symbols are
guaranteed to be unique.

This generates a unique new symbol In[7]:= Unique[x]

whose name starts with x. Out[7]= x$7

Each time you call Unique you get a In[8]:= {Unique[x], Unique[x], Unique[x]}
symbol with a larger serial number. Out[8]= {x$8, x$9, x$10}

If you call Unique with a list of names, In[9]:= Unique[{x, xa, xb}]
you get the same serial number for Out[9]= {x$11, xa$1l, xb$11}

each of the symbols.
You can use the standard Mathematica ?name mechanism to get information on symbols that were
generated inside modules or by the function Unique.

Executing this module generates the In[10]:= Module[{q}, q~2 + 1]

bol .
symbol q$nnn Out[10]= 1+q$12°

You can see the generated symbol here. In[11]:= 7q*
q q$12

Symbols generated by Module behave in exactly the same way as other symbols for the purposes of
evaluation. However, these symbols carry the attribute Temporary, which specifies that they should
be removed completely from the system when they are no longer used. Thus most symbols that are
generated inside modules are removed when the execution of those modules is finished. The symbols
survive only if they are explicitly returned.

This shows a new q variable generated In[12]:= Module[{q}, Print[q]]

inside a module.
insi u 9813

The new variable is removed when the In[13]:= 7q*
execution of the module is finished, so $12
it does not show up here. 4

You should realize that the use of names such as x$nnn for generated symbols is purely a con-
vention. You can in principle give any symbol a name of this form. But if you do, the symbol may
collide with one that is produced by Module.

An important point to note is that symbols generated by Module are in general unique only within
a particular Mathematica session. The variable $ModuleNumber which determines the serial numbers
for these symbols is always reset at the beginning of each session.

This means in particular that if you save expressions containing generated symbols in a file, and
then read them into another session, there is no guarantee that conflicts will not occur.

One way to avoid such conflicts is explicitly to set $ModuleNumber differently at the beginning
of each session. In particular, if you set $ModuleNumber = 10~10 $SessionID, you should avoid any
conflicts. The global variable $SessionID should give a unique number which characterizes a partic-

384 2. Principles of Mathematica « 2.7 Modularity and the Naming of Things

ular Mathematica session on a particular computer. The value of this variable is determined from such
quantities as the absolute date and time, the ID of your computer, and, if appropriate, the ID of the
particular Mathematica process.

$ModuleNumber the serial number for symbols generated by Module and
Unique

$SessionID a number that should be different for every Mathematica
session

Variables to be used in determining serial numbers for generated symbols.

Having generated appropriate symbols to represent the local variables you have specified,
Modulel[wars, body] then has to evaluate body using these symbols. The first step is to take the actual
expression body as it appears inside the module, and effectively to use With to replace all occurrences
of each local variable name with the appropriate generated symbol. After this is done, Module actually
performs the evaluation of the resulting expression.

An important point to note is that Modulel[wars, body] inserts generated symbols only into the
actual expression body. It does not, for example, insert such symbols into code that is called from
body, but does not explicitly appear in body.

Section 2.7.6 will discuss how you can use Block to set up “local values” which work in a different
way.
Since x does not appear explicitly in In[14]:= tmp = x~2 + 1; Module[{x = 4}, tmp]

the body of the module, the local value

. Out[14]= 1+%2
is not used.

Most of the time, you will probably set up modules by giving explicit Mathematica input of the
form Module[vars, body]. Since the function Module has the attribute HoldA1l, the form of body will
usually be kept unevaluated until the module is executed.

It is, however, possible to build modules dynamically in Mathematica. The generation of new sym-
bols, and their insertion into body are always done only when a module is actually executed, not when
the module is first given as Mathematica input.

This evaluates the body of the module In[15]:= tmp = x~2 + 1; Module[{x = 4}, Evaluate[tmp]]
immediately, making x appear Out[15]= 17
explicitly.

2.7.4 Advanced Topic: Variables in Pure Functions and Rules 385

H 2.7.4 Advanced Topic: Variables in Pure Functions and Rules

Module and With allow you to give a specific list of symbols whose names you want to treat as local.
In some situations, however, you want to automatically treat certain symbol names as local.

For example, if you use a pure function such as Function[{x}, x + al, you want x to be treated
as a “formal parameter”, whose specific name is local. The same is true of the x that appears in a
rule like f[x_] -> x~2, or a definition like f[x_] := x~2.

Mathematica uses a uniform scheme to make sure that the names of formal parameters which appear
in constructs like pure functions and rules are kept local, and are never confused with global names.
The basic idea is to replace formal parameters when necessary by symbols with names of the form
x$. By convention, x$ is never used as a global name.

Here is a nested pure function. In[1]:= Function[{x}, Function[{y}, x + y]]
Out[1]= Function[{x}, Function[{y}, x+y]l]

Mathematica renames the formal In[2]:= %[2y]

parameter y in the inner function to Out[2]= Functi 2y +
avoid conflict with the global object y. ut[2]= Function[{y$}, 2y+y%]
The resulting pure function behaves as In[3]:= Y[al
it should. Out[3]= a+2y

In general, Mathematica renames the formal parameters in an object like Function[vars, body]
whenever body is modified in any way by the action of another pure function.

The formal parameter y is renamed In[4]:= Function[{x}, Function[{y}, x + y]] [al
becagse the body of the inner pure Out[4]= Function[{y$}, a+y$]
function was changed.

Since the body of the inner function In[5]:= Function[{x}, x + Function[{y}, y~21] [a]
does not change, the formal parameter

= a+ i 2
is not renamed. Out[5]= a+Function[{y}, y°]

Mathematica renames formal parameters in pure functions more liberally than is strictly necessary.
In principle, renaming could be avoided if the names of the formal parameters in a particular function
do not actually conflict with parts of expressions substituted into the body of the pure function. For
uniformity, however, Mathematica still renames formal parameters even in such cases.

In this case, the formal parameter x in In[6]:= Function[{x}, Function[{x}, x + y]] [al

the inner function shields the body of

) et Out[6]= Function[{x}, x+y]
the function, so no renaming is needed. v

Here are three nested functions. In[7]:= Function[{x}, Function[{y}, Function[{z}, x + y + z]]]
Out[7]= Function[{x},
Function[{y}, Function[{z}, x+y+2z]]]
Both inner functions are renamed in In[8]:= %[al
this case. Out[8]= Function[{y$}, Function[{z$}, a +y$+z$]]

386 2. Principles of Mathematica « 2.7 Modularity and the Naming of Things

As mentioned on page 249, pure functions in Mathematica are like A expressions in formal logic.
The renaming of formal parameters allows Mathematica pure functions to reproduce all the semantics
of standard A expressions faithfully.

Function[{x, ... }, body]l local parameters

Ihs => rhs and Ihs :> rhs local pattern names
Ihs = rhs and Ilhs :=rhs local pattern names

With[{x = x¢, ... }, body]l local constants
Module[{x, ... }, body]l local variables

Scoping constructs in Mathematica.

Mathematica has several “scoping constructs” in which certain names are treated as local. When
you mix these constructs in any way, Mathematica does appropriate renamings to avoid conflicts.

Mathematica renames the formal In[9]:= With[{x = a}, Function[{a}, a + x]]

parameter of .the pure function to Out[9]= Function[{a$}, a$+a]
avoid a conflict.

Here the local constant in the inner In[10]:= With[{x = y}, Hold[With[{y = 4}, x + y]]]
With is renamed to avoid a conflict. Out[10]= Hold[With[{y$ =4}, y+y$1]
There is no conflict between names in In[11]:= With[{x = y}, Hold[With[{z = x + 2}, z + 2]]]

this case, so no renaming is done. Out[11]= Hold[With[{z =y +2}, z+2]]
The local variable y in the module is In[12]:= With[{x = y}, Hold[Module[{y}, x + y11]
renamed to avoid a conflict. Out[12]= Hold[Module[{y$}, y+y$1]

If you execute the module, however, In[13]:= ReleaseHold[%]
the loc.al variable is renamed again to Out[13]= y+y$1
make its name unique.

Mathematica treats transformation rules as scoping constructs, in which the names you give to
patterns are local. You can set up named patterns either using x_, x__ and so on, or using x:patt.

The x in the h goes with the x_, and is In[14]:= With[{x = 5}, glx_, x] -> h[x]]
considered local to the rule. Out[14]= glx_, 5] > h[x]

In a rule like £f[x_] -> x + y, the x which appears on the right-hand side goes with the name of
the x_ pattern. As a result, this x is treated as a variable local to the rule, and cannot be modified by
other scoping constructs.

The y, on the other hand, is not local to the rule, and can be modified by other scoping constructs.
When this happens, Mathematica renames the patterns in the rule to prevent the possibility of a conflict.

2.7.5 Dummy Variables in Mathematics 387

Mathematica renames the x in the rule In[15]:= With[{w = x}, f[x_] -> w + x]
to prevent a conflict. Out[15]= £[x$.] - x+x$

When you use With on a scoping construct, Mathematica automatically performs appropriate renam-
ings. In some cases, however, you may want to make substitutions inside scoping constructs, without
any renaming. You can do this using the /. operator.

When you substitute for y using With, In[16]:= With[{y = x + a}, Function[{x}, x + y]]
the x in the pure function is renamed

) Out[16]= Function[{x$}, x$+ (a+x)]
to prevent a conflict.

If you use /. rather than With, no In[17]:= Function[{x}, x +y]l /. y > a + x

such renaming is done. Out[17]= Function[{x}, x+ (a+x)]

When you apply a rule such as f[x_1 -> rhs, or use a definition such as f[x_] := rhs, Mathematica
implicitly has to substitute for x everywhere in the expression rhs. It effectively does this using the
/. operator. As a result, such substitution does not respect scoping constructs. However, when the
insides of a scoping construct are modified by the substitution, the other variables in the scoping
construct are renamed.

This defines a function for creating In[18]:= mkfun[var_, body_] := Function[{var}, body]
pure functions.

The x and x~2 are explicitly inserted In[19]:= mkfun[x, x~2]
into the pure function, effectively by

= i 2
using the /. operator. Out[19]= Function[{x}, x"]

This defines a function that creates a In[20]:= mkfun2[var_, body_] := Function[{x},
pair of nested pure functions. Function[{var}, body + x]]
The x in the outer pure function is In[21]:= mkfun2[x, x~2]

renamed in this case. Out[21]= Function[{x$}, Function[{x}, x* +x$]]

H 2.7.5 Dummy Variables in Mathematics

When you set up mathematical formulas, you often have to introduce various kinds of local objects
or “dummy variables”. You can treat such dummy variables using modules and other Mathematica
scoping constructs.

Integration variables are a common example of dummy variables in mathematics. When you write
down a formal integral, conventional notation requires you to introduce an integration variable with
a definite name. This variable is essentially “local” to the integral, and its name, while arbitrary, must
not conflict with any other names in your mathematical expression.

Here is a function for evaluating an In[1]:= p[n_] := Integrate[f[s] s~n, {s, 0, 1}]
integral.

388 2. Principles of Mathematica « 2.7 Modularity and the Naming of Things

The s here conflicts with the In[2]:=pls + 1]
integration variable.

1
Out[2]= fs“sf[s] ds
0

Here is a definition with the In[3]:= pm[n_] := Module[{s}, Integrate[f[s] s~n, {s, 0, 1}]]
integration variable specified as local to
a module.
Since you have used a module, In[4]:= pmls + 1]
Mathematica automatically renames the .
integration variable to avoid a conflict. Out[4]= f £$2421° £[s$242] ds$242
0

In many cases, the most important issue is that dummy variables should be kept local, and should
not interfere with other variables in your mathematical expression. In some cases, however, what is
instead important is that different uses of the same dummy variable should not conflict.

Repeated dummy variables often appear in products of vectors and tensors. With the “summation
convention”, any vector or tensor index that appears exactly twice is summed over all its possible
values. The actual name of the repeated index never matters, but if there are two separate repeated
indices, it is essential that their names do not conflict.

This sets up the repeated index j as a In[5]:=ql[i_] := Module[{j}, ali, j] b[jl]
dummy variable.

The module gives different instances of In[6]:=q[i1] q[i2]
the dummy variable different names. Out[6]= alil, j$387] al[i2, j$388] b[j$387] b[j$388]

There are many situations in mathematics where you need to have variables with unique names.
One example is in representing solutions to equations. With an equation like sin(x) = O, there are
an infinite number of solutions, each of the form x = nx, where n is a dummy variable that can be
equal to any integer. If you generate solutions to the equation on two separate occasions, there is no
guarantee that the value of n should be the same in both cases. As a result, you must set up the
solution so that the object 7 is different every time.

This defines a value for sinsol, with n In[7]:= sinsol := Module[{n}, n Pi]
as a dummy variable.

Different occurrences of the dummy In[8]:= sinsol - sinsol
variable are distinguished. Out[8]= n$389 1t - n$390 1

Another place where unique objects are needed is in representing “constants of integration”. When
you do an integral, you are effectively solving an equation for a derivative. In general, there are
many possible solutions to the equation, differing by additive “constants of integration”. The standard
Mathematica Integrate function always returns a solution with no constant of integration. But if you
were to introduce constants of integration, you would need to use modules to make sure that they
are always unique.

2.7.6 Blocks and Local Values 389

H 2.7.6 Blocks and Local Values

Modules in Mathematica allow you to treat the names of variables as local. Sometimes, however, you
want the names to be global, but values to be local. You can do this in Mathematica using Block.

Block[{x, vy, ... }, body]l evaluate body using local values for x, y, ...
Block[{x =x0, ¥y =¥,, ... }, body] assign initial values to x, y, ...

Setting up local values.

Here is an expression involving x. In[1]:=x~2 + 3

Out[1]= 3+x?

This evaluates the previous expression, In[2]:= Block[{x = a + 1}, %]
using a local value for x.

out[2]= 3+ (1+a)’
There is no global value for x. In[3]:= x
Out[3]= x

As described in the sections above, the variable x in a module such as Module[{x}, body] is always
set up to refer to a unique symbol, different each time the module is used, and distinct from the global
symbol x. The x in a block such as Block[{x}, body] is, however, taken to be the global symbol x.
What the block does is to make the value of x local. The value x had when you entered the block is
always restored when you exit the block. And during the execution of the block, x can take on any
value.

This sets the symbol t to have In[4]:=t =17
value 17. out[4]= 17
Variables in modules have unique local In[5]:= Module[{t}, Print[t]]
names.
t$1
In blocks, variables retain their global In[6]:= Block[{t}, Print[t]]
names, but can have local values. .
t is given a local value inside the In[7]:= Block[{t}, t = 6; t~4 + 1]
block. Out[7]= 1297
When the execution of the block is In[8]:=t
over, the previous value of t is out[8]= 17

restored.

Blocks in Mathematica effectively allow you to set up “environments” in which you can temporarily
change the values of variables. Expressions you evaluate at any point during the execution of a block
will use the values currently defined for variables in the block. This is true whether the expressions
appear directly as part of the body of the block, or are produced at any point in its evaluation.

390 2. Principles of Mathematica « 2.7 Modularity and the Naming of Things

This defines a delayed value for the
symbol u.

If you evaluate u outside a block, the
global value for t is used.

You can specify a temporary value for

In[9]:=u := x~2 + t~2

In[10]:=u
Out[10]= 289 +x2

In[11]:= Block[{t = 5}, u + 7]

t to use inside the block. Out[11]= 32+x2

An important implicit use of Block in Mathematica is for iteration constructs such as Do, Sum and
Table. Mathematica effectively uses Block to set up local values for the iteration variables in all of
these constructs.

In[12]:= Sum[t~2, {t, 10}]
Out[12]= 385

Sum automatically makes the value of
the iterator t local.

In[13]:= Sum[a[1]~2, {a[1], 10}]
Out[13]= 385

The local values in iteration constructs
are slightly more general than in
Block. They handle variables such as
a[1], as well as pure symbols.

When you set up functions in Mathematica, it is sometimes convenient to have “global variables”
which can affect the functions without being given explicitly as arguments. Thus, for example, Mathe-
matica itself has a global variable $RecursionLimit which affects the evaluation of all functions, but
is never explicitly given as an argument.

Mathematica will usually keep any value you define for a global variable until you explicitly change
it. Often, however, you want to set up values which last only for the duration of a particular com-
putation, or part of a computation. You can do this by making the values local to a Mathematica
block.

This defines a function which depends
on the “global variable” t.

In[14]:= f[x_] := x*2 + t

In this case, the global value of t is In[15]:= f[al

used. Out[15]= 17 +a?

In[16]:= Block[{t = 2}, £f[b]]
Out[16]= 2+1b?

Inside a block, you can set up a local
value for t.

You can use global variables not only to set parameters in functions, but also to accumulate results
from functions. By setting up such variables to be local to a block, you can arrange to accumulate
results only from functions called during the execution of the block.

This function increments the global In[17]:= hlx_] := (t += x~2)
variable t, and returns its current

value.

2.7.7 Blocks Compared with Modules 391

If you do not use a block, evaluating In[18]:= h[al

h[a] changes the global value of t. Out[18]= 17 +a>

With a block, only the local value of t In[19]:= Block[{t = 0}, h[c]]
is affected. Out[19]= c2
The global value of t remains In[20]:= ¢

unchanged. Out[20]= 17 +a2
When you enter a block such as Block[{x}, body], any value for x is removed. This means that

you can in principle treat x as a “symbolic variable” inside the block. However, if you explicitly return

x from the block, it will be replaced by its value outside the block as soon as it is evaluated.

The value of t is removed when you In[21]:= Block[{t}, Print[Expand[(t + 1)~2]1]]

enter the block. 5
1+2t+t

If you return an expression involving In[22]:= Block[{t}, t~2 - 3]
t, however, it is evaluated using the 12
global value for t. Out[22]= -3+ (17+a%)

H 2.7.7 Blocks Compared with Modules

When you write a program in Mathematica, you should always try to set it up so that its parts are as

independent as possible. In this way, the program will be easier for you to understand, maintain and
add to.

One of the main ways to ensure that different parts of a program do not interfere is to give their
variables only a certain “scope”. Mathematica provides two basic mechanisms for limiting the scope
of variables: modules and blocks.

In writing actual programs, modules are far more common than blocks. When scoping is needed
in interactive calculations, however, blocks are often convenient.

Module[wvars, body] lexical scoping

Block[wvars, body] dynamic scoping

Mathematica variable scoping mechanisms.

Most traditional computer languages use a so-called “lexical scoping” mechanism for variables,
which is analogous to the module mechanism in Mathematica. Some symbolic computer languages
such as LISP also allow “dynamic scoping”, analogous to Mathematica blocks.

392 2. Principles of Mathematica « 2.7 Modularity and the Naming of Things

When lexical scoping is used, variables are treated as local to a particular section of the code in a
program. In dynamic scoping, the values of variables are local to a part of the execution history of the
program.

In compiled languages like C and Java, there is a very clear distinction between “code” and “ex-
ecution history”. The symbolic nature of Mathematica makes this distinction slightly less clear, since
“code” can in principle be built up dynamically during the execution of a program.

What Modulel[wvars, body] does is to treat the form of the expression body at the time when the
module is executed as the “code” of a Mathematica program. Then when any of the vars explicitly
appears in this “code”, it is considered to be local.

Block[wvars, body] does not look at the form of the expression body. Instead, throughout the evalu-
ation of body, the block uses local values for the vars.

This defines m in terms of i. In[1]:=m = ir2

Out[1]= i?
The local value for i in the block is In[2]:= Block[{i = a}, i + m]
1ils$dmthroughout the evaluation of Out[2]= a+a’

Here only the i that appears explicitly In[3]:= Module[{i = a}, i + m]

ini+mis tr local variable.
in i + m is treated as a local variable Out[3]= a+i?

Hl 2.7.8 Contexts

It is always a good idea to give variables and functions names that are as explicit as possible.
Sometimes, however, such names may get inconveniently long.

In Mathematica, you can use the notion of “contexts” to organize the names of symbols. Contexts
are particularly important in Mathematica packages which introduce symbols whose names must not
conflict with those of any other symbols. If you write Mathematica packages, or make sophisticated
use of packages that others have written, then you will need to know about contexts.

The basic idea is that the full name of any symbol is broken into two parts: a context and a short
name. The full name is written as context*short, where the * is the backquote or grave accent character
(ASCII decimal code 96), called a “context mark” in Mathematica.

Here is a symbol with short name x, In[1]:= aaaa‘x

and context aaaa. Out[1]= aaaa‘x

You can use this symbol just like any In[2]:= §*2 - %

other symbol.)

Out[2]= -aaaa‘x+aaaa‘x

You can for example define a value for In[3]:= aaaa‘x = 78
the symbol. out[3]= 78

2.7.8 Contexts 393

Mathematica treats a*x and b‘x as In[4]:= a*x == b*x
completely different symbols. Out[4]= a‘x ==Db'x

It is typical to have all the symbols that relate a particular topic in a particular context. Thus, for
example, symbols that represent physical units might have a context PhysicalUnits". Such symbols
might have full names like PhysicalUnits*Joule or PhysicalUnits‘Mole.

Although you can always refer to a symbol by its full name, it is often convenient to use a shorter
name.

At any given point in a Mathematica session, there is always a current context $Context. You can
refer to symbols that are in this context simply by giving their short names.

The default context for Mathematica In[5]:= $Context
sessions is Global*. Out[5]= Global®
Short names are sufficient for symbols In[6]:= {x, Global‘x}

that are in the current context. Outl6]= {x, x}

Contexts in Mathematica work somewhat like file directories in many operating systems. You can
always specify a particular file by giving its complete name, including its directory. But at any given
point, there is usually a current working directory, analogous to the current Mathematica context. Files
that are in this directory can then be specified just by giving their short names.

Like directories in many operating systems, contexts in Mathematica can be hierarchical. Thus, for
example, the full name of a symbol can involve a sequence of context names, as in c; ‘¢, ‘c3 “name.

context name or c;‘cy’ ... ‘name a symbol in an explicitly specified context
‘name a symbol in the current context

‘context*name or “c;cp ... ‘name a symbol in a specific context relative to the current
context

name a symbol in the current context, or found on the
context search path

Specifying symbols in various contexts.

Here is a symbol in the context a*b*. In[7]:= a*b*x
Out[7]= a‘b x

When you start a Mathematica session, the default current context is Global‘. Symbols that you
introduce will usually be in this context. However, built-in symbols such as Pi are in the context
System*.

394 2. Principles of Mathematica « 2.7 Modularity and the Naming of Things

In order to let you easily access not only symbols in the context Global®, but also in contexts such
as System®, Mathematica supports the notion of a context search path. At any point in a Mathematica ses-
sion, there is both a current context $Context, and also a current context search path $ContextPath.
The idea of the search path is to allow you to type in the short name of a symbol, then have
Mathematica search in a sequence of contexts to find a symbol with that short name.

The context search path for symbols in Mathematica is analogous to the “search path” for program
files provided in operating systems such as Unix and MS-DOS.

The default context path includes the In[8]:= $ContextPath
contexts for system-defined symbols. Out[8]= {Global®, System'}

When you type in Pi, Mathematica In[9]:= Context[Pi]
interprets it as the symbol with full Out[9]= System®
name System‘Pi.

Context[s] the context of a symbol
$Context the current context in a Mathematica session
$ContextPath the current context search path

Contexts[] a list of all contexts

Finding contexts and context search paths.

When you use contexts in Mathematica, there is no reason that two symbols which are in different
contexts cannot have the same short name. Thus, for example, you can have symbols with the short
name Mole both in the context PhysicalUnits‘ and in the context BiologicalOrganisms"*.

There is, however, then the question of which symbol you actually get when you type in only the
short name Mole. The answer to this question is determined by which of the contexts comes first in
the sequence of contexts listed in the context search path.

This introduces two symbols, both with In[10]:= {PhysicalUnits‘Mole, BiologicalOrganisms‘Mole}

short name Mole. Out[10]= {PhysicalUnits‘Mole, BiologicalOrganisms Mole}

This adds two additional contexts to In[11]:= $ContextPath =
$ContextPath. Join[$ContextPath,
{"PhysicalUnits‘", "BiologicalOrganisms‘"}]

Out[11]= {Global‘, System",

PhysicalUnits‘, BiologicalOrganisms‘}

Now if you type in Mole, you get the In[12]:= Context[Molel
symbol in the context PhysicalUnits"*. Out[12]= PhysicalUnits®

In general, when you type in a short name for a symbol, Mathematica assumes that you want the
symbol with that name whose context appears earliest in the context search path. As a result, symbols

2.7.8 Contexts 395

with the same short name whose contexts appear later in the context search path are effectively
“shadowed”. To refer to these symbols, you need to use their full names.

Mathematica always warns you when you introduce new symbols that “shadow” existing sym-
bols with your current choice for $ContextPath. If you use a notebook front end, Mathematica will
typically let you select in such cases which symbol you want to keep.

This introduces a symbol with short In[13]:= Global‘Mole

name Molg in the context Global:. Mole: : shdw:

Mathematica warns you that the new Symbol Mole appears in multiple contexts
symbol shadows existing symbols with {Global*, P<<11>>s‘, BiologicalOrganisms'}
short name Mole ; definitions in context Global®

may shadow or be shadowed by other definitioms.

Out[13]= Mole

Now when you type in Mole, you get In[14]:= Context[Mole]
the symbol in context Global®. Out[14]= Global®

If you once introduce a symbol which shadows existing symbols, it will continue to do so until
you either rearrange $ContextPath, or explicitly remove the symbol. You should realize that it is not
sufficient to clear the value of the symbol; you need to actually remove the symbol completely from
Mathematica. You can do this using the function Remove[s].

Clear[s] clear the values of a symbol

Remove[s] remove a symbol completely from the system

Clearing and removing symbols in Mathematica.

This removes the symbol Global‘Mole. In[15]:= Remove[Mole]
Now if you type in Mole, you get the In[16]:= Context[Mole]
symbol PhysicalUnits‘Mole. Out[16]= PhysicalUnits®

When Mathematica prints out the name of a symbol, it has to choose whether to give the full name,
or just the short name. What it does is to give whatever version of the name you would have to type
in to get the particular symbol, given your current settings for $Context and $ContextPath.

The short name is printed for the first In[17]:= {PhysicalUnits‘Mole, BiologicalOrganisms‘Mole}

symbol, so this would give that symbol

. . Out[17]= {Mole, BiologicalOrganisms‘Mole}
if you typed it in. & &

If you type in a short name for which there is no symbol either in the current context, or in any
context on the context search path, then Mathematica has to create a new symbol with this name. It
always puts new symbols of this kind in the current context, as specified by $Context.

This introduces the new symbol with In[18]:= tree
short name tree. Out[18]= tree

396 2. Principles of Mathematica « 2.7 Modularity and the Naming of Things

Mathematica puts tree in the current In[19]:= Context[treel
context Global®. Out[19]= Global®

H 2.7.9 Contexts and Packages

A typical package written in Mathematica introduces several new symbols intended for use outside the
package. These symbols may correspond for example to new functions or new objects defined in the
package.

There is a general convention that all new symbols introduced in a particular package are put into
a context whose name is related to the name of the package. When you read in the package, it adds
this context at the beginning of your context search path $ContextPath.

This reads in a package for finding In[1]:= <<Calculus‘Pade‘
Padé approximants.
The package prepends its context to In[2]:= $ContextPath
$ContextPath. Out[2]= {Calculus‘Pade‘, Global“‘, System‘}
The symbol Pade is in the context set In[3]:= Context[Pade]
up by the package. Out[3]= Calculus‘Pade®
You can refer to the symbol using its In[4]:= Pade[Exp[x], {x, 0, 2, 4}]
short name. . w
1+ %+ %
Outf4]- — T
1-2x, 2 _x x
3 75 T30 T 360

The full names of symbols defined in packages are often quite long. In most cases, however, you
will only need to use their short names. The reason for this is that after you have read in a package,
its context is added to $ContextPath, so the context is automatically searched whenever you type in
a short name.

There is a complication, however, when two symbols with the same short name appear in two
different packages. In such a case, Mathematica will warn you when you read in the second package.
It will tell you which symbols will be “shadowed” by the new symbols that are being introduced.

The symbol Pade in the context In[5]:= <<NewPade"

Calculus'Pade" is shadowed by tl}e Pade: : shdw:

Symb01 with the same short name in Symbol Pade appears in multiple contexts

the new Package. {NewPade‘, Calculus‘Pade‘}; definitions in context
NewPade' may shadow or be shadowed by other
definitions.

You can access the shadowed symbol In[6]:= Calculus‘Pade‘Pade[Exp[x], {x, 0, 2, 4}]

by giving its full name.)

Out[6]= : 30

x2 x3 x4

1-2x, 2 _x o x
3 75 T30 T 360

2.7.10 Setting Up Mathematica Packages 397

Contflicts can occur not only between symbols in different packages, but also between symbols in
packages and symbols that you introduce directly in your Mathematica session. If you define a symbol
in your current context, then this symbol will shadow any other symbol with the same short name in
packages that you read in. The reason for this is that Mathematica always searches for symbols in the
current context before looking in contexts on the context search path.

This defines a function in the current In[7]:=Div[£f_] = 1/£
context. 1
Out[7]= —
ut[7] r
Any other functions with short name In[8]:= <<Calculus‘VectorAnalysis"‘

Div will be shadowed by the one in Div::shdw: Symbol Div appears in multiple contexts

your current context. {Calculus‘VectorAnalysis‘, Global‘}
; definitions in context Calculus‘VectorAnalysis®
may shadow or be shadowed by other definitionms.

This sets up the coordinate system for In[9]:= SetCoordinates[Cartesian[x, y, z]]

vector analysis. Out[9]= Cartesian[x, y, z]

This removes Div completely from the In[10]:= Clear[Div]; Remove[Div]
current context.

Now the Div from the package is used. In[11]:= Div[{x, y»2, x}]
Out[11]= 1+2y

If you get into the situation where unwanted symbols are shadowing the symbols you want, the
best thing to do is usually to get rid of the unwanted symbols using Remove[s]. An alternative that is
sometimes appropriate is to rearrange the entries in $ContextPath and to reset the value of $§Context
so as to make the contexts that contain the symbols you want be the ones that are searched first.

$Packages a list of the contexts corresponding to all packages loaded
into your Mathematica session

Getting a list of packages.

H 2.7.10 Setting Up Mathematica Packages

In a typical Mathematica package, there are generally two kinds of new symbols that are introduced.
The first kind are ones that you want to “export” for use outside the package. The second kind are
ones that you want to use only internally within the package. You can distinguish these two kinds of
symbols by putting them in different contexts.

The usual convention is to put symbols intended for export in a context with a name Package* that
corresponds to the name of the package. Whenever the package is read in, it adds this context to the
context search path, so that the symbols in this context can be referred to by their short names.

398 2. Principles of Mathematica « 2.7 Modularity and the Naming of Things

Symbols that are not intended for export, but are instead intended only for internal use within the
package, are conventionally put into a context with the name Package*Private®. This context is not
added to the context search path. As a result, the symbols in this context cannot be accessed except

by giving their full names.

Package®
Package*Private®
System*

Needed; , Needed,", ...

symbols for export
symbols for internal use only
built-in Mathematica symbols

other contexts needed in the package

Contexts conventionally used in Mathematica packages.

There is a standard sequence of Mathematica commands that is typically used to set up the contexts
in a package. These commands set the values of $Context and $ContextPath so that the new symbols
which are introduced are created in the appropriate contexts.

BeginPackagel "Package*"]

f::usage = "text", ...
Begin["‘Private‘"]
flargs] = value, ...
End[]

EndPackage[]

set Package® to be the current context, and put only System*
on the context search path

introduce the objects intended for export (and no others)
set the current context to Package*Private®

give the main body of definitions in the package

revert to the previous context (here Package*)

end the package, prepending the Package® to the context
search path

The standard sequence of context control commands in a package.

2.7.10 Setting Up Mathematica Packages 399

|
BeginPackage["Collatz "]

Collatz::usage =
"Collatz[n] gives a list of the iterates in the 3n+1 problem,
starting from n. The conjecture is that this sequence always
terminates."

Begin["‘Private*"]

Collatz[1] := {1}

Collatz[n_Integer] := Prepend[Collatz[3 n + 1], n] /; 0ddQ[n] & n > 0

Collatz[n_Integer] := Prepend[Collatz[n/2], n] /; EvenQ[n] & n > 0

End[]

EndPackagel]
| |

The sample package Collatz.m.

Defining usage messages at the beginning of a package is the standard way of making sure that
symbols you want to export are created in the appropriate context. The way this works is that in
defining these messages, the only symbols you mention are exactly the ones you want to export.
These symbols are then created in the context Package®, which is then current.

In the actual definitions of the functions in a package, there are typically many new symbols,
introduced as parameters, temporary variables, and so on. The convention is to put all these symbols
in the context Package*Private®, which is not put on the context search path when the package is
read in.

This reads in the sample package given In[1]:= <<Collatz.m

above.
The EndPackage command in the In[2]:= $ContextPath
package adds the context associated Out[2]= {Collatz", Global®, System'}
with the package to the context search ’ ’
path.
The Collatz function was created in In[3]:= Context[Collatz]
the context Collatz". Out[3]= Collatz®
The parameter n is put in the private In[4]:= 7Collatz‘Private‘*
context Collatz‘Private". X
Collatz‘Private‘n

In the Collatz package, the functions that are defined depend only on built-in Mathematica func-
tions. Often, however, the functions defined in one package may depend on functions defined in
another package.

400 2. Principles of Mathematica « 2.7 Modularity and the Naming of Things

Two things are needed to make this work. First, the other package must be read in, so that the
functions needed are defined. And second, the context search path must include the context that these
functions are in.

You can explicitly tell Mathematica to read in a package at any point using the command <<context*.
(Section 2.12.5 discusses the tricky issue of translation from system-independent context names to
system-dependent file names.) Often, however, you want to set it up so that a particular package is
read in only if it is needed. The command Needs["context*"] tells Mathematica to read in a package
if the context associated with that package is not already in the list $Packages.

Get["context*"] or <<context® read in the package corresponding to the specified context

Needs["context*"] read in the package if the specified context is not already in
$Packages
