
Chapter 2

Fibonacci Numbers

Fibonacci numbers introduce vectors, functions and recursion. An exercise intro-
duces graphics user interfaces.

Leonardo Pisano Fibonacci was born around 1170 and died around 1250 in
Pisa in what is now Italy. He traveled extensively in Europe and Northern Africa.
He wrote several mathematical texts that, among other things, introduced Europe
to the Hindu-Arabic notation for numbers. Even though his books had to be tran-
scribed by hand, they were widely circulated. In his best known book, Liber Abaci,
published in 1202, he posed the following problem:

A man put a pair of rabbits in a place surrounded on all sides by a wall.
How many pairs of rabbits can be produced from that pair in a year if it
is supposed that every month each pair begets a new pair which from the
second month on becomes productive?

Today the solution to this problem is known as the Fibonacci sequence, or
Fibonacci numbers. There is a small mathematical industry based on Fibonacci
numbers. A search of the Internet for “Fibonacci” will find dozens of Web sites and
hundreds of pages of material. There is even a Fibonacci Association that publishes
a scholarly journal, the Fibonacci Quarterly.

If Fibonacci had not specified a month for the newborn pair to mature, he
would not have a sequence named after him. The number of pairs would simply
double each month. After n months there would be 2n pairs of rabbits. That’s a
lot of rabbits, but not distinctive mathematics.

Let fn denote the number of pairs of rabbits after n months. The key fact is
that the number of rabbits at the end of a month is the number at the beginning
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of the month plus the number of births produced by the mature pairs:

fn = fn−1 + fn−2.

The initial conditions are that in the first month there is one pair of rabbits and in
the second there are two pairs:

f1 = 1, f2 = 2.

The following Matlab function, stored in the M-file fibonacci.m, produces
a vector containing the first n Fibonacci numbers.

function f = fibonacci(n)
% FIBONACCI Fibonacci sequence
% f = FIBONACCI(n) generates the first n Fibonacci numbers.
f = zeros(n,1);
f(1) = 1;
f(2) = 2;
for k = 3:n

f(k) = f(k-1) + f(k-2);
end

With these initial conditions, the answer to Fibonacci’s original question about the
size of the rabbit population after one year is given by

fibonacci(12)

This produces

1
2
3
5
8

13
21
34
55
89

144
233

The answer is 233 pairs of rabbits. (It would be 4096 pairs if the number doubled
every month for 12 months.)

Let’s look carefully at fibonacci.m. It’s a good example of how to create a
Matlab function. The first line is

function f = fibonacci(n)

The first word on the first line says fibonacci.m is a function, not a script. The
remainder of the first line says this particular function produces one output result,
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f, and takes one input argument, n. The name of the function specified on the first
line is not actually used, because Matlab looks for the name of the M-file, but it
is common practice to have the two match. The next two lines are comments that
provide the text displayed when you ask for help.

help fibonacci

produces

FIBONACCI Fibonacci sequence
f = FIBONACCI(n) generates the first n Fibonacci numbers.

The name of the function is in uppercase because historically Matlab was case
insensitive and ran on terminals with only a single font. The use of capital letters
may be confusing to some first-time Matlab users, but the convention persists. It
is important to repeat the input and output arguments in these comments because
the first line is not displayed when you ask for help on the function.

The next line

f = zeros(n,1);

creates an n-by-1 matrix containing all zeros and assigns it to f. In Matlab, a
matrix with only one column is a column vector and a matrix with only one row is
a row vector.

The next two lines,

f(1) = 1;
f(2) = 2;

provide the initial conditions.
The last three lines are the for statement that does all the work.

for k = 3:n
f(k) = f(k-1) + f(k-2);

end

We like to use three spaces to indent the body of for and if statements, but other
people prefer two or four spaces, or a tab. You can also put the entire construction
on one line if you provide a comma after the first clause.

This particular function looks a lot like functions in other programming lan-
guages. It produces a vector, but it does not use any of the Matlab vector or
matrix operations. We will see some of these operations soon.

Here is another Fibonacci function, fibnum.m. Its output is simply the nth
Fibonacci number.

function f = fibnum(n)
% FIBNUM Fibonacci number.
% FIBNUM(n) generates the nth Fibonacci number.
if n <= 1

f = 1;
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else
f = fibnum(n-1) + fibnum(n-2);

end

The statement

fibnum(12)

produces

ans =
233

The fibnum function is recursive. In fact, the term recursive is used in both a
mathematical and a computer science sense. The relationship fn = fn−1 + fn−2 is
known as a recursion relation and a function that calls itself is a recursive function.

A recursive program is elegant, but expensive. You can measure execution
time with tic and toc. Try

tic, fibnum(24), toc

Do not try

tic, fibnum(50), toc

Now compare the results produced by goldfract(6) and fibonacci(7). The
first contains the fraction 21/13 while the second ends with 13 and 21. This is not
just a coincidence. The continued fraction is collapsed by repeating the statement

p = p + q;

while the Fibonacci numbers are generated by

f(k) = f(k-1) + f(k-2);

In fact, if we let φn denote the golden ratio continued fraction truncated at n terms,
then

fn+1

fn
= φn.

In the infinite limit, the ratio of successive Fibonacci numbers approaches the golden
ratio:

lim
n→∞

fn+1

fn
= φ.

To see this, compute 40 Fibonacci numbers.

n = 40;
f = fibonacci(n);

Then compute their ratios.
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f(2:n)./f(1:n-1)

This takes the vector containing f(2) through f(n) and divides it, element by
element, by the vector containing f(1) through f(n-1). The output begins with

2.00000000000000
1.50000000000000
1.66666666666667
1.60000000000000
1.62500000000000
1.61538461538462
1.61904761904762
1.61764705882353
1.61818181818182

and ends with

1.61803398874990
1.61803398874989
1.61803398874990
1.61803398874989
1.61803398874989

Do you see why we chose n = 40? Use the up arrow key on your keyboard to bring
back the previous expression. Change it to

f(2:n)./f(1:n-1) - phi

and then press the Enter key. What is the value of the last element?
The population of Fibonacci’s rabbit pen doesn’t double every month; it is

multiplied by the golden ratio every month.
It is possible to find a closed-form solution to the Fibonacci number recurrence

relation. The key is to look for solutions of the form

fn = cρn

for some constants c and ρ. The recurrence relation

fn = fn−1 + fn−2

becomes

ρ2 = ρ + 1.

We’ve seen this equation in the chapter on the Golden Ratio. There are two possible
values of ρ, namely φ and 1− φ. The general solution to the recurrence is

fn = c1φ
n + c2(1− φ)n.

The constants c1 and c2 are determined by initial conditions, which are now
conveniently written

f0 = c1 + c2 = 1,

f1 = c1φ + c2(1− φ) = 1.
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One of the exercises asks you to use the Matlab backslash operator to solve this
2-by-2 system of simultaneous linear equations, but it is may be easier to solve the
system by hand:

c1 =
φ

2φ− 1
,

c2 = − (1− φ)
2φ− 1

.

Inserting these in the general solution gives

fn =
1

2φ− 1
(φn+1 − (1− φ)n+1).

This is an amazing equation. The right-hand side involves powers and quo-
tients of irrational numbers, but the result is a sequence of integers. You can check
this with Matlab.

n = (1:40)’;
f = round((phi.^(n+1) - (1-phi).^(n+1))/(2*phi-1))

The .^ operator is an element-by-element power operator. It is not necessary to
use ./ for the final division because (2*phi-1) is a scalar quantity. Roundoff error
prevents the results from being exact integers, so the round function is used to
convert floating point quantities to nearest integers. The resulting f begins with

f =
1
2
3
5
8

13
21
34

and ends with

5702887
9227465

14930352
24157817
39088169
63245986

102334155
165580141

Exercises

2.1 Waltz. Which Fibonacci numbers are even? Why?
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2.2 Backslash. Use the Matlab backslash operator to solve the 2-by-2 system of
simultaneous linear equations

c1 + c2 = 1,
c1φ + c2(1− φ) = 1

for c1 and c2. You can find out about the backslash operator by taking a peek at
the Linear Equations chapter, or with the commands

help \
help slash

2.3 Logarithmic plot. The statement

semilogy(fibonacci(18),’-o’)

makes a logarithmic plot of Fibonacci numbers versus their index. The graph is
close to a straight line. What is the slope of this line?

2.4 Execution time. How does the execution time of fibnum(n) depend on the
execution time for fibnum(n-1) and fibnum(n-2)? Use this relationship to obtain
an approximate formula for the execution time of fibnum(n) as a function of n.
Estimate how long it would take your computer to compute fibnum(50). Warning:
You probably do not want to actually run fibnum(50).

2.5 Overflow. What is the index of the largest Fibonacci number that can be rep-
resented exactly as a Matlab double-precision quantity without roundoff error?
What is the index of the largest Fibonacci number that can be represented approx-
imately as a Matlab double-precision quantity without overflowing?

2.6 Slower maturity. What if rabbits took two months to mature instead of one?
The sequence would be defined by

g1 = 1,

g2 = 1,

g3 = 2

and, for n > 3,

gn = gn−1 + gn−3

(a) Modify fibonacci.m and fibnum.m to compute this sequence.
(b) How many pairs of rabbits are there after 12 months?
(c) gn ≈ γn. What is γ?
(d) Estimate how long it would take your computer to compute fibnum(50) with
this modified fibnum.
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2.7 Mortality. What if rabbits took one month to mature, but then died after six
months. The sequence would be defined by

dn = 0, n <= 0
d1 = 1,

d2 = 1

and, for n > 2,

dn = dn−1 + dn−2 − dn−7

(a) Modify fibonacci.m and fibnum.m to compute this sequence.
(b) How many pairs of rabbits are there after 12 months?
(c) dn ≈ δn. What is δ?
(d) Estimate how long it would take your computer to compute fibnum(50) with
this modified fibnum.

2.8 Rabbits. Simulate Fibonacci’s rabbit pen. If you are not interested in the details
of Matlab graphical user interfaces, then just experiment with rabbits without
trying to understand the program itself. However, if you are interested in Matlab
Handle Graphics, then rabbits is a good starting point.

Let me explain the program. First of all, if you have a running Matlab
handy, enter

type rabbits

so you can see the entire program. The preamble of rabbits is

function rabbits(action)
% RABBITS Fibonacci’s rabbit pen.
% Create immature pushbuttons that age after one click.

The first line indicates that the function has no output arguments and at most
one input argument. The input argument, if it exists, is named action. The two
comment lines provide the response to help rabbits.

If you call rabbits with no arguments, then nargin, which stands for “number
of input arguments”, is zero and so you enter this section.

if nargin == 0
clf
shg
uicontrol(’style’,’text’,’fontsize’,12,’fontweight’,’bold’, ...

’units’,’normal’,’position’,[.47 .94 .06 .04])
action = ’mature’;

end

The commands clf and shg clear the current figure window and bring it forward
if it is not already. The call to uicontrol creates a Handle Graphics text object
and sets two of its font attributes. The coordinate system to be used within the
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figure window is normalized, so the window is given unit height and width. The
text object has its lower left corner at (.47,.94) and its size .06-by-.04, so it
is centered horizontally near the top of the window and occupies a small fraction
of the overall window. The final statement is this section sets the missing input
argument named action to the string ’mature’.

The function then switches on the value of action. If action is ’mature’,
which it is on the first entry, then the following section of rabbits is executed.

switch action
case ’mature’

f = get(gcf,’position’);
p = [.90*f(3:4).*rand(1,2) 24 24];
g = [.7 .7 .7];
c = ’rabbits(’’immature’’)’;
uicontrol(’style’,’pushbutton’,’position’,p,’background’,g, ...

’callback’,c,’enable’,’off’);
set(gcbo,’enable’,’off’)

The variable f is assigned a four-element vector giving the location and size of the
current figure window. Since units is not specifed, the results are in pixels. The
default figure window size, f(3:4), is typically 560 pixels wide and 420 pixels high,
but you can resize the window. Computers with large screens might have larger
default figure windows. The variable p is assigned a four-element vector whose
first two elements are random fractions of the window size and whose second two
elements specify a 24-by-24 pixel portion of the window. The variable g is set
to a 3-element color vector describing the shade of gray that results from having
red, green and blue components equal to 70% of their full value. The variable c is
assigned a string which, when subsequently evaluated, will result in a call to rabbits
with an argument of ’immature’. The uicontrol statement creates a new Handle
Graphics object, this time a pushbutton with a gray background. The button is
placed in position p within the figure window. Whenever the pushbutton is pushed,
the callback string c will be evaluated, resulting in another call to rabbits. This is
not exactly recursion, since rabbits does not call itself directly. Instead, rabbits
posts a callback to the graphics system and eventually exits. Later, when a mouse
click occurs, the graphics system calls rabbits again. The final statement disables
gcbo, which stands for “get current callback object”. Disabled buttons created are
visible, but do not respond to mouse clicks.

If, on the other hand, action is ’immature’, then the following section of
rabbits is executed.

case ’immature’
R = imread(’rabbit.jpg’);
g = get(gcbo,’position’);
p = [g(1:2)-12 48 48];
c = ’rabbits(’’mature’’)’;
set(gcbo,’cdata’,R,’position’,p,’callback’,c,’enable’,’off’);

end
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The first statement reads the jpeg image rabbit.jpg that is available in the exm
toolbox. This size of this image is 47-by-45 pixels. The variable g is set to the
position, in pixels within the figure, of gcbo, which is the button that initiated this
callback. The variable p is set to a four-element vector obtained by moving g twelve
pixels down and to the left and increasing its size to 48-by-48. The variable c is the
callback string, rabbits(’mature’). The final statement in this section sets the
pushbutton’s color data to be the image R, resets the button’s position and callback
string, and disables the button. In contrast to the mature section of program, this
section does not create a new graphics object. It just modifies four of the properties
of the button that was pushed.

The last three statements of rabbits are executed each time the function is
called.

b = findobj(gcf,’style’,’pushbutton’);
if ~any(any(char(get(b,’enable’)) == ’n’))

set(b,’background’,’w’,’enable’,’on’)
end
set(findobj(gcf,’style’,’text’),’string’,length(b))

The variable b is set to a vector of handles of all the pushbuttons that have been
created. The if statement is pretty tricky. It checks the enable state of all the
pushbuttons. If all of the buttons are disabled, they are all turned on. By this time
you have probably forgotten that this exercise has something to do with Fibonacci
numbers. The last line of rabbits counts the number of pushbuttons that have
been created and updates the text object that was initialized a long time ago with
the information needed to explain what this program is doing.


