The McGraw-Hill Companies

PowerPoint to accompany

Introduction to MATLAB for Engineers , Third Edition

> Chapter 6
> Model Building and Regression

Mc
 Graw
 HIII

Copyright © 2010. The McGraw-Hill Companies, Inc.

Using the Linear, Power, and Exponential Functions to Describe data.

Each function gives a straight line when plotted using a specific set of axes:

1. The linear function $y=m x+b$ gives a straight line when plotted on rectilinear axes. Its slope is m and its intercept is b.
2. The power function $y=b x^{m}$ gives a straight line when plotted on log-log axes.
3. The exponential function $y=b(10)^{m x}$ and its equivalent form $y=b e^{m x}$ give a straight line when plotted on a semilog plot whose y-axis is logarithmic.

More? See pages 264-265.

Function Discovery. The power function $y=2 x^{-0.5}$ and the exponential function $y=10^{1-x}$ plotted on linear, semi-log, and log-log axes..

Steps for Function Discovery

1. Examine the data near the origin. The exponential function can never pass through the origin (unless of course $b=0$, which is a trivial case). (See Figure 6.1-1 for examples with b
= 1.)
The linear function can pass through the origin only if $b=0$. The power function can pass through the origin but only if $m>0$. (See Figure 6.1-2 for examples with $b=1$.)

Examples of exponential functions. Figure 6.1-1

Examples of power functions. Figure 6.1-2

Steps for Function Discovery (continued)

2. Plot the data using rectilinear scales. If it forms a straight line, then it can be represented by the linear function and you are finished. Otherwise, if you have data at $x=0$, then
a. If $y(0)=0$, try the power function.
b. If $y(0) \neq 0$, try the exponential function.

If data is not given for $x=0$, proceed to step 3 .

(continued...)

Steps for Function Discovery (continued)

3. If you suspect a power function, plot the data using loglog scales. Only a power function will form a straight line on a log-log plot. If you suspect an exponential function, plot the data using the semilog scales. Only an exponential function will form a straight line on a semilog plot.

Steps for Function Discovery (continued)

4. In function discovery applications, we use the loglog and semilog plots only to identify the function type, but not to find the coefficients b and m. The reason is that it is difficult to interpolate on log scales.

The polyfit function. Table 6.1-1

Command

p =
polyfit(x, y, n)

Description

Fits a polynomial of degree n to data described by the vectors x and y, where x is the independent variable. Returns a row vector p of length $n+1$ that contains the polynomial coefficients in order of descending powers.

Using the polyfit Function to Fit Equations to Data.

Syntax: p = polyfit(x,y,n)
where x and y contain the data, n is the order of the polynomial to be fitted, and p is the vector of polynomial coefficients.

The linear function: $y=m x+b$. In this case the variables w and z in the polynomial $w=p_{1} z+p_{2}$ are the original data variables x and y, and we can find the linear function that fits the data by typing $p=$ polyfit ($x, y, 1$). The first element p_{1} of the vector p will be m, and the second element p_{2} will be b.

The power function: $y=b x^{m}$. In this case

$$
\log _{10} y=m \log _{10} x+\log _{10} b
$$

which has the form

$$
w=p_{1} z+p_{2}
$$

where the polynomial variables w and z are related to the original data variables x and y by $w=\log _{10} y$ and z
$=\log _{10} x$. Thus we can find the power function that fits the data by typing

$$
\text { p = polyfit(log10(x), } \log 10(y), 1)
$$

The first element p_{1} of the vector p will be m, and the second element p_{2} will be $\log _{10} b$. We can find b from b $6-12=10^{p_{2}}$.

The exponential function: $y=b(10)^{m x}$. In this case

$$
\log _{10} y=m x+\log _{10} b
$$

which has the form

$$
w=p_{1} z+p_{2}
$$

where the polynomial variables w and z are related to the original data variables x and y by $w=\log _{10} y$ and $z=x$. We can find the exponential function that fits the data by typing

$$
p=\operatorname{polyfit}(x, \log 10(y), 1)
$$

The first element p_{1} of the vector p will be m, and the second element p_{2} will be $\log _{10} b$. We can find b from $b=$ $6-13 \quad 10^{D_{2}}$.

Fitting an exponential function. Temperature of a cooling cup of coffee, plotted on various coordinates. Example 6.1-1. Figure 6.1-3 on page 267.

Fitting a power function. An experiment to verify Torricelli's principle. Example 6.1-2. Figure 6.1-4 on page 269.

Flow rate and fill time for a coffee pot. Figure 6.1-5 on page 270.

The Least Squares Criterion: used to fit a function $f(x)$. It minimizes the sum of the squares of the residuals, J. J is defined as

$$
\begin{aligned}
& \mathrm{J} \quad \sum_{i=}^{m}\left[f\left(x_{i}\right)-y_{i}\right]^{2}, \\
& 1
\end{aligned}
$$

We can use this criterion to compare the quality of the curve fit for two or more functions used to describe the same data. The function that gives the smallest J value gives the best fit.

Illustration of the least squares criterion.

The least squares fit for the example data.

See pages
271-272.

The polyfit function is based on the least-squares method. Its syntax is

```
p =
polyfit(x,y,n)
```

Fits a polynomial of degree n to data described by the vectors x and y, where x is the independent variable. Returns a row vector p of length $\mathrm{n}+1$ that contains the polynomial coefficients in order of descending powers.

See page 273, Table 6.2-1.

Regression using polynomials of first through fourth degree.

 Figure 6.2-1 on page 273.

Third Degree

Second Degree

Fourth Degree

$6-21$

Beware of using polynomials of high degree. An example of

 a fifth-degree polynomial that passes through all six data points but exhibits large excursions between points. Figure 6.2-2, page 274.

Assessing the Quality of a Curve Fit:

Denote the sum of the squares of the deviation of the y values from their mean y by S, which can be computed from
m

$$
\begin{array}{ll}
S & \sum_{i=1}\left(y_{i}-\bar{y}\right)^{2} \\
=
\end{array}
$$

(6.2-2)

This formula can be used to compute another measure of the quality of the curve fit, the coefficient of determination, also known as the r-squared value. It is defined as

$$
\begin{equation*}
r^{2}=1-\frac{J}{S} \tag{6.2-3}
\end{equation*}
$$

The value of S indicates how much the data is spread around the mean, and the value of J indicates how much of the data spread is unaccounted for by the model.

Thus the ratio J/S indicates the fractional variation unaccounted for by the model.

For a perfect fit, $J=0$ and thus $r^{2}=1$. Thus the closer r^{2} is to 1 , the better the fit. The largest r^{2} can be is 1 .

It is possible for J to be larger than S, and thus it is possible for r^{2} to be negative. Such cases, however, are indicative of a very poor model that should not be used.

As a rule of thumb, a good fit accounts for at least 99 percent of the data variation. This value corresponds to $r^{2} \geq 0.99$.

More? See pages 275-276.

Scaling the Data

The effect of computational errors in computing the coefficients can be lessened by properly scaling the x values. You can scale the data yourself before using polyfit. Some common scaling methods are

1. Subtract the minimum x value or the mean x value from the x data, if the range of x is small, or
2. Divide the x values by the maximum value or the mean value, if the range is large.

More? See pages 276-277.

Effect of coefficient accuracy on a sixth-degree polynomial.

 Top graph: 14 decimal-place accuracy. Bottom graph: 8 decimal-place accuracy.

Sixth-Degree Polynomial with Inaccurate Coefficients

Avoiding high degree polynomials: Use of two cubics to fit data.

Using Residuals: Residual plots of four models. Figure 6.2-3, page 279.

See pages 277-279.

Linear-in-Parameters Regression: Comparison of first- and

 second-order model fits. Figure 6.2-4, page 282.

See
pages
280-282.

Basic Fitting Interface

MATLAB supports curve fitting through the Basic Fitting interface. Using this interface, you can quickly perform basic curve fitting tasks within the same easy-to-use environment. The interface is designed so that you can:

- Fit data using a cubic spline or a polynomial up to degree 10.
- Plot multiple fits simultaneously for a given data set.
- Plot the residuals.
- Examine the numerical results of a fit.
- Interpolate or extrapolate a fit.
- Annotate the plot with the numerical fit results and the norm of residuals.
- Save the fit and evaluated results to the MATLAB 6-31 worksnace.

The Basic Fitting interface. Figure 6.3-1, page 283.

A. Basic Fitting - 1

```
Select data: data 1Center and scale \(X\) data

Plot fits
Check to display fits on figurespline interpolant shape-preserving interpolant linear
quadratic
cubic4th degree polynomial
5th degree polynomial
6th degree polynomial
7th degree polynomial
8th degree polynomial
9th degree polynomial
10th degree polynomial
Show equations
Significant digits: 2

\(\checkmark\) Plot residuals
\begin{tabular}{|l|l|}
\hline Bar plot & \(\vee\) \\
\hline Subplot & \(\vee\) \\
\hline
\end{tabular}
\(\square\) Show norm of residuals

Numerical results
```

Fit: linear

```

Coefficients and norm of residuals
\(\mathrm{Y}=\mathrm{pl}{ }^{\star} \mathrm{X}^{\wedge} \mathrm{l}+\mathrm{p} 2\)
Coefficients:
    \(\mathrm{pl}=0.77727\)
        \(\mathrm{p} 2=1.4091\)
Norm of residuals =
1.345


A figure produced by the Basic Fitting interface. Figure 6.3-2, page 285.




More? See pages 284-285.```

