
Chapter 3

Calendars and Clocks

Computations involving time, dates, biorhythms and Easter.

Calendars are interesting mathematical objects. The Gregorian calendar was
first proposed in 1582. It has been gradually adopted by various countries and
churches over the four centuries since then. The British Empire, including the
colonies in North America, adopted it in 1752. Turkey did not adopt it until 1923.
The Gregorian calendar is now the most widely used calendar in the world, but by
no means the only one.

In the Gregorian calendar, a year y is a leap year if and only if y is divisible
by 4 and not divisible by 100, or is divisible by 400. In Matlab the following
expression must be true.

mod(y,4) == 0 && mod(y,100) ~= 0 || mod(y,400) == 0

For example, 2000 was a leap year, but 2100 will not be a leap year. This rule
implies that the Gregorian calendar repeats itself every 400 years. In that 400-year
period, there are 97 leap years, 4800 months, 20871 weeks, and 146097 days. The
average number of days in a Gregorian calendar year is 365 + 97

400 = 365.2425.
The Matlab function clock returns a six-element vector c with elements

c(1) = year
c(2) = month
c(3) = day
c(4) = hour
c(5) = minute
c(6) = seconds
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The first five elements are integers, while the sixth element has a fractional part that
is accurate to milliseconds. The best way to print a clock vector is to use fprintf
or sprintf with a specified format string that has both integer and floating point
fields.

f = ’%6d %6d %6d %6d %6d %9.3f\n’

I am writting this on May 22, 2007, at about 7:30pm, so

c = clock;
fprintf(f,c);

produces

2007 5 22 19 31 54.015

In other words,

year = 2007
month = 5
day = 22
hour = 19
minute = 31
seconds = 54.015

The Matlab functions datenum, datevec, datestr, and weekday use clock
and facts about the Gregorian calendar to facilitate computations involving calendar
dates. Dates are represented by their serial date number, which is the number of
days since the theoretical time and day over 20 centuries ago when clock would
have been six zeroes. We can’t pin that down to an actual date because different
calendars would have been in use at that time.

The function datenum returns the date number for any clock vector. For
example, my current date number

datenum(c)

is

733184.848

This indicates that the current time is most of the way through day number 733184.
I get the same result from

datenum(now)

The datenum function also works with a given year, month and day, or a date
specified as a string. For example both

datenum(2007,5,22)

and
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datenum(’May 22, 2007’)

return

733184

The same result is obtained from

fix(now)

Computing the difference between two date numbers gives an elapsed time
measured in days. How many days are left between today and the first day of next
year?

datenum(’Jan 1, 2008’) - datenum(fix(now))
ans =

224

The weekday function computes the day of the week, as both an integer be-
tween 1 and 7 and a string. For example both

[d,w] = weekday(datenum(2007,5,22))

and

[d,w] = weekday(now)

return

d =
3

w =
Tue

So today is the third day of the week, a Tuesday.
Friday the 13th is unlucky, but is it unlikely? What is the probability that

the 13th day of any month falls on a Friday? The quick answer is 1/7, but that is
not quite right. This code counts the number of times that Friday occurs on the
various weekdays in a 400 year calendar cycle and produces figure 3.1.

c = zeros(1,7);
for y = 1:400

for m = 1:12
d = datenum([y,m,13]);
w = weekday(d);
c(w) = c(w) + 1;

end
end
c
bar(c)
axis([0 8 680 690])
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Figure 3.1. The 13th is more likely to be on Friday than any other day.

set(gca,’xticklabel’,{’Su’,’M’,’Tu’,’W’,’Th’,’F’,’Sa’})

c =
687 685 685 687 684 688 684

So the 13th day of a month is more likely to be on a Friday than any other day
of the week. The probability is 688/4800 = .143333. This probability is close to,
but slightly larger than, 1/7 = .142857.

Biorhythms were invented over 100 years ago and entered our popular culture
in the 1960s. You can still find many Web sites today that offer to prepare person-
alized biorhythms, or that sell software to compute them. Biorhythms are based on
the notion that three sinusoidal cycles influence our lives. The physical cycle has a
period of 23 days, the emotional cycle has a period of 28 days, and the intellectual
cycle has a period of 33 days. For any individual, the cycles are initialized at birth.

Figure 3.2 is my biorhythm, which begins on August 17, 1939, plotted for an
eight-week period centered around the date this is being written, May 22, 2007. It
shows that I must have been in pretty bad shape about a week ago, but that my
physical strength can be expected to reach a peak a few days from now, and that
my intellectual powers and emotional well-being should reach their peaks within a
few hours of each other about a week after that.

A search of the United States Government Patent and Trademark Office
database of US patents issued between 1976 and 2007 finds 113 patents that are
based upon or mention biorhythms. The Web site is

http://patft.uspto.gov

The date and graphics functions in Matlab make the computation and dis-
play of biorhythms particularly convenient. The following code segment is part of
our program biorhythm.m that plots a biorhythm for an eight-week period centered
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Figure 3.2. My biorhythm.

on the current date.

t0 = datenum(’Aug. 17, 1939’)
t1 = fix(now);
t = (t1-28):1:(t1+28);
y = 100*[sin(2*pi*(t-t0)/23)

sin(2*pi*(t-t0)/28)
sin(2*pi*(t-t0)/33)];

plot(t,y)

You see that the time variable t is measured in days and that the trig functions
take arguments measured in radians.

Easter Day is one of the most important events in the Christian calendar.
It is also one of the most mathematically elusive. In fact, regularization of the
observance of Easter was one of the primary motivations for calendar reform. The
informal rule is that Easter Day is the first Sunday after the first full moon after the
vernal equinox. But the ecclesiastical full moon and equinox involved in this rule
are not always the same as the corresponding astronomonical events, which, after
all, depend upon the location of the observer on the earth. Computing the date
of Easter is featured in Don Knuth’s classic The Art of Computer Programming
and has consequently become a frequent exercise in programming courses. Our
Matlab version of Knuth’s program, easter.m, is the subject of several exercises
in this chapter.

Exercises

3.1 Microcentury. The optimum length of a classroom lecture is one microcentury.
How long is that?
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3.2 π · 107. A good estimate of the number of seconds in a year is π · 107. How
accurate is this estimate?

3.3 First datenum. The first countries to adopt the Gregorian calendar were Spain,
Portugal and much of Italy. They did so on October 15, 1582, of the new calendar.
The previous day was October 4, 1582, using the old, Julian, calendar. So October
5 through October 14, 1582, did not exist in these countries. What is the Matlab
serial date number for October 15, 1582?

3.4 Future datenum’s. Use datestr to determine when datenum will reach 750,000.
When will it reach 1,000,000?

3.5 Your birthday. On which day of the week were you born? In a 400-year Grego-
rian calendar cycle, what is the probability that your birthday occurs on a Saturday?
Which weekday is the most likely for your birthday?

3.6 Ops per century. Which does more operations, a human computer doing one
operation per second for a century, or an electronic computer doing one operation
per microsecond for a minute?

3.7 Julian day. The Julian Day Number (JDN) is commonly used to date astro-
nomical observations. Find the definition of Julian Day on the Web and explain
why

JDN = datenum + 1721058.5

In particular, why does the conversion include an 0.5 fractional part?

3.8 Unix time. The Unix operating system and POSIX operating system standard
measure time in seconds since 00:00:00 Universal time on January 1, 1970. There
are 86,400 seconds in one day. Consequently, Unix time, time_t, can be computed
in Matlab with

time_t = 86400*(datenum(y,m,d) - datenum(1970,1,1))

Some Unix systems store the time in an 32-bit signed integer register. When will
time_t exceed 231 and overflow on such systems.

3.9 Easter.
(a) The comments in easter.m use the terms “golden number”, “epact”, and
“metonic cycle”. Find the definitions of these terms on the Web.
(b) Plot a bar graph of the dates of Easter during the 21-st century.
(c) How many times during the 21-st century does Easter occur in March and how
many in April?
(d) On how many different dates can Easter occur? What is the earliest? What is
the latest?
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(e) Is the date of Easter a periodic function of the year number?

3.10 biorhythm.
(a) Use biorhythm to plot your own biorhythm, based on your birthday and centered
around the current date.
(b) All three biorhythm cycles start at zero when you were born. How long does it
take until all three simultaneously return to that initial condition? How old were
you, or will you be, on that date? Plot your biorhythm near that date. You should
find the lcm function helpful.
(c) Is it possible for all three biorhythm cycles to reach their maximum or minimum
at exactly the same time? Why or why not?

3.11 clockex. This exercise is about the clockex program in our exm toolbox.
(a) Why does clockex use trig functions?
(b) Make clockex run counter-clockwise.
(c) Modify clockex to have a digital display of your own design.
(d) Why do the hour and minute hands in clockex move nearly continuously while
the second hand moves in discrete steps.
(e) What happens if the statement

pause(1.0)

in clockex.m is changed to

pause(0.9)

or

pause(1.1)

(f) What happens if the statement

k = ceil(c(6))

in clockex.m is changed to

k = round(c(6))

(g) Instead of

k = ceil(c(6))

in clockex.m, I considered using

k = ceil(c(6)+realmin)

Why would that be a good idea?


