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Overview

Electron configuration

Electron atomic and molecular orbitals

A Bohr Diagram of lithium

In atomic physics and quantum
chemistry, the electron configuration
is the distribution of electrons of an
atom or molecule (or other physical
structure) in atomic or molecular
orbitals. For example, the electron
configuration of the neon atom is 1s2

2s2 2p6.

Electronic configurations describe
electrons as each moving
independently in an orbital, in an
average field created by all other
orbitals. Mathematically,
configurations are described by Slater
determinants or configuration state
functions.

According to the laws of quantum
mechanics, for systems with only one
electron, an energy is associated with
each electron configuration and, upon
certain conditions, electrons are able to
move from one configuration to
another by emission or absorption of a
quantum of energy, in the form of a
photon.

For atoms or molecules with more than
one electron, the motion of electrons
are correlated and such a picture is no
longer exact. A very large number of
electronic configurations are needed to
exactly describe any multi-electron
system, and no energy can be associated with one single configuration. However, the electronic wave function is
usually dominated by a very small number of configurations and therefore the notion of electronic configuration
remains essential for multi-electron systems.

Electronic configuration of polyatomic molecules can change without absorption or emission of photon through
vibronic couplings.
Knowledge of the electron configuration of different atoms is useful in understanding the structure of the periodic 
table of elements. The concept is also useful for describing the chemical bonds that hold atoms together. In bulk
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materials this same idea helps explain the peculiar properties of lasers and semiconductors.

Shells and subshells
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Electron configuration was first conceived of under the Bohr model of the atom, and it is still common to speak of
shells and subshells despite the advances in understanding of the quantum-mechanical nature of electrons.
An electron shell is the set of allowed states electrons may occupy which share the same principal quantum number,
n (the number before the letter in the orbital label). An atom's nth electron shell can accommodate 2n2 electrons, e.g.
the first shell can accommodate 2 electrons, the second shell 8 electrons, and the third shell 18 electrons. The factor
of two arises because the allowed states are doubled due to electron spin—each atomic orbital admits up to two
otherwise identical electrons with opposite spin, one with a spin +1/2 (usually noted by an up-arrow) and one with a
spin −1/2 (with a down-arrow).
A subshell is the set of states defined by a common azimuthal quantum number, ℓ, within a shell. The values ℓ = 0, 1,
2, 3 correspond to the s, p, d, and f labels, respectively. The maximum number of electrons which can be placed in a
subshell is given by 2(2ℓ + 1). This gives two electrons in an s subshell, six electrons in a p subshell, ten electrons in
a d subshell and fourteen electrons in an f subshell.
The numbers of electrons that can occupy each shell and each subshell arise from the equations of quantum
mechanics,[1] in particular the Pauli exclusion principle, which states that no two electrons in the same atom can
have the same values of the four quantum numbers.

Notation
Physicists and chemists use a standard notation to indicate the electron configurations of atoms and molecules. For
atoms, the notation consists of a sequence of atomic orbital labels (e.g. for phosphorus the sequence 1s, 2s, 2p, 3s,
3p) with the number of electrons assigned to each orbital (or set of orbitals sharing the same label) placed as a
superscript. For example, hydrogen has one electron in the s-orbital of the first shell, so its configuration is written
1s1. Lithium has two electrons in the 1s-subshell and one in the (higher-energy) 2s-subshell, so its configuration is
written 1s2 2s1 (pronounced "one-s-two, two-s-one"). Phosphorus (atomic number 15) is as follows:
1s2 2s2 2p6 3s2 3p3.
For atoms with many electrons, this notation can become lengthy and so an abbreviated notation is used, since all but
the last few subshells are identical to those of one or another of the noble gases. Phosphorus, for instance, differs
from neon (1s2 2s2 2p6) only by the presence of a third shell. Thus, the electron configuration of neon is pulled out,
and phosphorus is written as follows: [Ne] 3s2 3p3. This convention is useful as it is the electrons in the outermost
shell which most determine the chemistry of the element.
The order of writing the orbitals is not completely fixed: some sources group all orbitals with the same value of n
together, while other sources (as here) follow the order given by Madelung's rule. Hence the electron configuration
of iron can be written as [Ar] 3d6 4s2 (keeping the 3d-electrons with the 3s- and 3p-electrons which are implied by
the configuration of argon) or as [Ar] 4s2 3d6 (following the Aufbau principle, see below).
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The superscript 1 for a singly occupied orbital is not compulsory. It is quite common to see the letters of the orbital
labels (s, p, d, f) written in an italic or slanting typeface, although the International Union of Pure and Applied
Chemistry (IUPAC) recommends a normal typeface (as used here). The choice of letters originates from a
now-obsolete system of categorizing spectral lines as "sharp", "principal", "diffuse" and "fundamental" (or "fine"),
based on their observed fine structure: their modern usage indicates orbitals with an azimuthal quantum number, l, of
0, 1, 2 or 3 respectively. After "f", the sequence continues alphabetically "g", "h", "i"... (l = 4, 5, 6...), skipping "j",
although orbitals of these types are rarely required.
The electron configurations of molecules are written in a similar way, except that molecular orbital labels are used
instead of atomic orbital labels (see below).

Energy — ground state and excited states
The energy associated to an electron is that of its orbital. The energy of a configuration is often approximated as the
sum of the energy of each electron, neglecting the electron-electron interactions. The configuration that corresponds
to the lowest electronic energy is called the ground state. Any other configuration is an excited state.
As an example, the ground state configuration of the sodium atom is 1s22s22p63s, as deduced from the Aufbau
principle (see below). The first excited state is obtained by promoting a 3s electron to the 3p orbital, to obtain the
1s22s22p63p configuration, abbreviated as the 3p level. Atoms can move from one configuration to another by
absorbing or emitting energy. In a sodium-vapor lamp for example, sodium atoms are excited to the 3p level by an
electrical discharge, and return to the ground state by emitting yellow light of wavelength 589 nm.
Usually the excitation of valence electrons (such as 3s for sodium) involves energies corresponding to photons of
visible or ultraviolet light. The excitation of core electrons is possible, but requires much higher energies generally
corresponding to x-ray photons. This would be the case for example to excite a 2p electron to the 3s level and form
the excited 1s22s22p53s2 configuration.
The remainder of this article deals only with the ground-state configuration, often referred to as "the" configuration
of an atom or molecule.

History
Niels Bohr (1923) was the first to propose that the periodicity in the properties of the elements might be explained by
the electronic structure of the atom. His proposals were based on the then current Bohr model of the atom, in which
the electron shells were orbits at a fixed distance from the nucleus. Bohr's original configurations would seem
strange to a present-day chemist: sulfur was given as 2.4.4.6 instead of 1s2 2s2 2p6 3s2 3p4 (2.8.6).
The following year, E. C. Stoner incorporated Sommerfeld's third quantum number into the description of electron
shells, and correctly predicted the shell structure of sulfur to be 2.8.6. However neither Bohr's system nor Stoner's
could correctly describe the changes in atomic spectra in a magnetic field (the Zeeman effect).
Bohr was well aware of this shortcoming (and others), and had written to his friend Wolfgang Pauli to ask for his
help in saving quantum theory (the system now known as "old quantum theory"). Pauli realized that the Zeeman
effect must be due only to the outermost electrons of the atom, and was able to reproduce Stoner's shell structure, but
with the correct structure of subshells, by his inclusion of a fourth quantum number and his exclusion principle
(1925):[2]

It should be forbidden for more than one electron with the same value of the main quantum number n to
have the same value for the other three quantum numbers k [l], j [ml] and m [ms].

The Schrödinger equation, published in 1926, gave three of the four quantum numbers as a direct consequence of its 
solution for the hydrogen atom: this solution yields the atomic orbitals which are shown today in textbooks of 
chemistry (and above). The examination of atomic spectra allowed the electron configurations of atoms to be 
determined experimentally, and led to an empirical rule (known as Madelung's rule (1936), see below) for the order
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in which atomic orbitals are filled with electrons.

Aufbau principle and Madelung rule
The Aufbau principle (from the German Aufbau, "building up, construction") was an important part of Bohr's
original concept of electron configuration. It may be stated as:

a maximum of two electrons are put into orbitals in the order of increasing orbital energy: the lowest-energy
orbitals are filled before electrons are placed in higher-energy orbitals.

The approximate order of filling of atomic orbitals, following the arrows from 1s to
7p. (After 7p the order includes orbitals outside the range of the diagram, starting

with 8s.)

The principle works very well (for the
ground states of the atoms) for the first
18 elements, then decreasingly well for the
following 100 elements. The modern form
of the Aufbau principle describes an order
of orbital energies given by Madelung's rule
(or Klechkowski's rule). This rule was first
stated by Charles Janet in 1929,
rediscovered by Erwin Madelung in 1936,
and later given a theoretical justification by
V.M. Klechkowski

1. Orbitals are filled in the order of increasing n+l;
2. Where two orbitals have the same value of n+l, they are filled in order of increasing n.

This gives the following order for filling the orbitals:
1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, (8s, 5g, 6f, 7d, 8p, and 9s)

In this list the orbitals in parentheses are not occupied in the ground state of the heaviest atom now known (Uuo, Z =
118).
The Aufbau principle can be applied, in a modified form, to the protons and neutrons in the atomic nucleus, as in the
shell model of nuclear physics and nuclear chemistry.

Periodic table

Electron configuration table

The form of the periodic table is closely
related to the electron configuration of the
atoms of the elements. For example, all the
elements of group 2 have an electron
configuration of [E] ns2 (where [E] is an
inert gas configuration), and have notable
similarities in their chemical properties. In
general, the periodicity of the periodic table
in terms of periodic table blocks is clearly
due to the number of electrons (2, 6, 10,
14...) needed to fill s, p, d, and f subshells.

The outermost electron shell is often
referred to as the "valence shell" and (to a
first approximation) determines the
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chemical properties. It should be remembered that the similarities in the chemical properties were remarked more
than a century before the idea of electron configuration.[3] It is not clear how far Madelung's rule explains (rather
than simply describes) the periodic table, although some properties (such as the common +2 oxidation state in the
first row of the transition metals) would obviously be different with a different order of orbital filling.

Shortcomings of the Aufbau principle
The Aufbau principle rests on a fundamental postulate that the order of orbital energies is fixed, both for a given
element and between different elements; neither of these is true (although they are approximately true enough for the
principle to be useful). It considers atomic orbitals as "boxes" of fixed energy into which can be placed two electrons
and no more. However the energy of an electron "in" an atomic orbital depends on the energies of all the other
electrons of the atom (or ion, or molecule, etc.). There are no "one-electron solutions" for systems of more than one
electron, only a set of many-electron solutions which cannot be calculated exactly[4] (although there are
mathematical approximations available, such as the Hartree–Fock method).
The fact that the Aufbau principle is based on an approximation can be seen from the fact that there is an
almost-fixed filling order at all, that, within a given shell, the s-orbital is always filled before the p-orbitals. In a
hydrogen-like atom, which only has one electron, the s-orbital and the p-orbitals of the same shell have exactly the
same energy, to a very good approximation in the absence of external electromagnetic fields. (However, in a real
hydrogen atom, the energy levels are slightly split by the magnetic field of the nucleus, and by the quantum
electrodynamic effects of the Lamb shift).

Ionization of the transition metals
The naive application of the Aufbau principle leads to a well-known paradox (or apparent paradox) in the basic
chemistry of the transition metals. Potassium and calcium appear in the periodic table before the transition metals,
and have electron configurations [Ar] 4s1 and [Ar] 4s2 respectively, i.e. the 4s-orbital is filled before the 3d-orbital.
This is in line with Madelung's rule, as the 4s-orbital has n+l  = 4 (n = 4, l = 0) while the 3d-orbital has n+l  = 5 (n =
3, l = 2). However, chromium and copper have electron configurations [Ar] 3d5 4s1 and [Ar] 3d10 4s1 respectively,
i.e. one electron has passed from the 4s-orbital to a 3d-orbital to generate a half-filled or filled subshell. In this case,
the usual explanation is that "half-filled or completely filled subshells are particularly stable arrangements of
electrons".
The apparent paradox arises when electrons are removed from the transition metal atoms to form ions. The first
electrons to be ionized come not from the 3d-orbital, as one would expect if it were "higher in energy", but from the
4s-orbital. The same is true when chemical compounds are formed. Chromium hexacarbonyl can be described as a
chromium atom (not ion, it is in the oxidation state 0) surrounded by six carbon monoxide ligands: it is diamagnetic,
and the electron configuration of the central chromium atom is described as 3d6, i.e. the electron which was in the
4s-orbital in the free atom has passed into a 3d-orbital on forming the compound. This interchange of electrons
between 4s and 3d is universal among the first series of the transition metals.[5]

The phenomenon is only paradoxical if it is assumed that the energies of atomic orbitals are fixed and unaffected by
the presence of electrons in other orbitals. If that were the case, the 3d-orbital would have the same energy as the
3p-orbital, as it does in hydrogen, yet it clearly doesn't. There is no special reason why the Fe2+ ion should have the
same electron configuration as the chromium atom, given that iron has two more protons in its nucleus than
chromium and that the chemistry of the two species is very different. When care is taken to compare "like with like",
the paradox disappears.
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Other exceptions to Madelung's rule
There are several more exceptions to Madelung's rule among the heavier elements, and it is more and more difficult
to resort to simple explanations such as the stability of half-filled subshells. It is possible to predict most of the
exceptions by Hartree–Fock calculations, which are an approximate method for taking account of the effect of the
other electrons on orbital energies. For the heavier elements, it is also necessary to take account of the effects of
Special Relativity on the energies of the atomic orbitals, as the inner-shell electrons are moving at speeds
approaching the speed of light. In general, these relativistic effects tend to decrease the energy of the s-orbitals in
relation to the other atomic orbitals.

Electron shells filled in violation of Madelung's rule (red)

Period 4 Period 5 Period 6 Period 7

Element Z Electron
Configuration

Element Z Electron
Configuration

Element Z Electron
Configuration

Element Z Electron
Configuration

Lanthanum 57 [Xe] 6s2 5d1 Actinium 89 [Rn] 7s2 6d1

Cerium 58 [Xe] 6s2 4f1

5d1

Thorium 90 [Rn] 7s2 6d2

Praseodymium 59 [Xe] 6s2 4f3 Protactinium 91 [Rn] 7s2 5f2

6d1

Neodymium 60 [Xe] 6s2 4f4 Uranium 92 [Rn] 7s2 5f3

6d1

Promethium 61 [Xe] 6s2 4f5 Neptunium 93 [Rn] 7s2 5f4

6d1

Samarium 62 [Xe] 6s2 4f6 Plutonium 94 [Rn] 7s2 5f6

Europium 63 [Xe] 6s2 4f7 Americium 95 [Rn] 7s2 5f7

Gadolinium 64 [Xe] 6s2 4f7

5d1

Curium 96 [Rn] 7s2 5f7

6d1

Terbium 65 [Xe] 6s2 4f9 Berkelium 97 [Rn] 7s2 5f9

Scandium 21 [Ar] 4s2 3d1 Yttrium 39 [Kr] 5s2 4d1 Lutetium 71 [Xe] 6s2 4f14

5d1

Lawrencium 103 [Rn] 7s2 5f14

7p1

Titanium 22 [Ar] 4s2 3d2 Zirconium 40 [Kr] 5s2 4d2 Hafnium 72 [Xe] 6s2 4f14

5d2

Rutherfordium 104 [Rn] 7s2 5f14

6d2

Vanadium 23 [Ar] 4s2 3d3 Niobium 41 [Kr] 5s1 4d4 Tantalum 73 [Xe] 6s2 4f14

5d3

Chromium 24 [Ar] 4s1 3d5 Molybdenum 42 [Kr] 5s1 4d5 Tungsten 74 [Xe] 6s2 4f14

5d4

Manganese 25 [Ar] 4s2 3d5 Technetium 43 [Kr] 5s2 4d5 Rhenium 75 [Xe] 6s2 4f14

5d5

Iron 26 [Ar] 4s2 3d6 Ruthenium 44 [Kr] 5s1 4d7 Osmium 76 [Xe] 6s2 4f14

5d6

Cobalt 27 [Ar] 4s2 3d7 Rhodium 45 [Kr] 5s1 4d8 Iridium 77 [Xe] 6s2 4f14

5d7
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Nickel 28 [Ar] 4s2 3d8 or
[Ar] 4s1 3d9

(disputed)

Palladium 46 [Kr] 4d10 Platinum 78 [Xe] 6s1 4f14

5d9

Copper 29 [Ar] 4s1 3d10 Silver 47 [Kr] 5s1 4d10 Gold 79 [Xe] 6s1 4f14

5d10

Zinc 30 [Ar] 4s2 3d10 Cadmium 48 [Kr] 5s2 4d10 Mercury 80 [Xe] 6s2 4f14

5d10

The electron-shell configuration of elements beyond rutherfordium has not yet been empirically verified, but they are
expected to follow Madelung's rule without exceptions until element 120.

Electron configuration in molecules
In molecules, the situation becomes more complex, as each molecule has a different orbital structure. The molecular
orbitals are labelled according to their symmetry,[6] rather than the atomic orbital labels used for atoms and
monoatomic ions: hence, the electron configuration of the dioxygen molecule, O2, is
1σg

2 1σu
2 2σg

2 2σu
2 1πu

4 3σg
2 1πg

2. The term 1πg
2 represents the two electrons in the two degenerate π*-orbitals

(antibonding). From Hund's rules, these electrons have parallel spins in the ground state, and so dioxygen has a net
magnetic moment (it is paramagnetic). The explanation of the paramagnetism of dioxygen was a major success for
molecular orbital theory.

Electron configuration in solids
In a solid, the electron states become very numerous. They cease to be discrete, and effectively blend into continuous
ranges of possible states (an electron band). The notion of electron configuration ceases to be relevant, and yields to
band theory.

Applications
The most widespread application of electron configurations is in the rationalization of chemical properties, in both
inorganic and organic chemistry. In effect, electron configurations, along with some simplified form of molecular
orbital theory, have become the modern equivalent of the valence concept, describing the number and type of
chemical bonds that an atom can be expected to form.
This approach is taken further in computational chemistry, which typically attempts to make quantitative estimates
of chemical properties. For many years, most such calculations relied upon the "linear combination of atomic
orbitals" (LCAO) approximation, using an ever larger and more complex basis set of atomic orbitals as the starting
point. The last step in such a calculation is the assignment of electrons among the molecular orbitals according to the
Aufbau principle. Not all methods in calculational chemistry rely on electron configuration: density functional theory
(DFT) is an important example of a method which discards the model.
A fundamental application of electron configurations is in the interpretation of atomic spectra. In this case, it is
necessary to convert the electron configuration into one or more term symbols, which describe the different energy
levels available to an atom. Term symbols can be calculated for any electron configuration, not just the ground-state
configuration listed in tables, although not all the energy levels are observed in practice. It is through the analysis of
atomic spectra that the ground-state electron configurations of the elements were experimentally determined.
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Notes
[1] In formal terms, the quantum numbers n, ℓ and m arise from the fact that the solutions to the time-independent Schrödinger equation for

hydrogen-like atoms are based on spherical harmonics.
[2][2] English translation from
[3] The similarities in chemical properties and the numerical relationship between the atomic weights of calcium, strontium and barium was first

noted by Johann Wolfgang Döbereiner in 1817.
[4] Electrons are identical particles, a fact which is sometimes referred to as "indistinguishability of electrons". A one-electron solution to a

many-electron system would imply that the electrons could be distinguished from one another, and there is strong experimental evidence that
they can't be. The exact solution of a many-electron system is a n-body problem with n ≥ 3 (the nucleus counts as one of the "bodies"): such
problems have evaded analytical solution since at least the time of Euler.

[5][5] There are some cases in the second and third series where the electron remains in an s-orbital.
[6] The labels are written in lowercase to indicate that the correspond to one-electron functions. They are numbered consecutively for each

symmetry type (irreducible representation in the character table of the point group for the molecule), starting from the orbital of lowest energy
for that type.
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In solid-state physics, the tight-binding model (or TB model) is an approach to the calculation of electronic band
structure using an approximate set of wave functions based upon superposition of wave functions for isolated atoms
located at each atomic site. The method is closely related to the LCAO method used in chemistry. Tight-binding
models are applied to a wide variety of solids. The model gives good qualitative results in many cases and can be
combined with other models that give better results where the tight-binding model fails. Though the tight-binding
model is a one-electron model, the model also provides a basis for more advanced calculations like the calculation of
surface states and application to various kinds of many-body problem and quasiparticle calculations.

Introduction
The name "tight binding" of this electronic band structure model suggests that this quantum mechanical model
describes the properties of tightly bound electrons in solids. The electrons in this model should be tightly bound to
the atom to which they belong and they should have limited interaction with states and potentials on surrounding
atoms of the solid. As a result the wave function of the electron will be rather similar to the atomic orbital of the free
atom to which it belongs. The energy of the electron will also be rather close to the ionization energy of the electron
in the free atom or ion because the interaction with potentials and states on neighboring atoms is limited.
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Though the mathematical formulation of the one-particle tight-binding Hamiltonian may look complicated at first
glance, the model is not complicated at all and can be understood intuitively quite easily. There are only three kinds
of elements that play a significant role in the theory. Two of those three kinds of elements should be close to zero
and can often be neglected. The most important elements in the model are the interatomic matrix elements, which
would simply be called the bond energies by a chemist.
In general there are a number of atomic energy levels and atomic orbitals involved in the model. This can lead to
complicated band structures because the orbitals belong to different point-group representations. The reciprocal
lattice and the Brillouin zone often belong to a different space group than the crystal of the solid. High-symmetry
points in the Brillouin zone belong to different point-group representations. When simple systems like the lattices of
elements or simple compounds are studied it is often not very difficult to calculate eigenstates in high-symmetry
points analytically. So the tight-binding model can provide nice examples for those who want to learn more about
group theory.
The tight-binding model has a long history and has been applied in many ways and with many different purposes and
different outcomes. The model doesn't stand on its own. Parts of the model can be filled in or extended by other
kinds of calculations and models like the nearly-free electron model. The model itself, or parts of it, can serve as the
basis for other calculations. In the study of conductive polymers, organic semiconductors and molecular electronics,
for example, tight-binding-like models are applied in which the role of the atoms in the original concept is replaced
by the molecular orbitals of conjugated systems and where the interatomic matrix elements are replaced by inter- or
intramolecular hopping and tunneling parameters. These conductors nearly all have very anisotropic properties and
sometimes are almost perfectly one-dimensional.

Historical background
By 1928, the idea of a molecular orbital had been advanced by Robert Mulliken, who was influenced considerably
by the work of Friedrich Hund. The LCAO method for approximating molecular orbitals was introduced in 1928 by
B. N. Finklestein and G. E. Horowitz, while the LCAO method for solids was developed by Felix Bloch, as part of
his doctoral dissertation in 1928, concurrently with and independent of the LCAO-MO approach. A much simpler
interpolation scheme for approximating the electronic band structure, especially for the d-bands of transition metals,
is the parameterized tight-binding method conceived in 1954 by John Clarke Slater and George Fred Koster,
sometimes referred to as the SK tight-binding method. With the SK tight-binding method, electronic band structure
calculations on a solid need not be carried out with full rigor as in the original Bloch's theorem but, rather,
first-principles calculations are carried out only at high-symmetry points and the band structure is interpolated over
the remainder of the Brillouin zone between these points.
In this approach, interactions between different atomic sites are considered as perturbations. There exist several
kinds of interactions we must consider. The crystal Hamiltonian is only approximately a sum of atomic Hamiltonians
located at different sites and atomic wave functions overlap adjacent atomic sites in the crystal, and so are not
accurate representations of the exact wave function. There are further explanations in the next section with some
mathematical expressions.
Recently, in the research about strongly correlated material, the tight binding approach is basic approximation
because highly localized electrons like 3-d transition metal electrons sometimes display strongly correlated
behaviors. In this case, the role of electron-electron interaction must be considered using the many-body physics
description.
The tight-binding model is typically used for calculations of electronic band structure and band gaps in the static
regime. However, in combination with other methods such as the random phase approximation (RPA) model, the
dynamic response of systems may also be studied.
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Mathematical formulation
We introduce the atomic orbitals , which are eigenfunctions of the Hamiltonian of a single isolated
atom. When the atom is placed in a crystal, this atomic wave function overlaps adjacent atomic sites, and so are not
true eigenfunctions of the crystal Hamiltonian. The overlap is less when electrons are tightly bound, which is the
source of the descriptor "tight-binding". Any corrections to the atomic potential required to obtain the true
Hamiltonian of the system, are assumed small:

A solution to the time-independent single electron Schrödinger equation is then approximated as a linear
combination of atomic orbitals :

,

where refers to the m-th atomic energy level and locates an atomic site in the crystal lattice.

Translational symmetry and normalization
The Bloch theorem states that the wave function in crystal can change under translation only by a phase factor:

where is the wave vector of the wave function. Consequently, the coefficients satisfy

By substituting , we find

or

Normalizing the wave function to unity:

so the normalization sets b(0) as

where α (Rp ) are the atomic overlap integrals, which frequently are neglected resulting in[1]
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and

The tight binding Hamiltonian
Using the tight binding form for the wave function, and assuming only the m-th atomic energy level is important for
the m-th energy band, the Bloch energies are of the form

Here terms involving the atomic Hamiltonian at sites other than where it is centered are neglected. The energy then
becomes

where Em is the energy of the m-th atomic level, and , and are the tight binding matrix elements.

The tight binding matrix elements
The element

,

is the atomic energy shift due to the potential on neighboring atoms. This term is relatively small in most cases. If it
is large it means that potentials on neighboring atoms have a large influence on the energy of the central atom.
The next term

is the inter atomic matrix element between the atomic orbitals m and l on adjacent atoms. It is also called the bond
energy or two center integral and it is the most important element in the tight binding model.
The last terms

,

denote the overlap integrals between the atomic orbitals m and l on adjacent atoms.
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Evaluation of the matrix elements
As mentioned before the values of the -matrix elements are not so large in comparison with the ionization
energy because the potentials of neighboring atoms on the central atom are limited. If is not relatively small it
means that the potential of the neighboring atom on the central atom is not small either. In that case it is an indication
that the tight binding model is not a very good model for the description of the band structure for some reason. The
inter atomic distances can be too small or the charges on the atoms or ions in the lattice is wrong for example.
The inter atomic matrix elements can be calculated directly if the atomic wave functions and the potentials are
known in detail. Most often this is not the case. There are numerous ways to get parameters for these matrix
elements. Parameters can be obtained from chemical bond energy data. Energies and eigenstates on some high
symmetry points in the Brillouin zone can be evaluated and values integrals in the matrix elements can be matched
with band structure data from other sources.
The inter atomic overlap matrix elements should be rather small or neglectable. If they are large it is again an
indication that the tight binding model is of limited value for some purposes. Large overlap is an indication for too
short inter atomic distance for example. In metals and transition metals the broad s-band or sp-band can be fitted
better to an existing band structure calculation by the introduction of next-nearest-neighbor matrix elements and
overlap integrals but fits like that don't yield a very useful model for the electronic wave function of a metal. Broad
bands in dense materials are better described by a nearly free electron model.
The tight binding model works particularly well in cases where the band width is small and the electrons are strongly
localized, like in the case of d-bands and f-bands. The model also gives good results in the case of open crystal
structures, like diamond or silicon, where the number of neighbors is small. The model can easily be combined with
a nearly free electron model in a hybrid NFE-TB model.

Connection to Wannier functions
Bloch wave functions describe the electronic states in a periodic crystal lattice. Bloch functions can be represented as
a Fourier series[2]

where Rn denotes an atomic site in a periodic crystal lattice, k is the wave vector of the Bloch wave, r is the electron
position, m is the band index, and the sum is over all N atomic sites. The Bloch wave is an exact eigensolution for the
wave function of an electron in a periodic crystal potential corresponding to an energy Em (k), and is spread over the
entire crystal volume.
Using the Fourier transform analysis, a spatially localized wave function for the m-th energy band can be constructed
from multiple Bloch waves:

These real space wave functions are called Wannier functions, and are fairly closely localized to the
atomic site Rn. Of course, if we have exact Wannier functions, the exact Bloch functions can be derived using the
inverse Fourier transform.
However it is not easy to calculate directly either Bloch functions or Wannier functions. An approximate approach is
necessary in the calculation of electronic structures of solids. If we consider the extreme case of isolated atoms, the
Wannier function would become an isolated atomic orbital. That limit suggests the choice of an atomic wave
function as an approximate form for the Wannier function, the so-called tight binding approximation.
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Second quantization
Modern explanations of electronic structure like t-J model and Hubbard model are based on tight binding model. If
we introduce second quantization formalism, it is clear to understand the concept of tight binding model.
Using the atomic orbital as a basis state, we can establish the second quantization Hamiltonian operator in tight
binding model.

,

- creation and annihilation operators
- spin polarization
- hopping integral

-nearest neighbor index
Here, hopping integral corresponds to the transfer integral in tight binding model. Considering extreme cases of

, it is impossible for electron to hop into neighboring sites. This case is the isolated atomic system. If the
hopping term is turned on ( ) electrons can stay in both sites lowering their kinetic energy.
In the strongly correlated electron system, it is necessary to consider the electron-electron interaction. This term can
be written in

This interaction Hamiltonian includes direct Coulomb interaction energy and exchange interaction energy between
electrons. There are several novel physics induced from this electron-electron interaction energy, such as
metal-insulator transitions (MIT), high-temperature superconductivity, and several quantum phase transitions.

Example: one-dimensional s-band
Here the tight binding model is illustrated with a s-band model for a string of atoms with a single s-orbital in a
straight line with spacing a and σ bonds between atomic sites.
To find approximate eigenstates of the Hamiltonian, we can use a linear combination of the atomic orbitals

where N = total number of sites and is a real parameter with . (This wave function is normalized

to unity by the leading factor 1/√N provided overlap of atomic wave functions is ignored.) Assuming only nearest
neighbor overlap, the only non-zero matrix elements of the Hamiltonian can be expressed as

 
The energy Ei is the ionization energy corresponding to the chosen atomic orbital and U is the energy shift of the
orbital as a result of the potential of neighboring atoms. The elements, which are the Slater
and Koster interatomic matrix elements, are the bond energies . In this one dimensional s-band model we only
have -bonds between the s-orbitals with bond energy . The overlap between states on neighboring
atoms is S. We can derive the energy of the state using the above equation:
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where, for example,

and

Thus the energy of this state can be represented in the familiar form of the energy dispersion:

.

• For the energy is and the state consists of a sum of all atomic orbitals.
This state can be viewed as a chain of bonding orbitals.

• For the energy is and the state consists of a sum of atomic orbitals which are a factor
out of phase. This state can be viewed as a chain of non-bonding orbitals.

• Finally for the energy is and the state consists of an alternating sum
of atomic orbitals. This state can be viewed as a chain of anti-bonding orbitals.

This example is readily extended to three dimensions, for example, to a body-centered cubic or face-centered cubic
lattice by introducing the nearest neighbor vector locations in place of simply n a. Likewise, the method can be
extended to multiple bands using multiple different atomic orbitals at each site. The general formulation above
shows how these extensions can be accomplished.

Table of interatomic matrix elements
In 1954 J.C. Slater and F.G. Koster published, mainly for the calculation of transition metal d-bands, a table of
interatomic matrix elements

which, with a little patience and effort, can also be derived from the cubic harmonic orbitals straightforwardly. The
table expresses the matrix elements as functions of LCAO two-centre bond integrals between two cubic harmonic
orbitals, i and j, on adjacent atoms. The bond integrals are for example the , and for sigma, pi and
delta bonds.
The interatomic vector is expressed as

where d is the distance between the atoms and l, m and n are the direction cosines to the neighboring atom.
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Not all interatomic matrix elements are listed explicitly. Matrix elements that are not listed in this table can be
constructed by permutation of indices and cosine directions of other matrix elements in the table.
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In solid-state physics, the nearly free electron model (or NFE model) is a quantum mechanical model of physical
properties of electrons that can move almost freely through the crystal lattice of a solid. The model is closely related
to the more conceptual Empty Lattice Approximation. The model enables understanding and calculating the
electronic band structure of especially metals.

Introduction
Free electrons are traveling plane waves. Generally the time independent part of their wave function is expressed as

These plane wave solutions have an energy of

The expression of the plane wave as a complex exponential function can also be written as the sum of two periodic
functions which are mutually shifted a quarter of a period.

In this light the wave function of a free electron can be viewed as an aggregate of two plane waves. Sine and cosine
functions can also be expressed as sums or differences of plane waves moving in opposite directions
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Assume that there is only one kind of atom present in the lattice and that the atoms are located at the origin of the
unit cells of the lattice. The potential of the atoms is attractive and limited to a relatively small part of the volume of
the unit cell of the lattice. In the remainder of the cell the potential is zero.
The Hamiltonian is expressed as

in which is the kinetic and is the potential energy. From this expression the energy expectation value, or the
statistical average, of the energy of the electron can be calculated with

If we assume that the electron still has a free electron plane wave wave function the energy of the electron is:

Let's assume further that at an arbitrary -point in the Brillouin zone we can integrate the over a single lattice
cell, then for an arbitrary -point the energy becomes

Some free electron bands in a FCC crystal structure according to the
Empty Lattice Approximation

This means that at an arbitrary point the energy is
lowered by the lowered average of the potential in the
unit cell due to the presence of the attractive potential
of the atom. If the potential is very small we get the
Empty Lattice Approximation. This isn't a very
sensational result and it doesn't say anything about
what happens when we get close to the Brillouin zone
boundary. We will look at those regions in -space
now.

Let's assume that we look at the problem from the
origin, at position . If only the cosine
part is present and the sine part is moved to . If we
let the length of the wave vector grow, then the
central maximum of the cosine part stays at .
The first maximum and minimum of the sine part are at

. They come nearer as grows. Let's
assume that is close to the Brillouin zone boundary
for the analysis in the next part of this introduction.
The atomic positions coincide with the maximum of the

-component of the wave function. The
interaction of the -component of the wave
function with the potential will be different than the
interaction of the -component of the wave
function with the potential because their phases are shifted. The charge density is proportional to the absolute square
of the wave function. For the -component it is

and for the -component it is
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For values of close to the Brillouin zone boundary, the length of the two waves and the period of the two different
charge density distributions almost coincide with the periodic potential of the lattice. As a result the charge densities
of the two components have a different energy because the maximum of the charge density of the 
-component coincides with the attractive potential of the atoms while the maximum of the charge density of the

-component lies in the regions with a higher electrostatic potential between the atoms.
As a result the aggregate will be split in high and low energy components when the kinetic energy increases and the
wave vector approaches the length of the reciprocal lattice vectors. The potentials of the atomic cores can be
decomposed into Fourier components to meet the requirements of a description in terms of reciprocal space
parameters.

Mathematical formulation
The nearly free electron model is a modification of the free-electron gas model which includes a weak periodic
perturbation meant to model the interaction between the conduction electrons and the ions in a crystalline solid. This
model, like the free-electron model, does not take into account electron-electron interactions; that is, the
independent-electron approximation is still in effect.
As shown by Bloch's theorem, introducing a periodic potential into the Schrödinger equation results in a wave
function of the form

where the function u has the same periodicity as the lattice:

(where T is a lattice translation vector.)
Because it is a nearly free electron approximation we can assume that

A solution of this form can be plugged into the Schrödinger equation, resulting in the central equation:

where the kinetic energy is given by

which, after dividing by , reduces to

if we assume that is almost constant and 
The reciprocal parameters Ck and UG are the Fourier coefficients of the wave function ψ(r) and the screened
potential energy U(r), respectively:

The vectors G are the reciprocal lattice vectors, and the discrete values of k are determined by the boundary
conditions of the lattice under consideration.
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In any perturbation analysis, one must consider the base case to which the perturbation is applied. Here, the base
case is with U(x) = 0, and therefore all the Fourier coefficients of the potential are also zero. In this case the central
equation reduces to the form

This identity means that for each k, one of the two following cases must hold:
1. ,
2.
If the values of are non-degenerate, then the second case occurs for only one value of k, while for the rest, the
Fourier expansion coefficient must be zero. In this non-degenerate case, the standard free electron gas result is
retrieved:

In the degenerate case, however, there will be a set of lattice vectors k1, ..., km with λ1 = ... = λm. When the energy 
is equal to this value of λ, there will be m independent plane wave solutions of which any linear combination is also
a solution:

Non-degenerate and degenerate perturbation theory can be applied in these two cases to solve for the Fourier
coefficients Ck of the wavefunction (correct to first order in U) and the energy eigenvalue (correct to second order in
U). An important result of this derivation is that there is no first-order shift in the energy ε in the case of no
degeneracy, while there is in the case of near-degeneracy, implying that the latter case is more important in this
analysis. Particularly, at the Brillouin zone boundary (or, equivalently, at any point on a Bragg plane), one finds a
twofold energy degeneracy that results in a shift in energy given by:

This energy gap between Brillouin zones is known as the band gap, with a magnitude of .

Results
Introducing this weak perturbation has significant effects on the solution to the Schrödinger equation, most
significantly resulting in a band gap between wave vectors in different Brillouin zones.

Justifications
In this model, the assumption is made that the interaction between the conduction electrons and the ion cores can be
modeled through the use of a "weak" perturbing potential. This may seem like a severe approximation, for the
Coulomb attraction between these two particles of opposite charge can be quite significant at short distances. It can
be partially justified, however, by noting two important properties of the quantum mechanical system:
1. The force between the ions and the electrons is greatest at very small distances. However, the conduction

electrons are not "allowed" to get this close to the ion cores due to the Pauli exclusion principle: the orbitals
closest to the ion core are already occupied by the core electrons. Therefore, the conduction electrons never get
close enough to the ion cores to feel their full force.

2. Furthermore, the core electrons shield the ion charge magnitude "seen" by the conduction electrons. The result is
an effective nuclear charge experienced by the conduction electrons which is significantly reduced from the
actual nuclear charge.
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In computational physics and chemistry, the Hartree–Fock (HF) method is a method of approximation for the
determination of the wave function and the energy of a quantum many-body system in a stationary state.
The Hartree–Fock method often assumes that the exact, N-body wave function of the system can be approximated by
a single Slater determinant (in the case where the particles are fermions) or by a single permanent (in the case of
bosons) of N spin-orbitals. By invoking the variational method, one can derive a set of N-coupled equations for the N
spin orbitals. A solution of these equations yields the Hartree–Fock wave function and energy of the system.
Especially in the older literature, the Hartree–Fock method is also called the self-consistent field method (SCF). In
deriving what is now called the Hartree equation as an approximate solution of the Schrödinger equation, Hartree
required the final field as computed from the charge distribution to be "self-consistent" with the assumed initial field.
Thus, self-consistency was a requirement of the solution. The solutions to the non-linear Hartree–Fock equations
also behave as if each particle is subjected to the mean field created by all other particles (see the Fock operator
below) and hence the terminology continued. The equations are almost universally solved by means of an iterative
method, although the fixed-point iteration algorithm does not always converge. This solution scheme is not the only
one possible and is not an essential feature of the Hartree–Fock method.
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The Hartree–Fock method finds its typical application in the solution of the Schrödinger equation for atoms,
molecules, nanostructures and solids but it has also found widespread use in nuclear physics. (See
Hartree–Fock–Bogoliubov method for a discussion of its application in nuclear structure theory). In atomic structure
theory, calculations may be for a spectrum with many excited energy levels and consequently the Hartree–Fock
method for atoms assumes the wave function is a single configuration state function with well-defined quantum
numbers and that the energy level is not necessarily the ground state.
For both atoms and molecules, the Hartree–Fock solution is the central starting point for most methods that describe
the many-electron system more accurately.
The rest of this article will focus on applications in electronic structure theory suitable for molecules with the atom
as a special case. The discussion here is only for the Restricted Hartree–Fock method, where the atom or molecule is
a closed-shell system with all orbitals (atomic or molecular) doubly occupied. Open-shell systems, where some of
the electrons are not paired, can be dealt with by one of two Hartree–Fock methods:
• Restricted open-shell Hartree–Fock (ROHF)
• Unrestricted Hartree–Fock (UHF)

Brief history
The origin of the Hartree–Fock method dates back to the end of the 1920s, soon after the discovery of the
Schrödinger equation in 1926. In 1927 D. R. Hartree introduced a procedure, which he called the self-consistent field
method, to calculate approximate wave functions and energies for atoms and ions. Hartree was guided by some
earlier, semi-empirical methods of the early 1920s (by E. Fues, R. B. Lindsay, and himself) set in the old quantum
theory of Bohr.
In the Bohr model of the atom, the energy of a state with principal quantum number n is given in atomic units as

. It was observed from atomic spectra that the energy levels of many-electron atoms are well
described by applying a modified version of Bohr's formula. By introducing the quantum defect d as an empirical
parameter, the energy levels of a generic atom were well approximated by the formula , in the
sense that one could reproduce fairly well the observed transitions levels observed in the X-ray region (for example,
see the empirical discussion and derivation in Moseley's law). The existence of a non-zero quantum defect was
attributed to electron-electron repulsion, which clearly does not exist in the isolated hydrogen atom. This repulsion
resulted in partial screening of the bare nuclear charge. These early researchers later introduced other potentials
containing additional empirical parameters with the hope of better reproducing the experimental data.
Hartree sought to do away with empirical parameters and solve the many-body time-independent Schrödinger
equation from fundamental physical principles, i.e., ab initio. His first proposed method of solution became known
as the Hartree method. However, many of Hartree's contemporaries did not understand the physical reasoning
behind the Hartree method: it appeared to many people to contain empirical elements, and its connection to the
solution of the many-body Schrödinger equation was unclear. However, in 1928 J. C. Slater and J. A. Gaunt
independently showed that the Hartree method could be couched on a sounder theoretical basis by applying the
variational principle to an ansatz (trial wave function) as a product of single-particle functions.
In 1930 Slater and V. A. Fock independently pointed out that the Hartree method did not respect the principle of
antisymmetry of the wave function. The Hartree method used the Pauli exclusion principle in its older formulation,
forbidding the presence of two electrons in the same quantum state. However, this was shown to be fundamentally
incomplete in its neglect of quantum statistics.
It was then shown that a Slater determinant, a determinant of one-particle orbitals first used by Heisenberg and Dirac 
in 1926, trivially satisfies the antisymmetric property of the exact solution and hence is a suitable ansatz for applying 
the variational principle. The original Hartree method can then be viewed as an approximation to the Hartree–Fock 
method by neglecting exchange. Fock's original method relied heavily on group theory and was too abstract for
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contemporary physicists to understand and implement. In 1935 Hartree reformulated the method more suitably for
the purposes of calculation.
The Hartree–Fock method, despite its physically more accurate picture, was little used until the advent of electronic
computers in the 1950s due to the much greater computational demands over the early Hartree method and empirical
models. Initially, both the Hartree method and the Hartree–Fock method were applied exclusively to atoms, where
the spherical symmetry of the system allowed one to greatly simplify the problem. These approximate methods were
(and are) often used together with the central field approximation, to impose that electrons in the same shell have the
same radial part, and to restrict the variational solution to be a spin eigenfunction. Even so, solution by hand of the
Hartree–Fock equations for a medium sized atom were laborious; small molecules required computational resources
far beyond what was available before 1950.

Hartree–Fock algorithm
The Hartree–Fock method is typically used to solve the time-independent Schrödinger equation for a multi-electron
atom or molecule as described in the Born–Oppenheimer approximation. Since there are no known solutions for
many-electron systems (hydrogenic atoms and the diatomic hydrogen cation being notable one-electron exceptions),
the problem is solved numerically. Due to the nonlinearities introduced by the Hartree–Fock approximation, the
equations are solved using a nonlinear method such as iteration, which gives rise to the name "self-consistent field
method."

Approximations
The Hartree–Fock method makes five major simplifications in order to deal with this task:
• The Born–Oppenheimer approximation is inherently assumed. The full molecular wave function is actually a

function of the coordinates of each of the nuclei, in addition to those of the electrons.
• Typically, relativistic effects are completely neglected. The momentum operator is assumed to be completely

non-relativistic.
• The variational solution is assumed to be a linear combination of a finite number of basis functions, which are

usually (but not always) chosen to be orthogonal. The finite basis set is assumed to be approximately complete.
• Each energy eigenfunction is assumed to be describable by a single Slater determinant, an antisymmetrized

product of one-electron wave functions (i.e., orbitals).
• The mean field approximation is implied. Effects arising from deviations from this assumption, known as electron

correlation, are completely neglected for the electrons of opposite spin, but are taken into account for electrons of
parallel spin. (Electron correlation should not be confused with electron exchange, which is fully accounted for in
the Hartree–Fock method.)

Relaxation of the last two approximations give rise to many so-called post-Hartree–Fock methods.
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Greatly simplified algorithmic flowchart illustrating the Hartree–Fock method

Variational optimization of
orbitals

The variational theorem states that for
a time-independent Hamiltonian
operator, any trial wave function will
have an energy expectation value that
is greater than or equal to the true
ground state wave function
corresponding to the given
Hamiltonian. Because of this, the
Hartree–Fock energy is an upper
bound to the true ground state energy
of a given molecule. In the context of
the Hartree–Fock method, the best
possible solution is at the
Hartree–Fock limit; i.e., the limit of
the Hartree–Fock energy as the basis
set approaches completeness. (The other is the full-CI limit, where the last two approximations of the Hartree–Fock
theory as described above are completely undone. It is only when both limits are attained that the exact solution, up
to the Born–Oppenheimer approximation, is obtained.) The Hartree–Fock energy is the minimal energy for a single
Slater determinant.

The starting point for the Hartree–Fock method is a set of approximate one-electron wave functions known as
spin-orbitals. For an atomic orbital calculation, these are typically the orbitals for a hydrogenic atom (an atom with
only one electron, but the appropriate nuclear charge). For a molecular orbital or crystalline calculation, the initial
approximate one-electron wave functions are typically a linear combination of atomic orbitals (LCAO).
The orbitals above only account for the presence of other electrons in an average manner. In the Hartree–Fock
method, the effect of other electrons are accounted for in a mean-field theory context. The orbitals are optimized by
requiring them to minimize the energy of the respective Slater determinant. The resultant variational conditions on
the orbitals lead to a new one-electron operator, the Fock operator. At the minimum, the occupied orbitals are
eigensolutions to the Fock operator via a unitary transformation between themselves. The Fock operator is an
effective one-electron Hamiltonian operator being the sum of two terms. The first is a sum of kinetic energy
operators for each electron, the internuclear repulsion energy, and a sum of nuclear-electronic Coulombic attraction
terms. The second are Coulombic repulsion terms between electrons in a mean-field theory description; a net
repulsion energy for each electron in the system, which is calculated by treating all of the other electrons within the
molecule as a smooth distribution of negative charge. This is the major simplification inherent in the Hartree–Fock
method, and is equivalent to the fifth simplification in the above list.
Since the Fock operator depends on the orbitals used to construct the corresponding Fock matrix, the eigenfunctions
of the Fock operator are in turn new orbitals which can be used to construct a new Fock operator. In this way, the
Hartree–Fock orbitals are optimized iteratively until the change in total electronic energy falls below a predefined
threshold. In this way, a set of self-consistent one-electron orbitals are calculated. The Hartree–Fock electronic wave
function is then the Slater determinant constructed out of these orbitals. Following the basic postulates of quantum
mechanics, the Hartree–Fock wave function can then be used to compute any desired chemical or physical property
within the framework of the Hartree–Fock method and the approximations employed.
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Mathematical formulation

The Fock operator
Because the electron-electron repulsion term of the electronic molecular Hamiltonian involves the coordinates of two
different electrons, it is necessary to reformulate it in an approximate way. Under this approximation, (outlined under
Hartree–Fock algorithm), all of the terms of the exact Hamiltonian except the nuclear-nuclear repulsion term are
re-expressed as the sum of one-electron operators outlined below, for closed-shell atoms or molecules (with two
electrons in each spatial orbital).[1] The "(1)" following each operator symbol simply indicates that the operator is
1-electron in nature.

where

is the one-electron Fock operator generated by the orbitals , and

is the one-electron core Hamiltonian. Also

is the Coulomb operator, defining the electron-electron repulsion energy due to each of the two electrons in the jth
orbital. Finally

is the exchange operator, defining the electron exchange energy due to the antisymmetry of the total n-electron wave
function. Finding the Hartree–Fock one-electron wave functions is now equivalent to solving the eigenfunction
equation:

where are a set of one-electron wave functions, called the Hartree–Fock molecular orbitals.

Linear combination of atomic orbitals
Typically, in modern Hartree–Fock calculations, the one-electron wave functions are approximated by a linear
combination of atomic orbitals. These atomic orbitals are called Slater-type orbitals. Furthermore, it is very common
for the "atomic orbitals" in use to actually be composed of a linear combination of one or more Gaussian-type
orbitals, rather than Slater-type orbitals, in the interests of saving large amounts of computation time.
Various basis sets are used in practice, most of which are composed of Gaussian functions. In some applications, an
orthogonalization method such as the Gram–Schmidt process is performed in order to produce a set of orthogonal
basis functions. This can in principle save computational time when the computer is solving the Roothaan–Hall
equations by converting the overlap matrix effectively to an identity matrix. However, in most modern computer
programs for molecular Hartree–Fock calculations this procedure is not followed due to the high numerical cost of
orthogonalization and the advent of more efficient, often sparse, algorithms for solving the generalized eigenvalue
problem, of which the Roothaan–Hall equations are an example.
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Numerical stability
Numerical stability can be a problem with this procedure and there are various ways of combating this instability.
One of the most basic and generally applicable is called F-mixing or damping. With F-mixing, once a single electron
wave function is calculated it is not used directly. Instead, some combination of that calculated wave function and
the previous wave functions for that electron is used—the most common being a simple linear combination of the
calculated and immediately preceding wave function. A clever dodge, employed by Hartree, for atomic calculations
was to increase the nuclear charge, thus pulling all the electrons closer together. As the system stabilised, this was
gradually reduced to the correct charge. In molecular calculations a similar approach is sometimes used by first
calculating the wave function for a positive ion and then to use these orbitals as the starting point for the neutral
molecule. Modern molecular Hartree–Fock computer programs use a variety of methods to ensure convergence of
the Roothaan–Hall equations.

Weaknesses, extensions, and alternatives
Of the five simplifications outlined in the section "Hartree–Fock algorithm", the fifth is typically the most important.
Neglecting electron correlation can lead to large deviations from experimental results. A number of approaches to
this weakness, collectively called post-Hartree–Fock methods, have been devised to include electron correlation to
the multi-electron wave function. One of these approaches, Møller–Plesset perturbation theory, treats correlation as a
perturbation of the Fock operator. Others expand the true multi-electron wave function in terms of a linear
combination of Slater determinants—such as multi-configurational self-consistent field, configuration interaction,
quadratic configuration interaction, and complete active space SCF (CASSCF). Still others (such as variational
quantum Monte Carlo) modify the Hartree–Fock wave function by multiplying it by a correlation function
("Jastrow" factor), a term which is explicitly a function of multiple electrons that cannot be decomposed into
independent single-particle functions.
An alternative to Hartree–Fock calculations used in some cases is density functional theory, which treats both
exchange and correlation energies, albeit approximately. Indeed, it is common to use calculations that are a hybrid of
the two methods—the popular B3LYP scheme is one such hybrid functional method. Another option is to use
modern valence bond methods.

Software packages
For a list of software packages known to handle Hartree–Fock calculations, particularly for molecules and solids, see
the list of quantum chemistry and solid state physics software.
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External links
• Introduction by C. David Sherrill (http:/ / vergil. chemistry. gatech. edu/ notes/ hf-intro/ hf-intro. html)
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Modern valence bond theory is the application of valence bond theory, with computer programs that are
competitive in accuracy and economy with programs for the Hartree-Fock method and other molecular orbital based
methods. The latter methods dominated quantum chemistry from the advent of digital computers because they were
easier to program. The early popularity of valence bond methods thus declined. It is only recently that the
programming of valence bond methods has improved. These developments are due to and described by Gerratt,
Cooper, Karadakov and Raimondi (1997); Li and McWeeny (2002); Joop H. van Lenthe and co-workers (2002);[1]

Song, Mo, Zhang and Wu (2005); and Shaik and Hiberty (2004).[2]

In its simplest form the overlapping atomic orbitals are replaced by orbitals which are expanded as linear
combinations of the atom-based basis functions, forming linear combinations of atomic orbitals (LCAO). This
expansion is optimized to give the lowest energy. This procedure gives good energies without including ionic
structures.
For example, in the hydrogen molecule, classic valence bond theory uses two 1s atomic orbitals (a and b) on the two
hydrogen atoms respectively and then constructs a covalent structure:-

(a(1)b(2) + b(1)a(2)) (α(1)β(2) - β(1)α(2))
and then an ionic structure:-

(a(1)a(2) + b(1)b(2)) (α(1)β(2) - β(1)α(2))
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The final wave function is a linear combination of these two functions. Coulson and Fischer[3] pointed out that a
completely equivalent function is:-

((a+kb)(1)(b+ka)(2) + (b+ka)(1)(a+kb)(2)) ((α(1)β(2) - β(1)α(2))
as expanding this out gives a linear combination of the covalent and ionic structures. Modern valence bond theory
replaces the simple linear combination of the two atomic orbitals with a linear combination of all orbitals in a larger
basis set. The two resulting valence bond orbitals look like an atomic orbital on one hydrogen atom slightly distorted
towards the other hydrogen atom. Modern valence bond theory is thus an extension of this Coulson-Fischer method.

Spin-coupled theory
There are a large number of different valence bond methods. Most use n valence bond orbitals for n electrons. If a
single set of these orbitals is combined with all linear independent combinations of the spin functions, we have
spin-coupled valence bond theory. The total wave function is optimized using the variational method by varying
the coefficients of the basis functions in the valence bond orbitals and the coefficients of the different spin functions.
In other cases only a sub-set of all possible spin functions is used. Many valence bond methods use several sets of
the valence bond orbitals. Be warned that different authors use different names for these different valence bond
methods.

Valence bond programs
Several groups have produced computer programs for modern valence bond calculations that are freely available.
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The generalized valence bond (GVB) method is one of the simplest and oldest valence bond method that uses
flexible orbitals in the general way used by modern valence bond theory. The method was developed by the group of
William A. Goddard, III around 1970.

Theory
The generalized Coulson-Fisher theory for the hydrogen molecule, discussed in Modern valence bond theory, is used
to describe every electron pair in a molecule. The orbitals for each electron pair are expanded in terms of the full
basis set and are non-orthogonal. Orbitals from different pairs are forced to be orthogonal - the strong orthogonality
condition. This condition simplifies the calculation but can lead to some difficulties.

Calculations
GVB code in some programs, particularly GAMESS (US), can also be used to do a variety of restricted open-shell
Hartree-Fock calculations, such as those with one or three electrons in two pi-electron molecular orbitals while
retaining the degeneracy of the orbitals. This wave function is essentially a two-determinant function, rather than the
one-determinant function of the restricted Hartree-Fock method.
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Møller–Plesset perturbation theory (MP) is one of several quantum chemistry post-Hartree–Fock ab initio
methods in the field of computational chemistry. It improves on the Hartree–Fock method by adding electron
correlation effects by means of Rayleigh–Schrödinger perturbation theory (RS-PT), usually to second (MP2), third
(MP3) or fourth (MP4) order. Its main idea was published as early as 1934 by Christian Møller and Milton S.
Plesset.

Rayleigh–Schrödinger perturbation theory
The MP perturbation theory is a special case of RS perturbation theory. In RS theory one considers an unperturbed
Hamiltonian operator , to which a small (often external) perturbation is added:

Here, λ is an arbitrary real parameter that controls the size of the perturbation. In MP theory the zeroth-order wave
function is an exact eigenfunction of the Fock operator, which thus serves as the unperturbed operator. The
perturbation is the correlation potential. In RS-PT the perturbed wave function and perturbed energy are expressed as
a power series in λ:
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Substitution of these series into the time-independent Schrödinger equation gives a new equation as :

Equating the factors of in this equation gives a kth-order perturbation equation, where k = 0, 1, 2, ..., m. See
perturbation theory for more details.

Møller–Plesset perturbation

Original formulation
The MP-energy corrections are obtained from Rayleigh–Schrödinger (RS) perturbation theory with the unperturbed
Hamiltonian defined as the shifted Fock operator,

and the perturbation defined as the correlation potential,

where the normalized Slater determinant Φ0 is the lowest eigenstate of the Fock operator:

Here N is the number of electrons in the molecule under consideration (a factor of 2 in the energy arises from the fact
that each orbital is occupied by a pair of electrons with opposite spin), is the usual electronic Hamiltonian, 
is the one-electron Fock operator, and εi is the orbital energy belonging to the doubly occupied spatial orbital φi.
The interaction operator is assumed to couple up to two particles (electrons) at a time. A typical interaction would
be the Coulomb repulsion (in atomic units), as defined by:

where ψ represents an arbitrary single-electron wavefunction and r12 is the distance between electrons 1 and 2.

For convenience, the exchange interaction can be included to produce an antisymmetric interaction operator ,
defined as:

Since the Slater determinant Φ0 is an eigenstate of , it follows readily that

so that the zeroth-order energy is the expectation value of with respect to Φ0, i.e., the Hartree–Fock energy:

Since the first-order MP energy

is obviously zero, the lowest-order MP correlation energy appears in second order. This result is the Møller–Plesset
theorem: the correlation potential does not contribute in first-order to the exact electronic energy.

In order to obtain the MP2 formula for a closed-shell molecule, the second order RS-PT formula is written on basis 
of doubly excited Slater determinants. (Singly excited Slater determinants do not contribute because of the Brillouin 
theorem). After application of the Slater–Condon rules for the simplification of N-electron matrix elements with
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Slater determinants in bra and ket and integrating out spin, it becomes

where φi and φj are canonical occupied orbitals and φa and φb are canonical virtual (or unoccupied) orbitals. The
quantities εi, εj, εa, and εb are the corresponding orbital energies. Clearly, through second-order in the correlation
potential, the total electronic energy is given by the Hartree–Fock energy plus second-order MP correction: E ≈ EHF
+ EMP2. The solution of the zeroth-order MP equation (which by definition is the Hartree–Fock equation) gives the
Hartree–Fock energy. The first non-vanishing perturbation correction beyond the Hartree–Fock treatment is the
second-order energy.

Alternative formulation
Equivalent expressions are obtained by a slightly different partitioning of the Hamiltonian, which results in a
different division of energy terms over zeroth- and first-order contributions, while for second- and higher-order
energy corrections the two partitionings give identical results. The formulation is commonly used by chemists, who
are now large users of these methods.[1] This difference is due to the fact, well known in Hartree–Fock theory, that

(The Hartree–Fock energy is not equal to the sum of occupied-orbital energies). In the alternative partitioning, one
defines

Clearly, in this partitioning,

Obviously, with this alternative formulation, the Møller–Plesset theorem does not hold in the literal sense that EMP1
≠ 0. The solution of the zeroth-order MP equation is the sum of orbital energies. The zeroth plus first-order
correction yields the Hartree–Fock energy. As with the original formulation, the first non-vanishing perturbation
correction beyond the Hartree–Fock treatment is the second-order energy. To reiterate, the second- and higher-order
corrections are the same in both formulations.

Use of Møller–Plesset perturbation methods
Second (MP2), third (MP3), and fourth (MP4) order Møller–Plesset calculations are standard levels used in
calculating small systems and are implemented in many computational chemistry codes. Higher level MP
calculations, generally only MP5, are possible in some codes. However, they are rarely used because of their cost.
Systematic studies of MP perturbation theory have shown that it is not necessarily a convergent theory at high
orders. Convergence can be slow, rapid, oscillatory, regular, highly erratic or simply non-existent, depending on the
precise chemical system or basis set. The density matrix for the first-order and higher MP2 wavefunction is of the
type known as response density, which differs from the more usual expectation value density. The eigenvalues of the
response density matrix (which are the occupation numbers of the MP2 natural orbitals) can therefore be greater than
2 or negative. Unphysical numbers are a sign of a divergent perturbation expansion.
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Additionally, various important molecular properties calculated at MP3 and MP4 level are no better than their MP2
counterparts, even for small molecules.
For open shell molecules, MPn-theory can directly be applied only to unrestricted Hartree–Fock reference functions
(since ROHF states are not in general eigenvectors of the Fock operator). However, the resulting energies often
suffer from severe spin contamination, leading to large errors. A possible better alternative is to use one of the
MP2-like methods based on restricted open-shell Hartree–Fock (ROHF). Unfortunately, there are many ROHF based
MP2-like methods because of arbitrariness in the ROHF wavefunction(for example HCPT, ROMP, RMP (also called
ROHF-MBPT2), OPT1 and OPT2, ZAPT, IOPT, etc.). Some of the ROHF based MP2-like theories suffer from
spin-contamination in their perturbed density and energies beyond second-order.
These methods, Hartree–Fock, unrestricted Hartree–Fock and restricted Hartree–Fock use a single determinant wave
function. Multi-configurational self-consistent field (MCSCF) methods use several determinants and can be used for
the unperturbed operator, although not uniquely, so many methods, such as complete active space perturbation
theory (CASPT2), and Multi-Configuration Quasi-Degenerate Perturbation Theory (MCQDPT), have been
developed. Unfortunately, MCSCF based methods are not without perturbation series divergences.
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Configuration interaction (CI) is a post-Hartree–Fock linear variational method for solving the nonrelativistic
Schrödinger equation within the Born–Oppenheimer approximation for a quantum chemical multi-electron system.
Mathematically, configuration simply describes the linear combination of Slater determinants used for the wave
function. In terms of a specification of orbital occupation (for instance, (1s)2(2s)2(2p)1...), interaction means the
mixing (interaction) of different electronic configurations (states). Due to the long CPU time and immense hardware
required for CI calculations, the method is limited to relatively small systems.
In contrast to the Hartree–Fock method, in order to account for electron correlation, CI uses a variational wave
function that is a linear combination of configuration state functions (CSFs) built from spin orbitals (denoted by the
superscript SO),

where Ψ is usually the electronic ground state of the system. If the expansion includes all possible CSFs of the
appropriate symmetry, then this is a full configuration interaction procedure which exactly solves the electronic
Schrödinger equation within the space spanned by the one-particle basis set. The first term in the above expansion is
normally the Hartree–Fock determinant. The other CSFs can be characterised by the number of spin orbitals that are
swapped with virtual orbitals from the Hartree–Fock determinant. If only one spin orbital differs, we describe this as
a single excitation determinant. If two spin orbitals differ it is a double excitation determinant and so on. This is used
to limit the number of determinants in the expansion which is called the CI-space.
Truncating the CI-space is important to save computational time. For example, the method CID is limited to double 
excitations only. The method CISD is limited to single and double excitations. Single excitations on their own do not 
mix with the Hartree–Fock determinant. These methods, CID and CISD, are in many standard programs. The

http://en.wikipedia.org/w/index.php?title=Valence_bond_theory
http://en.wikipedia.org/w/index.php?title=Modern_valence_bond_theory
http://en.wikipedia.org/w/index.php?title=Molecular_orbital_theory
http://en.wikipedia.org/w/index.php?title=Linear_combination_of_atomic_orbitals
http://en.wikipedia.org/w/index.php?title=Electronic_band_structure
http://en.wikipedia.org/w/index.php?title=Empty_lattice_approximation
http://en.wikipedia.org/w/index.php?title=File:Symbol_book_class2.svg
http://en.wikipedia.org/w/index.php?title=Book:Electronic_structure_methods
http://en.wikipedia.org/w/index.php?title=Post-Hartree%E2%80%93Fock
http://en.wikipedia.org/w/index.php?title=Schr%C3%B6dinger_equation
http://en.wikipedia.org/w/index.php?title=Born%E2%80%93Oppenheimer_approximation
http://en.wikipedia.org/w/index.php?title=Quantum_chemistry
http://en.wikipedia.org/w/index.php?title=Slater_determinant
http://en.wikipedia.org/w/index.php?title=Hartree%E2%80%93Fock
http://en.wikipedia.org/w/index.php?title=Electron_correlation
http://en.wikipedia.org/w/index.php?title=Configuration_state_function
http://en.wikipedia.org/w/index.php?title=Configuration_state_function
http://en.wikipedia.org/w/index.php?title=Full_configuration_interaction
http://en.wikipedia.org/w/index.php?title=Schr%C3%B6dinger_equation
http://en.wikipedia.org/w/index.php?title=Hartree%E2%80%93Fock


Configuration interaction 36

Davidson correction can be used to estimate a correction to the CISD energy to account for higher excitations. An
important problem of truncated CI methods is their size-inconsistency which means the energy of two infinitely
separated particles is not double the energy of the single particle.
The CI procedure leads to a general matrix eigenvalue equation:

where c is the coefficient vector, e is the eigenvalue matrix, and the elements of the hamiltonian and overlap matrices
are, respectively,

,

.

Slater determinants are constructed from sets of orthonormal spin orbitals, so that , making 

the identity matrix and simplifying the above matrix equation.
The solution of the CI procedure are some eigenvalues and their corresponding eigenvectors .
The eigenvalues are the energies of the ground and some electronically excited states. By this it is possible to
calculate energy differences (excitation energies) with CI methods. Excitation energies of truncated CI methods are
generally too high, because the excited states are not that well correlated as the ground state is. For equally
(balanced) correlation of ground and excited states (better excitation energies) one can use more than one reference
determinant from which all singly, doubly, ... excited determinants are included (multireference configuration
interaction). MRCI also gives better correlation of the ground state which is important if it has more than one
dominant determinant. This can be easily understood because some higher excited determinants are also taken into
the CI-space.
For nearly degenerate determinants which build the ground state one should use the multi-configurational
self-consistent field (MCSCF) method because the Hartree–Fock determinant is qualitatively wrong and so are the
CI wave functions and energies.
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Coupled cluster (CC) is a numerical technique used for describing many-body systems. Its most common use is as
one of several post-Hartree–Fock ab initio quantum chemistry methods in the field of computational chemistry. It
essentially takes the basic Hartree–Fock molecular orbital method and constructs multi-electron wavefunctions using
the exponential cluster operator to account for electron correlation. Some of the most accurate calculations for small
to medium sized molecules use this method.
The method was initially developed by Fritz Coester and Hermann Kümmel in the 1950s for studying nuclear
physics phenomena, but became more frequently used when in 1966 Jiři Čížek (and later together with Josef Paldus)
reformulated the method for electron correlation in atoms and molecules. It is now one of the most prevalent
methods in quantum chemistry that includes electronic correlation. CC theory is simply the perturbative variant of
the Many Electron Theory (MET) of Oktay Sinanoğlu, which is the exact (and variational) solution of the many
electron problem, so it was also called "Coupled Pair MET (CPMET)". J. Čížek used the correlation function of
MET and used Goldstone type perturbation theory to get the energy expression while original MET was completely
variational. Čížek first developed the Linear-CPMET and then generalized it to full CPMET in the same paper in
1966. He then also performed an application of it on benzene molecule with O. Sinanoğlu in the same year. Because
MET is somewhat difficult to perform computationally, CC is simpler and thus, in today's computational chemistry,
CC is the best variant of MET and gives highly accurate results in comparison to experiments.[1]
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Wavefunction ansatz
Coupled-cluster theory provides the exact solution to the time-independent Schrödinger equation

where is the Hamiltonian of the system, the exact wavefunction, and E the exact energy of the ground
state. Coupled-cluster theory can also be used to obtain solutions for excited states using, for example,
linear-response, equation-of-motion, state-universal multi-reference coupled cluster, or valence-universal
multi-reference coupled cluster approaches.
The wavefunction of the coupled-cluster theory is written as an exponential ansatz:

,
where , the reference wave function, which is typically a Slater determinant constructed from Hartree–Fock
molecular orbitals, though other wave functions such as Configuration interaction, Multi-configurational
self-consistent field, or Brueckner orbitals can also be used. is the cluster operator which, when acting on ,
produces a linear combination of excited determinants from the reference wave function (see section below for
greater detail).
The choice of the exponential ansatz is opportune because (unlike other ansätze, for example, configuration
interaction) it guarantees the size extensivity of the solution. Size consistency in CC theory, however, depends on the
size consistency of the reference wave function.
A criticism of the method is that the conventional implementation employing the similarity-transformed Hamiltonian
(see below) is not variational, though there are bi-variational and quasi-variational approaches that have been
developed since the first implementations of the theory. While the above ansatz for the wave function itself has no
natural truncation, for other properties, such as energy, there is a natural truncation when examining expectation
values, which has its basis in the linked- and connected-cluster theorems, and thus does not suffer from issues such
as lack of size extensivity, like the variational configuration interaction.

Cluster operator
The cluster operator is written in the form,

,
where is the operator of all single excitations, is the operator of all double excitations and so forth. In the
formalism of second quantization these excitation operators are expressed as

and for the general n-fold cluster operator

In the above formulae and denote the creation and annihilation operators respectively and i, j stand 
for occupied (hole) and a, b for unoccupied (particle) orbitals (states). The creation and annihilation operators in the 
coupled cluster terms above are written in canonical form, where each term is in the normal order form, with respect 
to the Fermi vacuum, . Being the one-particle cluster operator and the two-particle cluster operator, and 

convert the reference function into a linear combination of the singly and doubly excited Slater 
determinants, respectively, if applied without the exponential (such as in CI where a linear excitation operator is 
applied to the wave function). Applying the exponential cluster operator to the wave function, one can then generate 
more than doubly excited determinants due to the various powers of and that appear in the resulting
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expressions (see below). Solving for the unknown coefficients and is necessary for finding the approximate solution .
The exponential operator may be expanded as a Taylor series and if we consider only the and cluster
operators of , we can write:

Though this series is finite in practice because the number of occupied molecular orbitals is finite, as is the number
of excitations, it is still very large, to the extent that even modern day massively parallel computers are inadequate,
except for problems of a dozen or so electrons and very small basis sets, when considering all contributions to the
cluster operator and not just and . Often, as was done above, the cluster operator includes only singles and
doubles (see CCSD below) as this offers a computationally affordable method that performs better than MP2 and
CISD, but is not very accurate usually. For accurate results some form of triples (approximate or full) are needed,
even near the equilibrium geometry (in the Franck-Condon region), and especially when breaking single-bonds or
describing diradical species (these latter examples are often what is referred to as multi-reference problems, since
more than one determinant has a significant contribution to the resulting wave function). For double bond breaking,
and more complicated problems in chemistry, quadruple excitations often become important as well, though usually
they are small for most problems, and as such, the contribution of , etc. to the operator is typically small.
Furthermore, if the highest excitation level in the operator is n,

then Slater determinants for an N-electron system excited more than n (< N) times may still contribute to the coupled
cluster wave function because of the non-linear nature of the exponential ansatz, and therefore, coupled cluster
terminated at usually recovers more correlation energy than CI with maximum n excitations.

Coupled-cluster equations
The Schrödinger equation can be written, using the coupled-cluster wave function, as

where there are a total of q coefficients (t-amplitudes) to solve for. To obtain the q equations, first, we multiply the
above Schrödinger equation on the left by and then project onto the entire set of up to m-tuply excited
determinants, where m is the highest order excitation included in , that can be constructed from the reference
wave function , denoted by , and individually, are singly excited determinants where the
electron in orbital i has been excited to orbital a; are doubly excited determinants where the electron in

orbital i has been excited to orbital a and the electron in orbital j has been excited to orbital b, etc. In this way we
generate a set of coupled energy-independent non-linear algebraic equations needed to determine the t-amplitudes.

,
(note, we have made use of , the identity operator, and we are also assuming that we are using
orthogonal orbitals, though this does not necessarily have to be true, e.g., valence bond orbitals, and in such cases the
last set of equations are not necessarily equal to zero) the latter being the equations to be solved and the former the
equation for the evaluation of the energy.
Considering the basic CCSD method:

,

,

,
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in which the similarity transformed Hamiltonian, , can be explicitly written down using Hadamard's formula in
Lie algebra, also called Hadamard's lemma (see also Baker–Campbell–Hausdorff formula (BCH formula), though
note they are different, in that Hadamard's formula is a lemma of the BCH formula):

.
The subscript C designates the connected part of the corresponding operator expression.
The resulting similarity transformed Hamiltonian is non-Hermitian, resulting in different left- and right-handed
vectors (wave functions) for the same state of interest (this is what is often referred to in coupled cluster theory as the
biorthogonality of the solution or wave function, though it also applies to other non-Hermitian theories as well). The
resulting equations are a set of non-linear equations which are solved in an iterative manner. Standard quantum
chemistry packages (GAMESS (US), NWChem, ACES II, etc.) solve the coupled cluster equations using the Jacobi
method and direct inversion of the iterative subspace (DIIS) extrapolation of the t-amplitudes to accelerate
convergence.

Types of coupled-cluster methods
The classification of traditional coupled-cluster methods rests on the highest number of excitations allowed in the
definition of . The abbreviations for coupled-cluster methods usually begin with the letters "CC" (for coupled
cluster) followed by
1. S - for single excitations (shortened to singles in coupled-cluster terminology)
2. D - for double excitations (doubles)
3. T - for triple excitations (triples)
4. Q - for quadruple excitations (quadruples)
Thus, the operator in CCSDT has the form

Terms in round brackets indicate that these terms are calculated based on perturbation theory. For example, the
CCSD(T) method means:
1.1. Coupled cluster with a full treatment singles and doubles.
2.2. An estimate to the connected triples contribution is calculated non-iteratively using Many-Body Perturbation

Theory arguments.

General description of the theory
The complexity of equations and the corresponding computer codes, as well as the cost of the computation increases
sharply with the highest level of excitation. For many applications CCSD, while relatively inexpensive, does not
provide sufficient accuracy except for the smallest systems (approximately 2 to 4 electrons), and often times an
approximate treatment of triples is needed. The most well known coupled cluster method that provides an estimate of
connected triples is CCSD(T), which provides a good description of closed-shell molecules near the equilibrium
geometry, but breaks down in more complicated situations such as bond breaking and diradicals. Another popular
method that makes up for the failings of the standard CCSD(T) approach is CR-CC(2,3), where the triples
contribution to the energy is computed from the difference between the exact solution and the CCSD energy, and is
not based on perturbation theory arguments. More complicated coupled-cluster methods such as CCSDT and
CCSDTQ are used only for high-accuracy calculations of small molecules. The inclusion of all n levels of excitation
for the n-electron system gives the exact solution of the Schrödinger equation within the given basis set, within the
Born–Oppenheimer approximation (although schemes have also been drawn up to work without the BO
approximation).

http://en.wikipedia.org/w/index.php?title=Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula
http://en.wikipedia.org/w/index.php?title=GAMESS_%28US%29
http://en.wikipedia.org/w/index.php?title=NWChem
http://en.wikipedia.org/w/index.php?title=ACES_%28computational_chemistry%29
http://en.wikipedia.org/w/index.php?title=Jacobi_method
http://en.wikipedia.org/w/index.php?title=Jacobi_method
http://en.wikipedia.org/w/index.php?title=DIIS
http://en.wikipedia.org/w/index.php?title=Perturbation_theory
http://en.wikipedia.org/w/index.php?title=Schr%C3%B6dinger_equation
http://en.wikipedia.org/w/index.php?title=Basis_set


Coupled cluster 41

One possible improvement to the standard coupled-cluster approach is to add terms linear in the interelectronic
distances through methods such as CCSD-R12. This improves the treatment of dynamical electron correlation by
satisfying the Kato cusp condition and accelerates convergence with respect to the orbital basis set. Unfortunately,
R12 methods invoke the resolution of the identity which requires a relatively large basis set in order to be a good
approximation.
The coupled-cluster method described above is also known as the single-reference (SR) coupled-cluster method
because the exponential ansatz involves only one reference function . The standard generalizations of the
SR-CC method are the multi-reference (MR) approaches: state-universal coupled cluster (also known as Hilbert
space coupled cluster), valence-universal coupled cluster (or Fock space coupled cluster) and state-selective coupled
cluster (or state-specific coupled cluster).

Historical accounts
In the first reference below, Kümmel comments:

Considering the fact that the CC method was well understood around the late fifties it looks strange that
nothing happened with it until 1966, as Jiři Čížek published his first paper on a quantum chemistry problem.
He had looked into the 1957 and 1960 papers published in Nuclear Physics by Fritz and myself. I always
found it quite remarkable that a quantum chemist would open an issue of a nuclear physics journal. I myself at
the time had almost gave up the CC method as not tractable and, of course, I never looked into the quantum
chemistry journals. The result was that I learnt about Jiři's work as late as in the early seventies, when he sent
me a big parcel with reprints of the many papers he and Joe Paldus had written until then.

Josef Paldus also wrote his first hand account of the origins of coupled-cluster theory, its implementation, and
exploitation in electronic wave function determination; his account is primarily about the making of coupled-cluster
theory rather than about the theory itself.

Relation to other theories

Configuration Interaction

The Cj excitation operators defining the CI expansion of an N-electron system for the wave function ,
,

,

are related to the cluster operators , since in the limit of including up to in the cluster operator the CC theory
must be equal to full CI, we obtain the following relationships

,

,

,

,

etc. For general relationships see J. Paldus, in Methods in Computational Molecular Physics, Vol. 293 of Nato
Advanced Study Institute Series B: Physics, edited by S. Wilson and G.H.F. Diercksen (Plenum, New York, 1992),
pp. 99-194.
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Symmetry Adapted Cluster
The Symmetry adapted cluster (SAC) approach determines the (spin and) symmetry adapted cluster operator

by solving the following system of energy dependent equations,

,
,

, , ,

where are the n-tuply excited determinants relative to (usually they are the spin- and
symmetry-adapted configuration state functions, in practical implementations), and is the highest-order of
excitation included in the SAC operator. If all of the nonlinear terms in are included then the SAC equations
become equivalent to the standard coupled-cluster equations of Jiři Čížek. This is due to the cancellation of the
energy-dependent terms with the disconnected terms contributing to the product of , resulting in the same set

of nonlinear energy-independent equations. Typically, all nonlinear terms, except are dropped, as higher-order

nonlinear terms are usually small.
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Multi-configurational self-consistent field (MCSCF) is a method in quantum chemistry used to generate
qualitatively correct reference states of molecules in cases where Hartree–Fock and density functional theory are not
adequate (e.g., for molecular ground states which are quasi-degenerate with low lying excited states or in bond
breaking situations). It uses a linear combination of configuration state functions (CSF) or configuration
determinants to approximate the exact electronic wavefunction of an atom or molecule. In an MCSCF calculation,
the set of coefficients of both the CSFs or determinants and the basis functions in the molecular orbitals are varied to
obtain the total electronic wavefunction with the lowest possible energy. This method can be considered a
combination between configuration interaction (where the molecular orbitals are not varied but the expansion of the
wave function) and Hartree–Fock (where there is only one determinant but the molecular orbitals are varied).
MCSCF wave functions are often used as reference states for Multireference configuration interaction (MRCI) or
multi-reference perturbation theories like complete active space perturbation theory (CASPT2). These methods can
deal with extremely complex chemical situations and, if computing power permits, may be used to reliably calculate
molecular ground- and excited states if all other methods fail.

Introduction
For the simplest single bond, found in the H2 molecule, molecular orbitals can always be written in terms of two
functions χiA and χiB (which are atomic orbitals with small corrections) located at the two nuclei,

where Ni is a normalization constant. The ground state wavefunction for H2 at the equilibrium geometry is dominated
by the configuration (φ1)2, which means the molecular orbital φ1 is nearly doubly occupied. The Hartree–Fock
model assumes it is doubly occupied, which leads to a total wavefunction of

where Θ2,0 is the singlet (S = 0) spin function for two electrons. The molecular orbitals in this case φ1 are taken as
sums of 1s atomic orbitals on both atoms, namely N1(1sA + 1sB). Expanding the above equation into atomic orbitals
yields

This Hartree-Fock model gives a reasonable description of H2 around the equilibrium geometry - about 0.735Å for
the bond length (compared to a 0.746Å experimental value) and 84 kcal/mol for the bond energy (exp. 109
kcal/mol). This is typical of the HF model, which usually describes closed shell systems around their equilibrium
geometry quite well. At large separations, however, the terms describing both electrons located at one atom remain,
which corresponds to dissociation to H+ + H−, which has a much larger energy than H + H. Therefore, the persisting
presence of ionic terms leads to an unphysical solution in this case.
Consequently, the HF model cannot be used to describe dissociation processes with open shell products. The most
straightforward solution to this problem is introducing coefficients in front of the different terms in Ψ1:

which forms the basis for the valence bond description of chemical bonds. With the coefficients CIon and CCov
varying, the wave function will have the correct form, with CIon=0 for the separated limit and CIon comparable to
CCov at equilibrium. Such a description, however, uses non-orthogonal basis functions, which complicates its
mathematical structure. Instead, multiconfiguration is achieved by using orthogonal molecular orbitals. After
introducing an anti-bonding orbital

the total wave function of H2 can be written as a linear combination of configurations built from bonding and
anti-bonding orbitals:
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where Φ2 is the electronic configuration (φ2)2. In this multiconfigurational description of the H2 chemical bond,
C1 = 1 and C2 = 0 close to equilibrium, and C1 will be comparable to C2 for large separations.

Complete active space SCF
A particularly important MCSCF approach is the complete active space SCF method (CASSCF), where the linear
combination of CSFs includes all that arise from a particular number of electrons in a particular number of orbitals
(also known as full-optimized reaction space (FORS-MCSCF)). For example, one might define CASSCF(11,8) for
the molecule, NO, where the 11 valence electrons are distributed between all configurations that can be constructed
from 8 molecular orbitals.

Restricted active space SCF
Since the number of CSFs quickly increases with the number of active orbitals, along with the computational cost, it
may be desirable to use a smaller set of CSFs. One way to make this selection is to restrict the number of electrons in
certain subspaces, done in the restricted active space SCF method (RASSCF). One could, for instance, allow only
single and double excitations from some strongly-occupied subset of active orbitals, or restrict the number of
electrons to at most 2 in another subset of active orbitals.
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Density functional theory (DFT) is a quantum mechanical modelling method used in physics and chemistry to
investigate the electronic structure (principally the ground state) of many-body systems, in particular atoms,
molecules, and the condensed phases. With this theory, the properties of a many-electron system can be determined
by using functionals, i.e. functions of another function, which in this case is the spatially dependent electron density.
Hence the name density functional theory comes from the use of functionals of the electron density. DFT is among
the most popular and versatile methods available in condensed-matter physics, computational physics, and
computational chemistry.
DFT has been very popular for calculations in solid-state physics since the 1970s. However, DFT was not considered
accurate enough for calculations in quantum chemistry until the 1990s, when the approximations used in the theory
were greatly refined to better model the exchange and correlation interactions. In many cases the results of DFT
calculations for solid-state systems agree quite satisfactorily with experimental data. Computational costs are
relatively low when compared to traditional methods, such as Hartree–Fock theory and its descendants based on the
complex many-electron wavefunction.
Despite recent improvements, there are still difficulties in using density functional theory to properly describe
intermolecular interactions, especially van der Waals forces (dispersion); charge transfer excitations; transition
states, global potential energy surfaces and some other strongly correlated systems; and in calculations of the band
gap in semiconductors. Its incomplete treatment of dispersion can adversely affect the accuracy of DFT (at least
when used alone and uncorrected) in the treatment of systems which are dominated by dispersion (e.g. interacting
noble gas atoms) or where dispersion competes significantly with other effects (e.g. in biomolecules). The
development of new DFT methods designed to overcome this problem, by alterations to the functional or by the
inclusion of additive terms, is a current research topic.
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Overview of method
Although density functional theory has its conceptual roots in the Thomas–Fermi model, DFT was put on a firm
theoretical footing by the two Hohenberg–Kohn theorems (H–K). The original H–K theorems held only for
non-degenerate ground states in the absence of a magnetic field, although they have since been generalized to
encompass these.
The first H–K theorem demonstrates that the ground state properties of a many-electron system are uniquely
determined by an electron density that depends on only 3 spatial coordinates. It lays the groundwork for reducing the
many-body problem of N electrons with 3N spatial coordinates to 3 spatial coordinates, through the use of
functionals of the electron density. This theorem can be extended to the time-dependent domain to develop
time-dependent density functional theory (TDDFT), which can be used to describe excited states.
The second H–K theorem defines an energy functional for the system and proves that the correct ground state
electron density minimizes this energy functional.
Within the framework of Kohn–Sham DFT (KS DFT), the intractable many-body problem of interacting electrons in
a static external potential is reduced to a tractable problem of non-interacting electrons moving in an effective
potential. The effective potential includes the external potential and the effects of the Coulomb interactions between
the electrons, e.g., the exchange and correlation interactions. Modeling the latter two interactions becomes the
difficulty within KS DFT. The simplest approximation is the local-density approximation (LDA), which is based
upon exact exchange energy for a uniform electron gas, which can be obtained from the Thomas–Fermi model, and
from fits to the correlation energy for a uniform electron gas. Non-interacting systems are relatively easy to solve as
the wavefunction can be represented as a Slater determinant of orbitals. Further, the kinetic energy functional of such
a system is known exactly. The exchange-correlation part of the total-energy functional remains unknown and must
be approximated.
Another approach, less popular than KS DFT but arguably more closely related to the spirit of the original H-K
theorems, is orbital-free density functional theory (OFDFT), in which approximate functionals are also used for the
kinetic energy of the non-interacting system.
Note: Recently, another foundation to construct the DFT without the Hohenberg–Kohn theorems is getting popular,
that is, as a Legendre transformation from external potential to electron density. See, e.g., Density Functional Theory
– an introduction [1], Rev. Mod. Phys. 78, 865–951 (2006) [2], and references therein. A book, 'The Fundamentals of
Density Functional Theory' [3] written by H. Eschrig, contains detailed mathematical discussions on the DFT; there is
a difficulty for N-particle system with infinite volume; however, we have no mathematical problems in finite
periodic system (torus). Note that the correspondence between density and potential should be very non-analytic (for
example, we have boundaries in the space of one-particle potential; e.g, those between metal and insulator).

Derivation and formalism
As usual in many-body electronic structure calculations, the nuclei of the treated molecules or clusters are seen as
fixed (the Born–Oppenheimer approximation), generating a static external potential V in which the electrons are
moving. A stationary electronic state is then described by a wavefunction satisfying the
many-electron time-independent Schrödinger equation

where, for the -electron system, is the Hamiltonian, is the total energy, is the kinetic energy, is the 
potential energy from the external field due to positively charged nuclei, and is the electron-electron interaction 
energy. The operators and are called universal operators as they are the same for any -electron system, 
while is system dependent. This complicated many-particle equation is not separable into simpler single-particle
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equations because of the interaction term .
There are many sophisticated methods for solving the many-body Schrödinger equation based on the expansion of
the wavefunction in Slater determinants. While the simplest one is the Hartree–Fock method, more sophisticated
approaches are usually categorized as post-Hartree–Fock methods. However, the problem with these methods is the
huge computational effort, which makes it virtually impossible to apply them efficiently to larger, more complex
systems.
Here DFT provides an appealing alternative, being much more versatile as it provides a way to systematically map
the many-body problem, with , onto a single-body problem without . In DFT the key variable is the particle
density which for a normalized is given by

This relation can be reversed, i.e. for a given ground-state density it is possible, in principle, to calculate the
corresponding ground-state wavefunction . In other words, is a unique functional of ,

and consequently the ground-state expectation value of an observable is also a functional of 

In particular, the ground-state energy is a functional of 

where the contribution of the external potential can be written explicitly in terms of the

ground-state density 

More generally, the contribution of the external potential can be written explicitly in terms of the

density ,

The functionals and are called universal functionals, while is called a non-universal functional,
as it depends on the system under study. Having specified a system, i.e., having specified , one then has to
minimize the functional

with respect to , assuming one has got reliable expressions for and . A successful minimization of
the energy functional will yield the ground-state density and thus all other ground-state observables.
The variational problems of minimizing the energy functional can be solved by applying the Lagrangian
method of undetermined multipliers. First, one considers an energy functional that doesn't explicitly have an
electron-electron interaction energy term,

where denotes the kinetic energy operator and is an external effective potential in which the particles are
moving, so that .
Thus, one can solve the so-called Kohn–Sham equations of this auxiliary non-interacting system,
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which yields the orbitals that reproduce the density of the original many-body system

The effective single-particle potential can be written in more detail as

where the second term denotes the so-called Hartree term describing the electron-electron Coulomb repulsion, while
the last term is called the exchange-correlation potential. Here, includes all the many-particle
interactions. Since the Hartree term and depend on , which depends on the , which in turn depend on

, the problem of solving the Kohn–Sham equation has to be done in a self-consistent (i.e., iterative) way. Usually
one starts with an initial guess for , then calculates the corresponding and solves the Kohn-Sham equations
for the . From these one calculates a new density and starts again. This procedure is then repeated until
convergence is reached. A non-iterative approximate formulation called Harris functional DFT is an alternative
approach to this.

Approximations (exchange-correlation functionals)
The major problem with DFT is that the exact functionals for exchange and correlation are not known except for the
free electron gas. However, approximations exist which permit the calculation of certain physical quantities quite
accurately. In physics the most widely used approximation is the local-density approximation (LDA), where the
functional depends only on the density at the coordinate where the functional is evaluated:

The local spin-density approximation (LSDA) is a straightforward generalization of the LDA to include electron
spin:

Highly accurate formulae for the exchange-correlation energy density have been constructed from
quantum Monte Carlo simulations of jellium.
Generalized gradient approximations (GGA) are still local but also take into account the gradient of the density at the
same coordinate:

Using the latter (GGA) very good results for molecular geometries and ground-state energies have been achieved.
Potentially more accurate than the GGA functionals are the meta-GGA functionals, a natural development after the
GGA (generalized gradient approximation). Meta-GGA DFT functional in its original form includes the second
derivative of the electron density (the Laplacian) whereas GGA includes only the density and its first derivative in
the exchange-correlation potential.
Functionals of this type are, for example, TPSS and the Minnesota Functionals. These functionals include a further
term in the expansion, depending on the density, the gradient of the density and the Laplacian (second derivative) of
the density.
Difficulties in expressing the exchange part of the energy can be relieved by including a component of the exact
exchange energy calculated from Hartree–Fock theory. Functionals of this type are known as hybrid functionals.
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Generalizations to include magnetic fields
The DFT formalism described above breaks down, to various degrees, in the presence of a vector potential, i.e. a
magnetic field. In such a situation, the one-to-one mapping between the ground-state electron density and
wavefunction is lost. Generalizations to include the effects of magnetic fields have led to two different theories:
current density functional theory (CDFT) and magnetic field density functional theory (BDFT). In both these
theories, the functional used for the exchange and correlation must be generalized to include more than just the
electron density. In current density functional theory, developed by Vignale and Rasolt, the functionals become
dependent on both the electron density and the paramagnetic current density. In magnetic field density functional
theory, developed by Salsbury, Grayce and Harris, the functionals depend on the electron density and the magnetic
field, and the functional form can depend on the form of the magnetic field. In both of these theories it has been
difficult to develop functionals beyond their equivalent to LDA, which are also readily implementable
computationally.

Applications

C60 with isosurface of ground-state electron
density as calculated with DFT.

In practice, Kohn-Sham theory can be applied in several distinct ways
depending on what is being investigated. In solid state calculations, the
local density approximations are still commonly used along with plane
wave basis sets, as an electron gas approach is more appropriate for
electrons delocalised through an infinite solid. In molecular calculations,
however, more sophisticated functionals are needed, and a huge variety of
exchange-correlation functionals have been developed for chemical
applications. Some of these are inconsistent with the uniform electron gas
approximation, however, they must reduce to LDA in the electron gas limit.
Among physicists, probably the most widely used functional is the revised
Perdew–Burke–Ernzerhof exchange model (a direct generalized-gradient
parametrization of the free electron gas with no free parameters); however,
this is not sufficiently calorimetrically accurate for gas-phase molecular calculations. In the chemistry community,
one popular functional is known as BLYP (from the name Becke for the exchange part and Lee, Yang and Parr for
the correlation part). Even more widely used is B3LYP which is a hybrid functional in which the exchange energy,
in this case from Becke's exchange functional, is combined with the exact energy from Hartree–Fock theory. Along
with the component exchange and correlation funсtionals, three parameters define the hybrid functional, specifying
how much of the exact exchange is mixed in. The adjustable parameters in hybrid functionals are generally fitted to a
'training set' of molecules. Unfortunately, although the results obtained with these functionals are usually sufficiently
accurate for most applications, there is no systematic way of improving them (in contrast to some of the traditional
wavefunction-based methods like configuration interaction or coupled cluster theory). Hence in the current DFT
approach it is not possible to estimate the error of the calculations without comparing them to other methods or
experiments.

Thomas–Fermi model
The predecessor to density functional theory was the Thomas–Fermi model, developed independently by both
Thomas and Fermi in 1927. They used a statistical model to approximate the distribution of electrons in an atom.
The mathematical basis postulated that electrons are distributed uniformly in phase space with two electrons in every

of volume. For each element of coordinate space volume we can fill out a sphere of momentum space up to
the Fermi momentum 
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Equating the number of electrons in coordinate space to that in phase space gives:

Solving for and substituting into the classical kinetic energy formula then leads directly to a kinetic energy
represented as a functional of the electron density:

where    

As such, they were able to calculate the energy of an atom using this kinetic energy functional combined with the
classical expressions for the nuclear-electron and electron-electron interactions (which can both also be represented
in terms of the electron density).
Although this was an important first step, the Thomas–Fermi equation's accuracy is limited because the resulting
kinetic energy functional is only approximate, and because the method does not attempt to represent the exchange
energy of an atom as a conclusion of the Pauli principle. An exchange energy functional was added by Dirac in
1928.
However, the Thomas–Fermi–Dirac theory remained rather inaccurate for most applications. The largest source of
error was in the representation of the kinetic energy, followed by the errors in the exchange energy, and due to the
complete neglect of electron correlation.
Teller (1962) showed that Thomas–Fermi theory cannot describe molecular bonding. This can be overcome by
improving the kinetic energy functional.
The kinetic energy functional can be improved by adding the Weizsäcker (1935) correction:

Hohenberg–Kohn theorems
1.If two systems of electrons, one trapped in a potential and the other in , have the same ground-state
density then necessarily .
Corollary: the ground state density uniquely determines the potential and thus all properties of the system, including
the many-body wave function. In particular, the "HK" functional, defined as is a universal
functional of the density (not depending explicitly on the external potential).
2. For any positive integer and potential it exists a density functional such that

obtains its minimal value at the ground-state density of electrons in

the potential . The minimal value of is then the ground state energy of this system.

Pseudo-potentials
The many electron Schrödinger equation can be very much simplified if electrons are divided in two groups: valence 
electrons and inner core electrons. The electrons in the inner shells are strongly bound and do not play a significant 
role in the chemical binding of atoms; they also partially screen the nucleus, thus forming with the nucleus an almost 
inert core. Binding properties are almost completely due to the valence electrons, especially in metals and 
semiconductors. This separation suggests that inner electrons can be ignored in a large number of cases, thereby 
reducing the atom to an ionic core that interacts with the valence electrons. The use of an effective interaction, a
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pseudopotential, that approximates the potential felt by the valence electrons, was first proposed by Fermi in 1934
and Hellmann in 1935. In spite of the simplification pseudo-potentials introduce in calculations, they remained
forgotten until the late 50’s.
Ab initio Pseudo-potentials

A crucial step toward more realistic pseudo-potentials was given by Topp and Hopfield and more recently Cronin,
who suggested that the pseudo-potential should be adjusted such that they describe the valence charge density
accurately. Based on that idea, modern pseudo-potentials are obtained inverting the free atom Schrödinger equation
for a given reference electronic configuration and forcing the pseudo wave-functions to coincide with the true
valence wave functions beyond a certain distance . The pseudo wave-functions are also forced to have the same
norm as the true valence wave-functions and can be written as

where is the radial part of the wavefunction with angular momentum , and and denote,
respectively, the pseudo wave-function and the true (all-electron) wave-function. The index n in the true
wave-functions denotes the valence level. The distance beyond which the true and the pseudo wave-functions are
equal, , is also -dependent.

Software supporting DFT
DFT is supported by many Quantum chemistry and solid state physics software, often along with other methods.
Versatile software packages for DFT include: the Vienna Ab initio Simulation Package (VASP),[4]

QUANTUM-ESPRESSO,[5] ABINIT, GPAW,[6] Gaussian,[7] BigDFT, WIEN2k and so on.[8]
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Quantum chemistry composite methods (also referred to as thermochemical recipes) are computational chemistry
methods that aim for high accuracy by combining the results of several calculations. They combine methods with a
high level of theory and a small basis set with methods that employ lower levels of theory with larger basis sets.
They are commonly used to calculate thermodynamic quantities such as enthalpies of formation, atomization
energies, ionization energies and electron affinities. They aim for chemical accuracy which is usually defined as
within 1 kcal/mol of the experimental value. The first systematic model chemistry of this type with broad
applicability was called Gaussian-1 (G1) introduced by John Pople. This was quickly replaced by the Gaussian-2
(G2) which has been used extensively. The Gaussian-3 (G3) was introduced later.

Gaussian-n Theories

Gaussian-2 (G2)
The G2 uses seven calculations:
1. the molecular geometry is obtained by a MP2 optimization using the 6-31G(d) basis set and all electrons included

in the perturbation. This geometry is used for all subsequent calculations.
2. The highest level of theory is a quadratic configuration interaction calculation with single and double excitations

and a triples excitation contribution (QCISD(T)) with the 6-311G(d) basis set. Such a calculation in the Gaussian
and Spartan programs also give the MP2 and MP4 energies which are also used.

3. The effect of polarization functions is assessed using an MP4 calculation with the 6-311G(2df,p) basis set.
4.4. The effect of diffuse functions is assessed using an MP4 calculation with the 6-311+G(d, p) basis set.
5.5. The largest basis set is 6-311+G(3df,2p) used at the MP2 level of theory.

http://en.wikipedia.org/w/index.php?title=Valence_bond_theory
http://en.wikipedia.org/w/index.php?title=Modern_valence_bond_theory
http://en.wikipedia.org/w/index.php?title=Molecular_orbital_theory
http://en.wikipedia.org/w/index.php?title=Linear_combination_of_atomic_orbitals
http://en.wikipedia.org/w/index.php?title=Electronic_band_structure
http://en.wikipedia.org/w/index.php?title=Empty_lattice_approximation
http://en.wikipedia.org/w/index.php?title=File:Symbol_book_class2.svg
http://en.wikipedia.org/w/index.php?title=Book:Electronic_structure_methods
http://en.wikipedia.org/w/index.php?title=Computational_chemistry
http://en.wikipedia.org/w/index.php?title=Basis_set_%28chemistry%29
http://en.wikipedia.org/w/index.php?title=John_Pople
http://en.wikipedia.org/w/index.php?title=M%C3%B8ller-Plesset_perturbation_theory
http://en.wikipedia.org/w/index.php?title=Quadratic_configuration_interaction
http://en.wikipedia.org/w/index.php?title=Gaussian_%28software%29
http://en.wikipedia.org/w/index.php?title=Spartan_%28software%29
http://en.wikipedia.org/w/index.php?title=Polarization_function


Quantum chemistry composite methods 54

6. A Hartree-Fock geometry optimization with the 6-31G(d) basis set used to give a geometry for:
7.7. A frequency calculation with the 6-31G(d) basis set to obtain the zero-point vibrational energy (ZPVE)
The various energy changes are assumed to be additive so the combined energy is given by:

EQCISD(T) from 2 + [EMP4 from 3 - EMP4 from 2] + [EMP4 from 4 - EMP4 from 2] + [EMP2 from 5 +
EMP2 from 2 - EMP2 from 3 - EMP2 from 4]

The second term corrects for the effect of adding the polarization functions. The third term corrects for the diffuse
functions. The final term corrects for the larger basis set with the terms from steps 2, 3 and 4 preventing
contributions from being counted twice. Two final corrections are made to this energy. The ZPVE is scaled by
0.8929. An empirical correction is then added to account for factors not considered above. This is called the higher
level correction (HC) and is given by -0.00481 x (number of valence electrons -0.00019 x (number of unpaired
valence electrons). The two numbers are obtained calibrating the results against the experimental results for a set of
molecules. The scaled ZPVE and the HLC are added to give the final energy. For some molecules containing one of
the third row elements Ga - Xe, a further term is added to account for spin orbit coupling.
Several variants of this procedure have been used. Removing steps 3 and 4 and relying only on the MP2 result from
step 5 is significantly cheaper and only slightly less accurate. This is the G2MP2 method. Sometimes the geometry is
obtained using a density functional theory method such as B3LYP and sometimes the QCISD(T) method in step 1 is
replaced by the coupled cluster method CCSD(T).

Gaussian-3 (G3)
The G3 is very similar to G2 but learns from the experience with G2 theory. The 6-311G basis set is replaced by the
smaller 6-31G basis. The final MP2 calculations use a larger basis set, generally just called G3large, and correlating
all the electrons not just the valence electrons as in G2 theory, additionally a spin-orbit correction term and an
empirical correction for valence electrons are introduced. This gives some core correlation contributions to the final
energy. The HLC takes the same form but with different empirical parameters. A Gaussian-4 method has been
introduced. An alternative to the Gaussian-n methods is the correlation consistent composite method.

Gaussian-4 (G4)
Gaussian 4 (G4) theory is an approach for the calculation of energies of molecular species containing first-row
(Li–F), second-row (Na–Cl), and third row main group elements. G4 theory is an improved modification of the
earlier approach G3 theory. The modifications to G3- theory are the change in an estimate of the Hartree-Fock
energy limit, an expanded polarization set for the large basis set calculation, use of CCSD(T) energies, use of
geometries from density functional theory and zero-point energies, and two added higher level correction
parameters. According to the developers, this theory gives significant improvement over G3-theory.
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T1

The calculated T1 heat of formation (y axis)
compared to the experimental heat of formation

(x axis) for a set of >1800 diverse organic
molecules from the NIST thermochemical

database[1] with mean absolute and RMS errors
of 8.5 and 11.5 kJ/mol, respectively.

The T1 method. is an efficient computational approach developed for
calculating accurate heats of formation of uncharged, closed-shell
molecules comprising H, C, N, O, F, Si, P, S, Cl and Br, within
experimental error. It is practical for molecules up to molecular weight
~ 500 a.m.u.
T1 method as incorporated in Spartan consists of:
1. HF/6-31G* optimization.
2.2. RI-MP2/6-311+G(2d,p)[6-311G*] single point energy with dual

basis set.
3. An empirical correction using atom counts, Mulliken bond orders,

HF/6-31G* and RI-MP2 energies as variables.

T1 follows the G3(MP2) recipe, however, by substituting an
HF/6-31G* for the MP2/6-31G* geometry, eliminating both the
HF/6-31G* frequency and QCISD(T)/6-31G* energy and
approximating the MP2/G3MP2large energy using dual basis set
RI-MP2 techniques, the T1 method reduces computation time by up to 3 orders of magnitude. Atom counts,
Mulliken bond orders and HF/6-31G* and RI-MP2 energies are introduced as variables in a linear regression fit to a
set of 1126 G3(MP2) heats of formation. The T1 procedure reproduces these values with mean absolute and RMS
errors of 1.8 and 2.5 kJ/mol, respectively. T1 reproduces experimental heats of formation for a set of 1805 diverse
organic molecules from the NIST thermochemical database with mean absolute and RMS errors of 8.5 and 11.5
kJ/mol, respectively.

Correlation consistent Composite Approach (ccCA)
This approach, developed at the University of North Texas by Angela K. Wilson's research group, utilizes the
correlation consistent basis sets developed by Dunning and co-workers. Unlike the Gaussian-n methods, ccCA does
not contain any empirically fitted term. The B3LYP density functional method with the cc-pVTZ basis set, and
cc-pV(T+d)Z for third row elements (Na - Ar), are used to determine the equilibrium geometry. Single point
calculations are then used to find the reference energy and additional contributions to the energy. The total ccCA
energy for main group is calculated by:

EccCA = EMP2/CBS + ΔECC + ΔECV + ΔESR + ΔEZPE + ΔESO
The reference energy EMP2/CBS is the MP2/aug-cc-pVnZ (where n=D,T,Q) energies extrapolated at the complete
basis set limit by the Peterson mixed gaussian exponential extrapolation scheme. CCSD(T)/cc-pVTZ is used to
account for correlation beyond the MP2 theory:

ΔECC = ECCSD(T)/cc-pVTZ - EMP2/cc-pVTZ
Core-core and core-valence interactions are accounted for using MP2(FC1)/aug-cc-pCVTZ:

ΔECV= EMP2(FC1)/aug-cc-pCVTZ - EMP2/aug-cc-pVTZ
Scalar relativistic effects are also taken into account with a one-particle Douglass Kroll Hess Hamiltonian and
recontracted basis sets:

ΔESR = EMP2-DK/cc-pVTZ-DK - EMP2/cc-pVTZ
The last two terms are Zero Point Energy corrections scaled with a factor of 0.989 to account for deficiencies in the
harmonic approximation and spin-orbit corrections considered only for atoms.
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Complete basis set methods (CBS)
These methods by Petersson and coworkers[2] have some similarity to G2 and G3 but contain an MP2 extrapolation
to the complete basis set limit as one step.

Weizmann-n Theories
The Weizmann-n ab initio methods (Wn, n = 1–4) are highly-accurate composite theories devoid of empirical
parameters. These theories are capable of sub-kJ/mol accuracies in prediction of fundamental thermochemical
quantities such as heats of formation and atomization energies, and unprecedented accuracies in prediction of
spectroscopic constants. The ability of these theories to successfully reproduce the CCSD(T)/CBS (W1 and W2),
CCSDT(Q)/CBS (W3), and CCSDTQ5/CBS (W4) energies relies on judicious combination of very large Gaussian
basis sets with basis-set extrapolation techniques. Thus, the high accuracy of Wn theories comes with the price of a
significant computational cost. In practice, for systems consisting of more than ~9 non-hydrogen atoms (with C1
symmetry), even the computationally more economical W1 theory becomes prohibitively expensive with current
mainstream server hardware.
In an attempt to extend the applicability of the W1 and W2 ab initio thermochemistry methods, explicitly correlated
versions of these theories have been developed (W1–F12 and W2–F12). W1–F12 was successfully applied to large
aromatic systems (e.g., tetracene) as well as to systems of biological relevance (e.g., DNA bases).

References
[1] (http:/ / webbook. nist. gov/ chemistry/ ) NIST Chemistry WebBook
[2] http:/ / www. wesleyan. edu/ chem/ faculty/ petersson/

• Cramer, Christopher J. (2002). Essentials of Computational Chemistry. Chichester: John Wiley and Sons.
pp. 224–228. ISBN 0-471-48552-7.

• Jensen, Frank (2007). Introduction to Computational Chemistry. Chichester, England: John Wiley and Sons.
pp. 164–169. ISBN 0-470-01187-4.

http://webbook.nist.gov/chemistry/
http://www.wesleyan.edu/chem/faculty/petersson/
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-471-48552-7
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-470-01187-4


Quantum Monte Carlo 57

Quantum Monte Carlo

Electronic structure
methods

Valence bond theory

Generalized valence bond
Modern valence bond

Molecular orbital theory

Hartree–Fock method
Møller–Plesset perturbation theory

Configuration interaction
Coupled cluster

Multi-configurational self-consistent
field

Quantum chemistry composite methods
Quantum Monte Carlo

Linear combination of atomic orbitals

Electronic band structure

Nearly free electron model
Tight binding

Muffin-tin approximation
Density functional theory

k·p perturbation theory
Empty lattice approximation

 Book

Quantum Monte Carlo is a large class of computer algorithms that simulate quantum systems with the idea of
solving the quantum many-body problem. They use, in one way or another, the Monte Carlo method to handle the
many-dimensional integrals that arise. Quantum Monte Carlo allows a direct representation of many-body effects in
the wave function, at the cost of statistical uncertainty that can be reduced with more simulation time. For bosons
without frustration, there exist numerically exact and polynomial-scaling algorithms. For fermions, there exist very
good approximations and numerically exact exponentially scaling quantum Monte Carlo algorithms, but none that
are both.

Background
In principle, any physical system can be described by the many-body Schrödinger equation as long as the constituent 
particles are not moving "too" fast; that is, they are not moving near the speed of light. This covers a wide range of 
electronic problems in condensed matter physics, so if we could solve the Schrödinger equation for a given system, 
we could predict its behavior, which has important applications in fields from computers to biology. This also 
includes the nuclei in Bose–Einstein condensate and superfluids such as liquid helium. The difficulty is that the 
Schrödinger equation involves a function of a number of coordinates that is exponentially large in the number of 
particles, and is therefore difficult, if not impossible, to solve even using parallel computing technology in a 
reasonable amount of time. Traditionally, theorists have approximated the many-body wave function as an 
antisymmetric function of one-body orbitals.[1] This kind of formulation either limits the possible wave functions, as 
in the case of the Hartree-Fock (HF) approximation, or converges very slowly, as in configuration interaction. One 
of the reasons for the difficulty with an HF initial estimate (ground state seed, also known as Slater determinant) is 
that it is very difficult to model the electronic and nuclear cusps in the wavefunction. However, one does not
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generally model at this point of the approximation. As two particles approach each other, the wavefunction has
exactly known derivatives.
Quantum Monte Carlo is a way around these problems because it allows us to model a many-body wavefunction of
our choice directly. Specifically, we can use a Hartree-Fock approximation as our starting point but then multiplying
it by any symmetric function, of which Jastrow functions are typical, designed to enforce the cusp conditions. Most
methods aim at computing the ground state wavefunction of the system, with the exception of path integral Monte
Carlo and finite-temperature auxiliary field Monte Carlo, which calculate the density matrix.
There are several quantum Monte Carlo methods, each of which uses Monte Carlo in different ways to solve the
many-body problem:

Quantum Monte Carlo methods
• Stochastic Green function (SGF) algorithm : An algorithm designed for bosons that can simulate any complicated

lattice Hamiltonian that does not have a sign problem. Used in combination with a directed update scheme, this is
a powerful tool.

• Variational Monte Carlo : A good place to start; it is commonly used in many sorts of quantum problems.
• Diffusion Monte Carlo : The most common high-accuracy method for electrons (that is, chemical problems),

since it comes quite close to the exact ground-state energy fairly efficiently. Also used for simulating the quantum
behavior of atoms, etc.

• Path integral Monte Carlo : Finite-temperature technique mostly applied to bosons where temperature is very
important, especially superfluid helium.

• Auxiliary field Monte Carlo : Usually applied to lattice problems, although there has been recent work on
applying it to electrons in chemical systems.

• Reptation Monte Carlo : Recent zero-temperature method related to path integral Monte Carlo, with applications
similar to diffusion Monte Carlo but with some different tradeoffs.

•• Gaussian quantum Monte Carlo

Implementations
• ALPS [2]

• CASINO [3]

• CHAMP [4]

• Monte Python [5]

• PIMC++ [6]

• pi-qmc [7]

• QMcBeaver [8]

• QmcMol [9]

• QMCPACK [10]

• Qumax [11]

• Qwalk [12]

• TurboRVB [13]

• Zori [14]
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In solid-state physics, k·p perturbation theory is an approximation scheme for calculating the band structure
(particularly effective mass) and optical properties of crystalline solids. It is pronounced "k dot p", and is also called
the "k·p method". This theory has been applied specifically in the framework of the Luttinger–Kohn model (after
Joaquin Mazdak Luttinger and Walter Kohn), and of the Kane model (after Evan O. Kane).

Background and derivation

Bloch's theorem and wavevectors
According to quantum mechanics (in the single-electron approximation), the electrons in any material have
wavefunctions which can be described by the following Schrödinger equation:

where p is the quantum-mechanical momentum operator, V is the potential, and m is the mass of an electron. (This
equation neglects the spin-orbit effect; see below.)
In a crystalline solid, V is a periodic function, with the same periodicity as the crystal lattice. Bloch's theorem proves
that the solutions to this differential equation can be written as follows:

where k is a vector (called the wavevector), n is a discrete index (called the band index), and un,k 
is a function with

the same periodicity as the crystal lattice.
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For any given n, the associated states are called a band. In each band, there will be a relation between the wavevector
k and the energy of the state En,k, called the band dispersion. Calculating this dispersion is one of the primary
applications of k·p perturbation theory.

Perturbation theory
The periodic function un,k 

satisfies the following Schrödinger-type equation:

where the Hamiltonian is

Note that k is a vector consisting of three real numbers with units of inverse length, while p is a vector of operators;
to be explicit,

In any case, we write this Hamiltonian as the sum of two terms:

This expression is the basis for perturbation theory. The "unperturbed Hamiltonian" is H0, which in fact equals the
exact Hamiltonian at k=0 (i.e., at the Gamma point). The "perturbation" is the term . The analysis that results is
called "k·p perturbation theory", due to the term proportional to k·p. The result of this analysis is an expression for
En,k 

and un,k 
in terms of the energies and wavefunctions at k=0.

Note that the "perturbation" term gets progressively smaller as k approaches zero. Therefore, k·p perturbation
theory is most accurate for small values of k. However, if enough terms are included in the perturbative expansion,
then the theory can in fact be reasonably accurate for any value of k in the entire Brillouin zone.

Expression for a nondegenerate band
For a nondegenerate band (i.e., a band which has a different energy at k=0 from any other band), with an extremum
at k=0, and with no spin-orbit coupling, the result of k·p perturbation theory is (to lowest nontrivial order):

The parameters that are required to do these calculations, namely En,0 and , are typically inferred
from experimental data. (The latter are called "optical matrix elements".)
In practice, the sum over n often includes only the nearest one or two bands, since these tend to be the most
important (due to the denominator). However, for improved accuracy, especially at larger 'k, more bands must be
included, as well as more terms in the perturbative expansion than the ones written above.

Effective mass

Using the expression above for the energy dispersion relation, a simplified expression for the effective mass in the 
conduction band of a semiconductor can be found. To approximate the dispersion relation in the case of the 
conduction band, take the energy En0 as the minimum conduction band energy Ec0 and include in the summation 
only terms with energies near the valence band maximum, where the energy difference in the denominator is 
smallest. (These terms are the largest contributions to the summation.) This denominator is then approximated as the
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band gap Eg, leading to an energy expression:

The effective mass in direction ℓ is then:

Ignoring the details of the matrix elements, the key consequences are that the effective mass varies with the smallest
bandgap and goes to zero as the gap goes to zero. A useful approximation for the matrix elements in direct gap
semiconductors is:[1]

which applies within about 15% or better to most group-IV, III-V and II-VI semiconductors.[2]

In contrast to this simple approximation, in the case of valence band energy the spin-orbit interaction must be
introduced (see below) and many more bands must be individually considered. The calculation is provided in Yu and
Cardona.[3] In the valence band the mobile carriers are holes. One finds there are two types of hole, named heavy and
light, with anisotropic masses.

k·p model with spin-orbit interaction
Including the spin-orbit interaction, the Schrödinger equation for u is:

where

where is a vector consisting of the three Pauli matrices. This Hamiltonian can be subjected to
the same sort of perturbation-theory analysis as above.

Calculation in degenerate case
For degenerate or nearly degenerate bands, in particular the valence bands in certain materials such as gallium
arsenide, the equations can be analyzed by the methods of degenerate perturbation theory. Models of this type
include the "Luttinger-Kohn model" (a.k.a. "Kohn-Luttinger model"), and the "Kane model".

Notes and references
[1] A direct gap semiconductor is one where the valence band maximum and conduction band minimum occur at the same position in k-space,

usually the so-called Γ-point where k = 0.
[2] See Table 2.22 (http:/ / books. google. com/ books?id=W9pdJZoAeyEC& pg=PA244& dq=isbn:3540254706#PPA71,M1) in Yu & Cardona,

op. cit.
[3] See Yu & Cardona, op. cit. pp. 75-82
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The muffin-tin approximation is a shape approximation of the potential field in an atomistic environment. It is
most commonly employed in quantum mechanical simulations of electronic band structure in solids. The
approximation was proposed by John C. Slater. Augmented plane wave method is a method which uses muffin tin
approximation. It is a method to approximate the energy states of an electron in a crystal lattice. The basis
approximation lies in the potential in which the potential is assumed to be spherically symmetric in the muffin tin
region and constant in the interstitial region. Wave functions (the augmented plane waves) are constructed by
matching solutions of the Schrödinger equation within each sphere with plane-wave solutions in the interstitial
region, and linear combinations of these wave functions are then determined by the variational method Many modern
electronic structure methods employ the approximation. Among them are the augmented plane wave (APW) method,
the linear muffin-tin orbital method (LMTO) and various Green's function methods. One application is found in the
variational theory developed by Korringa (1947) and by Kohn and Rostocker (1954) referred to as the KKR method.
This method has been adapted to treat random materials as well, where it is called the KKR coherent potential
approximation.
In its simplest form, non-overlapping spheres are centered on the atomic positions. Within these regions, the
screened potential experienced by an electron is approximated to be spherically symmetric about the given nucleus.
In the remaining interstitial region, the potential is approximated as a constant. Continuity of the potential between
the atom-centered spheres and interstitial region is enforced.
In the interstitial region of constant potential, the single electron wave functions can be expanded in terms of plane 
waves. In the atom-centered regions, the wave functions can be expanded in terms of spherical harmonics and the 
eigenfunctions of a radial Schrödinger equation. Such use of functions other than plane waves as basis functions is 
termed the augmented plane-wave approach (of which there are many variations). It allows for an efficient

http://en.wikipedia.org/w/index.php?title=Valence_bond_theory
http://en.wikipedia.org/w/index.php?title=Modern_valence_bond_theory
http://en.wikipedia.org/w/index.php?title=Molecular_orbital_theory
http://en.wikipedia.org/w/index.php?title=Linear_combination_of_atomic_orbitals
http://en.wikipedia.org/w/index.php?title=Electronic_band_structure
http://en.wikipedia.org/w/index.php?title=Empty_lattice_approximation
http://en.wikipedia.org/w/index.php?title=File:Symbol_book_class2.svg
http://en.wikipedia.org/w/index.php?title=Book:Electronic_structure_methods
http://en.wikipedia.org/w/index.php?title=Muffin_tin
http://en.wikipedia.org/w/index.php?title=Potential_field
http://en.wikipedia.org/w/index.php?title=Quantum_mechanical
http://en.wikipedia.org/w/index.php?title=Electronic_band_structure
http://en.wikipedia.org/w/index.php?title=Solid-state_physics
http://en.wikipedia.org/w/index.php?title=John_C._Slater
http://en.wikipedia.org/w/index.php?title=Walter_Kohn
http://en.wikipedia.org/w/index.php?title=Coherent_Potential_Approximation
http://en.wikipedia.org/w/index.php?title=Screening_effect
http://en.wikipedia.org/w/index.php?title=Plane_wave
http://en.wikipedia.org/w/index.php?title=Plane_wave
http://en.wikipedia.org/w/index.php?title=Spherical_harmonic
http://en.wikipedia.org/w/index.php?title=Eigenfunction
http://en.wikipedia.org/w/index.php?title=Schr%C3%B6dinger_equation


Muffin-tin approximation 64

representation of single-particle wave functions in the vicinity of the atomic cores where they can vary rapidly (and
where plane waves would be a poor choice on convergence grounds in the absence of a pseudopotential).
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A linear combination of atomic orbitals or LCAO is a quantum superposition of atomic orbitals and a technique
for calculating molecular orbitals in quantum chemistry.[1] In quantum mechanics, electron configurations of atoms
are described as wavefunctions. In mathematical sense, these wave functions are the basis set of functions, the basis
functions, which describe the electrons of a given atom. In chemical reactions, orbital wavefunctions are modified,
i.e. the electron cloud shape is changed, according to the type of atoms participating in the chemical bond.
It was introduced in 1929 by Sir John Lennard-Jones with the description of bonding in the diatomic molecules of
the first main row of the periodic table, but had been used earlier by Linus Pauling for H2

+.[2][3]

A mathematical description follows.
An initial assumption is that the number of molecular orbitals is equal to the number of atomic orbitals included in
the linear expansion. In a sense, n atomic orbitals combine to form n molecular orbitals, which can be numbered i =
1 to n and which may not all be the same. The expression (linear expansion) for the i th molecular orbital would be:

or
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where (phi) is a molecular orbital represented as the sum of n atomic orbitals (chi), each multiplied by a
corresponding coefficient , and r (numbered 1 to n) represents which atomic orbital is combined in the term. The
coefficients are the weights of the contributions of the n atomic orbitals to the molecular orbital. The Hartree-Fock
procedure is used to obtain the coefficients of the expansion.
The orbitals are thus expressed as linear combinations of basis functions, and the basis functions are one-electron
functions centered on nuclei of the component atoms of the molecule. The atomic orbitals used are typically those of
hydrogen-like atoms since these are known analytically i.e. Slater-type orbitals but other choices are possible like
Gaussian functions from standard basis sets.
By minimizing the total energy of the system, an appropriate set of coefficients of the linear combinations is
determined. This quantitative approach is now known as the Hartree-Fock method. However, since the development
of computational chemistry, the LCAO method often refers not to an actual optimization of the wave function but to
a qualitative discussion which is very useful for predicting and rationalizing results obtained via more modern
methods. In this case, the shape of the molecular orbitals and their respective energies are deduced approximately
from comparing the energies of the atomic orbitals of the individual atoms (or molecular fragments) and applying
some recipes known as level repulsion and the like. The graphs that are plotted to make this discussion clearer are
called correlation diagrams. The required atomic orbital energies can come from calculations or directly from
experiment via Koopmans' theorem.
This is done by using the symmetry of the molecules and orbitals involved in bonding. The first step in this process
is assigning a point group to the molecule. A common example is water, which is of C2v symmetry. Then a reducible
representation of the bonding is determined demonstrated below for water:

Each operation in the point group is performed upon the molecule. The number of bonds that are unmoved is the
character of that operation. This reducible representation is decomposed into the sum of irreducible representations.
These irreducible representations correspond to the symmetry of the orbitals involved.
MO diagrams provide simple qualitative LCAO treatment.

Quantitative theories are the Huckel method, the extended Huckel method and the Pariser–Parr–Pople method.
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External links
• LCAO @ chemistry.umeche.maine.edu Link [4]
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