1. Kvantové jámy

Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární kombinace $Ga_x Al_{1-x}As$, kde je poměrné zastoupení Al vyjádřeno parametrem x. Výhodou těchto krystalů je nepatrný rozdíl mřížkové konstanty:

 $a(GaAs) = 5.6533 \text{ Å}, \quad a(AlAs) = 5.660 \text{ Å}.$

Obrázek 1: Pásové schéma kvantové jámy šířky 10 nm.

Zakázaný pás GaAs je užší než u AlAs. Pokud vrstvu GaAs obložíme z obou stran vrstvami Ga_xAl_{1-x}As, budou se volné elektrony i díry hromadit ve vrstvě GaAs, která působí jako jáma (má nižší energetické stavy). Změna velikosti zakázaného pásu na rozhraní GaAs-Ga_xAl_{1-x}As je daná výrazem $\Delta E_g = 1247.x$ meV. Tento skok pásů se rozdělí mezi vodivostní a valenční pás v poměru 60/40. Např. pro x = 0.3 dostaneme skok ve vodivostním pásu $V_e = 225$ meV, a ve valenčním pásu $V_h = 150$ meV. Samotný zakázaný pás GaAs je při pokojové teplotě 300 K: $E_g = 1.42$ eV.

Pokud vytvoříme v polovodiči potenciál, který vede k prostorovému omezení pohybu nosičů, vytvoří se nám diskrétní spektrum povolených energetických hladin \Rightarrow rozměrové kvantování. Zopakujeme vlastnosti řešení Schrödingerovy rovnice pro jednoduché potenciály. Pro výpočty je třeba znát hmotnost elektronů a děr v daném materiálu. Obvykle tuto efektivní hmotnost m^* vyjadřujeme v poměru ke hmotnosti volného elektronu m_o . Jak to vypadá v praxi pro GaAs, AlAs:

		GaAs	AlAs	$Ga_x Al_{1-x} As$
elektrony	m_e	0.0665	0.15	0.0665 + 0.0835x
těžké díry	m_h	0.34	0.76	0.34 + 0.42x
lehké díry	m_l	0.12	0.17	0.12 + 0.05x

Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu $m_o.$

1.1. Schrödingerova rovnice

Za nepřítomnosti časově proměnných interakcí stačí řešit časově nezávislou Schrödingerovu rovnici.

$$-\frac{\hbar^2}{2m^*}\Delta\psi(\mathbf{r}) + V(\mathbf{r})\psi(\mathbf{r}) = E\psi(\mathbf{r}).$$
(1)

Pokud se navíc potenciál mění pouze v jednom směru (z), řešíme pouze 1D problém. Ve směru x, y jde o řešení pohybu volné částice. T.j. vlnová funkce podél vrstev bude ve tvaru rovinné vlny

$$\psi(\mathbf{r}) = e^{i\mathbf{k}_{\parallel}\cdot\mathbf{r}_{\parallel}}\psi(z)$$

Podélná část energetického spektra je spojitá

$$E = E_{xy} + E_z = \frac{\hbar^2 k_{\parallel}^2}{2m^*} + E_z.$$
 (2)

1.2. Jednoduchá kvantová jáma

Potenciál jednoduché pravoúhlé kvantové jámy je např:

$$V(z) = \begin{cases} 0 & \text{v jámě (GaAs)} \\ V_0 & \text{v bariéře (Ga_xAl_{1-x}As)} \end{cases}$$
(3)

Pro nekonečnou jámu jsou okrajové podmínky $\psi(0) = 0$ a $\psi(L) = 0$, kde L je šířka jámy. Odpovídající vlnové funkce jsou $\sin(kz)$ a z okrajové podmínky $kL = n\pi$ dostaneme energetické spektrum:

$$E_n = \frac{\hbar^2 k^2}{2m^*} = \frac{\hbar^2 \pi^2}{2m^* L^2} n^2, \qquad n = 1, 2, \dots,$$

$$\psi(z) \propto \sin(n\pi z/L)$$
(4)

Pro reálnou kvantovou jámu popsanou potenciálem (3) je třeba hledat vlnovou funkci navazováním šeření ŠR v jednotlivých oblastech konstantního potenciálu (viz Obr. 1). V jámě lze řešení nalézt jako lineární kombinaci funkcí $\sin(\xi), \cos(\xi)$. V bariéře je řešení lineární kombinací funkcí $\exp(\xi), \exp(-\xi)$.

1.3. Trojúhelníková kvantová jáma

Pokud je ve studovaném krystalu elektrické pole F ve směru osy z, je třeba k potenciální energii nosičů přičíst člen $E_F = -qFz$, kde q je elektrický náboj částice (pro elektrony -e, pro díry +e). V tomto lineárním potenciálu jsou výsledkem řešení ŠR Airyho funkce Ai (ξ) a Bi (ξ) (viz. Obr. 2).

V případě nekonečné trojúhelníkové jámy pro elektrony lze nalézt analytický výraz pro energetické spektrum. Potenciál se zapíše:

$$V(z) = \begin{cases} \infty & \text{pro } z < 0\\ eFz & z > 0 \end{cases}$$
(5)

Použitím okrajových podmínek získáme energetické spektrum:

$$E_n \propto \left[F\left(n-\frac{1}{4}\right)\right]^{2/3}, \qquad n=1,2,\ldots,$$
(6)

Pro reálnou jednoduchou kvantovou jámu s elektrickým polem dostaneme řešením ŠR vlnové funkce a energie, které jsou zakresleny na Obr 3.

Obrázek 2: Airyho funkce jako řešení Š
R ${\bf v}$ lineárním potenciálu.

Obrázek 3: Pásové schéma kvantové jámy šířky 10 nm s elektrickým polem.

1.4. Harmonický oscilátor

Použijeme všude, kde lze provést harmonické přiblížení potenciální energie. $V(z) = \frac{1}{2}\kappa z^2$. Energetické hladiny harmonickému oscilátoru jsou ekvidistantní.

$$E_n = (n + \frac{1}{2})\hbar\omega, \qquad n = 0, 1, \dots, \qquad \omega = \sqrt{\frac{\kappa}{m^*}} \qquad \alpha = \sqrt{\frac{m^*\omega}{\hbar}}.$$
 (7)

Vlnové funkce pro harmonický oscilátor vyjdou Hermitovy-Gaussovy funkce

$$\phi_n(\xi) = \sqrt{\frac{1}{2^n n! \sqrt{\pi}}} H_n(\xi) e^{-\xi^2/2}, \qquad \xi = \alpha z,$$

Obrázek 4: Energetické hladiny v parabolické kvantové jámě.

Obrázek 4 ukazuje řešení v relativních jednotkách vzdáleností αz a energií $\hbar \omega$. Budeme uvažovat kvantovou jámu šířky 10 nm stejně jako v Obr. 3, ale průběh potenciálu nebude schodovitý ale parabolický. Tzn. koncentrace hliníku mimo jámu bude x = 0.3 a v jámě se bude měnit parabolicky. Bezrozměrný parametr ξ na kraji jámy lze spočítat ze vztahů

$$\xi(L/2) = \sqrt{\frac{\sqrt{2m^*V_o}}{\hbar}\frac{L}{2}}$$
(8)

a energie základního stavu bude

$$\frac{1}{2}\hbar\omega=\sqrt{\frac{2V_o}{m^*}}\frac{\hbar}{L},$$

Pro efektivní hmotnosti m^* specifikované v Tab. 1 a pro známé potenciálové rozdíly V_o pro materiály GaAs-Ga_xAl_{1-x}As nám vyjdou hodnoty podle následující tabulky:

	elektrony	těžké díry	lehké díry
Vo	225	150	150
$\xi(L/2)$	1.77	2.41	1.85
$\frac{1}{2}\hbar\omega$	72	26	44
počet hladin	2	3	2

Tabulka 2: Parametry parabolické kvantové jámy šířky $L=10~{\rm nm}.$ Energie jsou uvedeny v meV.

1.5. Energetické hladiny v Coulombově potenciálu

Pokud je v krystalu GaAs atom Si na místě Ga vzniká donorová hladina s potenciálem podobným analogickým s atomem vodíku

$$V(\mathbf{r}) = -\frac{1}{4\pi\epsilon} \frac{e^2}{r}$$

Řešeni ŠR vede k diskrétnímu spektru vázaných hladin

$$E_n = -\frac{m^* e^4}{2(4\pi\epsilon\hbar)^2} \frac{1}{n^2}, \qquad n = 1, 2, \dots,$$
(9)

Dosazením parametrů GaAs, kde je relativní dielektrická konstanta 12.85, vyjde energie základního stavu této příměsi $E_1=5.5~{\rm meV}.$

1.6. Shrnutí

Energetické hladiny pro různé tvary potenciálů lze shrnou takto.

Tvar jámy	$V(\mathbf{r})$	E_n	n
parabolická	$\sim z^2$	$\sim (n + \frac{1}{2})$	0,1,
obdélníková	\sqcup	$\sim n^2$	$1, 2, \dots$
${ m troj}$ úhelníková	/	$\sim (n-\frac{1}{4})^{2/3}$	$1, 2, \ldots$
Coulombovská	$\sim 1/r$	$\sim rac{1}{n^2}$	$1, 2, \ldots$

Tabulka 3: Závislost energetického spektra na tvaru potenciálu.

2. Hustota stavů

Při přechodech mezi hladinami (absorbce, emise) je třeba kromě energetického spektra znát také hustotu stavů v daném pásu. T.j. kolik existuje dovolených kvantových stavů v okolí dané energie. Pro prostorový krystal (3D) dostaneme odmocninovou závislost hustoty stavů nad hranou pásu:

$$\rho_{3D}(E) = \frac{\sqrt{2(m^*)^3 E}}{\pi^2 \hbar^3} \tag{10}$$

Pokud bude ale v krystalu potenciál, který povede k rozměrovému kvantování, vyjde dvoudimenzionální hustota stavů (2D) konstantní se schodovitým vzestupem na každé energetické hladině v tomto potenciálu:

$$\rho_{2D}(E) = \frac{m^*}{\pi\hbar^2} p_n,\tag{11}$$

kde p_n je počet stavů pod energií E.

Obrázek 5: a) energetickéhladiny a vlnové funkce v potenciálu jednoduché kvantové jámy, b) disperzní relace podél vrstev, c) hustota stavů.

Porovnání hustoty stavů pro 3D případ a 2D kvantovou jámu ukazuje Obr. 6.

2.1. Obsazení hladin

Je třeba ještě připomenout, že pro optické vlastnosti studovaných kvantových jam je důležité znát také obsazení hladin nosiči. Pravděpodobnost, že energetická hladina E je obsazena, je daná Fermiho-Diracovým rozdělením

$$f_{FD}(E) = \frac{1}{e^{(E-E_F)/k_B T} + 1},$$
(12)

kde E_F je Fermiho energie, k_B je Boltzmanova konstanta a ${\cal T}$ je teplota.