Photonic Crystals: Principles, Techniques, and Applications Steven G. Johnson MIT Applied Mathematics

Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Perturbations, tuning, and disorder

Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Perturbations, tuning, and disorder

...but for some λ (~ 2*a*), no light can propagate: a photonic band gap

Photonic Crystals

periodic electromagnetic media

with photonic band gaps: "optical insulators"

topology)

Photonic Crystals in Nature Peacock feather

Morpho butterfly

wing scale:

[L. P. Biró *et al.*, *PRE* **67**, 021907 (2003)]

6.21µm

500 nm

[J. Zi *et al*, *Proc. Nat. Acad. Sci. USA*, **100**, 12576 (2003)] [figs: Blau, *Physics Today* **57**, 18 (2004)]

Photonic Crystals

periodic electromagnetic media

can trap light in cavities

and waveguides ("wires")

with photonic band gaps: "optical insulators" for holding and controlling light

Photonic Crystals

periodic electromagnetic media

But how can we understand such complex systems? Add up the infinite sum of scattering? Ugh!

A mystery from the 19th century

conductive material

A mystery from the 19th century

mean free path (distance) of electrons

A mystery solved...

1) electrons are waves (quantum mechanics)

2 waves in a periodic medium can propagate without scattering:

Bloch's Theorem (1d: Floquet's)

The foundations do not depend on the specific wave equation.

Electronic and Photonic Crystals

atoms in diamond structure

interacting: hard problem

dielectric spheres, diamond lattice

non-interacting: "easy" problem

Periodic Medium

Band Diagram

Bloch waves:

...but for some λ (~ 2*a*), no light can propagate: a photonic band gap

Fun with Math

First task: get rid of this mess

dielectric function $\varepsilon(\mathbf{x}) = n^2(\mathbf{x})$

Hermitian Eigenproblems

Hermitian for real (lossless) ε

well-known properties from linear algebra: *w* are real (lossless) eigen-states are orthogonal eigen-states are complete (give all solutions)

Periodic Hermitian Eigenproblems

[G. Floquet, "Sur les équations différentielles linéaries à coefficients périodiques," *Ann. École Norm. Sup.* **12**, 47–88 (1883).] [F. Bloch, "Über die quantenmechanik der electronen in kristallgittern," *Z. Physik* **52**, 555–600 (1928).]

if eigen-operator is periodic, then Bloch-Floquet theorem applies:

Corollary 1: k is conserved, *i.e.* no scattering of Bloch wave

Corollary 2: $\vec{H}_{\vec{k}}$ given by finite unit cell, so ω are discrete $\omega_n(\mathbf{k})$

Periodic Hermitian Eigenproblems Corollary 2: $\vec{H}_{\vec{k}}$ given by finite unit cell, so ω are discrete $\omega_n(\mathbf{k})$

band diagram (dispersion relation)

Periodic Hermitian Eigenproblems in 1d

$$H(x) = e^{ikx} H_k(x)$$

$$i = e^{ikx} H_k(x)$$

$$i = e^{i(k+\frac{2\pi}{a})x} H_{k+\frac{2\pi}{a}}(x) = e^{ikx} \left[e^{i\frac{2\pi}{a}x} H_{k+\frac{2\pi}{a}}(x) \right]$$

k is periodic: $k + 2\pi/a$ equivalent to *k* "quasi-phase-matching" periodic! satisfies same equation as H_k = H_k

Periodic Hermitian Eigenproblems in 1d

k is periodic: $k + 2\pi/a$ equivalent to *k* "quasi-phase-matching"

[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887).]

Start with a uniform (1d) medium:

[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887).]

[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887).]

Treat it as "artificially" periodic

[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887).]

[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887).]

Splitting of degeneracy: Add a small state concentrated in higher index (ε_2) "real" periodicity has lower frequency $\varepsilon_2 = \varepsilon_1 + \Delta \varepsilon$ $\varepsilon(x) = \varepsilon(x+a)$ (\mathcal{E}_2) $|\mathcal{E}_2|$ \mathcal{E}_1 $|\mathcal{E}_2|$ \mathcal{E}_1 $|\mathcal{E}_2|$ $\boldsymbol{\mathcal{E}}_2$ \mathcal{E}_2 \mathcal{E}_1 W $\sin\left(\frac{\pi}{-x}\right)$ band gap π/a x = 0

Some 2d and 3d systems have gaps

• In general, eigen-frequencies satisfy Variational Theorem:

$$\omega_{1}(\vec{k})^{2} = \min_{\substack{\vec{E}_{1} \\ \nabla \cdot \varepsilon \vec{E}_{1} = 0}} \frac{\int \left| \left(\nabla + i\vec{k} \right) \times \vec{E}_{1} \right|^{2} \text{``kinetic''}}{\int \varepsilon \left| \vec{E}_{1} \right|^{2} \text{``kinetic''}} c^{2}$$

 $\omega_{2}(\vec{k})^{2} = \min_{\substack{\vec{E}_{2} \\ \nabla \cdot \varepsilon \vec{E}_{2} = 0}} "\cdots" \text{ bands "want" to be in high-}\varepsilon$ $\nabla \cdot \varepsilon \vec{E}_{2} = 0$ $\int \varepsilon E_{1}^{*} \cdot E_{2} = 0 \dots \text{ but are forced out by orthogonality}$ -> band gap (maybe)

A 2d Model System

a

Square lattice of dielectric rods ($\epsilon = 12 \sim Si$) in air ($\epsilon = 1$)

Solving the Maxwell Eigenproblem

Finite cell \rightarrow *discrete* eigenvalues ω_n

Want to solve for $\omega_n(\mathbf{k})$, & plot vs. "all" **k** for "all" *n*,

$$(\nabla + i\mathbf{k}) \times \frac{1}{\varepsilon} (\nabla + i\mathbf{k}) \times \mathbf{H}_n = \frac{\omega_n^2}{c^2} \mathbf{H}_n$$

constraint: $(\nabla + i\mathbf{k}) \cdot \mathbf{H} = 0$
where: $\mathbf{H}(x, y) e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)}$

Limit range of **k**: irreducible Brillouin zone

- 2 Limit degrees of freedom: expand **H** in finite basis
- 3
- Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 1

2 Limit degrees of freedom: expand **H** in finite basis

3) Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 2a

1 Limit range of \mathbf{k} : irreducible Brillouin zone

2 Limit degrees of freedom: expand **H** in finite basis (N)

$$|\mathbf{H}\rangle = \mathbf{H}(\mathbf{x}_t) = \sum_{m=1}^{N} h_m \mathbf{b}_m(\mathbf{x}_t) \text{ solve: } \hat{A} |\mathbf{H}\rangle = \omega^2 |\mathbf{H}\rangle$$

finite matrix problem: $Ah = \omega^2 Bh$

$$\langle \mathbf{f} | \mathbf{g} \rangle = \int \mathbf{f}^* \cdot \mathbf{g} \qquad A_{m\ell} = \langle \mathbf{b}_m | \hat{A} | \mathbf{b}_\ell \rangle \qquad B_{m\ell} = \langle \mathbf{b}_m | \mathbf{b}_\ell \rangle$$

3 Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 2b

 $1 \quad \text{Limit range of } \mathbf{k}: \text{ irreducible Brillouin zone}$

2 Limit degrees of freedom: expand **H** in finite basis — must satisfy constraint: $(\nabla + i\mathbf{k}) \cdot \mathbf{H} = 0$

Planewave (FFT) basis

$$\mathbf{H}(\mathbf{x}_t) = \sum_{\mathbf{G}} \mathbf{H}_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{x}_t}$$

constraint: $\mathbf{H}_{\mathbf{G}} \cdot (\mathbf{G} + \mathbf{k}) = 0$

uniform "grid," periodic boundaries, simple code, O(N log N)

[figure: Peyrilloux *et al.*, *J. Lightwave Tech.* **21**, 536 (2003)]

Finite-element basis

constraint, boundary conditions:

Nédélec elements

[Nédélec, *Numerische Math.* **35**, 315 (1980)]

nonuniform mesh, more arbitrary boundaries, complex code & mesh, O(*N*)

3) Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 3a

1 Limit range of \mathbf{k} : irreducible Brillouin zone

2 Limit degrees of freedom: expand **H** in finite basis

Efficiently solve eigenproblem: iterative methods

$$Ah = \omega^2 Bh$$

Slow way: compute A & B, ask LAPACK for eigenvalues — requires $O(N^2)$ storage, $O(N^3)$ time

Faster way:

- start with *initial guess* eigenvector h_0
- *iteratively* improve

- O(Np) storage, ~ $O(Np^2)$ time for p eigenvectors

(p smallest eigenvalues)

Solving the Maxwell Eigenproblem: 3b

1 Limit range of \mathbf{k} : irreducible Brillouin zone

Efficiently solve eigenproblem: iterative methods

$$Ah = \omega^2 Bh$$

Many iterative methods:

Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ...,
 Rayleigh-quotient minimization

Solving the Maxwell Eigenproblem: 3c

1 Limit range of \mathbf{k} : irreducible Brillouin zone

Efficiently solve eigenproblem: iterative methods

$$Ah = \omega^2 Bh$$

Many iterative methods:

Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ...,
 Rayleigh-quotient minimization

for Hermitian matrices, smallest eigenvalue ω_0 minimizes:

"variational theorem"

$$\omega_0^2 = \min_h \frac{h' Ah}{h' Bh}$$

.

minimize by preconditioned conjugate-gradient (or...)

Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Perturbations, tuning, and disorder

2d periodicity, ε =12:1

2d periodicity, ε =12:1

2d periodicity, ε =12:1

2d photonic crystal: TE gap, ε =12:1

gap for *n* > ~1.4:1

[S. G. Johnson et al., Appl. Phys. Lett. 77, 3490 (2000)]

You, too, can compute photonic eigenmodes!

MIT Photonic-Bands (MPB) package: http://ab-initio.mit.edu/mpb

The Mother of (almost) All Bandgaps

The diamond lattice:

fcc (face-centered-cubic) with two "atoms" per unit cell (primitive)

Recipe for a complete gap:

fcc = most-spherical Brillouin zone

+ diamond "bonds" = lowest (two) bands can concentrate in lines

The First 3d Bandgap Structure

K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).

MPB tutorial, http://ab-initio.mit.edu/mpb

Layer-by-Layer Lithography

• Fabrication of 2d patterns in Si or GaAs is very advanced (think: Pentium IV, 50 million transistors)

...inter-layer alignment techniques are only slightly more exotic

So, make 3d structure one layer at a time

Need a 3d crystal with constant cross-section layers

A Schematic

[M. Qi, H. Smith, MIT]

7-layer E-Beam Fabrication

[M. Qi, et al., Nature 429, 538 (2004)]

an earlier design: (& currently more popular) The Woodpile Crystal

[K. Ho et al., Solid State Comm. 89, 413 (1994)] [H. S. Sözüer et al., J. Mod. Opt. 41, 231 (1994)]

(4 "log" layers = 1 period)

Two-Photon Lithography

 $2 hv = \Delta E$ 2-photon probability ~ (light intensity)²

Lithography is a Beast

[S. Kawata et al., Nature 412, 697 (2001)]

Holographic Lithography

[D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002)]

beam polarizations + amplitudes (8 parameters) give unit cell

One-Photon Holographic Lithography

[D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002)]

huge volumes, long-range periodic, fcc lattice...backfill for high contrast

Mass-production II: Colloids

Inverse Opals

[figs courtesy D. Norris, UMN]

[H. S. Sözüer, PRB 45, 13962 (1992)]

fcc solid spheres do not have a gap... ...but fcc spherical holes in Si *do* have a gap

In Order To Form [figs courtesy D. Norris, UMN] a More Perfect Crystal...

- Capillary forces during drying cause assembly in the meniscus
- Extremely flat, large-area opals of controllable thickness

Inverse-Opal Photonic Crystal

[fig courtesy D. Norris, UMN]

[Y. A. Vlasov et al., Nature 414, 289 (2001).]

Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Perturbations, tuning, and disorder

conserved wavevector k

Superprisms from divergent dispersion (band curvature)

[Kosaka, PRB 58, R10096 (1998).]

Negative Refraction

[D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, *Science* **305**, 788 (2004)]

Magnetic (ring) + Electric (strip) resonances

Negative-refractive all-dielectric photonic crystals

negative refraction

focussing

(2d rods in air, TE)

[M. Notomi, PRB 62, 10696 (2000).]

Superlensing with Photonic Crystals

[Luo et al, PRB 68, 045115 (2003).]

Here, using *positive* effective index but negative "effective mass"...

Negative Refraction with negative *or* positive "index"

[Luo et al, PRB 65, 2001104 (2002).]

Ω4

Here, using *positive* effective index but negative "effective mass"

the magic of periodicity: unusual dispersion without scattering

Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Perturbations, tuning, and disorder

Intentional "defects" are good

waveguides ("wires")

Cavity Modes • • • \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc . . . \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc ••• \bigcirc \bigcirc ••• • • • • • \bigcirc \bigcirc ••• \bigcirc \bigcirc ••• • • • • • $\bigcirc \bigcirc \bigcirc \bullet \bullet \bullet$ ••• • • • • • \bigcirc \bigcirc • • • \bigcirc ••• • • • • • \bigcirc \bigcirc • • • \bigcirc ••• • • • • • \bigcirc \bigcirc • • • Help! $\bullet \bullet \bullet \bigcirc \bigcirc \bigcirc \bigcirc$ • • • • \bigcirc ••• () () () \bigcirc \bigcirc \bigcirc \bullet \bullet \bigcirc \bigcirc \bigcirc \bullet \bullet ••• • • • • • \bigcirc \bigcirc \bigcirc \bullet \bullet \bullet ••• • • • • • ••• • • • • • \bigcirc \bigcirc \bigcirc \bullet \bullet \bigcirc \bigcirc \bigcirc • • • ••• () () \bigcirc ••• \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc ••• () \bigcirc . . . \bigcirc \bigcirc \bigcirc \bigcirc

Cavity Modes

Cavity Modes: Smaller Change

····

Cavity Modes: Smaller Change

L

Bulk Crystal Band Diagram

X

Cavity Modes: Smaller Change

Defect Crystal Band Diagram
Single-Mode Cavity

Bulk Crystal Band Diagram

"Single"-Mode Cavity

Bulk Crystal Band Diagram

Tunable Cavity Modes

Tunable Cavity Modes

Intentional "defects" are good

waveguides ("wires")

microcavities

Projected Band Diagrams

Air-waveguide Band Diagram

any state in the gap cannot couple to bulk crystal -> localized

(Waveguides don't really need a *complete* gap)

Fabry-Perot waveguide:

This is exploited *e.g.* for photonic-crystal fibers...

Guiding Light in Air!

hollow = lower absorption, lower nonlinearities, higher power

Review: Why no scattering?

()()()()()()()()) ()) ()() ()forbidden by Bloch (*k* conserved) \bigcirc \bigcirc \bigcirc \bigcirc ()

forbidden by gap (except for finite-crystal tunneling)

Benefits of a complete gap...

 \bigcirc \bigcirc $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ ()()()()() \bigcirc \bigcirc \bigcirc ()()()() \bigcirc \bigcirc ()()() () ()() $\left(\right)$ broken symmetry -> reflections only *effectively* one-dimensional

"1d" Waveguides + Cavities = Devices

high transmission through sharp bends

channel-drop filter

high transmission in wide-angle splitters elimination of waveguide crosstalk 0001111000000**-**000000 006000060000 000000000000000 0 V V 3 3 3 3 V V V C C V V V C C 00011550000° C 00000 ***** 000000000000 00000 ***** 0000000000000 000000 000000000 50 0000000000000000000 000000000000 C 0 <u>ለግግሮ 6 6 ጋር</u> 00000 000 $^{\circ}$ 00000 22000 000000000000 00000 0 0 0 0 0 0 0 0 0 0 0 00000 0 C C C $D \supset C$ 00011100000 00000 0.0 ********** 0000000000 00000

Lossless Bends

symmetry + single-mode + "1d" = resonances of 100% transmission

Ugh, must we simulate this to get the basic behavior?

"Coupling-of-Modes-in-Time" (a form of coupled-mode theory)

[H. Haus, Waves and Fields in Optoelectronics]

assumes only:

- exponential decay (strong confinement)
- conservation of energy
- time-reversal symmetry

"Coupling-of-Modes-in-Time" (a form of coupled-mode theory)

[H. Haus, Waves and Fields in Optoelectronics]

Wide-angle Splitters

[S. Fan et al., J. Opt. Soc. Am. B 18, 162 (2001)]

Waveguide Crossings

[S. G. Johnson et al., Opt. Lett. 23, 1855 (1998)]

Waveguide Crossings

Channel-Drop Filters

[S. Fan et al., Phys. Rev. Lett. 80, 960 (1998)]

Enough passive, linear devices...

Photonic crystal cavities: tight confinement (~ λ/2 diameter) + long lifetime (high *Q* independent of size) = enhanced nonlinear effects

e.g. Kerr nonlinearity, $\Delta n \sim$ intensity

Enough passive, linear devices...

Photonic crystal cavities:

tight confinement (~ $\lambda/2$ diameter)

+ long lifetime (high *Q* independent of size)

= enhanced nonlinear effects

Photonic crystal waveguides:

tight confinement (~ $\lambda/2$ diameter)

+ slow light (e.g. near band edge)

= enhanced nonlinear effects

coupled-cavity waveguide (CCW/CROW): slow light + zero dispersion

[A. Yariv et al., Opt. Lett. 24, 711 (1999)]

Enhancing tunability with slow light

[M. Soljacic et al., J. Opt. Soc. Am. B 19, 2052 (2002)]

periodicity: light is slowed, but not reflected

Slow Light Enhances Everything

Get a factor of $1/v_g$ (or more) enhancement of: Nonlinearity, gain (e.g. DBR lasers), magneto-optic effects, loss... Whoops! ...but device length decreases by v_g too

Uh oh, we live in 3d...

2d-like defects in 3d

[M. L. Povinelli et al., Phys. Rev. B 64, 075313 (2001)]

3d projected band diagram

2d-like waveguide mode

2d-like cavity mode

The Upshot

To design an interesting device, you need only:

symmetry + single-mode (usually)

+ resonance

+ (ideally) a band gap to forbid losses

Oh, and a full Maxwell simulator to get Q parameters, etcetera.

Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Perturbations, tuning, and disorder

Review: Bloch Basics

 $\hat{\Theta}_{\vec{\iota}}$

Waves in periodic media can have:

- propagation with no scattering (conserved **k**)
- photonic band gaps (with proper ε function)

Eigenproblem gives simple insight:

Bloch form:
$$\vec{H} = e^{i(\vec{k}\cdot\vec{x}-\omega t)}\vec{H}_{\vec{k}}(\vec{x})$$

$$\left[(\vec{\nabla}+i\vec{k})\times\frac{1}{\varepsilon}(\vec{\nabla}+i\vec{k})\times\right]\vec{H}_{\vec{k}} = \left(\frac{\omega_n(\vec{k})}{c}\right)^2\vec{H}_{\vec{k}}$$

Hermitian -> complete, orthogonal, variational theorem, *etc*.
Review: Defects and Devices

Point defects = Cavities

Line defects = Waveguides

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

Review: 3d Crystals and Fabrication

2 µm

incorporation of defects & devices still in early stages

How *else* can we confine light?

Total Internal Reflection

 n_o

 $n_i > n_o$

rays at shallow angles > θ_c are totally reflected

 $\sin \theta_c = n_o / n_i$
< 1, so θ_c is real

i.e. TIR can only guide within higher index unlike a band gap

Total Internal Reflection?

 n_o

 $n_i > n_o$

rays at shallow angles > θ_c are totally reflected

So, for example, a discontiguous structure can't possibly guide by TIR...

the rays can't stay inside!

Total Internal Reflection?

 n_o

 $n_i > n_o$

rays at shallow angles > θ_c are totally reflected

So, for example, a discontiguous structure can't possibly guide by TIR...

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O<

Total Internal Reflection Redux

 n_o

Waveguide Dispersion Relations *i.e.* projected band diagrams

A Hybrid Photonic Crystal:

1d band gap + index guiding

Meanwhile, back in reality... Air-bridge Resonator: 1d gap + 2d index guiding

Time for Two Dimensions...

2d is all we really need for many interesting devices ...darn *z* direction!

How do we make a 2d bandgap?

Most obvious solution?

make 2d pattern *really* tall

How do we make a 2d bandgap?

If height is finite, we must couple to out-of-plane wavevectors...

 k_z not conserved

A 2d band diagram in 3d

Let's start with the 2d band diagram.

This is what we'd like to have in 3d, too!

A 2d band diagram in 3d

Photonic-Crystal Slabs

2d photonic bandgap + vertical index guiding

[S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice]

Rod-Slab Projected Band Diagram

Square Lattice of **Dielectric Rods** $(\varepsilon = 12, r=0.2a, h=2a)$ 0.6 light cone 0.5 frequency (c/a) 0.4 0.3 0.2 odd (TM-like) bands 0.1 even (TE-like) bands 0 Г Γ X Μ

The Light Cone:

All possible states propagating in the air

The Guided Modes: Cannot couple to the light cone... -> confined to the slab

Thickness is critical. Should be about λ/2 (to have a gap & be single-mode)

Μ

X

Symmetry in a Slab

2d: TM and TE modes

slab: odd (TM-like) and even (TE-like) modes

Like in 2d, there may only be a band gap in one symmetry/polarization

Slab Gaps

Square Lattice of Dielectric Rods $(\epsilon = 12, r=0.2a, h=2a)$

Triangular Lattice of Air Holes $(\varepsilon = 12, r=0.3a, h=0.5a)$

Substrates, for the Gravity-Impaired

Extruded Rod Substrate

S. Assefa, L. A. Kolodziejski

(GaAs on AlO_x) [S. Assefa *et al.*, *APL* **85**, 6110 (2004).]

Air-membrane Slabs

who needs a substrate?

[N. Carlsson et al., Opt. Quantum Elec. 34, 123 (2002)]

Optimal Slab Thickness

~ $\lambda/2$, but $\lambda/2$ in what material?

effective medium theory: effective ε depends on polarization

Photonic-Crystal Building Blocks

point defects (cavities) line defects (waveguides)

A Reduced-Index Waveguide

We *cannot* completely remove the rods—no vertical confinement!

> Still have conserved wavevector—under the light cone, no radiation

Reduce the radius of a row of rods to "trap" a waveguide mode in the gap.

Reduced-Index Waveguide Modes

Experimental Waveguide & Bend

Dimensionless Losses: Q

quality factor Q = # optical periods for energy to decay by $exp(-2\pi)$

energy ~ $\exp(-\omega t/Q)$

in frequency domain: 1/Q = bandwidth

All Is Not Lost

A simple model device (filters, bends, ...):

worst case: high-Q (narrow-band) cavities

Semi-analytical losses

Monopole Cavity in a Slab

Lower the ε of a single rod: push up a monopole (singlet) state.

Use small $\Delta \epsilon$: delocalized in-plane, & high-Q (we hope)

Delocalized Monopole Q 1,000,000ε=11 100,000 ε=10 10,000ε=9 $\epsilon = 8$ 1,000 00000 $\epsilon=7$ $\bigcirc \bigcirc$ ε=6 0 0 0 0 0 00 0 0 0 0100-0.001 0.0001 0.01 mid-gap 0.1 Δ frequency above band edge (c/a)

[S. G. Johnson et al., Computing in Sci. and Eng. 3, 38 (2001).]
Super-defects

Weaker defect with more unit cells.

More delocalized at the same point in the gap (*i.e.* at same bulk decay rate)

[S. G. Johnson et al., Computing in Sci. and Eng. 3, 38 (2001).]

Super-Defect State

(cross-section)

still ~localized: *In-plane* Q_{\parallel} is > 50,000 for only 4 bulk periods

Hole Slab

 ϵ =11.56 period *a*, radius 0.3*a* thickness 0.5*a*

Reduce radius of 7 holes to 0.2a

Very robust to roughness (note pixellization, a = 10 pixels).

How do we compute Q?

(via 3d FDTD [finite-difference time-domain] simulation)

excite cavity with dipole source (broad bandwidth, *e.g.* Gaussian pulse)

... monitor field at some point •

...extract frequencies, decay rates via fancy signal processing (not just FFT/fit)

[V. A. Mandelshtam, J. Chem. Phys. 107, 6756 (1997)]

Pro: no *a priori* knowledge, get all ω 's and Q's at once Con: no separate Q_w/Q_r , mixed-up field pattern if multiple resonances

How do we compute Q?

(via 3d FDTD [finite-difference time-domain] simulation)

excite cavity with narrow-band dipole source (*e.g.* temporally broad Gaussian pulse)

- source is at ω_0 resonance, which must already be known (via

1)

...measure outgoing power P and energy U

 $Q = \omega_0 U / P$

Pro: separate Q_w/Q_r , also get field pattern when multimode Con: requires separate run 1 to get ω_0 , long-time source for closely-spaced resonances Can we increase Q without delocalizing?

Semi-analytical losses

 Another low-loss
strategy:
 exploit cancellations
from sign oscillations

 $\vec{E}(\vec{x}) = \int \vec{G}_{\omega}(\vec{x}, \vec{x}') \cdot \vec{E}(\vec{x}') \cdot \Delta \varepsilon(\vec{x}')$
 $\vec{E}(\vec{x}) = \int \vec{G}_{\omega}(\vec{x}, \vec{x}') \cdot \vec{E}(\vec{x}') \cdot \Delta \varepsilon(\vec{x}')$

far-field (radiation)

Green's function (defect-free system)

near-field (cavity mode) defect

Need a more compact representation

Cannot cancel infinitely many $\mathbf{E}(x)$ integrals

Radiation pattern from localized source...

use multipole expansion
 & cancel largest moment

Multipole Expansion

[Jackson, Classical Electrodynamics]

radiated field =

Each term's strength = single integral over near field ...one term is cancellable by tuning one defect parameter

Multipole Expansion

[Jackson, Classical Electrodynamics]

radiated field =

peak Q (cancellation) = transition to higher-order radiation

as we change the radius, ω sweeps across the gap

cancel a dipole by opposite dipoles...

cancellation comes from opposite-sign fields in adjacent rods

... changing radius changed balance of dipoles

3d multipole cancellation?

quadrupole mode

enlarge center & adjacent rods

vary side-rod ε slightly for continuous tuning (balance central moment with opposite-sign side rods)

3d multipole cancellation

Q = 408

Q = 1925

nodal planes (source of high Q)

Q = 426

near field E_z

far field |E|²

An Experimental (Laser) Cavity

[M. Loncar et al., Appl. Phys. Lett. 81, 2680 (2002)]

Elongation *p* is a tuning parameter for the cavity...

... in simulations, Q peaks sharply to ~10000 for p = 0.1a

(likely to be a multipole-cancellation effect)

* actually, there are two cavity modes; *p* breaks degeneracy

An Experimental (Laser) Cavity

[M. Loncar et al., Appl. Phys. Lett. 81, 2680 (2002)]

Elongation *p* is a tuning parameter for the cavity...

... in simulations, Q peaks sharply to ~10000 for p = 0.1a

(likely to be a multipole-cancellation effect)

* actually, there are two cavity modes; *p* breaks degeneracy

An Experimental (Laser) Cavity

[M. Loncar et al., Appl. Phys. Lett. 81, 2680 (2002)]

Slab Cavities in Practice: Q vs. V

[Loncar, APL 81, 2680 (2002)]

 $Q \sim 10,000 \ (V \sim 4 \times \text{optimum})$ = $(\lambda/2n)^3$

[Ryu, Opt. Lett. 28, 2390 (2003)]

[Akahane, Nature 425, 944 (2003)]

410 nm 420 nm 410 nm [Song, Nature Mat. 4, 207 (2005)] OOOOOO \bigcirc Ξ 00 00000000000000000 $Q \sim 600,000 \ (V \sim 10 \times \text{optimum})$

How can we get *arbitrary* Q with *finite* modal volume?

a full 3d band gap

(or perfect metal)

There is one other alternative...

[M. R. Watts et al., Opt. Lett. 27, 1785 (2002)]

The Basic Idea, in 2d

start with: junction of two waveguides

No radiation at junction if the modes are perfectly matched

Perfect Mode Matching

requires:

same differential equations and boundary conditions

Match differential equations...

 $\mathbf{E}_2 - \mathbf{E}_1 = \mathbf{E}_2' - \mathbf{E}_1'$...closely related to separability [S. Kawakami, J. Lightwave Tech. 20, 1644 (2002)]

Perfect Mode Matching

requires:

same differential equations and boundary conditions

TE modes in 3d

for

cylindrical waveguides,

"azimuthally polarized"

TE_{0n} modes

A Perfect Cavity in 3d (~ VCSEL + perfect lateral confinement)

Perfect index confinement (no scattering) 1d band gap 3d confinement

A Perfectly Confined Mode

$$\epsilon_1, \epsilon_2 = 9, 6$$

$$\epsilon_{1}', \epsilon_{2}' = 4, 1$$

E energy density, vertical slice

Q-tips

Three independent mechanisms for high Q:

Delocalization: trade off modal size for Q

 Q_r grows monotonically towards band edge

Multipole Cancellation: force higher-order far-field pattern Q_r peaks inside gap

New nodal planes appear in far-field pattern at peak

Mode Matching: allows arbitrary Q, finite V

Requires special symmetry & materials

Forget these devices...

I just want a mirror.

ok

Projected Bands of a 1d Crystal (a.k.a. a Bragg mirror)

Omnidirectional Reflection

[J. N. Winn et al, Opt. Lett. 23, 1573 (1998)]

Omnidirectional Mirrors in Practice

[Y. Fink et al, Science 282, 1679 (1998)]

Another route to three dimensions: Hollow-core Bandgap Fibers

PCF: Holey Silica Cladding

r = 0.1a 2.5_{1} light cone 2 ω (2 $\pi c/a$) 1.5 1 w=Bc 0.5 0.5 1.5 2 2.5 1 3 0 β (2 π/a)

PCF: Holey Silica Cladding

r = 0.17717a

r = 0.22973a

r = 0.30912a

r = 0.34197a

r = 0.37193a

2.5 light cone 2 ω (2 $\pi c/a$) 1.5 1 w=Bc 0.5 0.5 1.5 2 2.5 1 3 0 β (2 π/a)

r = 0.4a

r = 0.42557a

Bandgap fibers: Air-guiding records1.7dB/km @1.57μm0.5 dB/m @10.6μm

[Mangan, et al., OFC 2004 PDP24]

Not limited by material absorption! (at 10.6μ m, absorption > 10^4 dB/m!)

(still lots of work until 0.2dB/km of conventional fiber)

[B. Temelkuran *et al.*, *Nature* **420**, 650 (2002)] [C. Anastassiou *et al.*, *Phot. Spectra* (Mar. 2004)]

Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Perturbations, tuning, and disorder

All Imperfections are Small (or the device wouldn't work)

- Material absorption: small imaginary $\Delta \epsilon$
- Nonlinearity: small $\Delta \varepsilon \sim |\mathbf{E}|^2$ (Kerr)
- Stress (MEMS): small $\Delta \epsilon$ or small ϵ boundary shift
- Tuning by thermal, electro-optic, etc.: small $\Delta \epsilon$
- Roughness: small $\Delta \epsilon$ or boundary shift

Weak effects, long distance/time: hard to compute directly — use semi-analytical methods Semi-analytical methods for small perturbations

- Brute force methods (FDTD, *etc*.): expensive and give limited insight
- Semi-analytical methods

 numerical solutions for perfect system
 + analytically bootstrap to imperfections

... coupling-of-modes, perturbation theory, Green's functions, coupled-wave theory, ...

Perturbation Theory

for Hermitian eigenproblems

given eigenvectors/values: $\hat{O}|u\rangle = u|u\rangle$...find change $\Delta u \& \Delta |u\rangle$ for small $\Delta \hat{O}$

Solution:

expand as power series in $\Delta \hat{O}$

$$\Delta u = 0 + \Delta u^{(1)} + \Delta u^{(2)} + \dots$$
$$\& \Delta |u\rangle = 0 + \Delta |u\rangle^{(1)} + \dots$$
$$\& \Delta |u\rangle = 0 + \Delta |u\rangle^{(1)} + \dots$$
(first order is usually enough

Perturbation Theory

for electromagnetism

$$\Delta \omega^{(1)} = \frac{c^2}{2\omega} \frac{\langle \mathbf{H} | \Delta \hat{A} | \mathbf{H} \rangle}{\langle \mathbf{H} | \mathbf{H} \rangle}$$

$$= -\frac{\omega}{2} \int \frac{\Delta \varepsilon |\mathbf{E}|^2}{\int \varepsilon |\mathbf{E}|^2}$$

$$intermation on the second second$$

$$\Rightarrow \frac{\Delta \omega^{(1)}}{\omega} = -\frac{\Delta n}{n} \cdot (\text{fraction of } \varepsilon |\mathbf{E}|^2 \text{ in } \Delta n)$$

A Quantitative Example

...but what about the cladding?

Gas can have low loss & nonlinearity

...*some* field penetrates!

& may need to use very "bad" material to get high index contrast

lowest-loss mode, just as in metal

(near) node at interface
= strong confinement ►
= low losses

non-degenerate mode — cannot be split = no birefringence or PMD

[Johnson, Opt. Express 9, 748 (2001)]

Ē

Quantifying Nonlinearity

 $\Delta\beta \sim \text{power } P \sim 1$ / lengthscale for nonlinear effects

 $\gamma = \Delta\beta / P$

= nonlinear-strength parameter determining self-phase modulation (SPM), four-wave mixing (FWM), ...

> (unlike "effective area," tells *where* the field is, not just how big)

[Johnson, Opt. Express 9, 748 (2001)] [R. Ramaswami & K. N. Sivarajan, Optical Networks: A Practical Perspective]

Suppressing Cladding Nonlinearity [Johnson, Opt. Express 9, 748 (2001)]

10⁻⁶ **Mode Nonlinearity*** ÷ **Cladding Nonlinearity** 10⁻⁷ TE Will be dominated by nonlinearity of air 10⁻⁸. ~10,000 times weaker than in silica fiber (including factor of 10 in area) **10⁻⁹** 1.6 2 2.4 2.8 λ (µm)

"nonlinearity" = $\Delta \beta^{(1)} / P = \gamma$

A Linear Nonlinear "Transistor"

[Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002).]

Tuning Microcavities

Fabrication accurate to 10⁻³ or 10⁻⁶ (bandwidth) is challengingneed post-fabrication tuning

Tuning mechanisms: electro-optic, thermal, conductivity, liquid crystal... alter cavity index or shape

[C.-W. Wong, Appl. Phys. Lett. 84, 1242 (2004).]

0.1

0.05

(%) ۲/۷%) ۵۷/۷۳

- 0.05

- 0.1

0.05

experiments

0.0

applied strain ε (%)

theory

Boundary-perturbation theory

FAILS for high index contrast!

beware field discontinuity... fortunately, a simple correction exists

[S. G. Johnson *et al.*, *PRE* **65**, 066611 (2002)]

Boundary-perturbation theory

Surface roughness disorder?

[http://www.physik.uni-wuerzburg.de/TEP/Website/groups/opto/etching.htm]

loss limited by disorder

disordered photonic crystal

theorem:[S. Fan et. al., J. Appl. Phys. 78, 1415 (1995).]small (bounded) disorder does not destroy the bandgapQ limited only by crystal size (for a 3d complete gap) ...

... but waveguides have more trouble ...

Effect of Gap on Disorder (e.g. Roughness) Loss?

[with M. Povinelli]

index-guided waveguide

photonic-crystal waveguide: which picture is correct?

Coupled-mode theory

Expand state in ideal eigenmodes, for constant ω :

 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc ()() \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

What's New in Coupled-Mode Theory?

- Traditional methods (Marcuse, 1970): weak periodicity only
- Strong perodicity (Bloch modes expansion):
 - de Sterke et al. (1996): coupling in time (nonlinearities)
 - Russell (1986): weak perturbations, slowly varying only

NEW: exact extension, for *z*-dependent (constant ω), and: arbitrary periodicity, arbitrary index contrast (full vector), arbitrary disorder [and/or tapers]

[S. G. Johnson *et al.*, *PRE* **66**, 066608 (2002).] [M. Skorobogatiy *et al.*, [M. L. Povinelli *et al.*, *APL* **84**, 3639 (2004).] *Opt. Express* **10**, 1227 (2002).] scalar

Coupled-wave Theory

(skipping all the math...)

Weak disorder, short correlations: refl. ~ lcouplingl² if disorder and modes are "same," then reflection is the same

A Test Case

[M. L. Povinelli et al., APL 84, 3639 (2004).]

A Test Case

pixels added/removed with probability p

same disorder in both cases, averaged over many FDTD runs

Test Case Results: Reflection

Test Case Results: Total Loss

photonic bandgap
(all other things equal)
= unambiguous improvement

But, the news isn't all good...

Group-velocity (v) dependence other things being equal

[S. G. Johnson *et al.*, *Proc. 2003 Europ. Symp. Phot. Cryst.* 1, 103.]
[S. Hughes *et al.*, *Phys. Rev. Lett.* 94, 033903 (2005).]

absorption/radiation-scattering loss (per distance) ~ 1/v

> reflection loss (per distance) $\sim 1/v^2$ (per time) $\sim 1/v$

> > Losses a challenge for slow light...

An Easier Way to Compute Loss imperfection acts like a volume current $\vec{J} \sim \Delta \varepsilon \, \vec{E}_0$

volume-current method (i.e., first Born approx. to Green's function)

An Easier Way to Compute Loss

uncorrelated disorder adds *incoherently*

So, compute power P radiated by *one* localized source *J*, and loss rate ~ P * (mean disorder strength)
Losses from Point Scatterers

Loss rate ratio = (Refl. only) / (Refl. + Radiation) = 60% \checkmark

Effect of an *Incomplete* Gap on uncorrelated surface roughness

Conventional waveguide (matching modal area)

...with Si/SiO₂ Bragg mirrors (1D gap) 50% lower losses (in dB) same reflection

some radiation blocked

 $\Delta \varepsilon$ "bump" *changes* **E** (E_{\perp} is *discontinuous*)

Scattering Theory (for small scatterers)

sphere: effective point current $\mathbf{J} \sim \mathbf{p} / \Delta \mathbf{V}$ = 3 $\Delta \epsilon \mathbf{E}_0 / (\Delta \epsilon + 3)$

= $\Delta \varepsilon \mathbf{E}_0$ for small $\Delta \varepsilon$, but very different for large $\Delta \varepsilon$

Corrected Volume Current for Large $\Delta \epsilon$

effective point current
$$\mathbf{J} \sim (\frac{\varepsilon_1 + \varepsilon_2}{2} \mathbf{p}_{\parallel} + \varepsilon \mathbf{p}_{\perp}) / \Delta \mathbf{V}$$

[S. G. Johnson et al., Applied Phys. B, in press (2005).]

Strip Waveguides in Photonic-Crystal Slabs (3d)

How does *incomplete 3d gap* affect roughness loss?

Rods vs. Holes? Answer is in 2d.

The hole waveguide is not single mode — crystal introduces new modes (in 2d) and new leaky modes (in 3d) The story of photonic crystals:

Finding New Materials / Processes ⇒ Designing New Structures

Further Reading

Books:

• J. D. Joannopoulos, R. D. Meade, and J. N. Winn, *Photonic Crystals: Molding the Flow of Light* (Princeton Univ. Press, 1995).

• S. G. Johnson and J. D. Joannopoulos, *Photonic Crystals: The Road from Theory to Practice* (Kluwer, 2002).

• K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).

This Presentation, Free Software, ...

http://ab-initio.mit.edu/photons/tutorial