
Appendix B

Solving Electromagnetic Problems

Using C++ 1

B.1 Introduction

The C++ programming language was developed by Bjarne Stroustrup in 1980, at
Bell Labs (Murray Hill, New Jersey). It was considered to be an improvement on
the C language by adding support for object-oriented programming. This appendix
is meant to be a brief review of C++ as well as an introduction to using C++ to solve
electromagnetic problems. Examples are offered to illustrate the points previously
discussed. Style notes are also included to offer insight into what good programming
practices are.

Most of the main features of the language are covered but the reader is encouraged
to consider the references at the end of this appendix to obtain supplemental infor-
mation on the more advanced topics of object-oriented programming. The reader is
encouraged to pay close attention to the examples. The programs may contain subtle
implementations of other concepts in addition to the main concept being covered at
the time. (All the programs were developed using Microsoft Visual C++ 5.0.)

B.2 A Brief Description of C++

A. What Every New Programmer to a Language Should See First

Consider the obligatory “hello” program:

1Written by Raymond C. Garcia, Georgia Institute of Technology, Atlanta, GA 30332-0320.

643

© 2001 by CRC PRESS LLC

The “hello” program simply prints a statement along with a carriage return.
One of the most notable statements in every C++ program is the “#include” state-

ment. It is here where preprocessed code is included and incorporated with a program
code. Table B.1 contains information on what header file to include based on what
function is needed [1, 2].

B. Types and Declarations

The C++ language supports the commom intrinsic types as well as user defined
types:

• Boolean – the keywords true and false are supported. All logical expressions
evaluate to the type bool.

• Integer – the keyword int is used to represent integer values. Commom “un-
modified” integers range from −32, 768 to 32, 767.

• Floating-point – the keywords float and double are used to represent floating-
point types. The commom “unmodified” ranges are 3.4e−38 to 3.4e+38 for
floats and 1.7e−308 to 1.7e+308 for doubles.

• Character – the keyword char is used to represent character data. Most com-
pilers implement a char as an 8-bit value which can hold 256 different values.

All of the types mentioned above except for bool can be modified by the following
keywords:

• signed

• unsigned

© 2001 by CRC PRESS LLC

Table B.1 Inherited C Include Files
Header File Comments

assert.h Used for debugging.
ctype.h Allows you to check the case and type of char

(i.e., is it upper/lower case or a digit, etc.).
errno.h Several macros are defined to report error conditions.
float.h Macros and constants used for serious numerical,

floating-point programming.
iso646.h Provides readable alternatives to certain operators or punctuators

(i.e., “and” instead of &&).
limits.h Goes hand-in-hand with float.h; offers the range limits for all data types.
locale.h Formatting of numeric data; mostly informative.
math.h Contains mathematical functions (sin, cos, etc.).

setjmp.h Contains a macro, function, and type for bypassing normal function calls
(similar to goto); be careful.

signal.h Supports the handling of “signals” (conditions occurring at run-time).
stdarg.h Macros contained here allow you to walk through a variable argument list.
stddef.h As the name suggests, this headers contains “standard definitions.”
stdio.h Contains functions that perform input and output

(fopen, fclose, fprintf, etc.).
stdlib.h Contains general utility functions.
string.h Contains functions which facilitate the manupulation

of array character data.
time.h Provides time structures

wchar.h Allows its user to perform input and output operations on wide streams or
manipulate wide strings.

wctype.h Similar to ctype.h except it acts on wide chars.

• long

• short

Table B.3 lists some of the basic types along with the commom bit widths and
ranges [3].

<STYLE NOTE>: It is good programming practice to use the appropriate data
type and modifier whenever possible. For example, do not use a long double when a
float is really needed. This habit will prove more valuable for large programs where
memory is a concern. This is especially useful when precision is of interest.

C. Input and Output with cin and cout

One of the major enhancements to C is the stream libraries which provide func-
tionality for console/terminal and file input and output. This functionality is accessed
through the keywords cin and cout .

© 2001 by CRC PRESS LLC

Table B.2 C++ Header Files [2]
C++ Headers

Header File Comments
bits Provides a template and related function for manipulating a fixed-size

sequences of bits.
bitstring Similar to bits but functions operate on varying-length sequences of bits.
complex Support functionality for representing and manipulating complex numbers.
defines Defines a constant and several types that are used by many other headers.

dynarray Defines a template which generically controls a sequence.
exception Supports the handling of exceptions.
fstream Provides stream buffers to assist the reading and writing of files.
iomanip Provides template classes that provide extractors and inserters for

information used in the class “ios.”
ios Provides function signatures for controlling how to interpret input and

output from a sequence of characters.
iostream Include to perform input and output from a C++ program.
istream Controls input from a stream buffer. “cin” is its most popular object.

new Manages the allocation and storage of a program.
ostream Controls output to a stream buffer.

ptrdynarray Defines a template that supports a varying-size sequence of pointers
to a generic object.

sstream Used to define several template classes that support iostreams operations
on sequences stored in an allocated array object.

streambuf Defines macros and data types that control input from and output
to char sequences.

string Assists in the manipulation of varying-length sequences of chars.
strstream Designed to assist in reading and writing char sequences stored in memory.
wstring Similar to string but applies to wide characters.

Example B.1:

© 2001 by CRC PRESS LLC

Table B.3 Modified and Unmodified Types Commonly Implemented
Data Type Modifier Width (# of Bits) Range

char 8 −128 to 127
signed " 0 to 255
unsigned " −128 to 127

int 16 −32, 768 to 32, 767
unsigned " 0 to 65, 535
unsigned short " "
signed " −32, 768 to 32, 767
short " "
signed short " "
long 32 −2, 147, 483, 648 to 2, 147, 483, 647
signed long " "
unsigned long " 0 to 4, 294, 967, 295

float " 3.4e−38 to 3.4e+38
double 64 1.7e−308 to 1.7e+308

long 80 3.4e−4932 to 1.1e+4932

Output:

D. Pointers

Pointers appear to be one of the most confused concepts in C++. When used
incorrectly, programs became unstable. A pointer is an item that holds the address of
a defined variable. There are pointers to pointers and the like. When a pointer holds
the address to the first element in an array, incrementing it will move it to the next
address in the array. This may seem obvious but the main point is that different data
types are different sizes in the machine they reside in. An int pointer will increment
2 bytes and a float pointer will increment 4 bytes if integers are represented with
2 bytes and floats are represented by 4 bytes. This is a machine dependent concept.

Some of the more popular uses of pointers are linked lists, dynamic memory al-
location, and argument modification. Since structures and functions have not been
discussed yet, the two examples of pointer usage given here are simple pointer as-
signment and dynamic memory allocation.

Example B.2:

© 2001 by CRC PRESS LLC

Output:

E. Arrays

Unspecified arrays take the following form:

array_item_type array_name[no_of_elements];

The statement above tells the compiler to reserve enough space to hold no_elements
of array_item_type. These are valid array declarations:

int my_ints[10]; // simple one-dimensional array of ints

char buffer[80]; // simple one-dimensional array of chars

char screen[24][80]; // a two-dimensional array of chars

Arrays can also be declared where the size need not be indicated explicitly. For
instance, the statement:

int my_ints[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

implicitly tells the compiler that my_ints is an array of ten integers. To specify a
particular element of the my_ints array you type the following:

my_ints[2].

Here, my_ints[2] refers to the item ‘3’ not ‘2’ as most people who deal with non
zero-based arrays would expect.

Multi-dimensional arrays are initialized as shown in the following example:

© 2001 by CRC PRESS LLC

Example B.3:

Output:

<STYLE NOTE>: This is more of a warning than a style issue. One of the
virtues of C++ is the fact that it is fast and compact. In order for the language to
be fast, a feature such as array bounds checking is not included. This places more
responsability on the programmer to be careful when assigning and referencing arrays.
The consequences can be devastating.

F. Control Constructs

Relational operators, logical operators and control constructs go hand in hand. That
is why they have been deferred until this section. Arithmetic operators are also an
important part of control constructs. Table B.4 contains arithmetic, relational, and
logical operators [4, 5].

The following control constructs are important.

© 2001 by CRC PRESS LLC

Table B.4 Arithmetic, Relational, and Logical Operators
Operator Type Meaning Comments

−− Arithmetic decrement when placed in front a
variable it is the decremented
value that is used; when
placed after a variable, the
decrementing occurs after it
is used

++ " increment prefix and postfix rules are
the same as with the
decrement operator

∗ " multiplication
/ " division remainder of integer division

is truncated (e.g., 3/4 = 0).
% " modulus used for integer division
− " subtraction and unary minus
+ " addition
> relational greater than

>= " greater than or equal to
< " less than

<= " less than or equal to
== " equal to
! = " not equal to
&& Logical AND
|| " OR
! " NOT

The if statement:

Nested if s:

if (Boolean expression)
if (Boolean expression)

statement;

© 2001 by CRC PRESS LLC

A ladder of if-else-if statements:

if (Boolean expression)
statement;

else if (Boolean expression)
statement;

else if (Boolean expression)
statement;

else
statement;

The for loop:

for (initialization; expression; increment)
statement;

for (initialization; expression; increment)
{

statement;
...

statement;
}

where “initialization” initializes the variable(s) that control the loop as a counter,
“expression” sets the condition on which the loop repeats, and “increment” defines
how the control variable(s) are changed.

The switch statement

switch(expression){
case CONSTANT:

statement;
...

statement;
break ;

© 2001 by CRC PRESS LLC

case CONSTANT:
statement;

...

statement;
break ;

default:
statement;

...

statement;
}

The expression being switched must evaluate to a character or integer value.

The while loop

while (Boolean expression)
{

statement;
...

statement;
}

The do-while loop

do {
statement;

...

statement;
} while (Boolean expression);

Example B.4:

© 2001 by CRC PRESS LLC

Output:

The effect of using the continue and break keywords

• A continue statement skips the statements following it without exiting the loop.

• A break statement will exit from the inner-most loop or the current switch
statement it is in.

© 2001 by CRC PRESS LLC

G. Structures and Unions

Structures form the building blocks for writing programs that deal with data.
Whether dealing with simple things like a recipe in a cook book to defining boundary-
value problems to perform Monte Carlo simulations, data structures are all around
us.

Syntax:

struct struct_tag{
type member1;
type member2;
type member3;

} variable declarations;

union union_tag{
type member1;
type member2;

...

type memberN;
} variable declarations;

Members of unions and structures are accessed using “dot” notation. For example,
to access member1 of the union myunion, the following syntax is used:

myunion.member1.

If a pointer to a union was defined, an arrow would replace the period. For example,

myunion->member1.

Example B.5:

© 2001 by CRC PRESS LLC

Output:

© 2001 by CRC PRESS LLC

A union allows several variables to share the same memory location. For example,
if 4 bytes are used to represent a float and 1 byte is used to represent a char, the union
of the two would occupy 4 bytes. This allows a union to be considered many things.
The main point is that this example of a union can be used to hold either the float or
the char. Table B.5 should help to illustrate this point

Table B.5 Byte Storage within a Union
The float uses all four bytes

1st Byte 2nd Byte 3rd Byte 4th Byte
1 byte for the char 1 byte of float 1 byte of float 1 byte for the char

H. Functions

The role of functions is important to program development in C++. All executable
statements exist within functions. Offering effective ways to implement numerical
techniques in C++ is impossible to do without describing how to use functions.

Part of defining a function is through the use of a prototype. A function prototype is
a program statement which indicates to the compiler the type and number of arguments
that a function requires. Type checking is improved with the use of prototyping by
allowing the compiler to accurately check for type mismatches.

A function prototype takes the following form:

return_type function_name(argument_type argument_name, argument_type argument_name, etc.);

For example, to tell the compiler that you have a function called “add_them” that
takes two integer arguments which will be called val1 and val2, and returns an integer
value, you would type the following:

int add_them(int val1, int val2);

<STYLE NOTE>: C++ allows a programmer to prototype without specifying all
arguments of the function with the use of ellipsis (...). It is considered good style to
have the prototype appear exactly as the function’s declaration.

Here is the code for an example that uses a function that adds two numbers together.

© 2001 by CRC PRESS LLC

Example B.6:

Output:

Call-By-Value

The process in which the compiler creates a copy of the variable’s value that is
being passed in the function call is called call-by-value. This is the default calling
convention for C++. In the example above, copies of x and y were used by the sum
function. The major point here is that call-by-value cannot allow a function to modify
the arguments used in the function call.

Call-By-Reference

When call-by-reference is used, the address of the argument is used as opposed
to a copy of it. Call-by-reference is more efficient and faster than call-by-value.
Less program memory is needed and the return statement is not necessarily needed
to modify the variable. In C++, pointers as well as the reference type is used to
implement call-by-reference.

As the following example illustrates, call-by-reference is used to modify a vari-
able. Pay particular attention to the need of the dereference operator (∗) in the function
‘will_change_with_ptr’ but other than the address operator (&), the code in the func-
tion ‘will_change_with_ref’ does not require the added consideration when working
with pointers.

© 2001 by CRC PRESS LLC

<STYLE NOTE>: It is advantageous to use reference types when implementing
call-by-reference. It becomes unnecessary to pay attention as to whether the argu-
ment being used is a pointer or not. A major source of bugs exists in a code that
inappropriately uses a variable that should be de-referenced first.

Example B.7:

Output:

Array Arguments

A common necessity in programming is the need to pass arrays to functions. The
following code example shows two ways to use arrays as arguments. The first function
has a pointer to the first array element. The second example uses an unsized array.

© 2001 by CRC PRESS LLC

Example B.8:

Output:

Three more things are left to conclude our discussion about functions:

First, the keyword inline instructs the compiler to directly place the function code
at the point in which it is invoked as opposed to making a function call. This is most
useful for time-saving situations with short functions that are called many times. The
compiler may ignore this directive in cases where the function has loops, switch, or
goto statements.

© 2001 by CRC PRESS LLC

Syntax:

inline type function_name(argument list){
code statements

}

Second, the scope resolution operator “::” is used when there are two variables
with the same name at different scopes. Here is some example code that illustrates
its use:

Example B.9:

Output:

© 2001 by CRC PRESS LLC

Third, passing arguments on the command line. This is an important feature that
allows programmers to call their program and pass arguments to it. The following
example shows how this is done by calling the function “main” with a month string
followed by a year.

Example B.10:

Output:

B.3 Object-Orientation

In order to discuss object orientation, we must first define what an object is. For
most readers familiar with imperative language programming, an object is looked
upon as a variable. But in the object-oriented world, an object is something that not
only represents a value but also its behavior. For example, we can have an object called
list. This list would not only contain the items within it but it would also represent the
“behavior” of maintaining itself. In particular, this list object can contain methods
that would add and delete items.

Another example of an object is a random walk. This random walk can have data
that indicates its current position as well as how many steps it is currently taken.
This random walk object can also have methods that perform the steps as well as
functionality used to determine when a border is reached.

Why Object-Oriented Programming?

Object-oriented programming emerged out of the need to compensate for the prob-
lems associated with procedural languages. Procedural languages, as defined in [6]
are designed such that “. . . programs are organized around control structures such
as iteration and procedure invocation.” What this means is that procedural language

© 2001 by CRC PRESS LLC

programs are simply a list of instructions that have the following principles [7]:

• single entry, single exit

• clearly defined inputs and outputs

• top-down hierarchical decomposition

• modular design for easy modification and reuse

• only sequence, selection, case, and iteration constructs.

For most small programs, procedural languages are suitable but as programs be-
come larger and more complex, procedural programs become more difficult to change,
debug, and adapt. Take a look at Fig. B.1 which describes the procedural paradigm [8].

Figure B.1
Procedural programming paradigm.

As Fig. B.1 indicates, a procedural program is based on functions operating on
data. The larger the program, the more functions there are that operate on the data.
The problem here is that it becomes quite easy to have a function that corrupts the
data shared by other functions. This can happen in several ways. A new programmer
on a programming team for a large project may not be fully aware of the impact of
a new function written, thereby inadvertently causing undesirable results. Another
way of corrupting the data would be for a data structure to change without completely
updating the rest of the program. For large programs, this is a daunting task. Every
function that accessed the data structure needs to be modified to reflect the new
changes.

Continuing our discussion on the limitations of procedural programming, take
notice of Fig. B.2 which describes the object-oriented programming paradigm. The
first point to make is that programs are organized in objects expressed as classes. Each
class is composed of data and member functions that operate on the data. Given this
object-centric approach to programming, both cases which would be problematic in
a procedural language are inherently addressed in C++. For instance, any additional
functions or data structure changes will benefit from the organized objects; the impact
of the additional function is foreseen based on deciding which class it is a member
of; and updates of objects due to data structure changes are tractable since it is known
which members have access to it.

© 2001 by CRC PRESS LLC

Figure B.2
Object-Oriented programming paradigm.

A. Inheritance

Inheritance is the process of having one object “inherit” data, functionality, etc.
from another object. Taking another look at Fig. B.2, objects B, C, and D inherit
from object A. Object A is known as the base class and objects B, C, and D are called
derived classes.

Taking our random walk object described earlier, suppose we call this our “parent”
object. Examples of “child” objects are floating random walk and fixed random walk.
This parent-child relationship is such that both the floating random walk and fixed
random walk objects inherit the mechanisms that represent their current location and
amount of steps. Another inherited feature is the boundary checking functionality.
Figure B.3 should help to drive this point home.

B. Polymorphism

Polymorphism is best described using functions. Recall our random walk object.
In particular, the method used to perform steps. What if this method was aptly called
“step.” Now, since there are various types of walks (floating, fixed, etc.) with each
differing by how they get to the border. The step method would need to act differently
based on the type of object it was. For example, if it were a floating random walk
object, it would have to take a step by picking a random point on a circle with radius
set to the shortest distance to the border; but if it were a fixed random walk object, it
would randomly choose one of four directions to step (simply north, south, east, or
west). It is how the step method acts based on the object that invoked it that exemplifies

© 2001 by CRC PRESS LLC

Figure B.3
Example illustrating inheritance.

polymorphism. The process of how the compiler knows which step member function
to run is called dynamic binding.

C. Data Abstraction

Data abstraction is the concept of having data and methods that act on that data
exist within one conceptual unit (namely a class). This concept of having data and
“datacentric” methods existing within a single syntactic entity has at least two advan-
tages:

• program modification is localized to this single class

• code changes pertaining to the encapsulated pieces can be changed in one
area without being visible to the rest of the program and without affecting its
behavior.

The simplest example to give about data abstraction is the common float data type.
Here, the C++ language allows you to declare a float variable but it does not allow
you to modify its floating-point representation. The language also allows you to add
floating-point numbers but there is no way for you to write a program to change how
the addition is performed.

D. Encapsulation

Encapsulation (also called data hiding) is the act of hiding object information
details with various levels of access. Using our float example again, the floating-
point representation as well as the mathematical operation details are encapsulated.

Using the class example in Fig. B.3. The encapsulation language feature allows
an object to have members that are exclusive to just itself, derived objects, or the
“public.” Using the random walk example, the floating random walk object uses a

© 2001 by CRC PRESS LLC

data member “walk” from the class Random_Walk (see Fig. B.3) that specifies the
amount of times it has reached a border. Since the class Floating_Random_Walk
inherits from the class Random_Walk, it now has an int variable named “walk” that
it can use in its function “perform_walk.” The data member “walk” is inherited. If
the variable “walk” was made private, derived classes would not be able to access it.

E. Overloading

Operator overloading is the process of changing the meaning of an operator. For
instance, the add operator “+” naturally adds two numbers. This operator can be
“overloaded” to work (or operate) on any type of object. Suppose we want to add two
matrix objects. There is no built in functionality for adding two matrices. What needs
to be done is to overload the “+” operator such that an element-by-element addition
is performed. A more detailed look here requires looking at the matrix object as
having a “+” method that operates on similar matrix objects such that the following
expression:

matrixA + matrixB

calls the ‘+’ method of matrixA with matrixB as a parameter.

B.4 C++ Object-Oriented Language Features

The C++ language has built-in features which support object-oriented program-
ming. Namely classes, operator overloading, virtual functions, templates, and ex-
ception handling. What follows is a brief description of each language feature along
with supporting examples.

A. Classes

The use of classes is a major language feature that supports object-oriented pro-
gramming. For a solid concise look at classes the reader is referred to [5]. A class
can be looked at as a more powerful struct . This is what a class declaration looks
like:

class class_name{
private:

private data and methods
public:

public data and methods
protected:

protected data and methods
} object names;

© 2001 by CRC PRESS LLC

where,

private- indicates that these data items are to be accessible to the object itself;
no children or any other part of the program. Private is the default
access if none are indicated.

public- the data items are accessible to all derived classes.

protected- it is an otherwise private member that can be used only by itself and
other objects that inherit them.

Example B.11: This example illustrates the relationship between public and private
members of a class.

© 2001 by CRC PRESS LLC

Output:

Notice that in this example all member functions have access to the variable “num.”

Constructors and Destructors

Within every class, member functions called a constructor and destructor exist.
A constructor is used to initialize class variables or allocate memory storage. A
destructor is used to return memory allocated. Constructors can accept arguments
and can be overloaded while destructors cannot. The constructor takes on the same
name as the class in which it exists while the destructor has the class name preceded
with a “ ˜ ” character. The compiler automatically creates a constructor and destructor
whenever they are not defined.

Example B.12:

© 2001 by CRC PRESS LLC

Output:

As illustrated in the example, the constructor and destructor are executed auto-
matically every time the class is instantiated. This example also illustrates how a
constructor is overloaded and takes a parameter to initialize the variable “num.”

B. Operator Overloading

As described earlier, operator overloading takes place when a standard operator is
redefined to mean something else. The syntax for overloading an operator is:

type operator overloaded_operator(parameter list)

Operator overloading can only occur from within the object that the method exists.

Member functions can also be overloaded. It is possible to have several member
functions with the same name behaving differently. The one condition is that they
must differ at least in the arguments they each take.

The following example is a class which converts from polar form to rectangular
form and the reverse.

© 2001 by CRC PRESS LLC

Example B.13:

Output:

C. Templates

For action that is the same for different data types, two options exist for implement-
ing this case scenario. One option is to write a different class or function for each
data type. Another option is to use templates to create generic functions and classes.

The following example illustrates this point. Suppose we want to swap two num-
bers. There has to be a different function for each type of number (an int, float,

© 2001 by CRC PRESS LLC

double, etc.). What template functions allow us to do is create one function that acts
independently of the data type it works on.

Example B.14:

Output:

D. Exception Handling

Exception handling is a language feature that allows a programmer to have specific
functionality executed given a particular error occurs. In the object-oriented world
this is known as is throwing and catching exceptions.

Syntax:

try {
// put code here that you want to trap erros

}

© 2001 by CRC PRESS LLC

catch (type argument) {
// code the execute in the event an exception is thrown.

}
more catch functions can follow...

Here is a simple example illustrating the use of exception handling. What it does is
“throw” an exception immediately after it is found that a matrix element is negative.

Example B.15:

Output:

© 2001 by CRC PRESS LLC

E. Files and Streams

We all know what a file is, but what is a stream? In C++, a stream is a logical
interface from which all I/O is operated through. The relationship between a file and
a stream is one where a stream is associated and disassociated with a file through the
“open” and “close” operations.

The following example creates a file with records where each record contains the
following information:

• Coordinate value (x,y).

• Angle made with the x-axis (degrees).

• sine of the first-quadrant angle.

The file is then read back and the info is echoed out. Several concepts are illustrated
in this example. Namely, the following:

• How to open a file for writing.

• How to open a file for reading.

• How to overload the extraction operator (<<).

• How to overload the insertion operator (>>).

Example B.16:

© 2001 by CRC PRESS LLC

© 2001 by CRC PRESS LLC

Output:

B.5 A Final Note

The C++ programming language is powerful. What comes with this power is the
required complexity to tap into it. For a more comprehensive view of C++ with
annotations and commentaries, [9] is the clear choice. Since becoming a solid C++
programmer requires practice and guidance, I recommend [10]–[12] for gaining good
insight in solid design. As your skill increases, at some time you may come across
obscure, subtle issues with C++. In these instances, you will find [13] a valued
addition to your library. Furthermore, for a more advanced discussion on templates,

© 2001 by CRC PRESS LLC

[14] is a good place to start. Finally, any confusion with object-orientation in general
should be cleared with the help of [15, 16].

References

[1] Plauger, P.J., The Standard C Library. Englewood Cliffs, NJ: Prentice-Hall,
1992.

[2] Plauger, P.J., The Draft Standard C++ Library. Upper Saddle River, NJ:
Prentice-Hall, 1995.

[3] Schildt, H., C++ from the Ground Up. Berkeley, CA: Osborne McGraw-Hill,
1994, p. 41.

[4] Stroustrup, B., The C++ Programming Language. 3rd ed., Reading, Mas-
sachusetts: Addison-Wesley Publishing Company, 1997, pp. 119–121.

[5] Pappas, C.H., Murray, W.H., Borland C++ Handbook. Berkeley, CA: Osborne
McGraw-Hill, 1991, pp. 160–171.

[6] Finkel, R.A., Advanced Programming Language Design. Menlo Park, CA:
Addison-Wesley Publishing Company, 1996, p. 267.

[7] Cezzar, Ruknet, A Guide to Programming Languages: Overview Comparison,
Norwood, MA: Artech House, Inc., 1995, p. 263.

[8] Lafore, R., Object-Oriented Programming in Microsoft C++. CA: Waite Group
Press, 1993, pp. 5–6.

[9] Ellis, M.A., Stroustrup, B., The Annotated C++ Reference Manual. Reading,
MA: Addison-Wesley Publishing Company, 1990.

[10] Meyers, Effective C++: 50 Specific Ways to Improve Your Programs and De-
signs. MA: Addison-Wesley Publishing Company, Inc., 1992.

[11] Meyers, More Effective C++: 35 new Ways to Improve Your Programs and
Designs. Massachusetts: Addison-Wesley Publishing Company, Inc., 1996.

[12] Eckel, B., “C++ Programming Style Guides,” Unix Review, March 1995,
pp. 43–54.

[13] Eckel, B., C++ Inside & Out. Berkeley, CA: Osborne McGraw-Hill, 1993.

[14] Glass, G., Schuchert, Brett, The STL <Primer>. New Jersey: Prentice-Hall,
1996.

© 2001 by CRC PRESS LLC

[15] Khoshafian, S., Abnous, R., Object Orientation: Concepts, Languages,
Databases, User Interfaces. New York: John Wiley & Sons, Inc., 1990, pp. 6–
10.

[16] Meyer, Bertrand, Object-Oriented Software Construction, 2nd ed., Upper Sad-
dle River, NJ: Prentice-Hall, 1997.

© 2001 by CRC PRESS LLC

	Numerical Techniques in Electromagnetics
	Contents
	Appendix B
	B.1 Introduction
	B.2 A Brief Description of C++
	A. What Every New Programmer to a Language Should See First
	B. Types and Declarations
	C. Input and Output with cin and cout
	D. Pointers
	E. Arrays
	F. Control Constructs
	G. Structures and Unions
	H. Functions

	B.3 Object-Orientation
	A. Inheritance
	B. Polymorphism
	C. Data Abstraction
	D. Encapsulation
	E. Overloading

	B.4 C++ Object-Oriented Language Features
	A. Classes
	B. Operator Overloading
	C. Templates
	D. Exception Handling
	E. Files and Streams

	B.5 A Final Note
	References

