
Chapter 3

Finite Difference Methods

“Those who know others are clever; those who know themselves have discern-
ment; those who overcome others have force; those who overcome themselves are
strong; those who know contentment are rich; those who persevere are people of
purpose.” Paraphrase of Lao Tzu

3.1 Introduction

It is rare for real-life EM problems to fall neatly into a class that can be solved by
the analytical methods presented in the preceding chapter. Classical approaches may
fail if [1]:

• the PDE is not linear and cannot be linearized without seriously affecting the
result

• the solution region is complex

• the boundary conditions are of mixed types

• the boundary conditions are time-dependent

• the medium is inhomogeneous or anisotropic

Whenever a problem with such complexity arises, numerical solutions must be em-
ployed. Of the numerical methods available for solving PDEs, those employing finite
differences are more easily understood, more frequently used, and more universally
applicable than any other.

The finite difference method (FDM) was first developed by A. Thom [2] in the 1920s
under the title “the method of squares” to solve nonlinear hydrodynamic equations.
Since then, the method has found applications in solving different field problems. The
finite difference techniques are based upon approximations which permit replacing
differential equations by finite difference equations. These finite difference approx-
imations are algebraic in form; they relate the value of the dependent variable at a
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point in the solution region to the values at some neighboring points. Thus a finite
difference solution basically involves three steps:

(1) dividing the solution region into a grid of nodes

(2) approximating the given differential equation by finite difference equivalent
that relates the dependent variable at a point in the solution region to its values
at the neighboring points

(3) solving the difference equations subject to the prescribed boundary conditions
and/or initial conditions

The course of action taken in three steps is dictated by the nature of the problem
being solved, the solution region, and the boundary conditions. The most commonly
used grid patterns for two-dimensional problems are shown in Fig. 3.1. A three-
dimensional grid pattern will be considered later in the chapter.

Figure 3.1
Common grid patterns: (a) rectangular grid, (b) skew grid, (c) triangular grid,
(d) circular grid.

3.2 Finite Difference Schemes

Before finding the finite difference solutions to specific PDEs, we will look at how
one constructs finite difference approximations from a given differential equation.
This essentially involves estimating derivatives numerically.

Given a function f (x) shown in Fig. 3.2, we can approximate its derivative, slope
or the tangent at P by the slope of the arc PB, giving the forward-difference formula,
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Figure 3.2
Estimates for the derivative of f (x) at P using forward, backward, and central
differences.

f ′(xo) � f (xo +�x)− f (xo)

�x
(3.1)

or the slope of the arc AP, yielding the backward-difference formula,

f ′(xo) � f (xo)− f (xo −�x)

�x
(3.2)

or the slope of the arc AB, resulting in the central-difference formula,

f ′(xo) � f (xo +�x)− f (xo −�x)

2�x
(3.3)

We can also estimate the second derivative of f (x) at P as

f ′′(xo) � f ′(xo +�x/2)− f ′(xo −�x/2)

�x

= 1

�x

[
f (xo +�x)− f (xo)

�x
− f (xo)− f (xo −�x)

�x

]

or

f ′′(xo) � f (xo +�x)− 2f (xo)+ f (xo −�x)

(�x)2
(3.4)

Any approximation of a derivative in terms of values at a discrete set of points is
called finite difference approximation.
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The approach used above in obtaining finite difference approximations is rather
intuitive. A more general approach is using Taylor’s series. According to the well-
known expansion,

f (xo +�x) = f (xo)+�xf ′(xo)+ 1

2! (�x)
2f ′′(xo)+ 1

3! (�x)
3f ′′′(xo)+ · · ·

(3.5)

and

f (xo −�x) = f (xo)−�xf ′(xo)+ 1

2! (�x)
2f ′′(xo)− 1

3! (�x)
3f ′′′(xo)+ · · ·

(3.6)

Upon adding these expansions,

f (xo +�x)+ f (xo −�x) = 2f (xo)+ (�x)2f ′′(xo)+O(�x)4 (3.7)

where O(�x)4 is the error introduced by truncating the series. We say that this error
is of the order (�x)4 or simply O(�x)4. Therefore, O(�x)4 represents terms that
are not greater than (�x)4. Assuming that these terms are negligible,

f ′′(xo) � f (xo +�x)− 2f (xo)+ f (xo −�x)

(�x)2

which is Eq. (3.4). Subtracting Eq. (3.6) from Eq. (3.5) and neglecting terms of the
order (�x)3 yields

f ′(xo) � f (xo +�x)− f (xo −�x)

2�x

which is Eq. (3.3). This shows that the leading errors in Eqs. (3.3) and (3.4) are
of the order (�x)2. Similarly, the difference formula in Eqs. (3.1) and (3.2) have
truncation errors of O(�x). Higher order finite difference approximations can be
obtained by taking more terms in Taylor series expansion. If the infinite Taylor series
were retained, an exact solution would be realized for the problem. However, for
practical reasons, the infinite series is usually truncated after the second-order term.
This imposes an error which exists in all finite difference solutions.

To apply the difference method to find the solution of a function
(x, t), we divide
the solution region in the x− t plane into equal rectangles or meshes of sides�x and
�t as in Fig. 3.3. We let the coordinates (x, t) of a typical grid point or node be

x = i�x, i = 0, 1, 2, . . .

t = j�t, j = 0, 1, 2, . . . (3.8a)

and the value of 
 at P be


P = 
(i�x, j�t) = 
(i, j) (3.8b)
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Figure 3.3
Finite difference mesh for two independent variables x and t .

With this notation, the central difference approximations of the derivatives of 
 at
the (i, j)th node are


x |i,j � 
(i + 1, j)−
(i − 1, j)

2�x
, (3.9a)


t |i,j � 
(i, j + 1)−
(i, j − 1)

2�t
, (3.9b)


xx |i,j � 
(i + 1, j)− 2
(i, j)+
(i − 1, j)

(�x)2
, (3.9c)


tt |i,j � 
(i, j + 1)− 2
(i, j)+
(i, j − 1)

(�t)2
(3.9d)

Table 3.1 gives some useful finite difference approximations for 
x and 
xx .

3.3 Finite Differencing of Parabolic PDEs

Consider a simple example of a parabolic (or diffusion) partial differential equation
with one spatial independent variable

k
∂


∂t
= ∂2


∂x2
(3.10)

where k is a constant. The equivalent finite difference approximation is

k

(i, j + 1)−
(i, j)

�t
= 
(i + 1, j)− 2
(i, j)+
(i − 1, j)

(�x)2
(3.11)

where x = i�x, i = 0, 1, 2, . . . , n, t = j�t, j = 0, 1, 2, . . . . In Eq. (3.11), we
have used the forward difference formula for the derivative with respect to t and
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Table 3.1 Finite Difference Approximations for 
x and 
xx

Derivative Finite Difference Type Error
Approximation


x

i+1−
i

�x
FD O(�x)


i−
i−1
�x

BD O(�x)


i+1−
i−1
�x

CD O(�x)2

−
i+2+4
i+1−3
i
2�x FD O(�x)2

3
i−4
i−1+
i−2
2�x BD O(�x)2

−
i+2+8
i+1−8
i−1+
i−2
12�x CD O(�x)4


xx

i+2−2
i+1+
i

(�x)2
FD O(�x)2


i−2
i−1+
i−2
(�x)2

BD O(�x)2


i+1−2
i+
i−1
(�x)2

CD O(�x)2

−
i+2+16
i+1−30
i+16
i−1−
i−2
(�x)2

CD O(�x)4

where FD = Forward Difference, BD = Backward Difference,
and CD = Central Difference.

central difference formula for that with respect to x. If we let

r = �t

k(�x)2
, (3.12)

Eq. (3.11) can be written as


(i, j + 1) = r
(i + 1, j)+ (1 − 2r)
(i, j)+ r
(i − 1, j) (3.13)

This explicit formula can be used to compute 
(x, t + �t) explicitly in terms of

(x, t). Thus the values of 
 along the first time row (see Fig. 3.3), t = �t , can be
calculated in terms of the boundary and initial conditions, then the values of 
 along
the second time row, t = 2�t , are calculated in terms of the first time row, and so on.

A graphic way of describing the difference formula of Eq. (3.13) is through the
computational molecule of Fig. 3.4(a), where the square is used to represent the grid
point where 
 is presumed known and a circle where 
 is unknown.

In order to ensure a stable solution or reduce errors, care must be exercised in
selecting the value of r in Eqs. (3.12) and (3.13). It will be shown in Section 3.6
that Eq. (3.13) is valid only if the coefficient (1 − 2r) in Eq. (3.13) is nonnegative or
0 < r ≤ 1/2. If we choose r = 1/2, Eq. (3.13) becomes


(i, j + 1) = 1

2
[
(i + 1, j)+
(i − 1, j)] (3.14)

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



Figure 3.4
Computational molecule for parabolic PDE: (a) for 0 < r ≤ 1/2, (b) for r = 1/2.

so that the computational molecule becomes that shown in Fig. 3.4(b).
The fact that obtaining stable solutions depends on r or the size of the time step�t

renders the explicit formula of Eq. (3.13) inefficient. Although the formula is simple
to implement, its computation is slow. An implicit formula, proposed by Crank and
Nicholson in 1974, is valid for all finite values of r . We replace ∂2
/∂x2 in Eq. (3.10)
by the average of the central difference formulas on the j th and (j + 1)th time rows
so that

k

(i, j + 1)−
(i, j)

�t
= 1

2

[

(i + 1, j)− 2
(i, j)+
(i − 1, j)

(�x)2

+

(i + 1, j + 1)− 2
(i, j + 1)+
(i − 1, j + 1)

(�x)2

]

This can be rewritten as

−r
(i − 1, j + 1)+ 2(1 + r)
(i, j + 1)− r
(i + 1, j + 1)

= r
(i − 1, j)+ 2(1 − r)
(i, j)+ r
(i + 1, j) (3.15)

where r is given by Eq. (3.12). The right side of Eq. (3.15) consists of three known
values, while the left side has the three unknown values of 
. This is illustrated in
the computational molecule of Fig. 3.5(a). Thus if there are n free nodes along each
time row, then for j = 0, applying Eq. (3.15) to nodes i = 1, 2, . . . , n results in n

Figure 3.5
Computational molecule for Crank-Nicholson method: (a) for finite values of r ,
(b) for r = 1.
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simultaneous equations with n unknown values of
 and known initial and boundary
values of
. Similarly, for j = 1, we obtain n simultaneous equations for n unknown
values of 
 in terms of the known values j = 0, and so on. The combination of
accuracy and unconditional stability allows the use of a much larger time step with
Crank-Nicholson method than is possible with the explicit formula. Although the
method is valid for all finite values of r , a convenient choice of r = 1 reduces
Eq. (3.15) to

−
(i − 1, j + 1)+ 4
(i, j + 1)−
(i + 1, j + 1) = 
(i − 1, j)+
(i + 1, j)
(3.16)

with the computational molecule of Fig. 3.5(b).
More complex finite difference schemes can be developed by applying the same

principles discussed above. Two of such schemes are the Leapfrog method and the
Dufort-Frankel method [3, 4]. These and those discussed earlier are summarized in
Table 3.2. Notice that the last two methods are two-step finite difference schemes in
that finding 
 at time j + 1 requires knowing 
 at two previous time steps j and
j − 1, whereas the first two methods are one-step schemes. For further treatment on
the finite difference solution of parabolic PDEs, see Smith [5] and Ferziger [6].

Example 3.1
Solve the diffusion equation

∂2


∂x2
= ∂


∂t
, 0 ≤ x ≤ 1 (3.17)

subject to the boundary conditions


(0, t) = 0 = 
(1, t) = 0, t > 0 (3.18a)

and initial condition


(x, 0) = 100 (3.18b)

Solution
This problem may be regarded as a mathematical model of the temperature distribution
in a rod of lengthL = 1 m with its end in contacts with ice blocks (or held at 0◦C) and
the rod initially at 100◦C. With that physical interpretation, our problem is finding the
internal temperature
 as a function of position and time. We will solve this problem
using both explicit and implicit methods.

(a) Explicit Method

For easy hand calculations, let us choose �x = 0.1, r = 1/2 so that

�t = r(�x)2

k
= 0.05
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Table 3.2 Finite Difference Approximation to the Parabolic Equation:
∂

∂t

= 1
k
∂2


∂x2 , k > 0

since k = 1. We need the solution for only 0 ≤ x ≤ 0.5 due to the fact that the
problem is symmetric with respect to x = 0.5. First we calculate the initial and
boundary values using Eq. (3.18). These values of 
 at the fixed nodes are shown
in Table 3.3 for x = 0, x = 1, and t = 0. Notice that the values of 
(0, 0) and

(1, 0) are taken as the average of 0 and 100. We now calculate 
 at the free nodes
using Eq. (3.14) or the molecule of Fig. 3.4(b). The result is shown in Table 3.3. The
analytic solution to Eq. (3.17) subject to Eq. (3.18) is


(x, t) = 400

π

∞∑
k=0

1

n
sin nπx exp

(
−n2π2t

)
, n = 2k + 1

Comparison of the explicit finite difference solution with the analytic solution at
x = 0.4 is shown in Table 3.4. The table shows that the finite difference solution is
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reasonably accurate. Greater accuracy can be achieved by choosing smaller values
of �x and �t .

Table 3.3 Result for Example 3.1
x 0 0.1 0.2 0.3 0.4 0.5 0.6 . . . 1.0
t

0 50 100 100 100 100 100 100 50
0.005 0 75.0 100 100 100 100 100 0

0.01 0 50 87.5 100 100 100 100 0
0.015 0 43.75 75 93.75 100 100 100 0
0.02 0 37.5 68.75 87.5 96.87 100 96.87 0

0.025 0 34.37 62.5 82.81 93.75 96.87 93.75 0
0.03 0 31.25 58.59 78.21 89.84 93.75 89.84 0

...
0.1 0 14.66 27.92 38.39 45.18 47.44 45.18 0

Table 3.4 Comparison of Explicit Finite Difference
Solution with Analytic Solution; for Example 3.1

t Finite difference Analytic solution Percentage
solution at x = 0.4 at x = 0.4 error

0.005 100 99.99 0.01
0.01 100 99.53 0.47
0.015 100 97.85 2.2
0.02 96.87 95.18 1.8
0.025 93.75 91.91 2.0
0.03 89.84 88.32 1.7
0.035 85.94 84.61 1.6
0.04 82.03 80.88 1.4
...
0.10 45.18 45.13 0.11

(b) Implicit Method

Let us choose�x = 0.2, r = 1 so that�t = 0.04. The values of
 at the fixed nodes
are calculated as in part (a) (see Table 3.3). For the free nodes, we apply Eq. (3.16)
or the molecule of Fig. 3.5(b). If we denote 
(i, j + 1) by 
i(i = 1, 2, 3, 4), the
values of 
 for the first time step (Fig. 3.6) can be obtained by solving the following
simultaneous equations

−0 + 4
1 −
2 = 50 + 100

−
1 + 4
2 +
3 = 100 + 100

−
2 + 4
3 −
4 = 100 + 100

−
3 + 4
4 − 0 = 100 + 50
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We obtain


1 = 58.13, 
2 = 82.54, 
3 = 72, 
4 = 55.5

at t = 0.04. Using these values of 
, we apply Eq. (3.16) to obtain another set of
simultaneous equations for t = 0.08 as

−0 + 4
1 −
2 = 0 + 82.54

−
1 + 4
2 −
3 = 58.13 + 72

−
2 + 4
3 −
4 = 82.54 + 55.5

−
3 + 4
4 − 0 = 72 + 0

which results in


1 = 34.44, 
2 = 55.23, 
3 = 56.33, 
4 = 32.08

This procedure can be programmed and accuracy can be increased by choosing more
points for each time step.

Figure 3.6
For Example 3.1, part (b).

3.4 Finite Differencing of Hyperbolic PDEs

The simplest hyperbolic partial differential equation is the wave equation of the
form

u2 ∂
2


∂x2
= ∂2


∂t2
(3.19)
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where u is the speed of the wave. An equivalent finite difference formula is

u2
(i + 1, j)− 2
(i, j)+
(i − 1, j)

(�x)2
= 
(i, j + 1)− 2
(i, j)+
(i, j − 1)

(�t)2

where x = i�x, t = j�t, i, j = 0, 1, 2, . . . . This equation can be written as


(i, j + 1) = 2(1 − r)
(i, j)+ r[
(i + 1, j)+
(i − 1, j)] −
(i, j − 1)

(3.20)

where 
(i, j) is an approximation to 
(x, t) and r is the “aspect ratio” given by

r =
(
u�t

�x

)2

(3.21)

Equation (3.20) is an explicit formula for the wave equation. The corresponding com-
putational molecule is shown in Fig. 3.7(a). For the solution algorithm in Eq. (3.20)

Figure 3.7
Computational molecule for wave equation: (a) for arbitrary r ≤ 1, (b) for r = 1.

to be stable, the aspect ratio r ≤ 1, as will be shown in Example 3.5. If we choose
r = 1, Eq. (3.20) becomes


(i, j + 1) = 
(i + 1, j)+
(i − 1, j)−
(i, j − 1) (3.22)

with the computational molecule in Fig. 3.7(b). Unlike the single-step schemes of
Eqs. (3.13) and (3.15), the two-step schemes of Eqs. (3.20) and (3.22) require that
the values of 
 at times j and j − 1 be known to get 
 at time j + 1. Thus, we
must derive a separate algorithm to “start” the solution of Eq. (3.20) or (3.22); that
is, we must compute 
(i, 1) and 
(i, 2). To do this, we utilize the prescribed initial
condition. For example, suppose the initial condition on the PDE in Eq. (3.19) is

∂


∂t

∣∣∣∣
t=0

= 0
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We use the backward-difference formula

∂
(x, 0)

∂t
� 
(i, 1)−
(i,−1)

2�t
= 0

or


(i, 1) = 
(i,−1) (3.23)

Substituting Eq. (3.23) into Eq. (3.20) and taking j = 0 (i.e., at t = 0), we get


(i, 1) = 2(1 − r)
(i, 0)+ r[
(i − 1, 0)+
(i + 1, 0)] −
(i, 1)

or


(i, 1) = (1 − r)
(i, 0)+ r

2
[
(i − 1, 0)+
(i + 1, 0)] (3.24)

Using the starting formula in Eq. (3.24) together with the prescribed boundary and
initial conditions, the value of
 at any grid point (i, j) can be obtained directly from
Eq. (3.20).

There are implicit methods for solving hyperbolic PDEs just as we have implicit
methods for parabolic PDEs. However, for hyperbolic PDEs, implicit methods result
in an infinite number of simultaneous equations to be solved and therefore cannot be
used without making some simplifying assumptions. Interested readers are referred
to Smith [5] or Ferziger [6].

Example 3.2
Solve the wave equation


tt = 
xx, 0 < x < 1, t ≥ 0

subject to the boundary conditions


(0, t) = 0 = 
(1, t), t ≥ 0

and the initial conditions


(x, 0) = sin πx, 0 < x < 1 ,


t (x, 0) = 0, 0 < x < 1

Solution
The analytical solution is easily obtained as


(x, t) = sin πx cosπt (3.25)

Using the explicit finite difference scheme of Eq. (3.20) with r = 1, we obtain


(i, j + 1) = 
(i − 1, j)+
(i + 1, j)−
(i, j − 1), j ≥ 1 (3.26)
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For j = 0, substituting


t = 
(i, 1)−
(i,−1)

2�t
= 0

or

(i, 1) = 
(i,−1)

into Eq. (3.26) gives the starting formula


(i, 1) = 1

2
[
(i − 1, 0)+
(i + 1, 0)] (3.27)

Since u = 1, and r = 1,�t = �x. Also, since the problem is symmetric with respect
to x = 0.5, we solve for 
 using Eqs. (3.26) and (3.27) within 0 < x < 0.5, t ≥ 0.
We can either calculate the values by hand or write a simple computer program.
With the FORTRAN code in Fig. 3.8, the result shown in Table 3.5 is obtained for
�t = �x = 0.1. The finite difference solution agrees with the exact solution in
Eq. (3.25) to six decimal places. The accuracy of the FD solution can be increased
by choosing a smaller spatial increment �x and a smaller time increment �t .

Table 3.5 Solution of the Wave Equation in Example 3.2

x 0 0.1 0.2 0.3 0.4 0.5 0.6 . . .
t

0.0 0 0.3090 0.5879 0.8990 0.9511 1.0 0.9511
0.1 0 0.2939 0.5590 0.7694 0.9045 0.9511 0.9045
0.2 0 0.2500 0.4755 0.6545 0.7694 0.8090 0.7694
0.3 0 0.1816 0.3455 0.4755 0.5590 0.5878 0.5590
0.4 0 0.0955 0.1816 0.2500 0.2939 0.3090 0.2939
0.5 0 0 0 0 0 0 0
0.6 0 -0.0955 -0.1816 -0.2500 -0.2939 -0.3090 -0.2939
0.7 0 -0.1816 -0.3455 -0.4755 -0.5590 -0.5878 -0.5590
...

...
...

...
...

...
...

...

3.5 Finite Differencing of Elliptic PDEs

A typical elliptic PDE is Poisson’s equation, which in two dimensions is given by

∇2
 = ∂2


∂x2
+ ∂2


∂y2
= g(x, y) (3.28)
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Figure 3.8
FORTRAN code for Example 3.2.

We can use the central difference approximation for the partial derivatives of which
the simplest forms are

∂2


∂x2
= 
(i + 1, j)− 2
(i, j)+
(i − 1, j)

(�x)2
+O(�x)2 (3.29a)

∂2


∂y2
= 
(i, j + 1)− 2
(i, j)+
(i, j − 1)

(�y)2
+O(�y)2 (3.29b)
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where x = i�x, y = j�y, and i, j = 0, 1, 2, . . . . If we assume that�x = �y = h,
to simplify calculations, substituting Eq. (3.29) into Eq. (3.28) gives[

(i + 1, j)+
(i − 1, j)+
(i, j + 1)+
(i, j − 1)

]
− 4
(i, j) = h2g(i, j)

or


(i, j) = 1

4

[

(i + 1, j)+
(i − 1, j)+
(i, j + 1)+
(i, j − 1)− h2g(i, j)

]
(3.30)

at every point (i, j) in the mesh for Poisson’s equation. The spatial increment h is
called the mesh size. A special case of Eq. (3.28) is when the source term vanishes,
i.e., g(x, y) = 0. This leads to Laplace’s equation. Thus for Laplace’s equation,
Eq. (3.30) becomes


(i, j) = 1

4
[
(i + 1, j)+
(i − 1, j)+
(i, j + 1)+
(i, j − 1)] (3.31)

It is worth noting that Eq. (3.31) states that the value of
 for each point is the average
of those at the four surrounding points. The five-point computational molecule for the
difference scheme in Eq. (3.31) is illustrated in Fig. 3.9(a) where values of the coeffi-
cients are shown. This is a convenient way of displaying finite difference algorithms

Figure 3.9
Computational molecules for Laplace’s equation based on: (a) second order
approximation, (b) fourth order approximation.

for elliptic PDEs. The molecule in Fig. 3.9(a) is the second order approximation of
Laplace’s equation. This is obviously not the only way to approximate Laplace’s
equation, but it is the most popular choice. An alternative fourth order difference is

−20
(i, j) + 4 [
(i + 1, j)+
(i − 1, j)+
(i, j + 1)+
(i, j − 1)]

+ 
(i + 1, j − 1)+
(i − 1, j − 1)+
(i − 1, j + 1)

+ 
(i + 1, j + 1) = 0 (3.32)

The corresponding computational molecule is shown in Fig. 3.9(b).
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The application of the finite difference method to elliptic PDEs often leads to a
large system of algebraic equations, and their solution is a major problem in itself.
Two commonly used methods of solving the system of equations are band matrix and
iterative methods.

3.5.1 Band Matrix Method

From Eqs. (3.30) to (3.32), we notice that only nearest neighboring nodes affect
the value of 
 at each node. Hence application of any of Eqs. (3.30) to (3.32) to all
free nodes in the solution region results in a set of simultaneous equations of the form

[A][X] = [B] (3.33)

where [A] is a sparse matrix (it has many zero elements), [X] is a column matrix
consisting of the unknown values of 
 at the free nodes, and [B] is a column matrix
containing the known values of
 at fixed nodes. Matrix [A] is also banded in that its
nonzero terms appear clustered near the main diagonal. Matrix [X], containing the
unknown elements, can be obtained from

[X] = [A]−1[B] (3.34)

or by solving Eq. (3.33) using the Gauss elimination discussed in Appendix D.1.

3.5.2 Iterative Methods

The iterative methods are generally used to solve a large system of simultaneous
equations. An iterative method for solving equations is one in which a first approxi-
mation is used to calculate a second approximation, which in turn is used to calculate
the third approximation, and so on. The three common iterative methods (Jacobi,
Gauss-Seidel, and successive over-relaxation (SOR)) are discussed in Appendix D.2.
We will apply only SOR here.

To apply the method of SOR to Eq. (3.30), for example, we first define the residual
R(i, j) at node (i, j) as the amount by which the value of 
(i, j) does not satisfy
Eq. (3.30), i.e.,

R(i, j) = 
(i + 1, j)+
(i − 1, j)+
(i, j + 1)

+
(i, j − 1)− 4
(i, j)− h2g(i, j) (3.35)

The value of the residual at kth iteration, denoted by Rk(i, j), may be regarded as
a correction which must be added to 
(i, j) to make it nearer to the correct value.
As convergence to the correct value is approached, Rk(i, j) tends to zero. Hence to
improve the rate of convergence, we multiply the residual by a number ω and add that
to 
(i, j) at the kth iteration to get 
(i, j) at (k + 1)th iteration. Thus


k+1(i, j) = 
k(i, j)+ ω

4
Rk(i, j)
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or


k+1(i, j) = 
k(i, j)+ ω

4

[

k(i + 1, j)+
k+1(i − 1, j)+
k+1(i, j − 1)

+ 
k(i, j + 1)− 4
k(i, j)− h2g(i, j)
]

(3.36)

The parameter ω is called the relaxation factor while the technique is known as the
method of successive over-relaxation (SOR). The value of ω lies between 1 and 2.
(When ω = 1, the method is simply called successive relaxation.) Its optimum value
ωopt must be found by trial-and-error. In order to start Eq. (3.36), an initial guess,

0(i, j), is made at every free node. Typically, we may choose 
0(i, j) = 0 or the
average of 
 at the fixed nodes.

Example 3.3
Solve Laplace’s equation

∇2V = 0, 0 ≤ x, y ≤ 1

with V (x, 1) = 45x(1 − x), V (x, 0) = 0 = V (0, y) = V (1, y).

Solution
Let h = 1/3 so that the solution region is as in Fig. 3.10. Applying Eq. (3.31) to each

Figure 3.10
Finite difference grid for Example 3.3.

of the four points leads to

4V1 − V2 − V3 − 0 = 10

−V1 + 4V2 − 0 − V4 = 10

−V1 − 0 + 4V3 − V4 = 0

−0 − V2 − V3 + 4V4 = 0
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This can be written as 


4 −1 −1 0
−1 4 0 −1
−1 0 4 −1
0 −1 −1 4






V1
V2
V3
V4


 =




10
10
0
0




or
[A][V ] = [B]

where [A] is the band matrix, [V ] is the column matrix containing the unknown
potentials at the free nodes, and [B] is the column matrix of potentials at the fixed
nodes. Solving the equations either by matrix inversion or by Gauss elimination, we
obtain

V1 = 3.75, V2 = 3.75, V3 = 1.25, V4 = 1.25

Example 3.4
Solve Poisson’s equation

∇2V = −ρS
ε
, 0 ≤ x, y ≤ 1

and obtain the potential at the grid points shown in Fig. 3.11. Assume ρS = x(y− 1)
nC/m2 and εr = 1.0. Use the method of successive over-relaxation.

Figure 3.11
Solution region for the problem in Example 3.4.

Solution
This problem has an exact analytical solution and is deliberately chosen so that we
can verify the numerical results with exact ones, and we can also see how a problem
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with a complicated analytical solution is easily solved using finite difference method.
For the exact solution, we use the superposition theorem and let

V = V1 + V2

where V1 is the solution to Laplace’s equation ∇2V1 = 0 with the inhomogeneous
boundary conditions shown in Fig. 3.11 and V2 is the solution to Poisson’s equation
∇2V2 = g = −ρS/ε subject to homogeneous boundary conditions. From Exam-
ple 2.1, it is evident that

V1 = VI + VII + VIII + VIV

where VI to VIV are defined by Eqs. (2.53) to (2.56). V2 can be obtained by the series
expansion method of Section 2.7. From example 2.12,

V2 =
∞∑
m=1

∞∑
n=1

Amn sin
mπx

a
sin

nπy

b

where

Amn =
∫ a

0

∫ b

0
g(x, y) sin

mπx

a
sin

nπy

b
dx dy

=
[
1.0 − 1

b
[1 − (−1)n]

]
[(mπ/a)2 + (nπ/b)2] · (−1)m+n144ab

mnπ
,

a = b = 1, and g(x, y) = −x(y − 1) · 10−9/εo.
For the finite difference solution, it can be shown that in a rectangular region, the

optimum over-relaxation factor is given by the smaller root of the quadratic equa-
tion [10]

t2ω2 − 16ω + 16 = 0

where t = cos(π/Nx)+cos(π/Ny) andNx andNy are the number of intervals along
x and y axes, respectively. Hence

ω = 8 − √
64 − 16t2

t2

We try three cases of Nx = Ny = 4, 12 and 20 so that �x = �y = h = 1/4, 1/12,
and 1/20, respectively. Also we set

g(x, y) = −ρS
ε

= −x(y − 1) · 10−9

10−9/36π
= −36πx(y − 1)

Figure 3.12 presents the FORTRAN code for the solution of this problem. The
potentials at the free nodes for the different cases of h are shown in Table 3.6. Notice
that as the mesh size h reduces, the solution becomes more accurate, but it takes more
iterations for the same tolerance.
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Figure 3.12
FORTRAN code for Example 3.4 (Continued).
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Figure 3.12
(Cont.) FORTRAN code for Example 3.4 (Continued).
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Figure 3.12
(Cont.) FORTRAN code for Example 3.4.

Table 3.6 Successive Over-relaxation Solution of Example 3.4
h = 1/4 h = 1/2 h = 1/20

Node ωopt = 1.171 ωopt = 1.729 ωopt = 1.729 Exact Solution

8 iterations 26 iterations 43 iterations

a −3.247 −3.409 −3.424 −3.429
b −1.703 −1.982 −2.012 −2.029
c 4.305 4.279 4.277 4.277
d −0.0393 −0.0961 −0.1087 −0.1182
e 3.012 2.928 2.921 2.913
f 9.368 9.556 9.578 9.593
g 3.044 2.921 2.909 2.902
h 6.111 6.072 6.069 6.065
i 11.04 11.12 11.23 11.13

3.6 Accuracy and Stability of FD Solutions

The question of accuracy and stability of numerical methods is extremely important
if our solution is to be reliable and useful. Accuracy has to do with the closeness
of the approximate solution to exact solutions (assuming they exist). Stability is the
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requirement that the scheme does not increase the magnitude of the solution with
increase in time.

There are three sources of errors that are nearly unavoidable in numerical solution
of physical problems [8]:

• modeling errors,

• truncation (or discretization) errors, and

• roundoff errors.

Each of these error types will affect accuracy and therefore degrade the solution.
The modeling errors are due to several assumptions made in arriving at the mathe-

matical model. For example, a nonlinear system may be represented by a linear PDE.
Truncation errors arise from the fact that in numerical analysis, we can deal only
with a finite number of terms from processes which are usually described by infinite
series. For example, in deriving finite difference schemes, some higher-order terms
in the Taylor series expansion were neglected, thereby introducing truncation error.
Truncation errors may be reduced by using finer meshes, that is, by reducing the mesh
size h and time increment �t . Alternatively, truncation errors may be reduced by
using a large number of terms in the series expansion of derivatives, that is, by using
higher-order approximations. However, care must be exercised in applying higher-
order approximations. Instability may result if we apply a difference equation of an
order higher than the PDE being examined. These higher-order difference equations
may introduce “spurious solutions.”

Roundoff errors reflect the fact that computations can be done only with a finite
precision on a computer. This unavoidable source of errors is due to the limited size
of registers in the arithmetic unit of the computer. Roundoff errors can be minimized
by the use of double-precision arithmetic. The only way to avoid roundoff errors
completely it to code all operations using integer arithmetic. This is hardly possible
in most practical situations.

Although it has been noted that reducing the mesh size h will increase accuracy,
it is not possible to indefinitely reduce h. Decreasing the truncation error by using a
finer mesh may result in increasing the roundoff error due to the increased number of
arithmetic operations. A point is reached where the minimum total error occurs for any
particular algorithm using any given word length [9]. This is illustrated in Fig. 3.13.
The concern about accuracy leads us to question whether the finite difference solution
can grow unbounded, a property termed the instability of the difference scheme. A
numerical algorithm is said to be stable if a small error at any stage produces a smaller
cumulative error. It is unstable otherwise. The consequence of instability (producing
unbonded solution) is disastrous. To determine whether a finite difference scheme is
stable, we define an error, εn, which occurs at time step n, assuming that there is one
independent variable. We define the amplification of this error at time step n+ 1 as

εn+1 = gεn (3.37)
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Figure 3.13
Error as a function of the mesh size.

where g is known as the amplification factor. In more complex situations, we have
two or more independent variables, and Eq. (3.37) becomes

[ε]n+1 = [G][ε]n (3.38)

where [G] is the amplification matrix. For the stability of the difference scheme, it is
required that Eq. (3.37) satisfy ∣∣∣εn+1

∣∣∣ ≤ ∣∣εn∣∣
or

|g| ≤ 1 (3.39a)

For the case in Eq. (3.38),

‖G‖ ≤ 1 (3.39b)

One useful and simple method of finding a stability criterion for a difference scheme
is to construct a Fourier analysis of the difference equation and thereby derive the
amplification factor. We illustrate this technique, known as von Neumann’s method [4,
5, 7, 10], by considering the explicit scheme of Eq. (3.13):


n+1
i = (1 − 2r)
n

i + r
(

n
i+1 +
n

i−1

)
(3.40)

where r = �t/k(�x)2. We have changed our usual notation so that we can use
j = √−1 in the Fourier series. Let the solution be


n
i =

∑
An(t)e

jkix, 0 ≤ x ≤ 1 (3.41a)
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where k is the wave number. Since the differential equation (3.10) approximated by
Eq. (3.13) is linear, we need consider only a Fourier mode, i.e.,


n
i = A(t)ejkix (3.41b)

Substituting Eq. (3.41b) into Eq. (3.40) gives

An+1ejkix = (1 − 2r)Anejkix + r
(
ejkx + e−jkx

)
Anejkix

or

An+1 = An[1 − 2r + 2 cos kx] (3.42)

Hence the amplification factor is

g = An+1

An
= 1 − 2r + 2 cos kx

= 1 − 4r sin2 kx

2
(3.43)

In order to satisfy Eq. (3.39a), ∣∣∣∣1 − 4r sin2 kx

2

∣∣∣∣ ≤ 1

Since this condition must hold for every wave number k, we take the maximum value
of the sine function so that

1 − 4r ≥ −1 and r ≥ 0

or

r ≥ 1

2
and r ≥ 0

Of course, r = 0 implies �t = 0, which is impractical. Thus

0 < r ≤ 1

2
(3.44)

Example 3.5
For the finite difference scheme of Eq. (3.20), use the von Neumann approach to
determine the stability condition.

Solution
We assume a trial solution of the form


n
i = Anejkix
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Substituting this into Eq. (3.20) results in

An+1ejkix = 2(1 − r)Anejkix + r
(
ejkx + e−jkx

)
Anejkix − An−1ejkix

or

An+1 = An [2(1 − r)+ 2r cos kx] − An−1 (3.45)

In terms of g = An+1/An, Eq. (3.45) becomes

g2 − 2pg + 1 = 0 (3.46)

where p = 1 − 2r sin2 kx
2 . The quadratic equation (3.46) has solutions

g1 = p +
[
p2 − 1

]1/2
, g2 = p −

[
p2 − 1

]1/2

For |gj | ≤ 1, where i = 1, 2, p must lie between 1 and −1, i.e., −1 ≤ p ≤ 1 or

−1 ≤ 1 − 2r sin2 kx

2
≤ 1

which implies that r ≤ 1 or u�t ≤ �x for stability. This idea can be extended to

show that the stability condition for two-dimensional wave equation is u�t/h <
1√
2

,

where h = �x = �y.

3.7 Practical Applications I — Guided Structures

The finite difference method has been applied successfully to solve many EM-
related problems. Besides those simple examples we have considered earlier in this
chapter, the method has been applied to diverse problems [11] including:

• Transmission-line problems [12]–[21],

• Waveguides [21]–[26],

• Microwave circuit [27]–[30],

• EM penetration and scattering problems [31, 32],

• EM pulse (EMP) problems [33],

• EM exploration of minerals [34], and

• EM energy deposition in human bodies [35, 36].

It is practically impossible to cover all those applications within the limited scope
of this text. In this section, we consider the relatively easier problems of transmis-
sion lines and waveguides while the problems of penetration and scattering of EM
waves will be treated in the next section. Other applications utilize basically similar
techniques.
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3.7.1 Transmission Lines

The finite difference techniques are suited for computing the characteristic
impedance, phase velocity, and attenuation of several transmission lines—polygonal
lines, shielded strip lines, coupled strip lines, microstrip lines, coaxial lines, and rect-
angular lines [12]–[19]. The knowledge of the basic parameters of these lines is of
paramount importance in the design of microwave circuits.

For concreteness, consider the microstrip line shown in Fig. 3.14(a). The geometry
in Fig. 3.14(a) is deliberately selected to be able to illustrate how one accounts for
discrete inhomogeneities (i.e., homogeneous media separated by interfaces) and lines
of symmetry using a finite difference technique. The techniques presented are equally
applicable to other lines. Assuming that the mode is TEM, having components of
neither E nor H fields in the direction of propagation, the fields obey Laplace’s
equation over the line cross section. The TEM mode assumption provides good
approximations if the line dimensions are much smaller than half a wavelength, which
means that the operating frequency is far below cutoff frequency for all higher order
modes [16]. Also owing to biaxial symmetry about the two axes only one quarter of
the cross section need to be considered as shown in Fig. 3.14(b).

Figure 3.14
(a) Shielded double strip line with partial dielectric support; (b) problem in (a)
simplified by making full use of symmetry.
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The finite difference approximation of Laplace’s equation, ∇2V = 0, has been
derived in Eq. (3.31), namely,

V (i, j) = 1

4
[V (i + 1, j)+ V (i − 1, j)+ V (i, j + 1)+ V (i, j − 1)] (3.47)

For the sake of conciseness, let us denote

Vo = V (i, j)

V1 = V (i, j + 1)

V2 = V (i − 1, j) (3.48)

V3 = V (i, j − 1)

V4 = V (i + 1, j)

so that Eq. (3.47) becomes

Vo = 1

4
[V1 + V2 + V3 + V4] (3.49)

with the computation molecule shown in Fig. 3.15. Equation (3.49) is the general
formula to be applied to all free nodes in the free space and dielectric region of
Fig. 3.14(b).

Figure 3.15
Computation molecule for Laplace’s equation.

On the dielectric boundary, the boundary condition,

D1n = D2n , (3.50)

must be imposed. We recall that this condition is based on Gauss’s law for the electric
field, i.e., ∮

/

D · dl =
∮
/

εE · dl = Qenc = 0 (3.51)
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since no free charge is deliberately placed on the dielectric boundary. Substituting
E = −∇V in Eq. (3.51) gives

0 =
∮
/

ε∇V · dl =
∮
/

ε
∂V

∂n
dl (3.52)

where ∂V/∂n denotes the derivative ofV normal to the contour /. Applying Eq. (3.52)
to the interface in Fig. 3.16 yields

0 = ε1
(V1 − V0)

h
h+ ε1

(V2 − V0)

h

h

2
+ ε2

(V2 − V0)

h

h

2

+ ε2
(V3 − V0)

h
h+ ε2

(V4 − V0)

h

h

2
+ ε1

(V4 − V0)

h

h

2

Figure 3.16
Interface between media of dielectric permittivities ε1 and ε2.

Rearranging the terms,

2 (ε1 + ε2) V0 = ε1V1 + ε2V3 + (ε1 + ε2)

2
(V2 + V4)

or

V0 = ε1

2(ε1 + ε2)
V1 + ε2

2(ε1 + ε2)
V3 + 1

4
V2 + 1

4
V4 (3.53)

This is the finite difference equivalent of the boundary condition in Eq. (3.50). Notice
that the discrete inhomogeneity does not affect points 2 and 4 on the boundary but
affects points 1 and 3 in proportion to their corresponding permittivities. Also note
that when ε1 = ε2, Eq. (3.53) reduces to Eq. (3.49).

On the line of symmetry, we impose the condition

∂V

∂n
= 0 (3.54)
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This implies that on the line of symmetry along the y-axis, (x = 0 or i = 0)
∂V

∂x
=

(V4 − V2)/h = 0 or V2 = V4 so that Eq. (3.49) becomes

Vo = 1

4
[V1 + V3 + 2V4] (3.55a)

or

V (0, j) =1

4
[V (0, j + 1)+ V (0, j − 1)+ 2V (1, j)] (3.55b)

On the line of symmetry along the x-axis (y = 0 or j = 0),
∂V

∂y
= (V1 −V3)/h = 0

or V3 = V1 so that

Vo = 1

4
[2V1 + V2 + V4] (3.56a)

or

V (i, 0) =1

4
[2V (i, 1)+ V (i − 1, 0)+ V (i + 1, 0)] (3.56b)

The computation molecules for Eqs. (3.55) and (3.56) are displayed in Fig. 3.17.

Figure 3.17
Computation molecule used for satisfying symmetry conditions: (a) ∂V/∂x = 0,
(b) ∂V/∂y = 0.

By setting the potential at the fixed nodes equal to their prescribed values and
applying Eqs. (3.49), (3.53), (3.55), and (3.56) to the free nodes according to the
band matrix or iterative methods discussed in Section 3.5, the potential at the free
nodes can be determined. Once this is accomplished, the quantities of interest can be
calculated.
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The characteristic impedance Zo and phase velocity u of the line are defined as

Zo =
√
L

C
(3.57a)

u = 1√
LC

(3.57b)

where L and C are the inductance and capacitance per unit length, respectively. If
the dielectric medium is nonmagnetic (µ = µo), the characteristic impedance Zoo
and phase velocity uo with the dielectric removed (i.e., the line is air-filled) are given
by

Zoo =
√
L

Co
(3.58a)

uo = 1√
LCo

(3.58b)

where Co is the capacitance per unit length without the dielectric. Combining
Eqs. (3.57) and (3.58) yields

Zo = 1

uo
√
CCo

= 1

uC
(3.59a)

u = uo

√
Co

C
= uo√

εeff
(3.59b)

εeff = C

Co
(3.59c)

where uo = c = 3 × 108 m/s, the speed of light in free space, and εeff is the effective
dielectric constant. Thus to find Zo and u for an inhomogeneous medium requires
calculating the capacitance per unit length of the structure, with and without the
dielectric substrate.

If Vd is the potential difference between the inner and the outer conductors,

C = 4Q

Vd
, (3.60)

so that the problem is reduced to finding the charge per unit length Q. (The factor 4
is needed since we are working on only one quarter of the cross section.) To find Q,
we apply Gauss’s law to a closed path / enclosing the inner conductor. We may select
/ as the rectangular path between two adjacent rectangles as shown in Fig. 3.18.

Q =
∮
/

D · dl =
∮
/

ε
∂V

∂n
d/

= ε

(
VP − VN

�x

)
�y + ε

(
VM − VL

�x

)
�y + ε

(
VH − VL

�y

)
�x

+ ε

(
VG − VK

�y

)
�x + · · · (3.61)
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Figure 3.18
The rectangular path / used in calculating charge enclosed.

Since �x = �y = h,

Q = (εVP + εVM + εVH + εVG + · · · )− (εVN + 2εVL + εVK + · · · )
or

Q = εo

[∑
εriVi for nodes i on outer rectangle GHJMP

with corners (such as J) not counted
]

− εo

[∑
εriVi for nodes i on inner rectangle KLN

with corners (such as L) counted twice
]
, (3.62)

where Vi and εri are the potential and dielectric constant at the ith node. If i is on the
dielectric interface, εri = (εr1 + εr2)/2. Also if i is on the line of symmetry, we use
Vi/2 instead of Vi to avoid including Vi twice in Eq. (3.60), where factor 4 is applied.
We also find

Co = 4Qo/Vd (3.63)

whereQo is obtained by removing the dielectric, finding Vi at the free nodes and then
using Eq. (3.62) with εr1 = 1 at all nodes. Once Q and Qo are calculated, we obtain
C and Co from Eqs. (3.60) and (3.63) and Zo and u from Eq. (3.59).

An outline of the procedure is given below:

(1) CalculateV (with the dielectric space replaced by free space) using Eqs. (3.49),
(3.53), (3.55), and (3.56).

(2) Determine Q using Eq. (3.62).
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(3) Find Co = 4Q

Vd
.

(4) Repeat steps (1) and (2) (with the dielectric space) and find C = 4Q

Vd
.

(5) Finally, calculate Zo = 1

c
√
CCo

, c = 3 × 108 m/s

The attenuation of the line can be calculated by following similar procedure outlined
in [14, 20, 21]. The procedure for handling boundaries at infinity and that for boundary
singularities in finite difference analysis are discussed in [37, 38].

3.7.2 Waveguides

The solution of waveguide problems is well suited for finite difference schemes
because the solution region is closed. This amounts to solving the Helmholtz or wave
equation

∇2
+ k2
 = 0 (3.64)

where 
 = Ez for TM modes or 
 = Hz for TE modes, while k is the wave number
given by

k2 = ω2µε − β2 (3.65)

The permittivity ε of the dielectric medium can be real for a lossless medium or
complex for a lossy medium. We consider all fields to vary with time and axial
distance as exp j (ωt − βz). In the eigenvalue problem of Eq. (3.64), both k and 

are to be determined. The cutoff wavelength is λc = 2π/kc. For each value of the
cutoff wave number kc, there is a solution for the eigenfunction
i , which represents
the field configuration of a propagating mode.

To apply the finite difference method, we discretize the cross section of the wave-
guide by a suitable square mesh. Applying Eq. (3.29) to Eq. (3.64) gives


(i + 1, j)+
(i − 1, j)+
(i, j + 1)+
(i, j − 1)− (4 − h2k2)
(i, j) = 0

(3.66)

where �x = �y = h is the mesh size. Equation (3.66) applies to all the free or
interior nodes. At the boundary points, we apply Dirichlet condition (
 = 0) for the
TM modes and Neumann condition (∂
/∂n = 0) for the TE modes. This implies
that at point A in Fig. 3.19, for example,


A = 0 (3.67)

for TM modes. At point A, ∂
/∂n = 0 implies that 
D = 
E so that Eq. (3.64)
becomes


B +
C + 2
D − (4 − h2k2)
A = 0 (3.68)
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for TE modes. By applying Eq. (3.66) and either Eq. (3.67) or (3.68) to all mesh points
in the waveguide cross section, we obtain m simultaneous equations involving the m
unknowns (
1,
2, . . . , 
m). These simultaneous equations may be conveniently

Figure 3.19
Finite difference mesh for a waveguide.

cast into the matrix equation

(A− λI)
 = 0 (3.69a)

or

A
 = λ
 (3.69b)

where A is an m×m band matrix of known integer elements, I is an identity matrix,

 = (
1,
2, . . . , 
m) is the eigenvector, and

λ = (kh)2 =
(

2πh

λc

)2

(3.70)

is the eigenvalue. There are several ways of determining λ and the corresponding 
.
We consider two of these options.

The first option is the direct method. Equation (3.69) can be satisfied only if the
determinant of (A− λI) vanishes, i.e.,

|A− λI | = 0 (3.71)

This results in a polynomial in λ, which can be solved [39] for the various eigenvalues
λ. For each λ, we obtain the corresponding 
 from Eq. (3.66). This method requires
storing the relevant matrix elements and does not take advantage of the fact that matrix
A is sparse. In favor of the method is the fact that a computer subroutine usually exists
(see [40] or Appendix D.4) that solves the eingenvalue problem in Eq. (3.71) and that
determines all the eigenvalues of the matrix. These eigenvalues give the dominant and
higher modes of the waveguide, although accuracy deteriorates rapidly with mode
number.
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The second option is the iterative method. In this case, the matrix elements are
usually generated rather than stored. We begin with 
1 = 
2 = · · · = 
m = 1 and
a guessed value for k. The field 
k+1

ij at the (i, j)th node in the (k + 1)th iteration is
obtained from its known value in the kth iteration using


k+1(i, j) = 
k(i, j)+ ωRij

(4 − h2k2)
(3.72)

where ω is the acceleration factor, 1 < ω < 2, and Rij is the residual at the (i, j)th
node given by

Rij = 
(i, j + 1)+
(i, j − 1)+
(i + 1, j)

+
(i − 1, j)−
(

4 − h2k2
)

(i, j) (3.73)

After three or four scans of the complete mesh using Eq. (3.73), the value of λ = h2k2

should be updated using Raleigh formula

k2 = − ∫
S

∇2
dS∫
S

2 dS

(3.74)

The finite difference equivalent of Eq. (3.74) is

k2 = − ∑
i=1

∑
j=1 
(i,j)[
(i+1,j)+
(i−1,j)+
(i,j+1)+
(i,j−1)−4
(i,j)]

h2
∑

i=1
∑

j=1 

2(i,j)

(3.75)

where 
s are the latest field values after three or four scans of the mesh and the
summation is carried out over all points in the mesh. The new value of k obtained from
Eq. (3.75) is now used in applying Eq. (3.72) over the mesh for another three or four
times to give more accurate field values, which are again substituted into Eq. (3.75) to
update k. This process is continued until the difference between consecutive values
of k is within a specified acceptable tolerance.

If the first option is to be applied, matrix A must first be found. To obtain matrix
A is not easy. Assuming TM modes, one way of calculating A is to number the free
nodes from left to right, bottom to top, starting from the left-hand corner as shown
typically in Fig. 3.20. If there are nx and ny divisions along the x and y directions,
the number of free nodes is

nf = (nx − 1)
(
ny − 1

)
(3.76)

Each free node must be assigned two sets of numbers, one to correspond to m in

m and the other to correspond to (i, j) in 
(i, j). An array NL(i, j) = m,
i = 1, 2, . . . , nx − 1, j = 1, 2, . . . , ny − 1 is easily developed to relate the two
numbering schemes. To determine the value of element Amn, we search NL(i, j) to
find (im, jm) and (in, jn), which are the values of (i, j) corresponding to nodes m
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and n, respectively. With these ideas, we obtain

Amn =




4, m = n

−1, im = in, jm = jn + 1

−1, im = in, jm = jn − 1

−1, im = in + 1, jm = jn

−1, im = in − 1, jm = jn

0, otherwise

(3.77)

Figure 3.20
Relating node numbering schemes for nx = 6, ny = 4.

Example 3.6
Calculate Zo for the microstrip transmission line in Fig. 3.14 with

a = b = 2.5 cm, d = 0.5 cm, ω = 1 cm

t = 0.001 cm, ε1 = εo, ε2 = 2.35εo

Solution
This problem is representative of the various types of problems that can be solved
using the concepts developed in Section 3.7.1. The computer program in Fig. 3.21
was developed based on the five-step procedure outlined above. By specifying the
step size h and the number of iterations, the program first sets the potential at all
nodes equal to zero. The potential on the outer conductor is set equal to zero, while
that on the inner conductor is set to 100 volts so that Vd = 100. The program finds
Co when the dielectric slab is removed and C when the slab is in place and finally
determines Zo. For a selected h, the number of iterations must be large enough and
greater than the number of divisions along x or y direction. Table 3.7 shows some
typical results.

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



Figure 3.21
Computer program for Example 3.6 (Continued).
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Figure 3.21
(Cont.) Computer program for Example 3.6.

3.8 Practical Applications II — Wave Scattering (FDTD)

The finite-difference time-domain (FDTD) formulation of EM field problems is a
convenient tool for solving scattering problems. The FDTD method, first introduced
by Yee [42] in 1966 and later developed by Taflove and others [31, 32, 35], [43]–[46],
is a direct solution of Maxwell’s time-dependent curl equations. The scheme treats
the irradiation of the scatterer as an initial value problem. Our discussion on the
FD-TD method will cover:

• Yee’s finite difference algorithm,

• accuracy and stability,

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



Table 3.7 Characteristic
Impedance of a Microstrip Line for
Example 3.6
h Number of iterations Zo

0.25 700 49.05
0.1 500 57.85
0.05 500 65.82
0.05 700 63.10
0.05 1000 61.53
Other method [41]: Zo = 62.50

• absorbing boundary conditions,

• initial fields, and

• programming aspects.

Some model examples with FORTRAN codes will be provided to illustrate the
method.

3.8.1 Yee’s Finite Difference Algorithm

In an isotropic medium, Maxwell’s equations can be written as

∇ × E = −µ∂H
∂t

(3.78a)

∇ × H = σE + ε
∂E
∂t

(3.78b)

The vector Eq. (3.78) represents a system of six scalar equations, which can be
expressed in rectangular coordinate system as:

∂Hx

∂t
= 1

µ

(
∂Ey

∂z
− ∂Ez

∂y

)
, (3.79a)

∂Hy

∂t
= 1

µ

(
∂Ez

∂x
− ∂Ex

∂z

)
, (3.79b)

∂Hz

∂t
= 1

µ

(
∂Ex

∂y
− ∂Ey

∂x

)
, (3.79c)

∂Ex

∂t
= 1

ε

(
∂Hz

∂y
− ∂Hy

∂z
− σEx

)
, (3.79d)

∂Ey

∂t
= 1

ε

(
∂Hx

∂z
− ∂Hz

∂x
− σEy

)
, (3.79e)

∂Ez

∂t
= 1

ε

(
∂Hy

∂x
− ∂Hx

∂y
− σEz

)
(3.79f)
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Following Yee’s notation, we define a grid point in the solution region as

(i, j, k) ≡ (i�x, j�y, k�z) (3.80)

and any function of space and time as

Fn(i, j, k) ≡ F(iδ, jδ, kδ, n�t) (3.81)

where δ = �x = �y = �z is the space increment, �t is the time increment, while
i, j, k, and n are integers. Using central finite difference approximation for space and
time derivatives that are second-order accurate,

∂Fn(i, j, k)

∂x
= Fn(i + 1/2, j, k)− Fn(i − 1/2, j, k)

δ
+O

(
δ2

)
(3.82)

∂Fn(i, j, k)

∂t
= Fn+1/2(i, j, k)− Fn−1/2(i, j, k)

�t
+O

(
�t2

)
(3.83)

In applying Eq. (3.82) to all the space derivatives in Eq. (3.79), Yee positions the
components of E and H about a unit cell of the lattice as shown in Fig. 3.22. To

Figure 3.22
Positions of the field components in a unit cell of the Yee’s lattice.

incorporate Eq. (3.83), the components of E and H are evaluated at alternate half-
time steps. Thus we obtain the explicit finite difference approximation of Eq. (3.79)
as:
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H
n+1/2
x (i, j + 1/2, k + 1/2) = H

n−1/2
x (i, j + 1/2, k + 1/2)

+ δt

µ(i, j + 1/2, k + 1/2)δ

[
En

y (i, j + 1/2, k + 1)

−En
y (i, j + 1/2, k) (3.84a)

+En
z (i, j, k + 1/2)− En

z (i, j + 1, k + 1/2)
]
,

H
n+1/2
y (i + 1/2, j, k + 1/2) = H

n−1/2
y (i + 1/2, j, k + 1/2)

+ δt

µ(i + 1/2, j, k + 1/2)δ

[
En

z (i + 1, j, k + 1/2)

−En
z (i, j, k + 1/2) (3.84b)

+En
x (i + 1/2, j, k)− En

x (i + 1/2, j, k + 1)
]
,

H
n+1/2
z (i + 1/2, j + 1/2, k) = H

n−1/2
z (i + 1/2, j + 1/2, k)

+ δt

µ(i + 1/2, j + 1/2, k)δ

[
En

x (i + 1/2, j + 1, k)

−En
x (i + 1/2, j, k) (3.84c)

+ En
y (i, j + 1/2, k)− En

y (i + 1, j + 1/2, k
]

,

En+1
x (i + 1/2, j, k) =

(
1− σ(i + 1/2, j, k)δt

ε(i + 1/2, j, k)

)
.

En
x (i + 1/2, j, k)

+ δt

ε(i + 1/2, j, k)δ

[
H

n+1/2
z (i + 1/2, j + 1/2, k)

−H
n+1/2
z (i + 1/2, j − 1/2, k) (3.84d)

+H
n+1/2
y (i + 1/2, j, k − 1/2)

− H
n+1/2
y (i + 1/2, j, k + 1/2)

]
,
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En+1
y (i, j + 1/2, k) =

(
1− σ(i, j + 1/2, k)δt

ε(i, j + 1/2, k)

)
.

En
y (i, j + 1/2, k)

+ δt

ε(i, j + 1/2, k)δ

[
H

n+1/2
x (i, j + 1/2, k + 1/2)

−H
n+1/2
x (i, j + 1/2, k − 1/2) (3.84e)

+H
n+1/2
z (i − 1/2, j + 1/2, k)

− H
n+1/2
z (i + 1/2, j + 1/2, k)

]
,

En+1
z (i, j, k + 1/2) =

(
1− σ(i, j, k + 1/2)δt

ε(i, j, k + 1/2)

)
.

En
z (i, j, k + 1/2)

+ δt

ε(i, j, k + 1/2)δ

[
H

n+1/2
y (i + 1/2, j, k + 1/2)

−H
n+1/2
y (i − 1/2, j, k + 1/2) (3.84f)

+H
n+1/2
x (i, j − 1/2, k + 1/2)

− H
n+1/2
x (i, j + 1/2, k + 1/2)

]

Notice from Eqs. (3.84a)–(3.84f) and Fig. 3.22 that the components of E and H
are interlaced within the unit cell and are evaluated at alternate half-time steps. All
the field components are present in a quarter of a unit cell as shown typically in
Fig. 3.23(a). Figure 3.23(b) illustrates typical relations between field components
on a plane; this is particularly useful when incorporating boundary conditions. The
figure can be inferred from Eq. (3.79d) or Eq. (3.84d). In translating the hyperbolic
system of Eqs. (3.84a)–(3.84f) into a computer code, one must make sure that, within
the same time loop, one type of field components is calculated first and the results
obtained are used in calculating another type.

3.8.2 Accuracy and Stability

To ensure the accuracy of the computed results, the spatial increment δ must be
small compared to the wavelength (usually ≤ λ/10) or minimum dimension of the
scatterer. This amounts to having 10 or more cells per wavelength. To ensure the
stability of the finite difference scheme of Eqs. (3.84a)–(3.84f), the time increment
�t must satisfy the following stability condition [43, 47]:

umax�t ≤
[

1

�x2
+ 1

�y2
+ 1

�z2

]−1/2

(3.85)
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Figure 3.23
Typical relations between field components: (a) within a quarter of a unit cell,
(b) in a plane.

where umax is the maximum wave phase velocity within the model. Since we are
using a cubic cell with �x = �y = �z = δ, Eq. (3.85) becomes

umax�t

δ
≤ 1√

n
(3.86)

where n is the number of space dimensions. For practical reasons, it is best to choose
the ratio of the time increment to spatial increment as large as possible yet satisfying
Eq. (3.86).

3.8.3 Lattice Truncation Conditions

A basic difficulty encountered in applying the FD-TD method to scattering prob-
lems is that the domain in which the field is to be computed is open or unbounded (see
Fig. 1.3). Since no computer can store an unlimited amount of data, a finite difference
scheme over the whole domain is impractical. We must limit the extent of our solution
region. In other words, an artificial boundary must be enforced, as in Fig. 3.24, to
create the numerical illusion of an infinite space. The solution region must be large
enough to enclose the scatterer, and suitable boundary conditions on the artificial
boundary must be used to simulate the extension of the solution region to infinity.
Outer boundary conditions of this type have been called either radiation conditions,
absorbing boundary conditions, or lattice truncation conditions. Although several
types of boundary conditions have been proposed [48, 49], we will only consider
those developed by Taflove et al. [43, 44].

The lattice truncation conditions developed by Taflove et al. allow excellent overall
accuracy and numerical stability even when the lattice truncation planes are positioned
no more than 5δ from the surface of the scatterer. The conditions relate in a simple
way the values of the field components at the truncation planes to the field components
at points one or more δ within the lattice (or solution region).
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Figure 3.24
Solution region with lattice truncation.

For simplicity, we first consider one-dimensional wave propagation. Assume waves
have only Ez and Hx components and propagate in the±y directions. Also assume a
time step of δt = δy/c, the maximum allowed by the stability condition of Eq. (3.86).
If the lattice extends from y = 0 to y = J�y, with Ez component at the end points,
the truncation conditions are:

En
z (0) = En−1

z (1) (3.87a)

En
z (J ) = En−1

z (J − 1) (3.87b)

With these lattice conditions, all possible ±y-directed waves are absorbed at y = 0
and J�y without reflection. Equation (3.87) assumes free-space propagation. If we
wish to simulate the lattice truncation in a dielectric medium of refractive index m,
Eq. (3.87) is modified to

En
z (0) = En−m

z (1) (3.88a)

En
z (J ) = En−m

z (J − 1) (3.88b)

For the three-dimensional case, we consider scattered waves having all six field
components and propagating in all possible directions. Assume a time-step of δt =
δ/2c, a value which is about 13% lower than the maximum allowed (δt = δ/

√
3c)

by Eq. (3.86). If the lattice occupies
1

2
δ < x < (Imax + 1

2
)δ, 0 < y < Jmaxδ, 0 <

z < Kmaxδ, the truncation conditions are [36, 44]:
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(a) plane i = 1/2

Hn
y (1/2, j, k + 1/2) = 1

3

[
Hn−2

y (3/2, j, k − 1/2)+Hn−2
y (3/2, j, k + 1/2)

+ Hn−2
y (3/2, j, k + 3/2)

]
, (3.89a)

Hn
z (1/2, j + 1/2, k) = 1

3

[
Hn−2

z (3/2, j + 1/2, k − 1)+Hn−2
z (3/2, j + 1/2, k)

+ Hn−2
z (3/2, j + 1/2, k + 1)

]
, (3.89b)

(b) plane i = Imax + 1/2

Hn
y (Imax + 1/2, j, k + 1/2) = 1

3

[
Hn−2

y (Imax − 1/2, j, k − 1/2)

+Hn−2
y (Imax − 1/2, j, k + 1/2)

+ Hn−2
y (Imax − 1/2, j, k + 3/2)

]
, (3.89c)

Hn
z (Imax + 1/2, j + 1/2, k) = 1

3

[
Hn−2

z (Imax − 1/2, j + 1/2, k − 1)

+Hn−2
z (Imax − 1/2, j + 1/2, k)

+ Hn−2
z (Imax − 1/2, j + 1/2, k + 1)

]
, (3.89d)

(c) plane j = 0,

En
x (i + 1/2, 0, k) = En−2

x (i + 1/2, 1, k) , (3.89e)

En
z (i, 0, k + 1/2) = En−2

z (i, 1, k + 1/2) , (3.89f)

(d) plane j = Jmax

En
x (i + 1/2, Jmax, k) = En−2

x (i + 1/2, Jmax − 1, k) (3.89g)

En
z (i, Jmax, k + 1/2) = En−2

z (i, Jmax − 1, k + 1/2) , (3.89h)

(e) plane k = 0,

En
x (i + 1/2, j, 0) = 1

3

[
En−2

x (i − 1/2, j, 1)

+ En−2
x (i + 1/2, j, 1)

+ En−2
x (i + 3/2, j, 1)

]
, (3.89i)

En
y (i, j + 1/2, 0) = 1

3

[
En−2

y (i − 1, j + 1/2, 1)

+ En−2
y (i, j + 1/2, 1)

+ En−2
y (i + 1, j + 1/2, 1)

]
, (3.89j)
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(f) plane k = Kmax,

En
x (i + 1/2, j,Kmax) = 1

3

[
En−2

x (i − 1/2, j,Kmax − 1)

+ En−2
x (i + 1/2, j,Kmax − 1)

+ En−2
x (i + 3/2, j,Kmax − 1)

]
, (3.89k)

En
y (i, j + 1/2,Kmax) = 1

3

[
En−2

y (i − 1, j + 1/2,Kmax − 1)

+ En−2
y (i, j + 1/2,Kmax − 1)

+ En−2
y (i + 1, j + 1/2,Kmax − 1)

]
(3.89l)

These boundary conditions minimize the reflection of any outgoing waves by simulat-
ing the propagation of the wave from the lattice plane adjacent to the lattice truncation
plane in a number of time steps corresponding to the propagation delay. The averag-
ing process is used to take into account all possible local angles of incidence of the
outgoing wave at the lattice boundary and possible multiple incidences [43]. If the
solution region is a dielectric medium of refractive index m rather than free space,
we replace the superscript n− 2 in Eqs. (3.89a)–(3.89l) by n−m.

3.8.4 Initial Fields

The initial field components are obtained by simulating either an incident plane
wave pulse or single-frequency plane wave. The simulation should not take excessive
storage nor cause spurious wave-reflections. A desirable plane wave source condition
takes into account the scattered fields at the source plane. For the three-dimensional
case, a typical wave source condition at plane y = js (near y = 0) is

En
z (i, js, k + 1/2)← 1000 sin(2πf nδt)+ En

z (i, js, k + 1/2) (3.90)

wheref is the irradiation frequency. Equation (3.90) is a modification of the algorithm
for all points on plane y = js ; the value of the sinusoid is added to the value of En

z

obtained from Eqs. (3.84a)–(3.84f).
At t = 0, the plane wave source of frequency f is assumed to be turned on.

The propagation of waves from this source is simulated by time stepping, that is,
repeatedly implementing Yee’s finite difference algorithm on a lattice of points. The
incident wave is tracked as it first propagates to the scatterer and then interacts with it
via surface-current excitation, diffusion, penetration, and diffraction. Time stepping
is continued until the sinusoidal steady state is achieved at each point. The field en-
velope, or maximum absolute value, during the final half-wave cycle of time stepping
is taken as the magnitude of the phasor of the steady-state field [32, 43].

From experience, the number of time steps needed to reach the sinusoidal steady
state can be greatly reduced by introducing a small isotropic conductivity σext within
the solution region exterior to the scatterer. This causes the fields to converge more
rapidly to the expected steady state condition.
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3.8.5 Programming Aspects

Since most EM scattering problems involve nonmagnetic media (µr = 1), the
quantity δt/µ(i, j, k)δ can be assumed constant for all (i, j, k). The nine multiplica-
tions per unit cell per time required by Yee’s algorithm of Eqs. (3.84a)–(3.84f) can be
reduced to six multiplications, thereby reducing computer time. Following Taflove
et al. [31, 35, 44], we define the following constants:

R = δt/2εo , (3.91a)

Ra = (cδt/δ)2 , (3.91b)

Rb = δt/µoδ , (3.91c)

Ca = 1− Rσ(m)/εr(m)

1+ Rσ(m)/εr(m)
, (3.91d)

Cb = Ra

εr(m)+ Rσ(m)
(3.91e)

where m = MEDIA(i, j, k) is an integer referring to the dielectric or conducting
medium type at location (i, j, k). For example, for a solution region comprising of
three different homogeneous media shown in Fig. 3.25, m is assumed to be 1 to 3.

Figure 3.25
A typical inhomogeneous solution region with integer m assigned to each
medium.

(This m should not be confused with the refractive index of the medium, mentioned
earlier.) In addition to the constants in Eq. (3.91), we define proportional electric field

Ẽ = RbE (3.92)

Thus Yee’s algorithm is modified and simplified for easy programming as [50, 51]:
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Hn
x (i, j, k) = Hn−1

x (i, j, k)+ Ẽn−1
y (i, j, k + 1)

− Ẽn−1
y (i, j, k)− Ẽn−1

z (i, j + 1, k)+ Ẽn−1
z (i, j, k) , (3.93a)

Hn
y (i, j, k) = Hn−1

y (i, j, k)+ Ẽn−1
z (i + 1, j, k)− Ẽn−1

z (i, j, k)

− Ẽn−1
x (i, j, k + 1)+ Ẽn−1

x (i, j, k) , (3.93b)

Hn
z (i, j, k) = Hn−1

z (i, j, k)+ Ẽn−1
x (i, j + 1, k)− Ẽn−1

x (i, j, k)

− Ẽn−1
y (i + 1, j, k)+ Ẽn−1

y (i, j, k) , (3.93c)

Ẽn
x (i, j, k) = Ca(m)Ẽn−1

x (i, j, k)

+ Cb(m)
[
Hn−1

z (i, j, k)−Hn−1
z (i, j − 1, k)

− Hn−1
y (i, j, k)+Hn−1

y (i, j, k − 1)
]

, (3.93d)

Ẽn
y (i, j, k) = Ca(m)Ẽn−1

y (i, j, k)

+ Cb(m)
[
Hn−1

x (i, j, k)−Hn−1
x (i, j, k − 1)

− Hn−1
z (i, j, k)+Hn−1

z (i − 1, j, k)
]

, (3.93e)

Ẽn
z (i, j, k) = Ca(m)Ẽn−1

z (i, j, k)

+ Cb(m)
[
Hn−1

y (i, j, k)−Hn−1
y (i − 1, j, k)

− Hn−1
x (i, j, k)+Hn−1

x (i, j − 1, k)
]

(3.93f)

The relationship between the original and modified algorithms is illustrated in
Fig. 3.26 and shown in Table 3.8. Needless to say, the truncation conditions in
Eqs. (3.89a)–(3.89l) must be modified accordingly. This modification eliminates the
need for computer storage of separate ε and σ arrays; only a MEDIA array which
specifies the type-integer of the dielectric or conducting medium at the location of
each electric field component in the lattice need be stored. Also the programming
problem of handling half integral values of i, j, k has been eliminated.

With the modified algorithm, we determine the scattered fields as follows. Let
the solution region, completely enclosing the scatterer, be defined by 0 < i < Imax ,
0 < j < Jmax, 0 < k < Kmax. At t ≤ 0, the program is started by setting all field
components at the grip points equal to zero:

Ẽ0
x(i, j, k) = Ẽ0

y(i, j, k) = Ẽ0
z (i, j, k) = 0 (3.94a)

H 0
x (i, j, k) = H 0

y (i, j, k) = H 0
z (i, j, k) = 0 (3.94b)

for 0 < i < Imax, 0 < j < Jmax, 0 < k < Kmax. If we know

Hn−1
x (i, j, k), En−1

z (i, j, k) ,
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Figure 3.26
Modified node numbering.

and

En−1
y (i, j, k)

at all grid points in the solution region, we can determine new Hn
x (i, j, k) everywhere

from Eq. (3.93a). The same applies for finding other field components except that the
lattice truncation conditions of Eqs. (3.89a)–(3.89l) must be applied when necessary.
The plane wave source is activated at t = δt , the first time step, and left on during the
entire run. The field components are advanced by Yee’s finite difference formulas in
Eqs. (3.93a)–(3.93f) and by the lattice truncation condition in Eqs. (3.89a)–(3.89l).
The time stepping is continued for t = Nmaxδt , where Nmax is chosen large enough
that the sinusoidal steady state is achieved. In obtaining the steady state solutions, the
program must not be left for too long (i.e., Nmax should not be too large), otherwise
the imperfection of the boundary conditions causes the model to become unstable.

The FD-TD method has the following inherent advantages over other modeling
techniques, such as the moment method and transmission-line modeling:

• It is conceptually simple.
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Table 3.8 Relationship Between Original and Modified Field
Components (lattice size = Imaxδ × Jmaxδ ×Kmaxδ)

Original Modified Limits on modified (i, j, k)

H
n+1/2
x (xi, yj+1/2, zk+1/2) Hn

x (i, j, k) i = 0, . . . , Imax
j = 0, . . . , Jmax − 1
k = 0, . . . , Kmax − 1

H
n+1/2
y (xi+1/2, yj , zk+1/2) Hn

y (i, j, k) i = 0, . . . , Imax − 1
j = 0, . . . , Jmax
k = 0, . . . , Kmax − 1

H
n+1/2
z (xi+1/2, yj+1/2, zk) Hn

z (i, j, k) i = 0, . . . , Imax − 1
j = 0, . . . , Jmax − 1
k = 0, . . . , Kmax

En
x (xi+1/2, yj , zk) En

x (i, j, k) i = 0, . . . , Imax − 1
j = 0, . . . , Jmax
k = 0, . . . , Kmax

En
y (xi, yj+1/2, zk) En

y (i, j, k) i = 0, . . . , Imax
j = 0, . . . , Jmax − 1
k = 0, . . . , Kmax

En
z (xi, yj , zk+1/2) En

z (i, j, k) i = 0, . . . , Imax
j = 0, . . . , Jmax
k = 0, . . . , Kmax − 1

• The algorithm does not require the formulation of integral equations, and rela-
tively complex scatterers can be treated without the inversion of large matrices.

• It is simple to implement for complicated, inhomogeneous conducting or di-
electric structures because constitutive parameters (σ, µ, ε) can be assigned to
each lattice point.

• Its computer memory requirement is not prohibitive for many complex struc-
tures of interest.

• The algorithm makes use of the memory in a simple sequential order.

• It is much easier to obtain frequency domain data from time domain results than
the converse. Thus, it is more convenient to obtain frequency domain results
via time domain when many frequencies are involved.

The method has the following disadvantages:

• Its implementation necessitates modeling object as well as its surroundings.
Thus, the required program execution time may be excessive.

• Its accuracy is at least one order of magnitude worse than that of the method
of moments, for example.
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• Since the computational meshes are rectangular in shape, they do not conform
to scatterers with curved surfaces, as is the case of the cylindrical or spherical
boundary.

• As in all finite difference algorithms, the field quantities are only known at grid
nodes.

Time-domain modeling in three dimensions involves a number of issues which are
yet to be resolved even for frequency-domain modeling. Among these are whether it
is best to reduce Maxwell’s equations to a second-order equation for the electric (or
magnetic) field or to work directly with the coupled first-order equation. The former
approach is used in [35], for example, for solving the problem of EM exploration for
minerals. The latter approach has been used with great success in computing EM
scattering from objects as demonstrated in this section. In spite of these unresolved
issues, the FD-TD algorithm has been applied to solve scattering and other problems
including:

• aperture penetration [44, 52, 53],

• antenna/radiation problems [54]–[60],

• microwave circuits [63]–[68],

• eigenvalue problems [69],

• EM absorption in human tissues (bioectromagnetics) [35, 36],[70]–[74], and

• other areas [75]–[79].

The following two examples are taken from the work of Taflove et al. [32, 43,
44]. The problems whose exact solutions are known will be used to illustrate the
applications and accuracy of FD-TD algorithm.

Example 3.7
Consider the scattering of a + y-directed plane wave of frequency 2.5 GHz by a

uniform, circular, dielectric cylinder of radius 6 cm. We assume that the cylinder
is infinite in the z direction and that the incident fields do not vary along z. Thus
∂/∂z = 0 and the problem is reduced to the two-dimensional scattering of the incident
wave with only Ez,Hx , and Hy components. Our objective is to compute one of the
components, say Ez, at points within the cylinder.

Solution
Assuming a lossless dielectric with

εd = 4εo, µd = µo, σd = 0 , (3.95)
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the speed of the wave in the cylinder is

ud = c√
εr
= 1.5× 108 m/s (3.96)

Hence λd = ud/f = 6 cm. We may select δ = �x = �y = �z = λd/20 = 0.3 cm
and δt = δ/2c = 5 ps Thus we use the two-dimensional grid of Fig. 3.27 as the
solution domain. Due to the symmetry of the scatterer, the domain can be reduced
relative to Fig. 3.27 to the 25 × 49 subdomain of Fig. 3.28. Choosing the cylinder

Assumptions:

Ex = Ey = 0; Hz = 0

∂

∂z
= 0

Maxwell’s Equations:

∂Hx

∂t
= − 1

µ

∂Ez

∂y

∂Hy

∂t
= 1

µ

∂Ez

∂x

∂Ez

∂t
=

1

ε

(
∂Hy

∂x
− ∂Hx

∂y
− σEx

)
Figure 3.27
Two-dimensional lattice for Example 3.7.

axis as passing through point (i, j) = (25.5, 24.5) allows the symmetry condition to
be imposed at line i = 26, i.e.,

Ẽn
z (26, j) = Ẽn

z (25, j) (3.97)

Soft grid truncation conditions are applied at j = 0, 49 and i = 1/2, i.e.,

Ẽn
z (i, 0) = 1

3

[
Ẽn−2

z (i − 1, 1)+ Ẽn−2
z (i, 1)+ Ẽn−2

z (i + 1, 1)
]

, (3.98)

Ẽn
z (i, 49) = 1

3

[
Ẽn−2

z (i − 1, 48)+ Ẽn−2
z (i, 48)+ Ẽn−2

z (i + 1, 48)
]

, (3.99)

Hn
y (0.5, 49) = 1

3

[
Hn−2

y (1.5, j)+Hn−2
y (1.5, j − 1)+Hn−2

y (1.5, j + 1)
]

(3.100)

where n− 2 is due to the fact that δ = 2cδt is selected. Notice that the actual values
of (i, j, k) are used here, while the modified values for easy programming are used
in the program; the relationship between the two types of values is in Table 3.8.
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Figure 3.28
Finite difference model of cylindrical dielectric scatterer relative to the grid of
Figure 3.27.

Grid points (i, j) internal to the cylinder, determined by[
(i − 25.5)2 + (j − 24.5)2

]1/2 ≤ 20 , (3.101)

are assigned the constitutive parameters εd, µo, and εd , while grid points external to
the cylinder are assigned parameters of free space (ε = εo, µ = µo, σ = 0).

A FORTRAN program has been developed by Bemmel [80] based on the ideas
expounded above. A similar but more general code is THREDE developed by Hol-
land [50]. The program starts by setting all field components at grid points equal to
zero. A plane wave source

Ẽn
z (i, 2)← 1000 sin(2πf nδt)+ Ẽn

z (i, 2) (3.102)

is used to generate the incident wave at j = 2 and n = 1, the first time step, and left on
during the entire run. The program is time stepped to t = Nmaxδt , where Nmax is large
enough that sinusoidal steady state is achieved. Since f = 2.5 GHz, the wave period
T = 1/f = 400 ps = 80δt . Hence Nmax = 500 = 6.25T/δt is sufficient to reach
steady state. Thus the process is terminated after 500 timesteps. Typical results are
portrayed in Fig. 3.29 for the envelope of En

z (15, j) for 460 ≤ n ≤ 500. Figure 3.29
also shows the exact solution using series expansion [81]. Bemmel’s code has both
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the numerical and exact solutions. By simply changing the constitutive parameters
of the media and specifying the boundary of the scatterer (through a look-up table
for complex objects), the program can be applied to almost any two-dimensional
scattering or penetration problem.

Figure 3.29
Computed internal Ez on line: (a) i = 25, (b) i = 15.

Example 3.8
Consider the penetration of a + y-directed plane wave of frequency 2.5 GHz by a

uniform, dielectric sphere of radius 4.5 cm. The problem is similar to the previous
example except that it is three-dimensional and more general. We assume that the
incident wave has only Ez and Hx components.

Solution
Like in the previous example, we assume that internal to the lossless dielectric sphere,

εd = 4εo, µd = µo, σd = 0 (3.103)
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Figure 3.30
FD-TD model of dielectric sphere.

We select

δ = λd/20 = 0.3 cm (3.104)

and

δt = δ/2c = 5 ps (3.105)

This choice of the grid size implies that the radius of the sphere is 4.5/0.3 = 15 units.
The sphere model centered at grid point (19.5, 20, 19) in a 19 × 39 × 19 lattice is
portrayed in Fig. 3.30 at two lattice symmetry planes k = 19 and i = 19.5. Grid
points (i, j, k) internal to the sphere are determined by

[
(i − 19.5)2 + (j − 20)2 + (k − 19)2

]1/2 ≤ 15 (3.106)

Rather than assigning σ = 0 to points external to the sphere, a value σ = 0.1 mho/m
is assumed to reduce spurious wave reflections. The FORTRAN code shown in
Fig. 3.31, a modified version of Bemmel’s [80], is used to generate field components
Ey and Ez near the sphere irradiation axis. With the dimensions and constitutive
parameters of the sphere specified as input data, the program is developed based on
the following steps:
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1. Compute the parameters of each medium using Eq. (3.91) where m = 1, 2.

2. Initialize field components.

3. Use the FD-TD algorithm in Eqs. (3.93a)–(3.93f) to generate field components.
This is the heart of the program. It entails taking the following steps:

(i) Calculate actual values of grid point (x, y, z) using the relationship in
Table 3.8. This will be needed later to identify the constitutive parameters
of the medium at that point using subroutine MEDIA.

(ii) Apply soft lattice truncation conditions in Eqs. (3.89a)–(3.89l) at appro-
priate boundaries, i.e., at x = δ/2, y = 0, ymax, and z = 0. Notice that
some of the conditions in Eqs. (3.89a)–(3.89l) are not necessary in this
case because we restrict the solution to one-fourth of the sphere due to
geometrical symmetry. At other boundaries (x = xmax and z = zmax),
the symmetry conditions are imposed. For example, at k = 19,

Ẽn
x (i, j, 20) = Ẽn

x (i, j, 18)

(iii) Apply FD-TD algorithm in Eqs. (3.93a)–(3.93f).

(iv) Activate the plane wave source, i.e.,

Ẽn
z (i, j, k)← sin(2πf nδt)+ Ẽn

z (i, js, k)

where js = 3 or any plane near y = 0.

(v) Time step until steady state is reached.

4. Obtain the maximum absolute values (envelopes) of field components in the
last half-wave and output the results.

Figure 3.32 illustrates the results of the program. The values of |Ey | and |Ez| near
the sphere axis are plotted against j for observation period 460 ≤ n ≤ 500. The
computed results are compared with Mie’s exact solution [82] covered in Section 2.8.
The code for calculating the exact solution is also found in Bemmel’s work [80].

3.9 Absorbing Boundary Conditions for FDTD

The finite difference time domain (FDTD) method is a robust, flexible (adaptable to
complex geometries), efficient, versatile, easy-to-understand, easy-to-implement, and
user-friendly technique to solve Maxwell’s equations in the time domain. Although
the method did not receive much attention it deserved when it was suggested, it is
now becoming the most popular method of choice in computational EM. It is finding
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Figure 3.31
Computer program for FDTD three-dimensional scattering problem (Contin-
ued).
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Figure 3.31
(Cont.) Computer program for FDTD three-dimensional scattering problem
(Continued).
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Figure 3.31
(Cont.) Computer program for FDTD three-dimensional scattering problem
(Continued).
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Figure 3.31
(Cont.) Computer program for FDTD three-dimensional scattering problem
(Continued).
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Figure 3.31
(Cont.) Computer program for FDTD three-dimensional scattering problem.
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Figure 3.32
Computed Ey(19.5, j, 18) and Ez(19, j, 18.5) within the lossless dielectric
sphere.

widespread use for solving open-region scattering, radiation, penetration/absorption,
electromagnetic interference (EMI), electromagnetic compatibility (EMC), diffusion,
transient, bioelectromagnetics, and microwave circuit modeling problems. However,
the method exhibits some problems such as slow convergence for solving resonant
structures, requirement of large memory for inhomogeneous waveguide structures due
to the necessity of a full-wave analysis, inability to properly handle curved boundaries
due to its orthogonal nature, low stability, and low accuracy unless fine mesh is used,
to mention a few. These problems prohibit the application of the standard FDTD
technique and have led to various forms of its modifications [83]–[93] and hybrid
FDTD methods [94]–[96]. Although these new FDTD methods have enhanced the
standard FDTD (increase accuracy and stability, etc.), some researchers still prefer
the standard FDTD.

One of the major problems inherent in the standard FDTD, however, is that the
requirement for artificial mesh truncation (boundary) condition. The artificial ter-
mination truncates the solution region electrically close to the radiating/scattering
object but effectively simulates the solution to infinity. These artificial termination
conditions are known as absorbing boundary conditions (ABCs) as they theoretically
absorb incident and scattered fields. The accuracy of the ABC dictates the accuracy
of the FDTD method. The need for accurate ABCs has resulted in various types of
ABCs [97]–[107], which are fully discussed in [104]. Due to space limitation, we will
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only consider Berenger’s perfectly matched layer (PML) type of ABC [100]–[104]
since PML has been the most widely accepted and is set to revolutionize the FDTD
method.

In the perfectly matched layer (PML) truncation technique, an artificial layer of
absorbing material is placed around the outer boundary of the computational domain.
The goal is to ensure that a plane wave that is incident from FDTD free space to
the PML region at an arbitrary angle is completely absorbed there without reflection.
This is the same as saying that there is complete transmission of the incident plane
wave at the interface between free space and the PML region (see Fig. 3.33). Thus
the FDTD and the PML region are said to be perfectly matched.

Figure 3.33
Reflectionless transmission of a plane wave at a PML/free-space interface.

To illustrate the PML technique, consider Maxwell’s equation in two dimensions for
transverse electric (TE) case with field components Ex,Ey and Hz and no variation
with z. Expanding Eqs. (1.22c) and (1.22d) in Cartesian coordinates and setting

Ez = 0 = ∂

∂z
, we obtain

εo
∂Ex

∂t
+ σEx = ∂Hz

∂y
(3.107a)

εo
∂Ey

∂t
+ σEy = −∂Hz

∂x
(3.107b)

µo

∂Hz

∂t
+ σ ∗Hz = ∂Ex

∂y
− ∂Ey

∂x
(3.107c)

where the PML, as a lossy medium, is characterized by an electrical conductivity σ
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and a magnetic conductivity σ ∗. The conductivities are related as

σ

ε0
= σ ∗

µo

(3.108)

This relationship ensures a required level of attenuation and forces the wave
impedance of the PML to be equal to that the free space. Thus a reflectionless trans-
mission of a plane wave propagation across the interface is permitted. For oblique
incident angles, the conductivity of the PML must have a certain anisotropy char-
acteristic to ensure reflectionless transmission. To achieve this, the Hz component
must be split into two subcomponents, Hzx and Hzy , with the possibility of assigning
losses to the individual split field components. This is the cornerstone of the PML
technique. It leads to four components Ex,Ey,Hzx , and Hzy and four (rather than
the usual three) coupled field equations.

εo
∂Ex

∂t
+ σyEx = ∂(Hzx +Hzy)

∂y
(3.109a)

εo
∂Ey

∂t
+ σxEy = −∂(Hzx +Hzy)

∂x
(3.109b)

µo

∂Hzx

∂t
+ σ ∗x Hzx = −∂Ey

∂x
(3.109c)

µo

∂Hzy

∂t
+ σ ∗y Hzy = ∂Ex

∂y
(3.109d)

These equations can be discretized to provide the FDTD time-stepping equations
for the PML region. The standard Yee time-stepping cannot be used because of
the rapid attenuation to outgoing waves afforded by a PML medium. We use the
exponentially differenced equations to preclude any possibility of diffusion instability.
In the usual FDTD notations, the resulting four time-stepping equations for the PML
region are [101]:

En+1
x (i + 1/2, j) = e−σy(j)δt/ε0En

x (i + 1/2, j)

+ (1− e−σy(j)δt/ε0)

σy(j)δ

[
H

n+1/2
zx (i + 1/2, j + 1/2)+H

n+1/2
zy (i + 1/2, j + 1/2)

− H
n+1/2
zx (i + 1/2, j − 1/2)−H

n+1/2
zy (i + 1/2, j − 1/2)

]
(3.110a)

En+1
y (i, j + 1/2) = e−σx(i)δt/ε0En

y (i, j + 1/2, k)

+ (1− e−σx(i)δt/ε0)

σx(i)δ

[
H

n+1/2
zx (i − 1/2, j + 1/2)+H

n+1/2
zy (i − 1/2, j + 1/2)

− H
n+1/2
zx (i + 1/2, j + 1/2)−H

n+1/2
zy (i + 1/2, j + 1/2)

]
(3.110b)
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H
n+1/2
zx (i + 1/2, j + 1/2) = e−σ ∗x (i+1/2)δt/µ0H

n−1/2
zx (i + 1/2, j + 1/2)

+ (1− e−σ ∗x (i+1/2)δt/µ0)

σ ∗x (i + 1/2)δ

[
En

y (i, j + 1/2)− En
y (i + 1, j + 1/2)

]
(3.110c)

H
n+1/2
zy (i + 1/2, j + 1/2) = e−σ ∗y (i+1/2)δt/µ0H

n−1/2
zy (i + 1/2, j + 1/2)

+ (1− e−σ ∗y (i+1/2)δt/µ0)

σ ∗y (i + 1/2)δ

[
En

x (i + 1/2, j + 1)− En
x (i + 1/2, j)

]
(3.110d)

These equations can be directly implemented in an FDTD simulation to model PML
medium. All that is required to select the depth of the PML and its conductivity. In
theory, the PML could δ deep and have near-infinite conductivity. It has been shown,
however, that increasing the conductivity gradually with depth minimizes reflections;
hence the “layering” of the medium and the dependence of σ on i and j .

The TM case can be obtained by duality, with Ez split so that Ez = Ezx + Ezy .
In three dimensions, all six Cartesian field components are split so that the resulting
PML modification of Maxwell’s equations yields 12 equations [104].

3.10 Finite Differencing for Nonrectangular Systems

So far in this chapter, we have considered only rectangular solution regions within
which a rectangular grid can be readily placed. Although we can always replace a
nonrectangular solution region by an approximate rectangular one, our discussion in
this chapter would be incomplete if we failed to apply the method to nonrectangu-
lar coordinates since it is sometimes preferable to use these coordinates. We will
demonstrate the finite differencing technique in cylindrical coordinates (ρ, φ, z) and
spherical coordinates (r, θ, φ) by solving Laplace’s equation ∇2V = 0. The idea is
readily extended to other PDEs.

3.10.1 Cylindrical Coordinates

Laplace’s equation in cylindrical coordinates can be written as

∇2V = ∂2V

∂ρ2
+ 1

ρ

∂V

∂ρ
+ 1

ρ2

∂2V

∂φ2
+ ∂2V

∂z2
. (3.111)

Refer to the cylindrical system and finite difference molecule shown in Fig. 3.34. At
point O(ρo, φo, zo), the equivalent finite difference approximation is

V1 − 2Vo + V2

(�ρ)2
+ 1

ρo

V1 − V2

2�ρ
+ V3 − 2Vo + V4

(ρo�φ)2
+ V5 − 2Vo + V6

(�z)2
= 0 (3.112)
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Figure 3.34
Typical node in cylindrical coordinate.

where �ρ,�φ and �z are the step sizes along ρ, φ, and z, respectively, and

Vo = V (ρo, φo, zo), V1 = V (ρo +�ρ, φo, zo), V2 = V (ρo −�ρ, φo, zo) ,

V3 = V (ρo, φo + ρo�φ, zo), V4 = V (ρo, φo − ρo�φ, zo) , (3.113)

V5 = V (ρo, φo, zo +�z), V6 = V (ρo, φo, zo −�z)

We now consider a special case of Eq. (3.112) for an axisymmetric system [108].
In this case, there is no dependence on φ so that V = V (ρ, z). If we assume square
nets so that �ρ = �z = h, the solution region is discretized as in Fig. 3.35 and
Eq. (3.112) becomes(

1+ h

2ρo

)
V1 +

(
1− h

2ρo

)
V2 + V5 + V6 − 4Vo = 0 (3.114)

If point O is at (ρo, zo) = (ih, jh), then

1+ h

2ρo

= 2i + 1

2i
, 1− h

2ρo

= 2i − 1

2i

so that Eq. (3.114) becomes

V (i, j) = 1

4

[
V (i, j − 1)+ V (i, j + 1)+

(
2i − 1

2i

)
V (i − 1, j)+

(
2i + 1

2i

)
V (i + 1, j)

]
(3.115)

Notice that in Eq. (3.114), it appears we have a singularity for ρo = 0. However, by
symmetry, all odd order derivatives must be zero. Hence

∂V

∂ρ

∣∣∣
ρ=0
= 0 (3.116)
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Figure 3.35
Finite difference grid for an axisymmetric system.

since

V (�ρ, zo) = V (−�ρ, zo) (3.117)

Therefore by L’Hopital’s rule,

lim
ρo→0

1

ρo

∂V

∂ρ

∣∣∣
ρo

= ∂2V

∂ρ2

∣∣∣
ρo

(3.118)

Thus, at ρ = 0, Laplace’s equation becomes

2
∂2V

∂ρ2
+ ∂2V

∂z2
= 0 (3.119)

The finite difference equivalent to Eq. (3.119) is

Vo = 1

6
(4V1 + V5 + V6)

or

V (0, j) = 1

6
[V (0, j − 1)+ V (0, j + 1)+ 4V (1, j)] (3.120)

which is used at ρ = 0.
To solve Poisson’s equation ∇2V = −ρv/ε in cylindrical coordinates, we obtain

the finite difference form by replacing zero on the right-hand side of Eq. (3.112) with
g = −ρv/ε. We obtain

V (i, j) = 1

4

[
V (i, j + 1)+ V (i, j − 1)+ 2i − 1

2i
V (i − 1, j)+ 2i + 1

2i
V (i + 1, j)+ gh2

]
(3.121)
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where h is the step size.
As in Section 3.7.1, the boundary condition D1n = D2n must be imposed at

the interface between two media. As an alternative to applying Gauss’s law as in
Section 3.7.1, we will apply Taylor series expansion [109]. Applying the series

Figure 3.36
Interface between two dielectric media.

expansion to point 1, 2, 5 in medium 1 in Fig. 3.36, we obtain

V1 = Vo + ∂V
(1)
o

∂ρ
h+ ∂2V

(1)
o

∂ρ2

h2

2
+ · · ·

V2 = Vo − ∂V
(1)
o

∂ρ
h+ ∂2V

(1)
o

∂ρ2

h2

2
− · · · (3.122)

V5 = Vo + ∂V
(1)
o

∂z
h+ ∂2V

(1)
o

∂z2

h2

2
+ · · ·

where superscript (1) denotes medium 1. Combining Eqs. (3.111) and (3.122) results
in

h2∇2V = V1 + V2 + 2V5 − 4Vo − 2h
∂V

(1)
o

∂z
+ h(V1 − V2)

2ρo

= 0

or

∂V
(1)
o

∂z
=

V1 + V2 + 2V5 − 4Vo + h(V1 − V2)

2ρo

2h
(3.123)

Similarly, applying Taylor series to points 1, 2, and 6 in medium 2, we get

V1 = Vo + ∂V
(1)
o

∂ρ
h+ ∂2V

(1)
o

∂ρ2

h2

2
+ · · ·

V2 = Vo − ∂V
(1)
o

∂ρ
h+ ∂2V

(1)
o

∂ρ2

h2

2
− · · · (3.124)

V6 = Vo − ∂V
(1)
o

∂z
h+ ∂2V

(1)
o

∂z2

h2

2
− · · ·
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Combining Eqs. (3.111) and (3.124) leads to

h2∇2V = V1 + V2 + 2V6 − 4Vo − 2h
∂V

(2)
o

∂z
+ h(V1 − V2)

2ρo

= 0

or

−∂V
(2)
o

∂z
=

V1 + V2 + 2V6 − 4Vo + h(V1 − V2)

2ρo

2h
(3.125)

But D1n = D2n or

ε1
∂V

(1)
o

∂z
= ε2

∂V
(2)
o

∂z
(3.126)

Substituting Eqs. (3.123) and (3.125) into Eq. (3.126) and solving for Vo yields

Vo = 1

4

(
1+ h

2ρo

)
V1 + 1

4

(
1− h

2ρo

)
V2 + ε1

2(ε1 + ε2)
V5 + ε2

2(ε1 + ε2)
V6

(3.127)

Equation (3.127) is only applicable to interface points. Notice that Eq. (3.127) be-
comes Eq. (3.114) if ε1 = ε2.

Typical examples of finite difference approximations for boundary points, written
for square nets in rectangular and cylindrical systems, are tabulated in Table 3.9. For
more examples, see [12, 110]. The FDTD has also been applied in solving time-
varying axisymmetric problems [93, 111].

3.10.2 Spherical Coordinates

In spherical coordinates, Laplace’s equation can be written as

∇2V = ∂2V

∂r2
+ 2

r

∂V

∂r
+ 1

r2

∂2V

∂θ2
+ cot θ

r2

∂V

∂θ
+ 1

r2 sin2 θ

∂2V

∂φ2
= 0 (3.128)

At a grid point O(ro, θo, φo) shown in Fig. 3.37, the finite difference approximation
to Eq. (3.128) is

V1 − 2Vo + V2

(�r)2
+ 2

ro

(
V1 − V2

2�r

)
+ V6 − 2Vo + V5

(ro�θ)2

+cot θo
r2
o

(
V5 − V6

2�θ

)
+ V3 − 2Vo + V4

(ro�φ sin θo)2
= 0 (3.129)

Note that θ increases from node 6 to 5 and hence we have V5 − V6 and not V6 − V5
in Eq. (3.129).

Example 3.9
Consider an earthed metal cylindrical tank partly filled with a charge liquid, such

as hydrocarbons, as illustrated in Fig. 3.38 (a). Using the finite difference method,
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Table 3.9 Finite Difference Approximations at Boundary Points.

determine the potential distribution in the entire domain. Plot the potential along
ρ = 0.5, 0 < z < 2 m and on the surface of the liquid. Take

a = b = c = 1.0 m ,

εr = 2.0 (hydrocarbons) ,

ρv = 10−5 C/m3

Solution The exact analytic solution to this problem was given in Section 2.7.2.

It is apparent from Fig. 3.38 (a) and from the fact thatρv is uniform thatV = V (ρ, z)

(i.e., the problem is two-dimensional) and the domain of the problem is symmetrical
about the z-axis. Therefore, it is only necessary to investigate the solution region in
Fig. 3.38 (b) and impose the condition that the z-axis is a flux line, i.e., ∂V/∂n =
∂V/∂ρ = 0.
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Figure 3.37
Typical node in spherical coordinates.

Figure 3.38
For Example 3.9: (a) earth cylindrical tank, (b) solution region.
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The finite difference grid of Fig. 3.35 is used with 0 ≤ i ≤ Imax and 0 ≤ j ≤
Jmax. Choosing �ρ = �z = h = 0.05 m makes Imax = 20 and Jmax = 40.
Equation (3.115) is applied for gas space, and Eq. (3.123) for liquid space. Along the
z-axis, i.e., i = 0, we impose the Neumann condition in Eq. (3.120). To account for
the fact that the gas has dielectric constant εr1 while the liquid has εr2, we impose
the boundary condition in Eq. (3.127) on the liquid-gas interface.

Based on these ideas, the computer program shown in Fig. 3.39 was developed to
determine the potential distribution in the entire domain. The values of the potential
along ρ = 0.5, 0 < z < 2 and along the gas-liquid interface are plotted in Fig. 3.40.
It is evident from the figure that the finite difference solution compares well with the
exact solution in Section 2.7.2. It is the simplicity in concept and ease of programming
finite difference schemes that make them very attractive for solving problems such as
this.

3.11 Numerical Integration

Numerical integration (also called numerical quadrature) is used in science and
engineering whenever a function cannot easily be integrated in closed form or when
the function is described in the form of discrete data. Integration is a more stable and
reliable process than differentiation. The term quadrature or integration rule will be
used to indicate any formula that yields an integral approximation. Several integration
rules have been developed over the years. The common ones include:

• Euler’s rule,

• Trapezoidal rule,

• Simpson’s rule,

• Newton-Cotes rules, and

• Gaussian (quadrature) rules.

The first three are simple and will be considered first to help build up background
for other rules which are more general and accurate. A discussion on the subject
of numerical integration with diverse FORTRAN codes can be found in Davis and
Rabinowitz [112]. A program package called QUADPACK for automatic integration
covering a wide variety of problems and various degrees of difficulty is presented in
Piessens et al. [113]. Our discussion will be brief but sufficient for the purpose of this
text.
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Figure 3.39
FORTRAN code for Example 3.9 (Continued).
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Figure 3.39
(Cont.) FORTRAN code for Example 3.9.

Figure 3.40
Potential distribution in the tank of Fig. 3.38: (a) along ρ = 0.5 m, 0 ≤ z ≤ 2 m:
(b) along the gas-liquid interface.

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



3.11.1 Euler’s Rule

To apply the Euler or rectangular rule in evaluating the integral

I =
∫ b

a

f (x) dx , (3.130)

where f (x) is shown in Fig. 3.41, we seek an approximation for the area under the
curve. We divide the curve into n equal intervals as shown. The subarea under the

Figure 3.41
Integration using Euler’s rule.

curve within xi−1 < x < xi is

Ai =
∫ xi

xi−1

f (x) dx � hfi (3.131)

where fi = f (xi). The total area under the curve is

I =
∫ b

a

f (x) dx �
n∑

i=1

Ai

= h [f1 + f2 + · · · + fn]

or

I = h

n∑
i=1

fi (3.132)

It is clear from Fig. 3.41 that this quadrature method gives an inaccurate result since
each Ai is less or greater than the true area introducing negative or positive error,
respectively.
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3.11.2 Trapezoidal Rule

To evaluate the same integral in Eq. (3.130) using the trapezoidal rule, the subareas
are chosen as shown in Fig. 3.42. For the interval xi−1 < x < xi ,

Figure 3.42
Integration using the trapezoidal rule.

Ai =
∫ xi

xi−1

f (x) dx �
(

fi−1 + fi

2

)
h (3.133)

Hence

I =
∫ b

a

f (x) dx �
n∑

i=1

Ai

= h

[
fo + f1

2
+ f1 + f2

2
+ · · · + fn−2 + fn−1

2
+ fn−1 + fn

2

]

= h

2

[
fo + 2f1 + 2f2 + · · · + 2fn−1 + fn

]
or

I = h

n−1∑
i=1

fi + h

2
(fo + fn) (3.134)

3.11.3 Simpson’s Rule

Simpson’s rule gives a still more accurate result than the trapezoidal rule. While
the trapezoidal rule approximates the curve by connecting successive points on the
curve by straight lines, Simpson’s rule connects successive groups of three points on
the curve by a second-degree polynomial (i.e., a parabola). Thus

Ai =
∫ xi

xi−1

f (x) dx � h

3
(fi−1 + fi + fi+1) (3.135)
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Therefore

I =
∫ b

a

f (x) dx �
n∑

i=1

Ai

I = h

3

[
fo + 4f1 + 2f2 + 4f3 + · · · + 2fn−2 + 4fn−1 + fn

]
(3.136)

where n is even.
The computational molecules for Euler’s, trapezoidal, and Simpson’s rules are

shown in Fig. 3.43. Now that we have considered simple quadrature rules to help
build up background, we now consider more general, accurate methods.

Figure 3.43
Computational molecules for integration.

3.11.4 Newton-Cotes Rules

To apply a Newton-Cotes rule to evaluate the integral in Eq. (3.130), we divide the
interval a < x < b into m equal intervals so that

h = b − a

m
(3.137)

where m is a multiple of n, and n is the number of intervals covered at a time or the
order of the approximating polynomial. The subarea in the interval xn(i−1) < x < xni

is

Ai =
∫ xni

xn(i−1)

f (x) dx � nh

N

n∑
k=0

Cn
k f

(
xn(i−1)+k

)
(3.138)
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The coefficients Cn
k , 0 ≤ k ≤ n, are called Newton-Cotes numbers and tabulated in

Table 3.10. The numbers are obtained from

Cn
k =

1

n

∫ N

0
Lk(s) ds (3.139)

where

Lk(s) =
n∏

j=0,�=k

s − j

k − j
(3.140)

It is easily shown that the coefficients are symmetric, i.e.,

Cn
k = Cn

n−k (3.141a)

and they sum up to unity, i.e.,

n∑
k=0

Cn
k = 1 (3.141b)

Table 3.10 Newton-Cotes Numbers.

n N NCn
o NCn

1 NCn
2 NCn

3 NCn
4 NCn

5 NCn
6 NCn

7 NCn
8

1 2 1 1

2 6 1 4 1

3 8 1 3 3 1

4 90 7 32 12 32 7

5 288 19 75 50 50 75 19

6 840 41 216 27 272 27 216 41

7 17280 751 3577 1323 2989 2989 1323 3577 751

8 24350 989 5888 −928 10946 −4540 10946 −928 5888 989

For example, for n = 2,

C2
0 =

1

2

∫ 6

0

(s − 1)(s − 2)

(−1)(−2)
ds = 1

6
,

C2
1 =

1

2

∫ 6

0

s(s − 2)

1(−1)
ds = 4

6
,

C2
2 =

1

2

∫ 6

0

s(s − 1)

2(1)
ds = 1

6

Once the subareas are found using Eq. (3.138), then

I =
∫ b

a

f (x) dx �
m/n∑
i=1

Ai (3.142)
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The most widely known Newton-Cotes formulas are:
n = 1 (2-point; trapezoidal rule)

Ai � h

2
(fi+1 + fi) , (3.143)

n = 2 (3-point; Simpson’s 1/3 rule)

Ai � h

3
(fi−1 + 4fi + fi+1) , (3.144)

n = 3 (4-point; Newton’s rule)

Ai � 3h

8
(fi + 3fi+1 + 3fi+2 + fi+3) (3.145)

3.11.5 Gaussian Rules

The integration rules considered so far involve the use of equally spaced abscissa
points. The idea of integration rules using unequally spaced abscissa points stems
from Gauss. The Gaussian rules are more complicated but more accurate than the
Newton-Cotes rules. A Gaussian rule has the general form

∫ b

a

f (x) dx �
n∑

i=1

wif (xi) (3.146)

where (a, b) is the interval for which a sequence of orthogonal polynomials {wi(x)}
exists, xi are the zeros of wi(x), and the weights wi are such that Eq. (3.146) is
of degree of precision 2n − 1. Any of the orthogonal polynomials discussed in
Chapter 2 can be used to give a particular Gaussian rule. Commonly used rules are
Gauss-Legendre, Gauss-Chebyshev, etc., since the sample point xi are the roots of the
Legendre, Chebyshev, etc., of degree n. For the Legendre (n = 1 to 16) and Laguerre
(n = 1 to 16) polynomials, the zeros xi and weights wi have been tabulated in [114].

Using Gauss-Legendre rule,∫ b

a

f (x) dx � b − a

2

n∑
i=1

wif (ui) (3.147)

where ui = b − a

2
xi + b + a

2
are the transformation of the roots xi of Legendre

polynomials from limits (−1, 1) to finite limits (a, b). The values of the abscissas xi

and weights wi for n up to 7 are presented in Table 3.11; for higher values of n, the

interested reader is referred to [114, 115]. Note that −1 < xi < 1 and
n∑

i=1

wi = 2.

The Gauss-Chebyshev rule is similar to Gauss-Legendre rule. We use Eq. (3.147)
except that the sample points xi , the roots of Chebyshev polynomial Tn(x), are

xi = cos
(2i − 1)

2n
, i = 1, 2, . . . , n (3.148)
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Table 3.11 Abscissas (Roots of Legendre
Polynomials) and Weights for Gauss-Legendre
Integration

±xi wi

n = 2
0.57735 02691 89626 1.00000 00000 00000

n = 3
0.00000 00000 00000 0.88888 88888 88889
0.77459 66692 41483 0.55555 55555 55556

n = 4
0.33998 10435 84856 0.65214 51548 62546
0.86113 63115 94053 0.34785 48451 37454

n = 5
0.00000 00000 00000 0.56888 88888 88889
0.53846 93101 05683 0.47862 86704 99366
0.90617 98459 38664 0.23692 68850 56189

n = 6
0.23861 91860 83197 0.46791 39345 72691
0.66120 93864 66265 0.36076 15730 48139
0.93246 95142 03152 0.17132 44923 79170

n = 7
0.00000 00000 00000 0.41795 91836 73469
0.40584 51513 77397 0.38183 00505 05119
0.74153 11855 99394 0.27970 53914 89277
0.94910 79123 42759 0.12948 49661 68870

and the weights are all equal [116], i.e.,

wi = π

n
(3.149)

When either of the limits of integration a or b or both are ±∞, we use Gauss-
Laguerre or Gauss-Hermite rule. For the Gauss-Laguerre rule,∫ ∞

0
f (x) dx �

n∑
i=1

wif (xi) (3.150)

where the appropriate abscissas xi , the roots of Laguerre polynomials, and weights
wi are listed for n up to 7 in Table 3.12. For the Gauss-Hermite rule,∫ ∞

−∞
f (x) dx �

n∑
i=1

wif (xi) (3.151)

where the abscissas xi , the roots of the Hermite polynomials, and weights wi are
listed for n up to 7 in Table 3.13. An integral over (a,∞) is taken care of by a change
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of variable so that ∫ ∞

a

f (x) dx =
∫ ∞

0
f (y + a) dy (3.152)

Table 3.12 Abscissas (Roots of Laguerre
Polynomials) and Weights for
Gauss-Laguerre Integration.

±xi wi

n = 2
0.58578 64376 27 1.53332 603312
3.41421 35623 73 4.45095 733505

n = 3
0.41577 45567 83 1.07769 285927
2.29428 03602 79 2.76214 296190
6.28994 50829 37 5.60109 462543

n = 4
0.32254 76896 19 0.83273 912383
1.74576 11011 58 2.04810 243845
4.53662 02969 21 3.63114 630582
9.39507 09123 01 6.48714 508441

n = 5
0.26356 03197 18 0.67909 404220
1.41340 30591 07 1.63848 787360
3.59642 57710 41 2.76944 324237

12.64080 08442 76 7.21918 635435

n = 6
0.22284 66041 79 0.57353 550742
1.18893 21016 73 1.36925 259071
2.99273 63260 59 2.26068 459338
5.77514 35691 05 3.35052 458236
9.83746 74183 83 4.88682 680021

15.98287 39806 02 7.84901 594560

n = 7
0.19304 36765 60 0.49647 759754
1.02666 48953 39 1.17764 306086
2.56787 67449 51 1.91824 978166
4.90035 30845 26 2.77184 863623
8.18215 34445 63 3.84124 912249

12.73418 02917 98 5.38067 820792
19.39572 78622 63 8.40543 248683

We apply Eq. (3.146) with f (x) evaluated at points xi + a, i = 1, 2, . . . , n and xis
are tabulated in Table 3.12.
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Table 3.13 Abscissas (Roots of Hermite
Polynomials) and Weights for Gauss-Hermite
Integration.

±xi wi

n = 2
0.70710 67811 86548 1.46114 11826 611

n = 3
0.00000 00000 00000 1.18163 59006 037
1.22474 48713 91589 1.32393 11752 136

n = 4
0.52464 76232 75290 1.05996 44828 950
1.65068 01238 85785 1.24022 58176 958

n = 5
0.00000 00000 00000 0.94530 87204 829
0.95857 24646 13819 0.98658 09967 514
2.02018 28704 56086 1.18148 86255 360

n = 6
0.43607 74119 27617 0.87640 13344 362
1.33584 90740 13697 0.93558 05576 312
2.35060 49736 74492 1.13690 83326 745

n = 7
0.00000 00000 00000 0.81026 46175 568
0.81628 78828 58965 0.82868 73032 836
1.67355 16287 67471 0.89718 46002 252
2.65196 13568 35233 1.10133 07296 103

A major drawback with Gaussian rules is that if one wishes to improve the accuracy,
one must increase nwhich means that the values ofwi and xi must be included in the
program for each value of n. Another disadvantage is that the function f (x) must be
explicit since the sample points xi are unassigned.

3.11.6 Multiple Integration

This is an extension of one-dimensional (1D) integration discussed so far. A double
integral is evaluated by means of two successive applications of the rules presented
above for single integral [117]. To evaluate the integral using the Newton-Cotes or
Simpson’s 1/3 rule (n = 2), for example,

I =
∫ b

a

∫ d

c

f (x, y) dx dy (3.153)
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over a rectangular region a < x < b, c < y < d , we divide the region into m · l
smaller rectangles with sides

hx = b − a

m
(3.154a)

hy = d − c

l
(3.154b)

where m and l are multiples of n = 2. The subarea

Aij =
∫ yn(j+1)

yn(j−1)

dy

∫ xn(i+1)

x(i−1)

f (x, y) dy (3.155)

is evaluated by integrating along x and then along y according to Eq. (3.140):

Aij � hx

3

(
gj−1 + 4gj + gj+1

)
(3.156)

where

gj � hy

3

(
fi−1,j + 4fi,j + fi+1,j

)
(3.157)

Substitution of Eq. (3.157) into Eq. (3.156) yields

Aij = hxhy

9

[(
fi+1,j+1 + fi+1,j−1 + fi−1,j+1 + fi−1,j−1

)
+ 4

(
fi,j+1 + fi,j−1 + fi+1,j + fi−1,j

) + 16fi,j
]

(3.158)

The corresponding schematic or integration molecule is shown in Fig. 3.44. Summing
the value of Aij for all subareas yields

I =
m/n∑
i=1

l/n∑
j=1

Aij (3.159)

The procedure applied in the 2D integral can be extended to a 3D integral. To
evaluate

I =
∫ b

a

∫ d

c

∫ f

e

f (x, y, z) dx dy dz (3.160)

using the n = 2 rule, the cuboid a < x < b, c < y < d, e < z < f is divided into
m · l · p smaller cuboids of sides

hx = b − a

m

hy = d − c

l
(3.161)

hz = f − e

p
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Figure 3.44
Double integration molecule for Simpson’s 1/3 rule.

where m, l, and p are multiples of n = 2. The subvolume Aijk is evaluated by
integrating along x according to Eq. (3.144) to obtain

gj,k = hx

3

(
fi+1,j,k + 4fi,j,k + fi−1,j,k

)
, (3.162)

then along y

gk = hy

3

(
gj+1,k + 4gj,k + gj−1,k

)
, (3.163)

and finally along z to obtain

Aijk = hz

3
(gk+1 + 4gk + gk−1) (3.164)

Substituting Eqs. (3.162) and (3.163) into Eq. (3.164) results in [117]

Aijk = hxhyhz

27

[(
fi−1,j−1,k+1 + 4fi−1,j,k+1 + fi−1,j+1,k+1

)
+ (

4fi,j−1,k+1 + 16fi,j,k+1 + 4fi,j+1,k+1
)

+ (
fi+1,j−1,k+1 + 4fi+1,j,k+1 + fi+1,j+1,k+1

)
+ (

4fi−1,j−1,k + 16fi−1,j,k + 4fi−1,j+1,k
)

+ (
16fi,j−1,k + 64fi,j,k + 16fi,j+1,k

)
+ (

4fi+1,j−1,k + 16fi+1,j,k + 4fi+1,j+1,k
)

+ (
fi−1,j−1,k−1 + 4fi−1,j,k−1 + fi−1,j+1,k−1

)
+ (

4fi,j−1,k−1 + 16fi,j,k−1 + 4fi,j+1,k−1
)

+ (
fi+1,j−1,k−1 + 4fi+1,j,k−1 + fi+1,j+1,k−1

)]
(3.165)

The integration molecule is portrayed in Fig. 3.45. Observe that the molecule is
symmetric with respect to all planes that cut the molecule in half.
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Figure 3.45
Triple integration molecule for Simpson’s 1/3 rule.

Example 3.10

Write a program that uses the Newton-Cotes rule (n = 6) to evaluate Bessel function
of order m, i.e.,

Jm(x) = 1

π

∫ π

0
cos(x sin θ −mθ) dθ

Run the program for m = 0 and x = 0.1, 0.2, . . . , 2.0.

Solution The computer program is shown in Fig. 3.46. The program is based
on Eqs. (3.138) and (3.142). It evaluates the integral within a subinterval θn(i−1) <

θ < θni . The summation over all the subintervals gives the required integral. The
result for m = 0 and 0.1 < x < 2.0 is shown in Table 3.14; the values agree up
to six significant figures with those in standard tables [115, p. 390]. The program
is intentionally made general so that n, the corresponding Newton-Cotes numbers,
and the integrand can be changed easily. Although the integrand in Fig. 3.46 is real,
the program can be modified for complex integrand by simply declaring complex the
affected variables.
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Figure 3.46
Computer program for Example 3.10 (Continued).
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Figure 3.46
(Cont.) Computer program for Example 3.10.

Table 3.14 Result of
the Program in
Fig. 3.45 for m = 0.

x J0(x)

0.1 0.9975015
0.2 0.9900251
0.3 0.9776263
0.4 0.9603984
0.5 0.9384694
...

...
1.5 0.5118274
1.6 0.4554018
1.7 0.3979859
1.8 0.3399859
1.9 0.2818182
2.0 0.2238902

3.12 Concluding Remarks

Only a brief treatment of the finite difference analysis of PDEs is given here. There
are many valuable references on the subject which answer many of the questions left
unanswered here [3]–[8], [10, 104, 105]. The book by Smith [5] gives an excellent
exposition with numerous examples. The problems of stability and convergence of
finite difference solutions are further discussed in [118, 119], while the error estimates
in [120].

As noted in Section 3.8, the finite difference method has some inherent advan-
tages and disadvantages. It is conceptually simple and easy to program. The finite
difference approximation to a given PDE is by no means unique; more accurate ex-
pressions can be obtained by employing more elaborate and complicated formulas.
However, the relatively simple approximations may be employed to yield solutions

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



of any specified accuracy simply by reducing the mesh size provided that the criteria
for stability and convergence are met.

A very important difficulty in finite differencing of PDEs, especially parabolic and
hyperbolic types, is that if one value of � is not calculated and therefore set equal
to zero by mistake, the solution may become unstable. For example, in finding the
difference between �i = 1000 and �i+1 = 1002, if �i+1 is set equal to zero by
mistake, the difference of 1000 instead of 2 may cause instability. To guard against
such error, care must be taken to ensure that� is calculated at every point, particularly
at boundary points.

A serious limitation of the finite difference method is that interpolation of some
kind must be used to determine solutions at points not on the grid. Suppose we want
to find � at a point P which is not on the grid, as in Fig. 3.47. Assuming � is known
at the four grid points surrounding P , at a distance xo along the bottom edge of the
rectangle in Fig. 3.47,

�b = xo

"x
[�(i + 1, j)−�(i, j)] +�(i, j) (3.166)

At a distance xo along the top edge,

�t = xo

"x
[�(i + 1, j + 1)−�(i, j + 1)] +�(i, j + 1) (3.167)

The value of � at P is estimated by combining Eqs. (3.166) and (3.167), i.e.,

�P = yo

"y
(�t −�b)+�b (3.168)

One obvious way to avoid interpolation is to use a finer grid if possible.

Figure 3.47
Evaluating � at a point P not on the grid.
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Problems

3.1 Show that the following finite difference approximations for �x are valid:

(a) forward difference,

−�i+2 + 4�i+1 − 3�i

2"x

(b) backward difference,

3�i − 4�i−1 +�i−2

2"x

(c) central difference

−�i+2 + 8�i+1 − 8�i−1 +�i−2

12"x

3.2 Solve the equation �t = �xx, 0 ≤ x ≤ 1, subject to initial and boundary
conditions

�(x, 0) = sin πx, 0 ≤ x ≤ 1 ,

�(0, t) = 0 = �(1, t) t > 0

Obtain the solution by hand calculation and use "x = 0.25 and r = 0.5.

3.3 Derive the Crank-Nicholson implicit algorithm for the hyperbolic equation
�xx = a2�yy, a

2 = constant. Let "x = "y = ".

3.4 Given a boundary-value problem defined by

d2�

dx2
= x + 1, 0 < x < 1

subject to �(0) = 0 and �(1) = 1, use the finite difference method to find
�(0.5). You may take " = 0.25 and perform 5 iterations. Compare your
result with the exact solution.

3.5 Prove that the fourth-order approximation of Laplace’s equation�xx+�yy = 0
is

60�(i, j)− 16 [�(i + 1, j)+�(i − 1, j)+�(i, j + 1)+�(i, j − 1)]

+�(i + 2, j)+�(i − 2, j)+�(i, j + 2)+�(i, j − 2) = 0

Draw the computational molecule for the finite difference scheme.
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3.6 (a) If "x �= "y, show that for the computational molecule in Fig. 3.48 (a),
Eq. (3.49) becomes

Vo = V1

2(1 + α)
+ V2

2(1 + α)
+ V3

2(1 + 1/α)
+ V4

2(1 + 1/α)

where α = ("x/"y)2.

(b) Show that for the molecule in Fig. 3.48 (b), Eq. (3.49) becomes

Vo = V1

(1 +"x1/"x2)(1 +"x1"x2/"y3"y4)

+ V2

(1 +"x2/"x1)(1 +"x1"x2/"y3"y4)

+ V3

(1 +"y3/"y4)(1 +"y3"y4/"x1"x2)

+ V4

(1 +"y4/"y3)(1 +"y3"y4/"x1"x2)

The molecule in Fig. 3.48 (b) is useful in treating irregular boundaries.

(c) For the nine-point molecule in Fig. 3.48 (c), show that

Vo = 1

8

8∑
i=1

Vi

This is a more accurate difference equation than Eq. (3.49).

3.7 For a long hollow conductor with a uniform U-shape cross-section shown in
Fig. 3.49, find the potential at points A, B, C, D, and E.

3.8 It is desired to solve
∂2�

∂x2
+ ∂2�

∂y2
+ 50 = 0

in the square region 0 ≤ x, y ≤ 1 subject to the boundary conditions � = 10
at x = 0, 1,�y = 40 at y = 0,�y = −20 at y = 1.

(a) Set up a system of finite difference equations which will allow the solution
to be found at x = y = 0.25 using"x = "y = h = 0.25. Perform three
iterations.

(b) Develop a program to solve the same problem using h = 0.05, 0.1, and
0.2.

3.9 Modify the FORTRAN code of Fig. 3.12 to solve the following three-dim-
ensional problem:

∇2V = −ρv/ε, 0 ≤ x, y, z ≤ 1 meter ,
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Figure 3.48
For Problem 3.6.

Figure 3.49
For Problem 3.7.
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where ρv = xyz2nC/m2 and ε = 2εo subject to the boundary conditions

V (0, y, z) = 0 = V (1, y, z)

V (x, 0, z) = 0 = V (x, 1, z)

V (x, y, 0) = 0, V (x, y, 1) = Vo

Find the potential at the center of the cube and compare your result with the
analytic solution. Take Vo = 100 volts.

3.10 Show that the leapfrog method applied to the parabolic equation (3.10) is un-
stable, whereas applying the DuFort-Frankel scheme yields an unconditionally
stable solution.

3.11 The advective equation

∂�

∂t
+ u

∂�

∂x
= 0, u > 0

can be discretized as

�n+1
i = �n

i − r(�n
i+1 −�n

i−1) ,

where r = u"t/2"x. Show that the difference scheme is unstable. An
alternative scheme is:

�n+1 = 1

2
(�n

i+1 +�n
i−1)− r(�n

i+1 −�n
i−1)

Find the condition on r for which this scheme is stable.

3.12 The two-dimensional parabolic equation

∂U

∂t
= ∂2U

∂x2
+ ∂2U

∂y2
, 0 ≤ x, y ≤ 1 , 1 > 0

is approximated by the finite difference methods:

(i) Un+1
i,j = [1 + r(δ2

x + δ2
y)]Un

ij

(ii) Un+1
i,j = (1 + rδ2

x)(1 + rδ2
y)U

n
ij where r = "t/h2, h = "x = "y and

δ2
xU

n
i,j = Un

i−1,j − 2Un
i,j + Un

i+1,j

δ2
yU

n
i,j = Un

i,j−1 − 2Un
i,j + Un

i,j+1

Show that (i) is stable for r ≤ 1/4 and (ii) is stable for r ≤ 1/2

3.13 (a) The constitutive parameters of the earth allow the displacement currents
to be negligibly small. In this type of medium, show that Maxwell’s
equations for two-dimensional TM mode, where

E(x, y, t) = Ezaz
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and
H(x, y, t) = Hxax +Hyay ,

reduce to the diffusion equation

∂2E

∂x2
+ ∂2E

∂y2
− µσ

∂E

∂t
= µ

∂Js

∂t

where E = Ez and Js is the source current density in the z direction.

(b) Taking Js = 0, "x = "y = " and∑
Ei,j = En

i+1,j + En
i−1,j + En

i,j+1 + En
i,j−1 ,

show that applying Euler, leapfrog, and DuFort-Frankel difference me-
thods to the diffusion equation gives:

Euler:
En+1
i,j = (1 − 4r)En

i,j + r
∑

En
i,j ,

Leapfrog:

En+1
i,j = En−1

i,j + 2r
(∑

En
i,j − 4En

i,j

)
,

DuFort-Frankel:

En+1
i,j = 1 − 4r

1 + 4r
En−1
i,j + 2r

1 + 4r

∑
En
i,j

where r = "t/(σµ"2).

(c) Analyze the stability of these finite difference schemes by substituting for
En
i,j a Fourier mode of the form

En
i,j = E(x = i", y = j", t = n"t) = An cos(kxi") cos(kyj")

3.14 Yee’s FD-TD algorithm for one-dimensional wave problems is given by

H
n+1/2
y (k + 1/2) = H

n−1/2
y (k + 1/2)+ δt

µδ

[
En
x (k)− En

x (k + 1)
]

Determine the stability criterion for the scheme by letting

En
x (k) = Anejβkδ, Hn

y (k) = An

η
ejβkδ ,

where η = (µ/ε)1/2 is the intrinsic impedance of the medium.

3.15 (a) The potential system in Fig. 3.50 (a) is symmetric about the y-axis. Set
the initial values at free nodes equal to zero and calculate (by hand) the
potential at nodes 1 to 5 for 5 or more iterations.
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Figure 3.50
For Problem 3.15.

(b) Consider the square mesh in Fig. 3.50(b). By setting initial values at the
free nodes equal to zero, find (by hand calculation) the potential at nodes 1
to 4 for 5 or more iterations.

3.16 The potential system shown in Fig. 3.51 is a quarter section of a transmission
line. Using hand calculation, find the potential at nodes 1, 2, 3, 4, and 5 after
5 iterations.

Figure 3.51
For Problem 3.16.

3.17 A transformer has its primary and secondary windings maintained at 100 and
0 V, respectively, as shown in Fig. 3.52. Assuming a square mesh ofh = 0.2 cm,
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determine the potential distribution between the windings. Find its value at
(8 cm, 4 cm).

Figure 3.52
For Problem 3.17.

3.18 Modify the program in Fig. 3.21 or write your own program to calculate Zo for
the microstrip line shown in Fig. 3.53. Take a = 2.02, b = 7.0, h = 1.0 =
w, t = 0.01, ε1 = ε0, ε2 = 9.6εo.

3.19 Use the FDM to calculate the characteristic impedance of the high-frequency,
air-filled rectangular transmission line shown in Fig. 3.54. Take advantage of
the symmetry of the problem and consider cases for which:

(a) B/A = 1.0, a/A = 1/3, b/B = 1/3, a = 1,

(b) B/A = 1/2, a/A = 1/3, b/B = 1/3, a = 1.
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Figure 3.53
For Problem 3.18.

Figure 3.54
For Problem 3.19.

3.20 Figure 3.55 shows a shield microstrip line. Write a program to calculate the
potential distribution within the cross-section of the line. Take ε1 = εo, ε2 =
3.5εo and h = 0.5 mm. Find the potential at the middle of the conducting
plates.

3.21 Use the FDM to determine the lowest (or dominant) cut-off wave-number kc of
the TM11 mode in waveguides with square (a×a) and rectangular (a×b, b =
2a) crosssections. Compare your results with the exact solution

kc =
√
(mπ/a)2 + (nπ/a)2

where m = n = 1. Take a = 1.

3.22 Instead of the 5-point scheme of Eq. (3.115), use a more accurate 5-point
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Figure 3.55
For Problem 3.20.

formula

2i(8i2 − 5)V (i, j) = (4i3 + 2i2 − 4i + 1)V (i + 1, j)

+ (4i3 − 2i2 − 4i − 1)V (i − 1, j)

i(4i2 − 1)V (i, j + 1)+ i(4i2 − 1)V (i, j − 1)

in Example 3.9 while other things remain the same.

3.23 For two-dimensional problems in which the field components do not vary with
z coordinate (∂/∂z = 0), show that Yee’s algorithm of Eqs. (3.84a)–(3.84f)
becomes:

(a) for TE waves (Ez = 0)

H
n+1/2
z (i + 1/2, j + 1/2) = H

n−1/2
z (i + 1/2, j + 1/2)

− α
[
En
y (i + 1, j + 1/2)− En

y (i, j + 1/2)
]

+ α
[
En
x (i + 1/2, j + 1)− En

x (i + 1/2, j)
]
,

En+1
x (i + 1/2, j) = En

x (i + 1/2, j)+ β
[
H
n+1/2
z (i + 1/2, j + 1/2)

− H
n+1/2
z (i + 1/2, j − 1/2)

]
,

En+1
z (i, j + 1/2) = γEn

y (i, j + 1/2)− β
[
H
n+1/2
z (i + 1/2, j + 1/2)

− H
n+1/2
z (i − 1/2, j + 1/2)

]
;
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(b) for TM waves (Hz = 0)

En+1
z (i, j) = γEn

z (i, j)+ β
[
H
n+1/2
y (i + 1/2, j)

− H
n+1/2
y (i − 1/2, j)

]
− β

[
H
n+1/2
x (i, j + 1/2)−H

n+1/2
x (i, j − 1/2)

]
,

H
n+1/2
x (i, j + 1/2) = H

n−1/2
x (i, j + 1/2)− α

[
En
z (i, j + 1)

−En
z (i, j)

]
,

H
n+1/2
y (i + 1/2, j) = H

n−1/2
y (i + 1/2, j)+ α

[
En
z (i + 1, j)

−En
z (i, j)

]
,

where

α = δt

µδ
, β = δt

εδ
, γ = 1 − σδt

ε
,

and δ = "x = "y.

3.24 Consider the diffraction/scattering of an incident TM wave by a perfectly con-
ducting square of side 4a. The conducting obstacle occupies 17 < i <

49, 33 < j < 65, while artificial boundaries are placed at i = 1, 81, j =
0.5, 97.5 as shown in Fig. 3.56. Assume an incident wave with only Ez and
Hy components given by

Ez =
{

sin πθ, 0 < θ < 1

0, otherwise

Hy = 1

ηo
Ez

where ηo = 120π:, θ = (x−50a+ct)
8a , "x = "y = a/8, "t = c"x =

a/16. Write a program that applies the algorithm in Problem 3.23 (b). As-
sume “hard lattice truncation conditions” at the artificial boundaries shown in
Fig. 3.56 and reproduce Yee’s result [42] in his figure 3.

3.25 Repeat the previous problem but assume “soft lattice truncation conditions” of
Eqs. (3.87) to (3.89a)–(3.89l) at the artificial boundaries.

3.26 In cylindrical coordinates with the vector magnetic potential A = Az(ρ, φ)az,
Laplace’s equation is

∇2Az = −µJz
Obtain the finite difference equivalent.

3.27 Consider the finite cylindrical conductor held at V = 100 volts and enclosed
in a larger grounded cylinder as in Fig. 3.57. Such a deceptively simple
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Figure 3.56
For Problem 3.24.

looking problem is beyond closed form solution, but by employing finite
difference techniques, the problem can be solved without much effort. Us-
ing the finite difference method, write a program that determines the poten-
tial distribution in the axisymmetric solution region. Output the potential at
(ρ, z) = (2, 10), (5, 10), (8, 10), (5, 2), and (5, 18).

Figure 3.57
For Problem 3.27.

3.28 The problem in Fig. 3.58 is a prototype of an electrostatic particle focus-
ing system which is employed in a recoil-mass time-of-flight spectrometer.
Write a program to determine the potential distribution in the system. The
problem is similar to the previous problem except that the outer conductor
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abruptly expands radius by a factor of 2. Output the potential at (ρ, z) =
(5, 18), (5, 10), (5, 2), (10, 2), and (15, 2).

Figure 3.58
For Problem 3.28.

3.29 For axisymmetric problems (no variation with respect to φ), show that Yee’s
algorithm for TM waves can be written as

Hn+1
φ (i, j) = Hn

φ (i, j)+ α
[
E
n+1/2
z (i, j + 1/2)− E

n+1/2
z (i, j − 1/2)

]
− α

[
En+1/2
ρ (i + 1/2, j)− En+1/2

ρ (i − 1/2, j)
]

E
n+3/2
z (i, j + 1/2) = γE

n+1/2
z (i, j + 1/2)

+ β

[
1

j
Hn+1
φ (i, j + 1/2)

+ Hn+1
φ (i, j + 1)−Hn+1

φ (i, j)
]
,

En+3/2
ρ (i + 1/2, j) = γEn+1/2

ρ (i + 1/2, j)− β
[
Hn+1
φ (i + 1, j)−Hn+1

φ (i, j)
]
,

where

α = δt

µδ
, β = δt

εδ
, γ = 1 − σδt

ε
, δ = "ρ = "z ,

and Hφ(z, ρ, t) = Hφ(z = i"z, ρ = (j − 1/2)"ρ, t = nδt) = Hn
φ (i, j).

3.30 (a) Show that the finite difference discretization of Mur’s ABC for two-
dimensional problem

∂Ez

∂x
− 1

co

∂Ez

∂t
− coµo

2

∂Hx

∂y
= 0
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at the boundary x = 0 is

En+1
z (0, j) = En

z (i, j)+ coδt − δ

coδt + δ

[
En+1
z (i, j)− En

z (0, j)
]

− µoco

2(coδt + δ)

[
H
n+1/2
x (0, j + 1/2)−H

n+1/2
x (0, j − 1/2)

+ H
n+1/2
x (1, j + 1/2)−H

n+1/2
x (1, j − 1/2)

]
where co is the velocity of wave propagation.

(b) Discretize the first-order boundary condition

∂Ez

∂x
− 1

co

∂Ez

∂t
= 0

at x = 0.

3.31 For a three-dimensional problem, the PML modification of Maxwell’s equa-
tions yields 12 equations because all the six Cartesian field components split.
Obtain the 12 resulting equations.

3.32 (a) In a PML region, Ez is split into Ezx and Ezy for the TM case. Show that
Maxwell’s equation becomes

εo
∂Ezx

∂t
+ σxEzx = ∂Hy

∂x

εo
∂Ezy

∂t
+ σyEzy = −∂Hx

∂y

µo
∂Hx

∂t
+ σ ∗

y Hx = − ∂

∂y
(Ezx + Ezy)

µo
∂Hy

∂t
+ σ ∗

x Hy = ∂

∂x
(Ezx + Ezy)

3.33 An FDTD equation for a PML region is given by

H
n+1/2
z (i + 1/2, k) = H

n−1/2
z (i + 1/2, k)

− δt

µδ

[
En
yx(i + 1, k)+ En

yz(i + 1, k)− Eyx(i, k)− En
yz(i, k)

]

where δ, δt, n, i, and k have their usual FDTD meanings. By substituting the
harmonic dependence ejωt e−jkzz, show that the impedance of the PML region
is

Zz = Ey

Hz

= µoδ

δt

sin(ωδt/2)

sin(koδ/2)
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3.34 The conventional 3-D FDTD lattice in cylindrical coordinates is shown in
Fig. 3.59 (a) while its projection on the ρ − z plane is in Fig. 3.59 (b). Show
that by discretizing Maxwell’s equation,

En+1
ρ (i, j) = (1 − σδ

2ε )

(1 + σδ
2ε )

En
ρ(i, j)− δt

εδ

1

(1 + σδ
2ε )

·
[
H
n+1/2
φ (i, j)−H

n+1/2
φ (i, j − 1)

]
where δ = "z = "ρ. Obtain the FDTD equations for Hρ and Hφ .

Figure 3.59
For Problem 3.34: (a) A conventional 3-D FDTD lattice in cylindrical coordi-
nates, (b) projection of 3-D FDTD cell at ρ − z plane.

3.35 Given the tabulated values of y = sin x for x = 0.4 to 0.52 radians in intervals

of "x = 0.02, find: (a)
dy

dx
at x = 0.44, (b)

∫ 0.52
0.4 y dx using Simpson’s rule.
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x sin x
0.40 0.38942
0.42 0.40776
0.44 0.42594
0.46 0.44395
0.48 0.46178
0.50 0.47943
0.52 0.49688

3.36 (a) Use a pocket calculator to determine the approximate area under the curve
f (x) = 4 − x2, 0 < x < 1 by the trapezoidal rule with h = 0.2.

(b) Repeat part (a) using the Newton-Cotes rule with n = 3.

3.37 For a half-wave dipole, evaluating the integral

∫ 1/2

0

cos2(π2 cos θ)

sin θ
dθ

is usually required. Evaluate this integral numerically using any quadrature
rule of your choice.

3.38 Compute ∫ 1

0
e−x dx

using the Newton-Cotes rule for cases n = 2, 4, and 6. Compare your results
with exact values.

3.39 Evaluate ∫ 2π

0
x cos 10x sin 20x dx

(a) using the trapezoidal rule with "x = π/10

(b) using Simpson’s
1

3
-rule with "x = π/10

(c) using Gaussian quadrature.

3.40 The criterion for accuracy of the numerical approximation of an integral

I =
∫ b

a

f (x) dx �
∞∑
i=0

aif (xi)

is that the formula is exact for all polynomials of degree less than or equal to n.
If a = 0, b = 4, and the values of f (x) are available at points xo = 0, x1 =
1, x2 = 3, x4 = 4, find the values of the coefficients ai for which the above
requirement of accuracy is met.
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3.41 The elliptic integral of the first type

F(k, φ) =
∫ φ

0
(1 − k2 sin2 θ)−1/2 dθ

cannot be evaluated in a closed form. Write a program using Simpson’s rule
to determine F(k, φ) for k = 0.5 and φ = π/2.

3.42 The following integral represents radiation from a circular aperture antenna
with a constant current amplitude and phase distribution

I =
∫ 1

0

∫ 2π

o

ejαρ cosφρdφdρ

Find I numerically for α = 5 and compare your result with the exact result

I (α) = 2πJ1(α)

α

3.43 Evaluate the following double integral using the trapezoidal rule:

(a)
∫ π/2

0

∫ π/2

0
sin(

√
2xy) dx dy,

(b)
∫ 5

1

∫ 5

1

[
x2 + y2

]−1/2
dx dy,

(c)
∫ 4

2

[∫ 6

4
ln(xy2) dx

]
dy
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