
Chapter 4

Variational Methods

“You can do anything if you have enthusiasm. Enthusiasm is the yeast that makes
your hopes rise to the stars. Enthusiasm is the spark in your eye, the swing in
your gait, the grip of your hand, the irresistible surge of your will and your energy
to execute your ideas. Enthusiasts are fighters; they have fortitude; they have
staying qualities. Enthusiasm is at the bottom of all progress! With it, there is
accomplishment. Without it, there are only alibis.” Henry Ford

4.1 Introduction

In solving problems arising from mathematical physics and engineering, we find
that it is often possible to replace the problem of integrating a differential equation by
the equivalent problem of seeking a function that gives a minimum value of some in-
tegral. Problems of this type are called variational problems. The methods that allow
us to reduce the problem of integrating a differential equation to the equivalent vari-
ational problem are usually called variational methods [1]. The variational methods
form a common base for both the method of moments (MOM) and the finite element
method (FEM). Therefore, it is appropriate that we study the variational methods be-
fore MOM and FEM. Besides, it is relatively easy to formulate the solution of certain
differential and integral equations in variational terms. Also, variational methods give
accurate results without making excessive demands on computer storage and time.

Variational methods can be classified into two groups: direct and indirect methods.
The direct method is the classical Rayleigh-Ritz method, while the indirect methods
are collectively referred to as the method of weighted residuals: collocation (or point-
matching), subdomain, Galerkin, and least square methods. The variational solution
of a given PDE using an indirect method usually involves two basic steps [2]:

• cast the PDE into variational form, and

• determine the approximate solution using one of the methods.
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The literature on the theory and applications of variational methods to EM problems is
quite extensive, and no attempt will be made to provide an exhaustive list of references.
Numerous additional references may be found in those cited in this chapter. Owing
to a lack of space, we only can hint at some of the topics usually covered in an
introduction to this subject.

4.2 Operators in Linear Spaces

In this section, we will review some principles of operators in linear spaces and
establish notation [2]–[5]. We define the inner (dot or scalar) product of functions u
and v as

〈u, v〉 =
∫
�

uv∗ d� (4.1)

where ∗ denotes the complex conjugate and the integration is performed over�, which
may be one-, two-, or three-dimensional physical space depending on the problem.
In a sense, the inner product 〈u, v〉 gives the component or projection of function u in
the direction of v. If u and v are vector fields, we modify Eq. (4.1) slightly to include
a dot between them, i.e.,

〈u, v〉 =
∫
�

u · v∗ d� (4.2)

However, we shall consider u and v to be complex-valued scalar functions. For each
pair of u and v belonging to the linear space, a number 〈u, v〉 is obtained that satisfies:

(1) 〈u, v〉 = 〈v, u〉∗ , (4.3a)

(2) 〈αu1 + βu2, v〉 = α〈u1, v〉 + β〈u2, v〉 , (4.3b)

(3) 〈u, v〉 > 0 if u �= 0 , (4.3c)

(4) 〈u, v〉 = 0 if u = 0 (4.3d)

If 〈u, v〉 = 0, u and v are said to be orthogonal. Notice that these properties mimic
familiar properties of the dot product in three-dimensional space. Equation (4.3) is
easily derived from Eq. (4.1). Note that from Eqs. (4.3a) and (4.3b),

〈u, αv〉 = α∗〈v, u〉∗ = α∗〈u, v〉

where α is a complex scalar.
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Equation (4.1) is called an unweighted or standard inner product. A weighted
inner product is given by

〈u, v〉 =
∫
�

uv∗w d� (4.4)

where w is a suitable weight function.
We define the norm of the function u as

‖u‖ = √〈u, u〉 (4.5)

The norm is a measure of the “length” or “magnitude” of the function. (As far as a
field is concerned, the norm is its rms value.) A vector is said to be normal if its norm
is 1. Since the Schwarz inequality

|〈u, v〉| ≤ ‖u‖‖v‖ (4.6)

holds for any inner product space, the angle θ between two nonzero vectors u and v
can be obtained as

θ = cos−1 〈u, v〉
‖u‖‖v‖ (4.7)

We now consider the operator equation

L� = g (4.8)

whereL is any linear operator,� is the unknown function, andg is the source function.
The space spanned by all functions resulting from the operator L is

〈L�, g〉 = 〈�,Lag〉 (4.9)

The operator L is said to be:

(1) self-adjoint if L = La , i.e, 〈L�, g〉 = 〈�,Lg〉,
(2) positive definite if 〈L�,�〉 > 0 for any � �= 0 in the domain of L,

(3) negative definite if 〈L�,�〉 < 0 for any � �= 0 in the domain of L.

The properties of the solution of Eq. (4.8) depend strongly on the properties of the
operatorL. If, for example,L is positive definite, we can easily show that the solution
of � in Eq. (4.8) is unique, i.e., Eq. (4.8) cannot have more than one solution. To
do this, suppose that � and � are two solutions to Eq. (4.8) such that L� = g and
L� = g. Then, by virtue of linearity of L, f = �−� is also a solution. Therefore,
Lf = 0. Since L is positive definite, f = 0 implying that � = � and confirming
the uniqueness of the solution �.

Example 4.1
Find the inner product of u(x) = 1 − x and v(x) = 2x in the interval (0, 1).
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Solution
In this case, both u and v are real functions. Hence

〈u, v〉 = 〈v, u〉 =
∫ 1

0
(1 − x)2x dx

= 2

(
x2

2
− x3

3

)∣∣∣∣1
0

= 0.333

Example 4.2
Show that the operator

L = −∇2 = − ∂2

∂x2
− ∂2

∂y2

is self-adjoint.

Solution

〈Lu, v〉 = −
∫
S

v∇2u dS

Takingu and v to be real functions (for convenience) and applying the Green’s identity∮
�

v
∂u

∂n
dl =

∫
S

∇u · ∇v dS +
∫
S

v∇2u dS

yields

〈Lu, v〉 =
∫
S

∇u · ∇v dS −
∮
�

v
∂u

∂n
dl (4.10)

where S is bounded by � and n is the outward normal. Similarly

〈u,Lv〉 =
∫
S

∇u · ∇v dS −
∮
�

u
∂v

∂n
dl (4.11)

The line integrals in Eqs. (4.10) and (4.11) vanish under either the homogeneous
Dirichlet or Neumann boundary conditions. Under the homogeneous mixed boun-
dary conditions, they become equal. Thus, L is self-adjoint under any one of these
boundary conditions. L is also positive definite.

4.3 Calculus of Variations

The calculus of variations, an extension of ordinary calculus, is a discipline that is
concerned primarily with the theory of maxima and minima. Here we are concerned
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with seeking the extremum (minima or maxima) of an integral expression involving
a function of functions or functionals. Whereas a function produces a number as a
result of giving values to one or more independent variables, a functional produces a
number that depends on the entire form of one or more functions between prescribed
limits. In a sense, a functional is a measure of the function. A simple example is the
inner product 〈u, v〉.

In the calculus of variation, we are interested in the necessary condition for a
functional to achieve a stationary value. This necessary condition on the functional
is generally in the form of a differential equation with boundary conditions on the
required function.

Consider the problem of finding a function y(x) such that the function

I (y) =
∫ b

a

F (x, y, y′) dx , (4.12a)

subject to the boundary conditions

y(a) = A, y(b) = B , (4.12b)

is rendered stationary. The integrand F(x, y, y′) is a given function of x, y, and
y′ = dy/dx. In Eq. (4.12a), I (y) is called a functional or variational (or stationary)
principle. The problem here is finding an extremizing function y(x) for which the
functional I (y) has an extremum. Before attacking this problem, it is necessary that
we introduce the operator δ, called the variational symbol.

The variation δy of a function y(x) is an infinitesimal change in y for a fixed value
of the independent variable x, i.e., for δx = 0. The variation δy of y vanishes at
points where y is prescribed (since the prescribed value cannot be varied) and it is
arbitrary elsewhere (see Fig. 4.1). Due to the change in y (i.e., y → y + δy), there

Figure 4.1
Variation of extremizing function with fixed ends.

is a corresponding change in F . The first variation of F at y is defined by

δF = ∂F

∂y
δy + ∂F

∂y′ δy
′ (4.13)
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This is analogous to the total differential of F ,

dF = ∂F

∂x
dx + ∂F

∂y
dy + ∂F

∂y′ dy
′ (4.14)

where δx = 0 since x does not change as y changes to y + δy. Thus, we note that
the operator δ is similar to the differential operator. Therefore, if F1 = F1(y) and
F2 = F2(y), then

(i) δ (F1 ± F2) = δF1 ± δF2 , (4.15a)

(ii) δ (F1F2) = F2δF1 + F1δF2 , (4.15b)

(iii) δ

(
F1

F2

)
= F2δF1 − F1δF2

F 2
2

, (4.15c)

(iv) δ (F1)
n = n (F1)

n−1 δF1 , (4.15d)

(v)
d

dx
(δy) = δ

(
dy

dx

)
, (4.15e)

(vi) δ

∫ b

a

y(x) dx =
∫ b

a

δy(x) dx (4.15f)

A necessary condition for the function I (y) in Eq. (4.12a) to have an extremum is
that the variation vanishes, i.e.,

δI = 0 (4.16)

To apply this condition, we must be able to find the variation δI of I in Eq. (4.12a).
To this end, let h(x) be an increment in y(x). For Eq. (4.12b) to be satisfied by
y(x)+ h(x),

h(a) = h(b) = 0 (4.17)

The corresponding increment in I in Eq. (4.12a) is

%I = I (y + h)− I (y)

=
∫ b

a

[
F
(
x, y + h, y′ + h′)− F

(
x, y, y′)] dx

On applying Taylor’s expansion,

%I =
∫ b

a

[
Fy
(
x, y, y′)h− Fy′

(
x, y, y′)h′] dx

+ higher order terms

= δI +O
(
h2
)

where

δI =
∫ b

a

[
Fy
(
x, y, y′)h− Fy′

(
x, y, y′)h′] dx
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Integration by parts leads to

δI =
∫ b

a

[
∂F

∂y
− d

dx

(
∂F

∂y′

)]
h dx + ∂F

∂y′ h
∣∣∣∣x=b
x=0

The last term vanishes since h(b) = h(a) = 0 according to Eq. (4.17). In order that
δI = 0, the integrand must vanish, i.e.,

∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0

or

Fy − d

dx
Fy′ = 0 (4.18)

This is called Euler’s (or Euler-Lagrange) equation. Thus a necessary condition for
I (y) to have an extremum for a given function y(x) is that y(x) satisfies Euler’s
equation.

This idea can be extended to more general cases. In the case considered so far,
we have one dependent variable y and one independent variable x, i.e., y = y(x).
If we have one dependent variable u and two independent variables x and y, i.e.,
u = u(x, y), then

I (u) =
∫
S

F
(
x, y, u, ux, uy

)
dS (4.19)

where ux = ∂u/∂x, uy = ∂u/∂y, and dS = dxdy. The functional in Eq. (4.19) is
stationary when δI = 0, and it is easily shown that the corresponding Euler’s equation
is [6]

∂F

∂u
− ∂

∂x

(
∂F

∂ux

)
− ∂

∂y

(
∂F

∂uy

)
= 0 (4.20)

Next we consider the case of two independent variables x and y and two dependent
variables u(x, y) and v(x, y). The functional to be minimized is

I (u, v) =
∫
S

F
(
x, y, u, v, ux, uy, vx, vy

)
dS (4.21)

The corresponding Euler’s equation is

∂F

∂u
− ∂

∂x

(
∂F

∂ux

)
− ∂

∂y

(
∂F

∂uy

)
= 0 (4.22a)

∂F

∂v
− ∂

∂x

(
∂F

∂vx

)
− ∂

∂y

(
∂F

∂vy

)
= 0 (4.22b)

Another case is when the functional depends on second- or higher-order derivatives.
For example,

I (y) =
∫ b

a

F
(
x, y, y′, y′′, . . . , y(n)

)
dx (4.23)
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In this case, the corresponding Euler’s equation is

Fy − d

dx
Fy′ + d2

dx2
Fy′′ − d3

dx3
Fy′′′ + · · · + (−1)n

dn

dxn
Fy(n) = 0 (4.24)

Note that each of Euler’s equations (4.18), (4.20), (4.22), and (4.24) is a differential
equation.

Example 4.3
Given the functional

I (�) =
∫
S

[
1

2

(
�2
x +�2

y

)
− f (x, y)�

]
dxdy ,

obtain the relevant Euler’s equation.

Solution
Let

F
(
x, y,�,�x,�y

) = 1

2

(
�2
x +�2

y

)
− f (x, y)�

showing that we have two independent variables x and y and one dependent variable
�. Hence, Euler’s equation (4.20) becomes

−f (x, y)− ∂

∂x
�x − ∂

∂y
�y = 0

or
�xx +�yy = −f (x, y) ,

i.e.,
∇2� = −f (x, y)

which is Poisson’s equation. Thus, solving Poisson’s equation is equivalent to finding
� that extremizes the given functional I (�).

4.4 Construction of Functionals from PDEs

In the previous section, we noticed that Euler’s equation produces the governing
differential equation corresponding to a given functional or variational principle.
Here we seek the inverse procedure of constructing a variational principle for a given
differential equation. The procedure for finding the functional associated with the
differential equation involves four basic steps [2, 7]:
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• Multiply the operator equation L� = g (Euler’s equation) with the variational
δ� of the dependent variable � and integrate over the domain of the problem.

• Use the divergence theorem or integration by parts to transfer the derivatives
to variation δ� .

• Express the boundary integrals in terms of the specified boundary conditions.

• Bring the variational operator δ outside the integrals.

The procedure is best illustrated with an example. Suppose we are interested in
finding the variational principle associated with the Poisson’s equation

∇2� = −f (x, y) (4.25)

which is the converse of what we did in Example 4.3. After taking step 1, we have

δI =
∫∫ [

−∇2�− f
]
δ�dxdy = 0

= −
∫∫

∇2�δ�dxdy −
∫∫

f δ�dxdy

This can be evaluated by applying divergence theorem or integrating by parts. To

integrate by parts, let u = δ�, dv = ∂

∂x

(
∂�

∂x

)
dx so that du = ∂

∂x
δ�dx, v = ∂�

∂x
and

−
∫ [∫

∂

∂x

(
∂�

∂x

)
δ�dx

]
dy = −

∫ [
δ�

∂�

∂x
−
∫
∂�

∂x

∂

∂x
δ�dx

]
dy

Thus

δI =
∫∫ [

∂�

∂x

∂

∂x
δ�+ ∂�

∂y

∂

∂y
δ�− δf�

]
dxdy

−
∫
δ�

∂�

∂x
dy −

∫
δ�

∂�

∂y
dx

δI = δ

2

∫∫ [(
∂�

∂x

)2

+
(
∂�

∂y

)2

− 2f�

]
dxdy

− δ

∫
�
∂�

∂x
dy − δ

∫
�
∂�

∂y
dx (4.26)

The last two terms vanish if we assume either the homogeneous Dirichlet or Neumann
conditions at the boundaries. Hence

δI = δ

∫∫
1

2

[
�2
x +�2

y − 2�f
]
dxdy ,
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i.e.,

I (�) = 1

2

∫∫ [
�2
x +�2

y − 2�f
]
dxdy (4.27)

as expected.

Rather than following the four steps listed above to find the function I (�) cor-
responding to the operator equation (4.8), an alternative approach is provided by
Mikhlin [1, pp. 74–78]. According to Mikhlin, if L in Eq. (4.8) is real, self-adjoint,
and positive definite, the solution of Eq. (4.8) minimizes the functional

I (�) = 〈L�,�〉 − 2〈�, g〉 (4.28)

(See Prob. 4.6 for a proof.) Thus Eq. (4.27), for example, can be obtained from
Eq. (4.25) by applying Eq. (4.28). This approach has been applied to derive variational
solutions of integral equations [8].

Other systematic approaches for the derivation of variational principles for EM
problems include Hamilton’s principle or the principle of least action [9, 10], Lagrange
multipliers [10]–[14], and a technique described as variational electromagnetics [15,
16]. The method of Lagrange undetermined multipliers is particularly useful for
deriving a functional for a PDE whose arguments are constrained. Table 4.1 provides
the variational principles for some differential equations commonly found in EM-
related problems.

Table 4.1 Variational Principle Associated with Common PDEs in EM1

Name of equation Partial Differential Variational principle
Equation (PDE)

Inhomogeneous
wave equation ∇2�+ k2� = g I (�) = 1

2

∫
v

[|∇�|2 − k2�2 + 2g�
]
dv

Homogeneous
wave equation ∇2�+ k2� = 0 I (�) = 1

2

∫
v

[|∇�|2 − k2�2
]
dv

or

∇2�− 1
u2�tt = 0 I (�) = 1

2

∫ to ∫
v

[
|∇�|2 − 1

u2�
2
t

]
dv dt

Diffusion equation ∇2�− k�t = 0 I (�) = 1
2

∫ to ∫
v

[|∇�|2 − k��t
]
dv dt

Poisson’s equation ∇2� = g I (�) = 1
2

∫
v

[|∇�|2 + 2g�
]
dv

Laplace’s equation ∇2� = 0 I (�) = 1
2

∫
v

[|∇�|2] dv
1 Note that |∇�|2 = ∇� · ∇� = �2

x +�2
y +�2

z .
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Example 4.4
Find the functional for the ordinary differential equation

y′′ + y + x = 0, 0 < x < 1

subject to y(0) = y(1) = 0.

Solution
Given that

d2y

dx2
+ y + x = 0, 0 < x < 1 ,

we obtain

δI =
∫ 1

0

(
d2y

dx2
+ y + x

)
δy dx = 0

=
∫ 1

0

d2y

dx2
δy dx +

∫ 1

0
y δy dx +

∫ 1

0
x δy dx

Integrating the first term by parts,

δI = δy
dy

dx

∣∣∣∣x=1

x=0
−
∫ 1

0

dy

dx

d

dx
δy +

∫ 1

0

1

2
δ
(
y2
)
dx + δ

∫ 1

0
xy dx

Since y is fixed at x = 0, 1, δy(1) = δy(0) = 0. Hence

δI = −δ
∫ 1

0

1

2

(
dy

dx

)2

dx + 1

2
δ

∫ 1

0
y2 dx + δ

∫ 1

0
xy dx

= δ

2

∫ 1

0

[
−y′2 + y2 + 2xy

]
dx

or

I (y) = 1

2

∫ 1

0

[
−y′2 + y2 + 2xy

]
dx

Check: Taking F(x, y, y′) = y′2 − y2 − 2xy, Euler’s equation Fy − d

dx
Fy′ = 0

gives the differential equation

y′′ + y + x = 0

4.5 Rayleigh-Ritz Method

The Rayleigh-Ritz method is the direct variational method for minimizing a given
functional. It is direct in that it yields a solution to the variational problem without
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recourse to the associated differential equation [17]. In other words, it is the direct
application of variational principles discussed in the previous sections. The method
was first presented by Rayleigh in 1877 and extended by Ritz in 1909. Without loss
of generality, let the associated variational principle be

I (�) =
∫
S

F
(
x, y,�,�x,�y

)
dS (4.29)

Our objective is to minimize this integral. In the Rayleigh-Ritz method, we select a
linearly independent set of functions called expansion functions (or basis functions)
un and construct an approximate solution to Eq. (4.29), satisfying some prescribed
boundary conditions. The solution is in the form of a finite series

�̃ �
N∑
n=1

anun + uo (4.30)

where uo meets the nonhomogeneous boundary conditions, and un satisfies homoge-
neous boundary conditions. an are expansion coefficients to be determined and �̃ is an
approximate solution to� (the exact solution). We substitute Eq. (4.30) into Eq. (4.29)
and convert the integral I (�) into a function of N coefficients a1, a2, . . . , aN , i.e.,

I (�) = I (a1, a2, . . . , aN)

The minimum of this function is obtained when its partial derivatives with respect to
each coefficient is zero:

∂I

∂a1
= 0,

∂I

∂a2
= 0, . . . ,

∂I

∂aN
= 0

or

∂I

∂an
= 0, n = 1, 2, . . . , N (4.31)

Thus we obtain a set of N simultaneous equations. The system of linear algebraic
equations obtained is solved to get an, which are finally substituted into the approxi-
mate solution of Eq. (4.30). In the approximate solution of Eq. (4.30), if �̃ → � as
N → ∞ in some sense, then the procedure is said to converge to the exact solution.

An alternative, perhaps easier, procedure to determine the expansion coefficients
an is by solving a system of simultaneous equations obtained as follows [4, 18].
Substituting Eq. (4.30) (ignoring uo since it can be lumped with the right-hand side
of the equation) into Eq. (4.28) yields

I =
〈
N∑
m=1

amLum,

N∑
n=1

anun

〉
− 2

〈
N∑
m=1

amum, g

〉

=
N∑
m=1

N∑
n=1

〈Lum, un〉anam − 2
N∑
m=1

〈um, g〉am
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Expanding this into powers of am results in

I = 〈Lum, um〉a2
m +

N∑
n�=m

〈Lum, un〉aman +
N∑
k �=m

〈Luk, um〉akam

− 2〈g, um〉am + terms not containing am (4.32)

Assuming L is self-adjoint and replacing k with n in the second summation,

I = 〈Lum, um〉a2
m + 2

N∑
n�=m

〈Lum, un〉anam − 2〈g, um〉am + · · · (4.33)

Since we are interested in selecting am such that I is minimized, Eq. (4.33) must
satisfy Eq. (4.31). Thus differentiating Eq. (4.33) with respect to am and setting the
result equal to zero leads to

N∑
n=1

〈Lum, un〉an = 〈g, um〉, m = 1, 2, . . . , N (4.34)

which can be put in matrix form as 〈Lu1, u1〉 〈Lu1, u2〉 · · · 〈Lu1, uN 〉
...

...

〈LuN, u1〉 〈LuN, u2〉 · · · 〈LuN, uN 〉


a1
...

aN

 =
 〈g, u1〉

...

〈g, uN 〉

 (4.35a)

or

[A][X] = [B] (4.35b)

where Amn = 〈Lum, un〉, Bm = 〈g, um〉, Xn = an. Solving for [X] in Eq. (4.35)
and substituting am in Eq. (4.30) gives the approximate solution �̃. Equation (4.35)
is called the Rayleigh-Ritz system.

We are yet to know how the expansion functions are selected. They are selected
to satisfy the prescribed boundary conditions of the problem. uo is chosen to satisfy
the inhomogeneous boundary conditions, while un(n = 1, 2, . . . , N) are selected to
satisfy the homogeneous boundary conditions. If the prescribed boundary conditions
are all homogeneous (Dirichlet conditions), uo = 0. The next section will discuss
more on the selection of the expansion functions.

The Rayleigh-Ritz method has two major limitations. First, the variational princi-
ple in Eq. (4.29) may not exist in some problems such as in nonself-adjoint equations
(odd order derivatives). Second, it is difficult, if not impossible, to find the func-
tions uo satisfying the global boundary conditions for the domains with complicated
geometries [19].

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



Example 4.5
Use the Rayleigh-Ritz method to solve the ordinary differential equation:

�′′ + 4�− x2 = 0, 0 < x < 1

subject to �(0) = 0 = �(1).

Solution
The exact solution is

�(x) = sin 2(1 − x)− sin 2x

8 sin 2
+ x2

4
− 1

8

The variational principle associated with �′′ + 4�− x2 = 0 is

I (�) =
∫ 1

0

[
(�′)2 − 4�2 + 2x2�

]
dx (4.36)

This is readily verified using Euler’s equation. We let the approximate solution be

�̃ = uo +
N∑
n=1

anun (4.37)

where uo = 0, un = xn(1 − x) since �(0) = 0 = �(1) must be satisfied. (This
choice of un is not unique. Other possible choices are un = x(1 − xn) and un =
sin nπx. Note that each choice satisfies the prescribed boundary conditions.) Let
us try different values of N , the number of expansion coefficients. We can find the
expansion coefficients an in two ways: using the functional directly as in Eq. (4.31)
or using the Rayleigh-Ritz system of Eq. (4.35).

Method 1

For N = 1, �̃ = a1u1 = a1x(1 − x). Substituting this into Eq. (4.36) gives

I (a1) =
∫ 1

0

[
a2

1(1 − 2x)2 − 4a2
1

(
x − x2

)2 + 2a1x
3(1 − x)

]
dx

= 1

5
a2

1 + 1

10
a1

I (a1) is minimum when

∂I

∂a1
= 0 → 2

5
a1 + 1

10
= 0 or a1 = −1

4

Hence the quadratic approximate solution is

�̃ = −1

4
x(1 − x) (4.38)
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For N = 2, �̃ = a1u1 + a2u2 = a1x(1 − x) + a2x
2(1 − x). Substituting �̃ into

Eq. (4.36),

I (a1, a2) =
∫ 1

0

[[
a1(1 − 2x)+ a2

(
2x − 3x2

)]2 − 4
[
a1

(
x − x2

)
+ a2

(
x2 − x3

)]2

+ 2a1x
2
(
x − x2

)
+ 2a2x

2
(
x2 − x3

)]
dx

= 1

5
a2

1 + 2

21
a2

2 + 1

5
a1a2 + 1

10
a1 + 1

15
a2

∂I

∂a1
= 0 → 2

5
a1 + 1

5
a2 + 1

10
= 0

or

4a1 + 2a2 = −1 (4.39a)

∂I

∂a2
= 0 → 4

21
a1 + 1

5
a2 + 1

15
= 0

or

21a1 + 20a2 = −7 (4.39b)

Solving Eq. (4.39) gives

a1 = − 6

38
, a2 = − 7

38

and hence the cubic approximate solution is

�̃ = − 6

38
x(1 − x)− 7

38
x2(1 − x)

or
�̃ = x

38

(
7x2 − x − 6

)
Method 2

We now determine am using Eq. (4.35). From the given differential equation,

L = d2

dx2
+ 4, g = x2

Hence

Amn = 〈Lum, un〉 = 〈um,Lun〉
=
∫ 1

0
xm(1 − x)

[(
d2

dx2
+ 4

)
xn(1 − x)

]
dx ,

Amn = n(n− 1)

m+ n− 1
− 2n2

m+ n
+ n(n+ 1)+ 4

m+ n+ 1
− 8

m+ n+ 2
+ 4

m+ n+ 3
,

Bn = 〈g, un〉 =
∫ 1

0
x2nn(1 − x) dx = 1

n+ 3
− 1

n+ 4
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When N = 1, A11 = −1

5
, B1 = 1

20
, i.e.,

−1

5
a1 = 1

20
→ a1 = −1

4

as before. When N = 2,

A11 = −1

5
, A12 = A21 = − 1

10
, A22 = − 2

21
, B1 = 1

20
, B2 = 1

30

Hence − 1
5 − 1

10

− 1
10 − 2

21

[a1
a2

]
=
[

1
20
1

30

]

which gives a1 = − 6

38
, a2 = − 7

38
as obtained previously. When N = 3,

A13 = A31 = − 13

210
, A23 = A32 = − 28

105
, A33 = − 22

315
, B3 = 1

42
,

i.e., 
− 1

5 − 1
10 − 13

210

− 1
10 − 2

21 − 28
105

− 13
210 − 28

105 − 22
315


a1
a2
a3

 =


1

20
1

30
1

42


from which we obtain

a1 = − 6

38
, a2 = − 7

38
, a3 = 0

showing that we obtain the same solution as for the case N = 2. For different values
of x, 0 < x < 1, the Rayleigh-Ritz solution is compared with the exact solution in
Table 4.2.

Table 4.2 Comparison of Exact Solution
with the Rayleigh-Ritz Solution of
�′′ + 4�− x2 = 0,�(0) = 0 = �(1)

x Exact solution Rayleigh-Ritz Solution
N = 1 N = 2

0.0 0.0 0.0 0.0
0.2 −0.0301 −0.0400 −0.0312
0.4 −0.0555 −0.0600 −0.0556
0.6 −0.0625 −0.0625 −0.0644
0.8 −0.0489 −0.0400 −0.0488
1.0 0.0 0.0 0.0

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



Example 4.6
Using the Rayleigh-Ritz method, solve Poisson’s equation:

∇2V = −ρo, ρo = constant

in a square −1 ≤ x, y ≤ 1, subject to the homogeneous boundary conditions
V (x,±1) = 0 = V (±1, y).

Solution
Due to the symmetry of the problem, we choose the basis functions as

umn =
(

1 − x2
) (

1 − y2
) (
x2my2n + x2ny2m

)
, m, n = 0, 1, 2, . . .

Hence

�̃ =
(

1 − x2
) (

1 − y2
) [
a1 + a2

(
x2 + y2

)
+ a3x

2y2 + a4

(
x4 + y4

)
+ · · ·

]
Case 1: When m = n = 0, we obtain the first approximation (N = 1) as

�̃ = a1u1

where u1 = (1 − x2)(1 − y2).

A11 = 〈Lu1, u1〉 =
∫ 1

−1

∫ 1

−1

(
∂2u1

∂x2
+ ∂2u1

∂y2

)
u1 dxdy

= −8
∫ 1

0

∫ 1

0

(
2 − x2 − y2

) (
1 − x2

) (
1 − y2

)
dxdy

= −256

45
,

B1 = 〈g, u1〉 = −
∫ 1

−1

∫ 1

−1

(
1 − x2

) (
1 − y2

)
ρo dxdy = −16ρo

9

Hence

−256

45
a1 = −16

9
ρo → a1 = 5

16
ρo

and

�̃ = 5

16
ρo

(
1 − x2

) (
1 − y2

)
Case 2: When m = n = 1, we obtain the second order approximation (N = 2) as

�̃ = a1u1 + a2u2
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where u1 = (1 − x2)(1 − y2), u2 = (1 − x2)(1 − y2)(x2 + y2). A11 and B1 are the
same as in case 1.

A12 = A21 = 〈Lu1, u2〉 = −1024

525
,

A22 = 〈Lu2, u2〉 = −11264

4725
,

B2 = 〈g, u2〉 = −32

45
ρo

Hence [− 256
45 − 1024

525

− 1024
525 − 11264

4725

][
a1
a2

]
=
[− 16

9 ρo

− 32
45ρo

]
Solving this yields

a1 = 1295

4432
ρo = 0.2922ρo, a2 = 525

8864
ρo = 0.0592ρo

and
�̃ =

(
1 − x2

) (
1 − y2

) (
0.2922 + 0.0592

(
x2 + y2

))
ρo

4.6 Weighted Residual Method

As noted earlier, the Rayleigh-Ritz method is applicable when a suitable functional
exists. In cases where such a functional cannot be found, we apply one of the tech-
niques collectively referred to as the method of weighted residuals. The method is
more general and has wider application than the Rayleigh-Ritz method because it is
not limited to a class of variational problems.

Consider the operator equation

L� = g (4.40)

In the weighted residual method, the solution to Eq. (4.40) is approximated, in the
same manner as in the Rayleigh-Ritz method, using the expansion functions, un, i.e.,

�̃ =
N∑
n=1

anun (4.41a)

where an are the expansion coefficients. We seek to make

L�̃ ≈ g (4.41b)
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Substitution of the approximate solution in the operator equation results in a residual
R (an error in the equation), i.e.,

R = L(�̃−�) = L�̃− g (4.42)

In the weighted residual method, the weighting functions wm (which, in general, are
not the same as the expansion functions un) are chosen such that the integral of a
weighted residual of the approximation is zero, i.e.,∫

wmR dv = 0

or

〈wm,R〉 = 0 (4.43)

If a set of weighting functions {wm} (also known as testing functions) are chosen and
the inner product of Eq. (4.41) is taken for each wm, we obtain

N∑
n=1

an〈wm,Lun〉 = 〈wm, g〉, m = 1, 2, . . . , N (4.44)

The system of linear equations (4.42) can be cast into matrix form as

[A] [X] = [B] (4.45)

where Amn = 〈wm,Lun〉, Bm = 〈wm, g〉, Xn = an. Solving for [X] in Eq. (4.45)
and substituting for an in Eq. (4.41a) gives the approximate solution to Eq. (4.40).
However, there are different ways of choosing the weighting functions wm leading
to:

• collocation (or point-matching method),

• subdomain method,

• Galerkin method,

• least squares method.

4.6.1 Collocation Method

We select the Dirac delta function as the weighting function, i.e.,

wm(r) = δ (r − rm) =
{

1, r = rm
0, r �= rm

(4.46)

Substituting Eq. (4.46) into Eq. (4.43) results in

R(r) = 0 (4.47)
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Thus we select as many collocation (or matching) points in the interval as there are
unknown coefficients an and make the residual zero at those points. This is equivalent
to enforcing

N∑
n=1

Lanun = g (4.48)

at discrete points in the region of interest, generally where boundary conditions must
be met. Although the point-matching method is the simplest specialization for com-
putation, it is not possible to determine in advance for a particular operator equation
what collocation points would be suitable. An accurate result is ensured only if judi-
cious choice of the match points is taken. (This will be illustrated in Example 4.7.) It
is important to note that the finite difference method is a particular case of collocation
with locally defined expansion functions [20]. The validity and legitimacy of the
point-matching technique are discussed in [21, 22].

4.6.2 Subdomain Method

We select weighting functions wm, each of which exists only over subdomains of
the domain of �. Typical examples of such functions for one-dimensional problems
are illustrated in Fig. 4.2 and defined as follows.

(1) piecewise uniform (or pulse) function:

wm(x) =
{

1, xm−1 < x < xm+1

0, otherwise
(4.49a)

(2) piecewise linear (or triangular) function:

wm(x) =

%− |x − xm|

%
, xm−1 < x < xm+1

0, otherwise
(4.49b)

(3) piecewise sinusoidal function:

wm(x) =


sin k(x − |x − xm|)
%

, xm−1 < x < xm+1

0, otherwise
(4.49c)

Using the unit pulse function, for example, is equivalent to dividing the domain of�
into as many subdomains as there are unknown terms and letting the average value
of R over such subdomains vanish.

4.6.3 Galerkin Method

We select basis functions as the weighting function, i.e., wm = um. When the
operator is a linear differential operator of even order, the Galerkin method1 reduces

1The Galerkin method was developed by the Russian engineer B.G. Galerkin in 1915.
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Figure 4.2
Typical subdomain weighting functions: (a) piecewise uniform function,
(b) piecewise linear function, (c) piecewise sinusoidal function.

to the Rayleigh-Ritz method. This is due to the fact that the differentiation can be
transferred to the weighting functions and the resulting coefficient matrix [A] will be
symmetric [7]. In order for the Galerkin method to be applicable, the operator must
be of a certain type. Also, the expansion function un must span both the domain and
the range of the operator.

4.6.4 Least Squares Method

This involves minimizing the integral of the square of the residual, i.e.,

∂

∂am

∫
R2 dv = 0

or ∫
∂R

∂am
R dv = 0 (4.50)

Comparing Eq. (4.50) with Eq. (4.43) shows that we must choose

wm = ∂R

∂am
= Lum (4.51)

This may be viewed as requiring that

1

2

∫
R2 dv
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be minimum. In other words, the choice of wm corresponds to minimizing the mean
square residual. It should be noted that the least squares method involves higher order
derivatives which will, in general, lead to a better convergence than the Rayleigh-Ritz
method or Galerkin method, but it has the disadvantage of requiring higher order
weighting functions [19].

The concept of convergence discussed in the previous section applies here as well.
That is, if the approximate solution �̃ were to converge to the exact solution � as
N → ∞, the residual must approach zero as N → ∞. Otherwise, the sequence of
approximate solutions may not converge to any meaningful result.

The inner product involved in applying a weighted residual method can sometimes
be evaluated analytically, but in most practical situations it is evaluated numerically.
Due to a careless evaluation of the inner product, one may think that the least squares
technique is being used when the resulting solution is identical to a point-matching
solution. To avoid such erroneous results or conclusions, one must be certain that the
overall number of points involved in the numerical integration is not smaller than the
number of unknowns, N , involved in the weighted residual method [23].

The accuracy and efficiency of a weighted residual method is largely dependent
on the selection of expansion functions. The solution may be exact or approximate
depending on how we select the expansion and weighting functions [17]. The criteria
for selecting expansion and weighting functions in a weighted residual method are
provided in the work of Sarkar and others [24]–[27]. We summarize their results here.
The expansion functions un are selected to satisfy the following requirements [27]:

(1) The expansion functions should be in the domain of the operator L in some
sense, i.e., they should satisfy the differentiability criterion and they must satisfy
the boundary conditions for the operator. It is not necessary for each expansion
function to satisfy exactly the boundary conditions. What is required is that the
total solution must satisfy the boundary conditions at least in some distributional
sense. The same holds for the differentiability conditions.

(2) The expansion functions must be such that Lun form a complete set for the
range of the operator. It really does not matter whether the expansion functions
are complete in the domain of the operator. What is important is that un must
be chosen in such a way that Lun is complete. This will be illustrated in
Example 4.8.

From a mathematical point of view, the choice of expansion functions does not
depend on the choice of weighting functions. It is required that the weighting functions
wn must take the difference�−�̃ small. For the Galerkin method to be applicable, the
expansion functions un must span both the domain and the range of the operator. For
the least squares method, the weighting functions are already presented and defined
by Lun. It is necessary that Lun form a complete set. The least squares technique
mathematically and numerically is one of the safest techniques to utilize when very
little is known about the nature of the operator and the exact solution.
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Example 4.7
Find an approximate solution to

�′′ + 4�− x2 = 0, 0 < x < 1,

with �(0) = 0,�′(1) = 1, using the method of weighted residuals.

Solution
The exact solution is

�(x) = cos 2(x − 1)+ 2 sin 2x

8 cos 2
− x2

4
− 1

8
(4.52)

Let the approximate solution be

�̃ = u0 +
N∑
n=1

anun (4.53)

The boundary conditions can be decomposed into two parts:
(1) homogeneous part → �(0) = 0,�′(0) = 0,
(2) inhomogeneous part → �′(1) = 1.

We choose u0 to satisfy the inhomogeneous boundary condition. A reasonable choice
is

u0 = x (4.54a)

We choose un(n = 1, 2, . . . , N) to satisfy the homogeneous boundary condition.
Suppose we select

un(x) = xn
(
x − n+ 1

n

)
(4.54b)

Thus, if we take N = 2, the approximate solution is

�̃ = u0 + a1u1 + a2u2

= x + a1x(x − 2)+ a2x
2(x − 3/2) (4.55)

where the expansion coefficients, a1 and a2, are to be determined. We find the residual
R using Eq. (4.42), namely,

R = L�̃− g

=
(
d2

dx2
+ 4

)
�̃− x2 (4.56)

= a1

(
4x2 − 8x + 2

)
+ a2

(
4x3 − 6x2 + 6x − 3

)
− x2 + 4x

We now apply each of the four techniques discussed and compare the solutions.
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Method 1: (collocation or point-matching method)

Since we have two unknowns a1 and a2, we select two match points, at x = 1

3
and

x = 2

3
, and set the residual equal to zero at those points, i.e.,

R

(
1

3

)
= 0 → 6a1 + 41a2 = 33

R

(
2

3

)
= 0 → 42a1 + 13a2 = 60

Solving these equations,

a1 = 677

548
, a2 = 342

548

Substituting a1 and a2 into Eq. (4.55) gives

�̃(x) = −1.471x + 0.2993x2 + 0.6241x3 (4.57)

To illustrate the dependence of the solution on the match points, suppose we select

x = 1

4
and x = 3

4
as the match points. Then

R

(
1

4

)
= 0 → −4a1 + 29a2 = 15

R

(
3

4

)
= 0 → 28a1 + 3a2 = 39

Solving for a1 and a2, we obtain

a1 = 543

412
, a2 = 288

412

with the approximate solution

�̃(x) = −1.636x + 0.2694x2 + 0.699x3 (4.58)

We will refer to the solutions in Eqs. (4.57) and (4.58) as collocation 1 and colloca-
tion 2, respectively. It is evident from Table 4.3 that collocation 2 is more accurate
than collocation 1.

Method 2: (subdomain method)
Divide the interval 0 < x < 1 into two segments since we have two unknowns a1
and a2. We select pulse functions as weighting functions:

w1 = 1, 0 < x <
1

2
,

w2 = 1,
1

2
< x < 1
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so that ∫ 1/2

0
w1R dx = 0 → −8a1 + 45a2 = 22∫ 1

1/2
w2R dx = 0 → 40a1 + 3a2 = 58

Solving the two equations gives

a1 = 53

38
, a2 = 28

38

and hence Eq. (4.55) becomes

�̃(x) = −1.789x + 0.2895x2 + 0.7368x3 (4.59)

Method 3: (Galerkin method)
In this case, we select wm = um, i.e.,

w1 = x(x − 2), w2 = x2(x − 3/2)

We now apply Eq. (4.43), namely,
∫
wmR dx = 0. We obtain∫ 1

0

(
x2 − 2x

)
R dx = 0 → 24a1 + 11a2 = 41∫ 1

0

(
x3 − 3

2
x2
)
R dx = 0 → 77a1 + 15a2 = 119

Solving these leads to

a1 = 694

487
, a2 = 301

487
Substituting a1 and a2 into Eq. (4.55) gives

�̃(x) = −1.85x + 0.4979x2 + 0.6181x3 (4.60)

Method 4: (least squares method)

For this method, we select wm = ∂R

∂am
, i.e.,

w1 = 4x2 − 8x + 2, w2 = 4x3 − 6x2 + 6x − 3

Applying Eq. (4.43)∫ 1

0
w1R dx = 0 → 7a1 − 2a2 = 8∫ 1

0
w2R dx = 0 → −112a1 + 438a2 = 161
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Thus

a1 = 3826

2842
, a2 = 2023

2842
and Eq. (4.55) becomes

�̃(x) = −1.6925x + 0.2785x2 + 0.7118x3 (4.61)

Notice that the approximate solutions in Eqs. (4.57) to (4.61) all satisfy the boundary
conditions �(0) = 0 and �′(1) = 1. The five approximate solutions are compared
in Table 4.3.

Table 4.3 Comparison of the Weighted Residual Solutions of the Problem in
Example 4.7 with the Exact Solution in Eq. (4.52)

x Exact Collocation 1 Collocation 2 Subdomain Galerkin Least
solution squares

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 −0.1736 −0.1435 −0.1602 −0.1753 −0.1794 −0.1657
0.2 −0.3402 −0.2772 −0.3108 −0.3403 −0.3451 −0.3217
0.3 −0.4928 −0.3975 −0.4477 −0.4907 −0.4935 −0.4635
0.4 −0.6248 −0.5006 −0.5666 −0.6221 −0.6208 −0.5869
0.5 −0.7303 −0.5827 −0.6633 −0.7300 −0.7233 −0.6877
0.6 −0.8042 −0.6400 −0.7336 −0.8100 −0.7972 −0.7615
0.7 −0.8424 −0.6690 −0.7734 −0.8577 −0.8390 −0.8041
0.8 −0.8422 −0.6657 −0.7785 −0.8687 −0.8449 −0.8113
0.9 −0.8019 −0.6264 −0.7446 −0.8385 −0.8111 −0.7788
1.0 −0.7216 −0.5476 −0.6676 −0.7627 −0.7340 −0.7022

Example 4.8
This example illustrates the fact that expansion functions un must be selected such

thatLun form a complete set for the range of the operatorL. Consider the differential
equation

−�′′ = 2 + sin x, 0 ≤ x ≤ 2π (4.62)

subject to

�(0) = �(2π) = 0 (4.63)

Suppose we carelessly select

un = sin nx, n = 1, 2, . . . (4.64)

as the expansion functions, the approximate solution is

�̃ =
N∑
n=1

an sin nx (4.65)
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If we apply the Galerkin method, we obtain

�̃ = sin x (4.66)

Although un satisfy both the differentiability and boundary conditions, Eq. (4.66)
does not satisfy Eq. (4.62). Hence Eq. (4.66) is an incorrect solution. The problem
is that the set {sin nx} does not form a complete set. If we add constant and cosine
terms to the expansion functions in Eq. (4.65), then

�̃ = a0 +
N∑
n=1

[an sin nx + bn cos nx] (4.67)

AsN → ∞, Eq. (4.67) is the classical Fourier series solution. Applying the Galerkin
method leads to

�̃ = sin nx (4.68)

which is again an incorrect solution. The problem is that even though un form a
complete set, Lun do not. For example, nonzero constants cannot be approximated
by Lun. In order for Lun to form a complete set, �̃ must be of the form

�̃ =
n∑
n=1

[an sin nx + bn cos nx] + a0 + cx + dx2 (4.69)

Notice that the expansion functions {1, x, x2, sin nx, cos nx} in the interval [0, 2π ]
form a linearly dependent set. This is because any function such as x or x2 can be
represented in the interval [0, 2π ] by the set {sin nx, cos nx}. Applying the Galerkin
method, Eq. (4.69) leads to

�̃ = sin x + x(2π − x) (4.70)

which is the exact solution �.

4.7 Eigenvalue Problems

As mentioned in Section 1.3.2, eigenvalue (nondeterministic) problems are de-
scribed by equations of the type

L� = λM� (4.71)

where L and M are differential or integral, scalar or vector operators. The problem
here is the determination of the eigenvalues λ and the corresponding eigenfunctions
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�. It can be shown [11] that the variational principle for λ takes the form

λ = min
〈�,L�〉
〈�,M�〉 = min

∫
�L�dv∫
�M�dv

(4.72)

We may apply Eq. (4.72) to the Helmholtz equation for scalar waves, for example,

∇2�+ k2� = 0 (4.73)

Comparing Eq. (4.73) with Eq. (4.71), we obtain L = −∇2,M = 1 (the identity
operator), λ = k2 so that

k2 = min

∫
�∇2�dv∫
�2 dv

(4.74)

Applying Green’s identity (see Example 1.1),∫
v

(
U∇2V + ∇U · ∇V

)
dv =

∮
U
∂V

∂n
dS ,

to Eq. (4.74) yields

k2 = min

∫
v
|∇�|2 dv − ∮ �∂�

∂n
dS∫

v
�2 dv

(4.75)

Consider the following special cases.

(a) For homogeneous boundary conditions of the Dirichlet type (� = 0) or Neu-

mann type

(
∂�

∂n
= 0

)
. Equation (4.75) reduces to

k2 = min

∫
v
|∇�|2 dv∫
v
�2 dv

(4.76)

(b) For mixed boundary conditions

(
∂�

∂n
+ h� = 0

)
, Eq. (4.75) becomes

k2 = min

∫
v
|∇�|2 dv + ∮ h�2 dS∫

v
�2 dv

(4.77)

It is usually possible to solve Eq. (4.71) in a different way. We choose the ba-
sis functions u1, u2, . . . , uN which satisfy the boundary conditions and assume the
approximate solution

�̃ = a1u1 + a2u2 + · · · + aNuN
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or

�̃ =
N∑
n=1

anun (4.78)

Substituting this into Eq. (4.71) gives

N∑
n=1

anLun = λ

N∑
n=1

anMun (4.79)

Choosing the weighting functionswm and taking the inner product of Eq. (4.79) with
each wm, we obtain

N∑
n=1

[ 〈wm,Lun〉 − λ 〈wm,Mun〉
]
an = 0, m = 1, 2, . . . , N (4.80)

This can be cast into matrix form as

N∑
n=1

(Amn − λBmn)Xn = 0 (4.81)

where Amn = 〈wm,Lun〉, Bmn = 〈wm,Mun〉, Xn = an. Thus we have a set of
homogeneous equations. In order for �̃ in Eq. (4.78) not to vanish, it is necessary
that the expansion coefficients an not all be equal to zero. This implies that the
determinant of simultaneous equations (4.81) vanish, i.e.,∣∣∣∣∣∣∣

A11 − λB11 A12 − λB12 · · · A1N − λB1N
...

...

AN1 − λBN1 AN2 − λBN2 · · · ANN − λBNN

∣∣∣∣∣∣∣ = 0

or

|[A] − λ [B]| = 0 (4.82)

Solving this gives N approximate eigenvalues λ1, . . . , λN . The various ways of
choosing wm leads to different weighted residual techniques as discussed in the pre-
vious section.

Examples of eigenvalue problems for which variational methods have been applied
include [28]–[37]:

• the cutoff frequency of a waveguide,

• the propagation constant of a waveguide, and

• the resonant frequency of a resonator.
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Example 4.9
Solve the eigenvalue problem

�′′ + λ� = 0, 0 < x < 1

with boundary conditions �(0) = 0 = �(1).

Solution
The exact eigenvalues are

λn = (nπ)2, n = 1, 2, 3, . . . (4.83)

and the corresponding (normalized) eigenfunctions are

�n = √
2 sin(nπx) (4.84)

where �n has been normalized to unity, i.e., 〈�n,�n〉 = 1.
The approximate eigenvalues and eigenfunctions can be obtained by either using

Eq. (4.72) or Eq. (4.82). Let the approximate solution be

�̃(x) =
N∑
k=0

akuk, uk = x
(

1 − xk
)

(4.85)

From the given problem, L = − d2

dx2
,M = 1 (identity operator). Using the Galerkin

method, wm = um.

Amn = 〈um,Lun〉 =
∫ 1

0

(
x − xm+1

) [
− d2

dx2

(
x − xn+1

)]
dx

= mn

m+ n+ 1
, (4.86)

Bmn = 〈um,Mun〉 =
∫ 1

0

(
x − xm+1

) (
x − xn+1

)
dx

= mn(m+ n+ 6)

3(m+ 3)(n+ 3)(m+ n+ 3)
(4.87)

The eigenvalues are obtained from

| [A] − λ [B] | = 0 (4.88)

For N = 1,

A11 = 1

3
, B1 = 1

30
,
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giving
1

3
− λ

1

30
= 0 → λ = 10

The first approximate eigenvalue is λ = 10, a good approximation to the exact value
ofπ2 = 9.8696. The corresponding eigenfunction �̃ = a1(x−x2) can be normalized
to unity so that

�̃ = √
30(x − x2)

For N = 2, evaluating Eqs. (4.86) and (4.87), we obtain[
1
3

1
2

1
2

4
5

][
a1
a2

]
= λ

[
1

30
1

20
1

20
8

105

][
a1
a2

]
or ∣∣∣∣10 − λ 0

0 42 − λ

∣∣∣∣ = 0

giving eigenvalues λ1 = 10, λ2 = 42, compared with the exact values λ1 = π2 =
9.8696, λ2 = 4π2 = 39.4784, and the corresponding normalized eigenfunctions are

�̃1 = √
30
(
x − x2

)
�̃2 = 2

√
210

(
x − x2

)
− 2

√
210

(
x − x3

)
Continuing this way for higherN , the approximate eigenvalues shown in Table 4.4 are
obtained. Unfortunately, the labor of computation increases as more uk are included
in �̃. Notice from Table 4.4 that the approximate eigenvalues are always greater than
the exact values. This is always true for a self-adjoint, positive definite operator [17].
Figure 4.3 shows the comparison between the approximate and exact eigenfunctions.

Table 4.4 Comparison Between
Approximate and Exact Eigenvalues for
Example 4.9

Exact Approximate
N = 1 N = 2 N = 3 N = 4

9.870 10.0 10.0 9.8697 9.8697
39.478 42.0 39.497 39.478
88.826 102.133 102.133

157.914 200.583

Example 4.10
Calculate the cutoff frequency of the inhomogeneous rectangular waveguide shown

in Fig. 4.4. Take ε = 4εo and s = a/3.
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Figure 4.3
Comparison of approximate eigenfunctions with the exact solutions: (a) first
eigenfunction, (b) second eigenfunction. (After Harrington [17]; with permission
of Krieger Publishing Co.).

Solution

We will find the lowest mode having
∂

∂y
≡ 0. It is this dominant mode that is of most

practical value. Since the dielectric constant varies from one region to another, it is

reasonable to choose � to be an electric field, i.e., � = Ey . Also, since k2 = ω2

u2
=

ω2µε, Eq. (4.74) becomes

ω2µoεo

∫ s

0
E2
y dx + ω2µoεoεr

∫ a−s

s

E2
y dx + ω2µoεo

∫ a

a−s
E2
y dx

= −
∫ a

0
Ey
d2Ey

dx2
dx (4.89)

Notice that in this implementation of Eq. (4.74), there are no coefficients so that there
is nothing to minimize. We simply take k2 as a ratio. Equation (4.89) can be written
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Figure 4.4
A symmetrically loaded rectangular waveguide.

as

ω2µoεo

∫ a

0
E2
y dx + ω2µoεo(εr − 1)

∫ a−s

s

E2
y dx = −

∫ a

0
Ey
d2Ey

dx2
dx (4.90)

We now choose the trial function for Ey . It must be chosen to satisfy the boundary

conditions, namely, Ey = 0 at x = 0, a. Since Ey ∼ sin
nπx

a
for the empty

waveguide, it makes sense to choose the trial function of the form

Ey =
∞∑

n=1,3,5

cn sin
nπx

a
(4.91)

We choose the odd values of n because the dielectric is symmetrically placed; other-
wise we would have both odd and even terms.

Let us consider the trial function

Ey = sin
πx

a
(4.92)

Substituting Eq. (4.92) into Eq. (4.90) yields

ω2µoεo

∫ a

0
sin2 πx

a
dx + ω2µoεo(εr − 1)

∫ a−s

s

sin2 πx

a
dx

= π2

a2

∫ a

0
sin2 πx

a
dx (4.93)

which leads to

ω2µoεo

{
1 + (εr − 1)

[(
1 − 2s

a

)
+ 1

π
sin

2πs

a

]}
= π2

a2

But k2
o = ω2µoεo = 4π2

λ2
c

, where λc is the cutoff wavelength of the waveguide filled

with vacuum. Hence

4π2

λ2
c

= (π/a)2

1 + (εr − 1)
[
(1 − 2s

a
)+ 1

π
sin 2πs

a

]
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Taking εr = 4 and s = a/3 gives

4π2

λ2
c

= (π/a)2

2 + 3
√

3
2π

or
a

λc
= 0.2974

This is a considerable reduction in a/λc compared with the value of a/λc = 0.5 for
the empty guide. The accuracy of the result may be improved by choosing more terms
in Eq. (4.91).

4.8 Practical Applications

The various techniques discussed in this chapter have been applied to solve a
considerable number of EM problems. We select a simple example for illustration [38,
39]. This example illustrates the conventional use of the least squares method.

Consider a strip transmission line enclosed in a box containing a homogeneous
medium as shown in Fig. 4.5. If a TEM mode of propagation is assumed, Laplace’s

Figure 4.5
The strip line enclosed in a shielded box.

equation

∇2V = 0 (4.94)

is obeyed. Due to symmetry, we will consider only one quarter section of the line as

in Fig. 4.6 and adopt a boundary condition
∂V

∂x
= 0 at x = −W . We allow for the

singularity at the edge of the strip. The variation of the potential in the vicinity of
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Figure 4.6
A quarter-section of the strip line.

such a singularity is approximated, in terms of trigonometric basis functions, as

V = Vo +
∞∑

k=1,3,5

ckρ
k/2 cos

kφ

2
, (4.95)

where Vo is the potential on the trip conductor and the expansion coefficients ck are
to be determined. If we truncate the infinite series in Eq. (4.95) so that we have
N unknown coefficients, we determine the coefficients by requiring that Eq. (4.95)
be satisfied at M(≥ N) points on the boundary. If M = N , we are applying the
collocation method. If M > N , we obtain an overdetermined system of equations
which can be solved by the method of least squares. Enforcing Eq. (4.95) at M
boundary points, we obtain M simultaneous equations

V1
V2
...

VM

 =


A11 A12 . . . A1N
A21 A22 . . . A2N
...

...

AM1 AM2 . . . AMN



c1
c2
...

cM


i.e.,

[V ] = [A] [X] (4.96)

where [X] is an N × 1 matrix containing the unknown expansion coefficients, [V ] is
an M × 1 column matrix containing the boundary conditions, and [A] is the M ×N

coefficient matrix. Due to redundancy, [X] cannot be uniquely determined from
Eq. (4.96) if M > N . To solve this redundant system of equations by the method of
least squares, we define the residual matrix [R] as

[R] = [A] [X] − [V ] (4.97)
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We seek for [X], which minimizes [R]2. Consider

[I ] = [R]t [R] = [[A] [X] − [V ]]t [[A] [X] − [V ]]
∂ [I ]

∂ [X]
= 0 → [A]t [A] [X] − [A]t [V ] = 0

or

[X] = [[A]t [A]
]−1

[A]t [V ] (4.98)

where the superscript t denotes the transposition of the relevant matrix. Thus we
have reduced the original redundant system of equations to a determinate set of N
simultaneous equations in N unknown coefficients c1, c2, . . . , cN .

Once [X] = [c1, c2, . . . , cN ] is determined from Eq. (4.98), the approximate solu-
tion in Eq. (4.95) is completely determined. We can now determine the capacitance
and consequently the characteristic impedance of the line for a given value of width-
to-height ratio. The capacitance is determined from

C = Q

Vo
= Q (4.99)

If we let Vo = 1 V. The characteristic impedance is found from [40]

Zo =
√
εr

cC
(4.100)

where c = 3 × 108 m/s, the speed of light in vacuum. The major problem here is
finding Q in Eq. (4.99). If we divide the boundary BCD into segments,

Q =
∫
ρL dl = 4

∑
BCD

ρL%l

where the charge density ρL = D · an = εE · an,E = −∇V , and the factor 4 is due
to the fact that we consider only one quarter section of the line. But

∇V = ∂V

∂ρ
aρ + 1

ρ

∂V

∂φ
aφ ,

E = −
∑
k=odd

k

2
ckρ

k/2−1
(

cos
kφ

2
aρ − sin

kφ

2
aφ

)

Since ax = cosφaρ − sin φaφ and ay = sin φaρ + cosφaφ ,

ρL|CD = εE · ax

= −ε
∑
k=odd

k

2
ckρ

k/2−1
(

cos
kφ

2
cosφ + sin

kφ

2
sin φ

)
(4.101a)
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and

ρL|BC = εE · ay

= −ε
∑
k=odd

k

2
ckρ

k/2−1
(

cos
kφ

2
sin φ − sin

kφ

2
cosφ

)
(4.101b)

Example 4.11
Using the collocation (or point matching) method, write a computer program to

calculate the characteristics impedance of the line shown in Fig. 4.5. Take:

(a) W = H = 1.0 m, W1 = 5.0 m, εr = 1, V0 = 1 V,

(b) W = H = 0.5 m, W1 = 5.0 m, εr = 1, V0 = 1 V.

Solution
The computer program is presented in Fig. 4.7. For the first run, we take the number
of matching points N = 11; the points are selected as illustrated in Fig. 4.6. The
selection of the points is based on our prior knowledge of the fact that the flux lines
are concentrated on the side of the strip line numbered 6 to 10; hence more points are
chosen on that side.

The first step is to determine the potential distribution within the strip line using
Eq. (4.95). In order to determine the expansion coefficients ck in Eq. (4.95), we let
Eq. (4.95) be satisfied at the matching points. On points 1 to 10 in Fig. 4.6, V = 0
so that Eq. (4.95) can be written as

−Vo =
∞∑

k=1,3,5

ckρ
k/2 cos

kφ

2
(4.102)

The infinite series is terminated at k = 19 so that 10 points are selected on the sides

of the strip line. The 11th point is selected such that
∂V

∂x
= 0 is satisfied at the point.

Hence at point 11,

0 = ∂V

∂x
= cosφ

∂V

∂ρ
− sin φ

ρ

∂V

∂φ

or

0 =
∑

k=1,3,5

k

2
ckρ

k/2−1
(

cos
kφ

2
cosφ + sin

kφ

2
sin φ

)
(4.103)

With Eqs. (4.102) and (4.103), we set up a matrix equation of the form

[B] = [F ] [A] (4.104)
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Figure 4.7
Computer program for Example 4.11 (Continued).
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Figure 4.7
(Cont.) Computer program for Example 4.11.

where

Bk =
{

−Vo, k �= N

0, k = N ,

Fki =


ρ
k/2
i cos kφi/2, i = 1, . . . , N − 1,

k = 1, . . . , N
k

2
ρ
k/2−1
i (cos (kφi/2) cosφi + sin (kφi/2) sin φi) , i = N, k = 1, . . . , N
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where (ρi, φi) are the cylindrical coordinates of the ith point. Matrix [A] consists
of the unknown expansion coefficients ck . By matrix inversion using subroutine
INVERSE in Appendix D, we obtain [A] as

[A] = [F ]−1 [B] (4.105)

Once the expansion coefficients are determined, we now calculate the total charge on
the sides of the strip line using Eq. (4.101) and

Q = 4
∑
BDC

ρL%l

Finally, we obtain Zo from Eqs. (4.99) and (4.100). Table 4.5 shows the results
obtained using the program in Fig. 4.7 for different cases. In Table 4.5,N = Nx+Ny ,
whereNx andNy are the number of matching points selected along the x and y axes,
respectively. By comparing Fig. 4.5 with Fig. 2.13, one may be tempted to apply
Eq. (2.223) to obtain the exact solution of part (a) as 61.1 �. But we must recall
that Eq. (2.223) was derived based on the assumption that w >> b in Fig. 2.12 or
W >> H in Fig. 4.5. The assumption is not valid in this case, the exact solution
given in [39] is more appropriate.

Table 4.5 Characteristic Impedance of the Strip Transmission Line of
Fig. 4.5; for Example 4.11 with W1 = 5.0

W = H N Nx Ny c1 Calculated Zo(�) Exact [39] Zo(�)

1.0 7 5 2 −1.1549 67.846 65.16
11 8 3 −1.1266 65.16

0.5 7 5 2 −1.1549 96.92 100.57
11 8 3 −1.1266 99.60

4.9 Concluding Remarks

This chapter has provided an elementary introduction to the basic idea of variational
techniques. The variational methods provide simple but powerful solutions to physical
problems provided we can find approximate basis functions. A prominent feature of
the variational method lies in the ability to achieve high accuracy with few terms in the
approximate solution. A major drawback is the difficulty encountered in selecting
the basis functions. In spite of the drawback, the variational methods have been
very useful and provide basis for both the method of moments and the finite element
method to be discussed in the forthcoming chapters.

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



Needless to say, our discussion on variational techniques in this chapter has only
been introductory. An exhaustive treatment of the subject can be found in [1, 6, 10,
11], [41]–[43]. Various applications of variational methods to EM-related problems
include:

• waveguides and resonators [28]–[37]

• transmission lines [38, 39], [44]–[47]

• acoustic radiation [48]

• wave propagation [49]–[51]

• transient problems [52]

• scattering problems [53]–[59].

The problem of variational principles for EM waves in inhomogeneous media is
discussed in [60].

References

[1] S.G. Mikhlin, Variational Methods in Mathematical Physics. New York:
Macmillan, 1964, pp. xv, 4–78.

[2] J.N. Reddy, An Introduction to the Finite Element Method. New York: McGraw-
Hill, 2nd ed., 1993, pp. 18–64.

[3] R.B. Guenther and J.W. Lee, Partial Differential Equations of Mathematical
Physics and Integral Equations. Englewood Cliffs, NJ: Prentice-Hall, 1988, pp.
434–485.

[4] A. Wexler, “Computation of electromagnetic fields,” IEEE Trans. Micro. Theo.
Tech., vol. MTT-17, no. 8, Aug. 1969, pp. 416–439.

[5] M.M. Ney, “Method of moments as applied to electromagnetic problems,” IEEE
Trans. Micro. Theo. Tech., vol. MTT-33, no. 10, Oct. 1985, pp. 972–980.

[6] I.M. Gelfand and S.V. Fomin, Calculus of Variations (translated from Russian
by R.A. Silverman). Englewood Cliffs, NJ: Prentice-Hall, 1963.

[7] J.N. Reddy and M.L. Rasmussen, Advanced Engineering Analysis. New York:
John Wiley, 1982, pp. 377–386.

[8] B.H. McDonald, et al., “Variational solution of integral equations,” IEEE Trans.
Micro. Theo. Tech., vol. MTT-22, no. 3, Mar. 1974, pp. 237–248. See also vol.
MTT-23, no. 2, Feb. 1975, pp. 265–266 for correction to the paper.

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



[9] K. Morishita and N. Kumagai, “Unified approach to the derivation of variational
expression for electromagnetic fields,” IEEE Trans. Micro. Theo. Tech., vol.
MTT-25, no. 1, Jan. 1977, pp. 34–39.

[10] B.L. Moiseiwitch, Variational Principles. London: Interscience Pub., 1966.

[11] L. Cairo and T. Kahan, Variational Technique in Electromagnetics. New York:
Gordon & Breach, 1965, pp. 48–65.

[12] K. Kalikstein, “Formulation of variational principles via Lagrange multipliers,”
J. Math. Phys., vol. 22, no. 7, July 1981, pp. 1433–1437.

[13] K. Kalikstein and A. Sepulveda, “Variational principles and variational func-
tions in electromagnetic scattering,” IEEE Trans. Ant. Prog., vol. AP-29, no. 5,
Sept. 1981, pp. 811–815.

[14] P. Hammond, “Equilibrium and duality in electromagnetic field problems,” J.
Frank. Inst., vol. 306, no. 1, July 1978, pp. 133–157.

[15] S.K. Jeng and C.H. Chen, “On variational electromagnetics,” IEEE Trans. Ant.
Prog., vol. AP-32, no. 9, Sept. 1984, pp. 902–907.

[16] S.J. Chung and C.H. Chen, “Partial variational principle for electromagnetic
field problems: theory and applications,” IEEE Trans. Micro. Theo. Tech., vol.
36, no. 3, Mar. 1988, pp. 473–479.

[17] R.F. Harrington, Field Computation by Moment Methods. Malabar, FL:
R.E. Krieger, 1968, pp. 19, 126–131.

[18] S.G. Mikhlin and K.I. Smolitskiy, Approximate Methods for Solution of Differ-
ential and Integral Equations. New York: Elsevier, 1967, pp. 147–270.

[19] T.J. Chung, Finite Element Analysis in Fluid Dynamics. New York: McGraw-
Hill, 1978, pp. 36–43.

[20] O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method. London:
MacGraw-Hill, 1989, vol. 1, 4th ed., pp. 206–259.

[21] L. Lewin, “On the restricted validity of point-matching techniques,” IEEE
Trans. Micro. Theo. Tech., vol. MTT-18, no. 12, Dec. 1970, pp. 1041–1047.

[22] R.F. Muller, “On the legitimacy of an assumption underlying the point-matching
method,” IEEE Trans. Micro. Theo. Tech., vol. MTT-18, June 1970, pp. 325–
327.

[23] A.R. Djordjevic and T.K. Sarkar, “A theorem on the moment methods,” IEEE
Trans. Ant. Prog., vol. AP-35, no. 3, Mar. 1987, pp. 353–355.

[24] T.K. Sarkar, “A study of the various methods for computing electromagnetic
field utilizing thin wire integral equations,” Radio Sci., vol. 18, no. 1, Jan./Feb.,
pp. 29–38.

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



[25] T.K. Sarkar, “A note on the variational method (Rayleigh-Ritz), Galerkin’s
method, and the method of least squares,” Radio Sci., vol. 18, no. 6, Nov./Dec.
1983, pp. 1207–1224.

[26] T.K. Sarkar, “A note on the choice of weighting functions in the method of
moments,” IEEE Trans. Ant. Prog., vol. AP-33, no. 4, April 1985, pp. 436–441.

[27] T.K. Sarkar, et al., “On the choice of expansion and weighting functions in the
numerical solution of operator equations,” IEEE Trans. Ant. Prog., vol. AP-33,
no. 9, Sept. 1985, pp. 988–996.

[28] A.D. Berk, “Variational principles for electromagnetic resonators and waveg-
uides,” IRE Trans. Ant. Prog., vol. AP-4, April 1956, pp. 104–111.

[29] G.J. Gabriel and M.E. Brodwin, “The solution of guided waves in inhomoge-
neous anisotropic media by perturbation and variation methods,” IEEE Trans.
Micro. Theo. Tech., vol. MTT-13, May 1965, pp. 364–370.

[30] W. English and F. Young, “An E vector variational formulation of the Maxwell
equations for cylindrical waveguide problems,” IEEE Trans. Micro. Theo. Tech.,
vol. MTT-19, Jan. 1971, pp. 40–46.

[31] H.Y. Yee and N.F. Audeh, “Uniform waveguides with arbitrary cross-section
considered by the point-matching method,” IEEE Trans. Micro. Theo. Tech.,
vol. MTT-13, Nov. 1965, pp. 847–851.

[32] J.A. Fuller and N.F. Audeh, “The point-matching solution of uniform nonsym-
metric waveguides,” IEEE Trans. Micro. Theo. Tech., vol. MTT-17, no. 2, Feb.
1969.

[33] R.B. Wu and C.H. Chen, “On the variational reaction theory for dielectric
waveguides,” IEEE Trans. Micro. Theo. Tech., no. 6, June 1985, pp. 477–483.

[34] T.E. Rozzi, “The variational treatment of thick interacting inductive irises,”
IEEE Trans. Micro. Theo. Tech., vol. MTT-21, no. 2, Feb. 1973, pp. 82–88.

[35] A.D. McAulay, “Variational finite-element solution of dissipative waveguide
and transportation application,” IEEE Trans. Micro. Theo. Tech., vol. MTT-25,
no. 5, May 1977, pp. 382–392.

[36] L.V. Lindell, “A variational method for nonstandard eigenvalue problems in
waveguides and resonator analysis,” IEEE Trans. Micro. Theo. Tech., vol. MTT-
30, no. 8, Aug. 1982, pp. 1194–1204. See comment on this paper in vol. MTT-
31, no. 9, Sept. 1983, pp. 786–789.

[37] K. Chang, “Variational solutions on two opposite narrow resonant strips in
waveguide,” IEEE Trans. Micro. Theo. Tech., vol. MTT-35, no. 2, Feb. 1987,
pp. 151–158.

[38] T.K. Seshadri, et al., “Application of ‘corner function approach’ to strip line
problems,” Int. Jour. Electron., vol. 44, no. 5, May 1978, pp. 525–528.

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



[39] T.K. Seshadri, et al., “Least squares collocation as applied to the analysis of
strip transmission lines,” Proc. IEEE, vol. 67, no. 2, Feb. 1979, pp. 314–315.

[40] M.N.O. Sadiku, Elements of Electromagnetics. New York: Oxford Univ. Press,
Chap. 11, 1994.

[41] P.M. Morse and H. Feshback, Methods of Theoretical Physics. New York:
McGraw-Hill, 2 volumes, 1953.

[42] R.E. Collin, Field Theory of Guided Waves. New York: McGraw-Hill, 1960,
pp. 148–164, 314–367.

[43] D.G. Bodner and D.T. Paris, “New variational principle in electromagnetics,”
IEEE Trans. Ant. Prog., vol. AP-18, no. 2, March 1970, pp. 216–223.

[44] T.D. Tsiboukis, “Estimation of the characteristic impedance of a transmission
line by variational methods,” IEEE Proc., vol. 132, Pt. H, no. 3, June 1985, pp.
171–175.

[45] E. Yamashita and R. Mittra, “Variational method for the analysis of microstrip
lines,” IEEE Trans. Micro. Theo. Tech., vol. MTT-16, no. 4, Apr. 1968, pp.
251–256.

[46] E. Yamashita, “Variational method for the analysis of microstrip-like transmis-
sion lines,” IEEE Trans. Micro. Theo. Tech., vol. MTT-16, no. 8, Aug. 1968,
pp. 529–535.

[47] F. Medina and M. Horno, “Capacitance and inductance matrices for multistrip
structures in multilayered anisotropic dielectrics,” IEEE Trans. Micro. Theo.
Tech., vol. MTT-35, no. 11, Nov. 1987, pp. 1002–1008.

[48] F.H. Fenlon, “Calculation of the acoustic radiation of field at the surface of a
finite cylinder by the method of weighted residuals,” Proc. IEEE, vol. 57, no. 3,
March 1969, pp. 291–306.

[49] C.H. Chen and Y.W. Kiang, “A variational theory for wave propagation in a
one-dimensional inhomogeneous medium,” IEEE Trans. Ant. Prog., vol. AP-
28, no. 6, Nov. 1980, pp. 762–769.

[50] S.K. Jeng and C.H. Chen, “Variational finite element solution of electro-
magnetic wave propagation in a one-dimensional inhomogeneous anisotropic
medium,” J. Appl. Phys., vol. 55, no. 3, Feb. 1984, pp. 630–636.

[51] J.A. Bennett, “On the application of variation techniques to the ray theory of
radio propagation,” Radio Sci., vol. 4, no. 8, Aug. 1969, pp. 667–678.

[52] J.T. Kuo and D.H. Cho, “Transient time-domain electromagnetics,” Geophys.,
vol. 45, no. 2, Feb. 1980, pp. 271–291.

[53] R.D. Kodis, “An introduction to variational methods in electromagnetic scat-
tering,” J. Soc. Industr. Appl. Math., vol. 2, no. 2, June 1954, pp. 89–112.

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



[54] D.S. Jones, “A critique of the variational method in scattering problems,” IRE
Trans., vol. AP-4, no. 3, 1965, pp. 297–301.

[55] R.J. Wagner, “Variational principles for electromagnetic potential scattering,”
Phys. Rev., vol. 131, no. 1, July 1963, pp. 423–434.

[56] J.A. Krill and R.A. Farrell, “Comparison between variational, perturbational,
and exact solutions for scattering from a random rough-surface model,” J. Opt.
Soc. Am., vol. 68, June 1978, pp. 768–774.

[57] R.B. Wu and C.H. Chen, “Variational reaction formulation of scattering problem
for anisotropic dielectric cylinders,” IEEE Trans. Ant. Prog., vol. 34, no. 5, May
1986, pp. 640–645.

[58] J.A. Krill and R.H. Andreo, “Vector stochastic variational principles for elec-
tromagnetic wave scattering,” IEEE Trans. Ant. Prog., vol. AP-28, no. 6, Nov.
1980, pp. 770–776.

[59] R.W. Hart and R.A. Farrell, “A variational principle for scattering from rough
surfaces,” IEEE Trans. Ant. Prog., vol. AP-25, no. 5, Sept. 1977, pp. 708–713.

[60] J.R. Willis, “Variational principles and operator equations for electromagnetic
waves in inhomogeneous media,” Wave Motion, vol. 6, no. 2, 1984, pp. 127–
139.

Problems

4.1 Find 〈u, v〉 if:

(a) u = x2, v = 2 − x in the interval −1 < x < 1,

(b) u = 1, v = x2 − 2y2 in the rectangular region 0 < x < 1, 1 < y < 2,

(c) u = x + y, v = xz in the cylindrical region x2 + y2 ≤ 4, 0 < z < 5.

4.2 Show that:

(a) 〈h(x), f (x)〉 = 〈h(x), f (−x)〉,
(b) 〈h(ax), f (x)〉 =

〈
h(x),

1

a
f
(x
a

)〉
,

(c)

〈
df

dx
, h(x)

〉
= −

〈
f (x),

dh

dx

〉
,

(d)

〈
dnf

dxn
, h(x)

〉
= (−1)n −

〈
f (x),

dnh

dxn

〉
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Note from (d) that L = d

dx
,
d3

dx3
, etc., are not self-adjoint, whereas L =

d2

dx2
,
d4

dx4
, etc., are.

4.3 Find the Euler partial differential equation for each of the following functionals:

(a)
∫ b

a

√
1 + y′ dx

(b)
∫ b

a

y

√
1 + y

′2 dx

(c)
∫ b

a

cos(xy′) dx

4.4 Repeat Problem 4.3 for the following functionals:

(a)
∫ b

a

(y
′2 − y2) dx

(b)
∫ b

a

[5y2 − (y′′)2 + 10x] dx

(c)
∫ b

a

(3uv − u2 + u
′2 − v

′2) dx

4.5 Determine the extremal y(x) for each of the following variational problems:

(a)
∫ 1

0
(2y

′2 + yy′ + y′ + y) dx, y(0) = 0, y(1) = 1

(b)
∫
(y

′2 − y2) dx, y(0) = 1, y(π/2)

4.6 If L is a positive definite, self-adjoint operator and L� = g has a solution �o,
show that the function

I = 〈L�,�〉 − 2〈�, g〉 ,
where � and g are real functions, is minimized by the solution �o.

4.7 Show that a function that minimizes the functional

I (�) = 1

2

∫
S

[
|∇�|2 − k2�2 + 2g�

]
dS

is the solution to the inhomogeneous Helmholtz equation

∇2�+ k2� = g
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4.8 Show that minimizing the energy functional

I = 1

2

∫
v

|∇V |2 dv

is equivalent to solving Laplace’s equation.

4.9 Using Euler’s equation, obtain the differential equation corresponding to the
electrostatic field functional

I =
∫
v

[
1

2
εE2 − ρvV

]
dv

where E = |E| and ρv is the volume charge density.

4.10 Repeat Problem 4.9 for the energy function for steady state currents

I =
∫
v

1

2
J · E dv

where J = σE.

4.11 Poisson’s equation in an anisotropic medium is

∂

∂x

(
εx
∂V

∂x

)
+ ∂

∂y

(
εy
∂V

∂y

)
+ ∂

∂z

(
εz
∂V

∂z

)
= −ρv

in three dimensions. Derive the functional for the boundary value problem.
Assume εx, εy , and εz are constants.

4.12 Show that the variational principle for the boundary value problem

∇2� = f (x, y, z)

subject to the mixed boundary condition

∂�

∂n
+ g� = h on S

is

I (�) =
∫
v

[
|∇�|2 − 2fg

]
dv +

∮ [
g�2 − 2h�

]
dS

4.13 Obtain the variational principle for the differential equation

−d
2y

dx2
+ y = sin πx , 0 < x < 1

subject to y(0) = 0 = y(1).
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4.14 Determine the variational principle for

�′′ = �− 4xex , 0 < x < 1

subject to �′(0) = �(0)+ 1,�′(1) = �(1)− e.

4.15 For the boundary value problem

−�′′ = x , 0 < x < 1

�(0) = 0 , �(1) = 2

determine the approximate solution using the Rayleigh-Ritz method with basis
functions

uk = xk(x − 1) , k = 0, 1, 2, . . . ,M

Try cases when M = 1, 2, and 3.

4.16 Rework Example 4.5 using

(a) um = x(1 − xm),

(b) um = sinmπx, m = 1, 2, 3, . . . ,M . Try cases when M = 1, 2, and 3.

4.17 Solve the differential equation

−�′′(x)+ 0.1�(x) = 1, 0 ≤ x ≤ 10

subject to the boundary conditions �′(0) = 0 = �(0) using the trial function

�̃(x) = a1 cos
πx

20
+ a2 cos

3πx

20
+ a3 cos

5πx

20

Determine the expansion coefficients using: (a) collocation method, (b) sub-
domain method, (c) Galerkin method, (d) least squares method.

4.18 For the boundary value problem

�′′ +�+ x = 0 , 0 < x < 1

with homogeneous boundary conditions� = 0 at x = 0 and x = 1, determine
the coefficients of the approximate solution function

�̃(x) = x(1 − x) (a1 + a2x)

using: (a) collocation method (choose x = 1/4, x = 1/2 as collocation
points), (b) Galerkin method, (c) least squares method.

4.19 Given the boundary value problem

y′′ + (1 + x2)y + 1 = 0 , −1 < x < 1 ,

y(−1) = 0 = y(1) ,
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find the expansion coefficients of the approximate solution

ỹ = a1(1 − x2)+ a2x
2(1 − x2)

by using: (i) the various weighted residual methods, (ii) the Rayleigh-Ritz
method.

4.20 Rework the previous problem using the approximate solution

ỹ = a1(1 − x2)(1 − 4x2)+ a2x
2(1 − x2)

Use the Galerkin and the least squares methods to determine a1 and a2.

4.21 Consider the problem

�′′ + x�′ +� = 2x , 0 < x < 1

subject to �(0) = 1,�(1) = 0. Find the approximate solution using the
Galerkin method. Use uk = xk(1 − x), k = 0, 1, . . . , N . Try N = 3.

4.22 Determine the first three eigenvalues of the equation

y′′ + λy = 0 , 0 < x < 1 ,

y(0) = 0 = y(1) using collocation at x = 1/4, 1/2, 3/4.

4.23 Determine the fundamental eigenvalue of the problem

−�′′(x)+ 0.1�(x) = λ�(x) , 0 < x < 10

subject to �(0) = 0 = �(10). Use the trial function

�̃(x) = x(x − 10)

4.24 Obtain the lowest eigenvalue of the problem

∇2�+ λ� = 0 , 0 < ρ < 1

with � = 0 at ρ = 1.

4.25 Rework Example 4.10 using the trial function

Ey = sin
πx

a
+ c1 sin

3πx

a

where c1 is a coefficient to be chosen such that ω2εoµo is minimized.
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4.26 Consider the waveguide in Fig. 4.4 as homogeneous. To determine the cutoff
frequency, we may use the polynomial trial function

Hz = Ax3 + Bx2 + Cx +D

By applying the conditions

Hz = 1 at x = a , Hz = −1 at x = a ,

∂Hz

∂x
= 0 at x = 0, a ,

determine A,B,C, and D. Using the trial function, calculate the cutoff fre-
quency.

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 


	Numerical Techniques in Electromagnetics
	Contents
	Chapter 4
	4.1 Introduction
	4.2 Operators in Linear Spaces
	4.3 Calculus of Variations
	4.4 Construction of Functionals from PDEs
	4.5 Rayleigh-Ritz Method
	4.6 Weighted Residual Method
	4.6.1 Collocation Method
	4.6.2 Subdomain Method
	4.6.3 Galerkin Method
	4.6.4 Least Squares Method

	4.7 Eigenvalue Problems
	4.8 Practical Applications
	4.9 Concluding Remarks
	References
	Problems



