Chapter 2

Analytical Methods

“I've learned that about 90 percent of the things that happen to me are good
and only about 10 percent are bad. To be happy, I just have to focus on the 90
percent.” Anonymous

2.1 Introduction

The most satisfactory solution of a field problem is an exact mathematical one.
Although in many practical cases such an analytical solution cannot be obtained
and we must resort to numerical approximate solution, analytical solution is useful
in checking solutions obtained from numerical methods. Also, one would hardly
appreciate the need for numerical methods without first seeing the limitations of
the classical analytical methods. Hence our objective in this chapter is to briefly
examine the common analytical methods and thereby put numerical methods in proper
perspective.

The most commonly used analytical methods in solving EM-related problems in-
clude:

(1) separation of variables
(2) series expansion

(3) conformal mapping
(4) integral methods

Perhaps the most powerful analytical method is the separation of variables; it is the
method that will be emphasized in this chapter. Since the application of conformal
mapping is restricted to certain EM problems, it will not be discussed here. The
interested reader is referred to Gibbs [1]. The integral methods will be covered in
Chapter 5, and fully discussed in [2].
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2.2 Separation of Variables

The method of separation of variables (sometimes called the method of Fourier)
is a convenient method for solving a partial differential equation (PDE). Basically,
it entails seeking a solution which breaks up into a product of functions, each of
which involves only one of the variables. For example, if we are seeking a solution
d(x, y, z, t) to some PDE, we require that it has the product form

Px,y,z,1) =X)Y () Z()T (1) 2.1)

A solution of the form in Eq. (2.1) is said to be separable in x, y, z, and ¢. For example,
consider the functions

(1) x%yz sin 10z,

@) xy* + 7,

(3) (2x + y?)z cos 10z.

(1) is completely separable, (2) is not separable, while (3) is separable only in z and
t.

To determine whether the method of independent separation of variables can be ap-
plied to a given physical problem, we must consider the PDE describing the problem,
the shape of the solution region, and the boundary conditions — the three elements that
uniquely define a problem. For example, to apply the method to a problem involving
two variables x and y (or p and ¢, etc.), three things must be considered [3]:

(i) The differential operator L must be separable, i.e., it must be a function of
® (x, y) such that
L{X(x)Y(y)}
O, VXY ()
is a sum of a function of x only and a function of y only.

(i) All initial and boundary conditions must be on constant-coordinate surfaces,
i.e., x = constant, y = constant.

(iii) The linear operators defining the boundary conditions at x = constant (or y =
constant) must involve no partial derivatives of ® with respect to y (or x), and
their coefficient must be independent of y (or x).

For example, the operator equation

Lo 0 N 2 N 9’
T o9x2  9xdy  9y?

violates (i). If the solution region R is not a rectangle with sides parallel to the x and
y axes, (ii) is violated. With a boundary condition & = 0 on a part of x = 0 and
d®/0x = 0 on another part, (iii) is violated.

With this preliminary discussion, we will now apply the method of separation
of variables to PDEs in rectangular, circular cylindrical, and spherical coordinate
systems. In each of these applications, we shall always take these three major steps:
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(1) separate the (independent) variables

(2) find particular solutions of the separated equations, which satisfy some of the
boundary conditions

(3) combine these solutions to satisfy the remaining boundary conditions

We begin the application of separation of variables by finding the product solution
of the homogeneous scalar wave equation

1 3%
2 a2
Solution to Laplace’s equation can be derived as a special case of the wave equation.
Diffusion and heat equation can be handled in the same manner as we will treat wave

equation. To solve Eq. (2.2), itis expedient that we first separate the time dependence.
We let

Ve — =0 (2.2)

O(r,1) =U®T®) 2.3)

Substituting this in Eq. (2.2),
1
TVU - SUT" =0
¢
Dividing by UT gives
viu 1"
- = 24
U 2T @4
The left side is independent of 7, while the right side is independent of r; the equality

can be true only if each side is independent of both variables. If we let an arbitrary
constant —k? be the common value of the two sides, Eq. (2.4) reduces to

T" + 2T =0, (2.52)
VU + kU =0 (2.5b)
Thus we have been able to separate the space variable r from the time variable 7. The
arbitrary constant —k? introduced in the course of the separation of variables is called
the separation constant. We shall see that in general the total number of independent
separation constants in a given problem is one less than the number of independent

variables involved.
Equation (2.5a) is an ordinary differential equation with solution

T(t) = a1e’* + ape Ik (2.62)
or
T (t) = by cos(ckt) + b sin(ckt) (2.6b)

Since the time dependence does not change with a coordinate system, the time de-
pendence expressed in Eq. (2.6) is the same for all coordinate systems. Therefore,
we shall henceforth restrict our effort to seeking solution to Eq. (2.5b). Notice that if
k = 0, the time dependence disappears and Eq. (2.5b) becomes Laplace’s equation.
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2.3 Separation of Variables in Rectangular Coordinates

In order not to complicate things, we shall first consider Laplace’s equation in two
dimensions and later extend the idea to wave equations in three dimensions.

2.3.1 Laplace’s Equations

Consider the Dirichlet problem of an infinitely long rectangular conducting trough
whose cross section is shown in Fig. 2.1. For simplicity, let three of its sides be

y
Vo
l insulating gap
b
0—> <«—0
0 T a X
0

Figure 2.1
Cross section of the rectangular conducting trough.

maintained at zero potential while the fourth side is at a fixed potential V,,. This is a
boundary value problem. The PDE to be solved is

2V d%v
W+W:0 (2.7)

subject to (Dirichlet) boundary conditions

V(©0,y)=0 (2.8a)
Via,y) =0 (2.8b)
V(x,00=0 (2.8¢0)
Vx,b) =V, (2.8d)
We let
V(x,y) = XM@Y () (2.9)

Substitute this into Eq. (2.7) and divide by XY. This leads to
X// Y//
T —
X + Y
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or

X// Y//
— =—— = (2.10)
X Y

where A is the separation constant. Thus the separated equations are

X"'—1X=0 (2.11)
Y'+1Y =0 (2.12)
To solve the ordinary differential equations (2.11) and (2.12), we must impose the

boundary conditions in Eq. (2.8). However, these boundary conditions must be trans-
formed so that they can be applied directly to the separated equations. Since V = XY,

VO0,y)=0  — X(0) =0 (2.132)
Via,y)=0 — X(a) =0 (2.13b)
Vx,00=0  — Y(0) =0 (2.13c)

Ve, b)=V,  — X(x)Y(b) =V, (2.13d)

Notice that only the homogeneous conditions are separable. To solve Eq. (2.11), we
distinguish the three possible cases: A =0,A > 0,and A < 0.

Case 1: If A =0, Eq. (2.11) reduces to

d’X
X"=0 — =0 2.14
or 2 (2.14)
which has the solution
X(x)=aix +ay (2.15)

where a; and a; are constants. Imposing the conditions in Eq. (2.13a) and Eq. (2.13b),

X0)=0 — a=0
X(@)=0 — ar =0

Hence X (x) = 0, a trivial solution. This renders case A = 0 as unacceptable.
Case 2: If A > 0, say A = o, Eq. (2.11) becomes

X' —a’X =0 (2.16)
with the corresponding auxiliary equations m?> — a®> = 0 or m = Za. Hence the
general solution is

X =bie %" 4+ bre™* (2.17)
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or
X = bz sinhax + by cosh ax (2.18)
The boundary conditions are applied to determine b3 and bs.

X0)=0 — by =0
X(@=0 — by =0

since sinh ax is never zero for « > 0. Hence X (x) = 0, a trivial solution, and we
conclude that case A > 0 is not valid.

Case3: If A < 0,say A = —p2,

X'+ B*X =0 (2.19)
with the auxiliary equation m?> + 2 = 0 or m = =jB. The solution to
Eq. (2.19) is

X = A1e/P* 4 ArelP¥ (2.20a)
or
X = By sin Bx + By cos fx (2.20b)
Again,
X0)=0 — B, =0
X(@)=0 — sin Ba = 0 = sinnw
or
nmw
B=—, n=12.73,... (2.21)
a

since B cannot vanish for nontrivial solutions, whereas sin Sa can vanish without its
argument being zero. Thus we have found an infinite set of discrete values of A for
which Eq. (2.11) has nontrivial solutions, i.e.,

—}’12]'[2

r=—B*= , n=1273,... (2.22)

a2
These are the eigenvalues of the problem and the corresponding eigenfunctions are

. . MTX
X, (x) = sin Bx = sin

(2.23)

From Eq. (2.22) note that it is not necessary to include negative values of n since they
lead to the same set of eigenvalues. Also we exclude n = 0 since it yields the trivial
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solution X = 0 as shown under Case 1 when A = 0. Having determined X, we can
solve Eq. (2.12) to find Y, (y) corresponding to X, (x). That is, we solve

Y -’y =0, (2.24)

which is similar to Eq. (2.16), whose solution is in Eq. (2.18). Hence the solution to
Eqg. (2.24) has the form

Y, (y) = ay sinh "Z—y + b, cosh "aﬂ (2.25)
Imposing the boundary condition in Eq. (2.13c¢),
YO) =0 = b =0
so that
Y, (y) = a, sinh ”aﬂ (2.26)

Substituting Eqs. (2.23) and (2.26) into Eq. (2.9), we obtain

Va(x, ¥) = Xn(X)Yn () = ay sin L sinh 222 (2.27)
a

which satisfies Eq. (2.7) and the three homogeneous boundary conditions in Egs.
(2.8a), (2.8b), and (2.8c). By the superposition principle, a linear combination of the
solutions V,,, each with different values of n and arbitrary coefficient a,, is also a
solution of Eq. (2.7). Thus we may represent the solution V of Eq. (2.7) as an infinite
series in the function V,,, i,e.,

nmwy
Vi(x, —— sinh — 2.28
(x,y) = Z an sin % §in p (2.28)

We now determine the coefficient a,, by imposing the inhomogeneous boundary
condition in Eq. (2.8d) on Eq. (2.28). We get

b
Vi, b)=V, = Zan sin 2% sinh 222 (2.29)

a

which is Fourier sine expansion of V,,. Hence,

b 2 [P T 2V,
ansinhn—=—/ Vosmudx——(l—cosnn)
a 0 a ni

b
or
4V, 1
L anb’ n = odd ,
ap, = { "7 sinh %22 (2.30)
0, n = even
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Substitution of Eq. (2.30) into Eq. (2.28) gives the complete solution as

0 ‘
v, sin 2% sinh =22

a
I e (2.31a)
b
B nsmh —”Z

Vix,y)=

By replacing n by 2k — 1, Eq. (2.31a) may be written as

sin 22X sinh =22

n smh L1 b

Viry) = 2 y

T
k=1

. on=2k—1 (2.31b)

2.3.2 Wave Equation

The time dependence has been taken care of in Section 2.2. We are left with solving
the Helmholtz equation

VU +k*U =0 (2.5b)
In rectangular coordinates, Eq. (2.5b) becomes

92U N 92U N 92U
ax2  9yr 972

+ kU =0 (2.32)

We let
Ux,y,2) = X(x)Y(y)Z(2) (2.33)
Substituting Eq. (2.33) into Eq. (2.32) and dividing by XY Z, we obtain
x" y"r z'
7+7+7+k2_0 (2.34)

Each term must be equal to a constant since each term depends only on the corre-
sponding variable; X on x, etc. We conclude that

XU k2 Y_// I Z_//
X Y v z
so that Eq. (2.34) reduces to

= —k? (2.35)

K4k 4k =k (2.36)

Notice that there are four separation constants k, ky, ky, and k, since we have four
variables ¢, x, y, and z. But from Eq. (2.36), one is related to the other three so that
only three separation constants are independent. As mentioned earlier, the number of
independent separation constants is generally one less than the number of independent
variables involved. The ordinary differential equations in Eq. (2.35) have solutions

X = A1e/R% 4 Ape kX (2.372)
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(2.37b)

4 Agelty (2.37¢)

or
Y = B3sinkyy + Bscoskyy , (2.37d)
Z = Asel** 4 Agem Ik (2.37e)

or
Z = Bssink;z + Becosk;z , (2.37f)

Various combinations of X, Y, and Z will satisfy Eq. (2.5b). Suppose we choose

X = Aye/k, Y = Aze/bY, Z = Aselkt (2.38)
then
Ux,y, z) = Aed kexthyythe) (2.39)
or
U(r) = Ae/*T (2.40)

Introducing the time dependence of Eq. (2.6a) gives

d(x,y,z,1) = Aed ErTen (2.41)

where w = kc is the angular frequency of the wave and k is given by Eq. (2.36).
The solution in Eq. (2.41) represents a plane wave of amplitude A propagating in the
direction of the wave vector k = kya, + kya, + k;a, with velocity c.

Example 2.1

In this example, we would like to show that the method of separation of variables
is not limited to a problem with only one inhomogeneous boundary condition as
presented in Section 2.3.1. We reconsider the problem of Fig. 2.1, but with four
inhomogeneous boundary conditions as in Fig. 2.2(a).

Solution
The problem can be stated as solving Laplace’s equation

2V 9tV
S i 0 (2.42)
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b
\ing <V,
0 A a X
Vi
(a)
y 0 y 0
v y
b b
0—>] VZVI:O ke 0 + 00— V2V“=0 <V,
0 A a X 0 4 a X
v, 0
y v, y 0
) ¥
b b
0~ VAV, <0 + V> VAV,=0 <0
0 A a x 0 i a x
0 0

(®
Figure 2.2
Applying the principle of superposition reduces the problem in (a) to those in (b).

subject to the following inhomogeneous Dirichlet conditions:

Vix,0) =V
Vix,b) =V3
V(0,y) =Vy4
Via,y) =VWVa (2.43)

Since Laplace’s equation is a linear homogeneous equation, the problem can be sim-
plified by applying the superposition principle. If we let
V=Vi+Vi+Vir+Viv, (2.44)

we may reduce the problem to four simpler problems, each of which is associated with
one of the inhomogeneous conditions. The reduced, simpler problems are illustrated
in Fig. 2.2 (b) and stated as follows:

32V1 BZV]

aﬂ-kazzo (2.45)
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subject to

Vix,0) =V;
Vix,b) =0
Vi(0,y) =0
Vi(a,y) =0;
a2V 3%V
o 11 _
0x2 9y?
subject to
Vir(x,0) =0
Vitlx,b) =0
Vir(0,y) =0
Vir(a,y) = Va;
Vi 9%V _0
9x2 ay2
subject to
Virr(x,00)=0
Viri(x,b) =V3
Virr(0,y) =0
Vir(a,y) =0;
and
82V1V 32V1V _0
ax2 ay2
subject to
Viv(x,0) =0
Viv(x,b) =0
Viv(0,y) = Vs
Vivia,y) =0

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

It is obvious that the reduced problem in Egs. (2.49) and (2.50) with solution Vj;;
is the same as that in Fig. 2.1. The other three reduced problems are quite similar.
Hence the solutions Vy, V;;, and V;y can be obtained by taking the same steps as in
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Section 2.3.1 or by a proper exchange of variables in Eq. (2.31). Thus

4v, &, sin MIX ginh =)
Vi = — Z . i} nh : ’ (2.53)
L n sinh #72=
4Vy S sin "2 sinh X
Vip = — 2 2.54
" T n;d n sinh "¢ 254
4V & sin 22X giph 7Y
Viir=— . —, (2.55)
T n=zodd n sinh m;_b
4v, & sin —"”(‘Z—x ) sinh =2
Viy = — 2.56
v b4 n;odd nsinh %4 (2.56)
We obtain the complete solution by substituting Eqs. (2.53) to (2.56) in
Eq. 244). 1
Example 2.2

Find the product solution of the diffusion equation
D, = kD, O<x<l1, >0 (2.57)

subject to the boundary conditions

D0,1)=0=d(1,1), t>0 (2.58)
and initial condition
®(x,0) =Ssin27x, O<x<1 [ (2.59)
Solution
Let
D(x,t) = Xx)T (1) (2.60)
Substitute this into Eq. (2.57) and divide by kX T to obtain
T/ X//
ﬁ = 7 =
where A is the separation constant. Thus
X" —2X=0 (2.61)
T — T =0 (2.62)

As usual, in order for the solution of Eq. (2.61) to satisfy Eq. (2.58), we must choose
A= —,32 = —n?n2sothatn = 1,2,3,... and

X, (x) =sinnmwx (2.63)
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Equation (2.62) becomes
T' 4 kn’7*T =0,

which has solution
T, (1) = e~ kn*n’t (2.64)
Substituting Egs. (2.63) and (2.64) into Eq. (2.60),
&, (x,t) = a, sinnmTx exp(—kn2n2t)
where the coefficients a;, are to be determined from the initial condition in Eq. (2.59).

The complete solution is a linear combination of ®,,, i.e.,

o
O(x, 1) = Zan sin nwwx exp(—knznzt)

n=1
This satisfies Eq. (2.59) if
o0
O(x,0) = Z ay sinnmwx = 5sin2mwx (2.65)
n=1

The coefficients a,, are determined as (T = 1)

5, n=2

2 1
a, = —/ Ssin2wxsinnwx dx =
T Jo 0, n#0

Alternatively, by comparing the middle term in Eq. (2.65) with the last term, the two
are equal only when n = 2, a, = 5, otherwise a,, = 0. Hence the solution of the
diffusion problem becomes

O(x,t) =5sin2mt exp(—4k712t) |

2.4 Separation of Variables in Cylindrical Coordinates

Coordinate geometries other than rectangular Cartesian are used to describe many
EM problems whenever it is necessary and convenient. For example, a problem
having cylindrical symmetry is best solved in cylindrical system where the coordinate
variables (p, ¢, z) are related as shown in Fig. 2.3 and 0 < p < 00,0 < ¢ <
21, —00 < z < oo. In this system, the wave equation (2.5b) becomes

1a (U 1 9°U  d°U
VU4 KU =—-—(p— )|+ —=—+ — +kU =0 (2.66)
pdp \" dp p? dp2 372
As we did in the previous section, we shall first solve Laplace’s equation (k = 0) in
two dimensions before we solve the wave equation.
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* P(p,0,2)
|

Figure 2.3
Coordinate relations in a cylindrical system.

2.4.1 Laplace’s Equation

Consider an infinitely long conducting cylinder of radius a with the cross section
shown in Fig. 2.4. Assume that the upper half of the cylinder is maintained at potential
V,, while the lower half is maintained at potential —V,,. This is a Laplacian problem
in two dimensions. Hence we need to solve for V (p, ¢) in Laplace’s equation

19 [ 3V 1 32v
VWV=——|p—)+5-—5=0 (2.67)
pdp \' dp p= 3¢

subject to the inhomogeneous Dirichlet boundary condition

_ V,, O<¢p<m
Via,¢) = {—Va, T < <2n (2.68)
We let
V(p,®) = R(p)F(¢) (2.69)

Substituting Eq. (2.69) into Eq. (2.67) and dividing through by RF/p? result in

o d < dR) 1 d*F

Rdp\"dp) " Fag? ~
or
2 32 2
d’R dR 1 d*F
prax  pak 1A o (2.70)
R dp?> R dp F d¢?

where A is the separation constant. Thus the separated equations are:

F'+)F=0 (2.71a)
p’R" +pR —2*R=0 (2.71b)

© 2001 by CRCPRESSLLC



Figure 2.4
A two-dimensional Laplacian problem in cylindrical coordinates.

It is evident that Eq. (2.71a) has the general solution of the form
F(¢) = c1 cos(Ap) + ¢ sin(Ag) (2.72)

From the boundary conditions of Eq. (2.68), we observe that F (¢) must be a periodic,
odd function. Thus ¢; = 0, A = n, a real integer, and hence Eq. (2.72) becomes

F,(¢) = cpsinng 2.73)

Equation (2.71b), known as the Cauchy-Euler equation, can be solved by making a
substitution p = e and reducing it to an equation with constant coefficients. This
leads to

Ry(p) = c3p" +cap™, n=12... (2.74)

Note that case n = 0 is excluded; if n = 0, we obtain R(p) = In p+ constant, which
is not finite at p = 0. For the problem of a coaxial cable, a < p < b, p # 0 so
that case n = 0 is the only solution. However, for the problem at hand, n = 0 is not
acceptable.

Substitution of Egs. (2.73) and (2.74) into Eq. (2.69) yields

Va(p, ¢) = sinng (Anp" + Byp™") (2.75)

where A, and B, are constants to be determined. As usual, it is possible by the
superposition principle to form a complete series solution

x
V(o,$) =) (Aup" + Byp™")sinng (2.76)

n=1
For p < a, inside the cylinder, V must be finite as p — 0 so that B, = 0. At

p =a,
o0
Vo, 0

Va,¢) =3 Aga"sinng =1 ° <¢<7 2.77)

o —V,, m<¢<2m
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Multiplying both sides by sin m¢ and integrating over 0 < ¢ < 2w, we get
T 2 0 2
/ V, sinme d¢ — / Vosinmpdp =) And" / sinng sinme dé
0 b4 n=1 0

All terms in the right-hand side vanish except when m = n. Hence

2V0 n m 2 n
— (1 —cosnm) = Aya sin“¢pdp =mA,a
n 0
or
4V,
, = odd
Ap={nnan "7° (2.78)
0, n = even
Thus,

4V, & orsi
”Zm, 0 <a (2.79)

na”

Vip.¢) =

n=odd

For p > a, outside the cylinder, V must be finite as p — oo so that A, = 0
in Eq. (2.76) for this case. By imposing the boundary condition in Eq. (2.68) and
following the same steps as for case p < a, we obtain

4V,a"

By=1 np > "T0U (2.80)
0, n = even
Hence,
4V, < a"sinng
Vip.g)=—"3 ———. p>a (2.81)
T n=odd np

2.4.2 Wave Equation

Having taken care of the time-dependence in Section 2.2, we now solve Helmholtz’s
equation (2.66), i.e.,

19 ( aU) 132U d*U
pIp

—)+—=—+—+KU=0 2.66
P +,028¢2+ 22+ (2.66)

Let

Up,¢,2) = R(p)F(P)Z(z) (2.82)
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Substituting Eq. (2.82) into Eq. (2.66) and dividing by RF Z/p? yields

p d
R dp P

wheren = 0, 1,2, ... and n? is the separation constant. Thus

and

dR\ p?d’z 27— 1 d*F
dp

F' +n’F =0

d ( dR\ p*d*Z 5,
T ey =
(pdp)+ Z dz? T =n

Dividing both sides of Eq. (2.84) by p? leads to

dR n? 1d*°Z
- P =222
(”dp)+< pz) zaz ~H

where 2 is another separation constant. Hence

and

If we let

1d’z
zdz2 "

the three separated equations (2.83), (2.85), and (2.86) become

F"—i—nzF:O,
Z//+IJ/ZZ=O,
p*R" + pR + ()»2,02 —n2) R=0

The solution to Eq. (2.88) is given by

or
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F(¢) = c1e/"? + cpe= "

F(¢) = c3sinng + c4cosng

Zd2 TP T T Faer T

2

(2.83)

(2.84)

(2.85)

(2.86)

(2.87)

(2.88)
(2.89)

(2.90)

(2.91a)

(2.91b)



Similarly, Eq. (2.89) has the solution
Z(2) = csel™ + cge™ I (2.92a)

or

Z(z) = c7sinnu + cgcosnit (2.92b)
To solve Eq. (2.90), we let x = Ap and replace R by y; the equation becomes
X2y +xy +x*=nP)y=0 (2.93)
This is called Bessel’s equation. It has a general solution of the form
y(x) = b1Jp(x) + b2Y(x) (2.94)

where J,(x) and Y, (x) are, respectively, Bessel functions of the first and second
kinds of order n and real argument x. Y, is also called the Neumann function. If x in
Eq. (2.93) is imaginary so that we may replace x by jx, the equation becomes

X2y 4+ xy = (x*+nP)y=0 (2.95)

which is called modified Bessel’s equation. This equation has a solution of the form
y(x) = b3l (x) + ba Ky (x) (2.96)

where I,(x) and K, (x) are respectively modified Bessel functions of the first and
second kind of order n. For small values of x, Fig. 2.5 shows the sketch of some
typical Bessel functions (or cylindrical functions) J, (x), Y, (x), I,(x), and K,,(x).

To obtain the Bessel functions from Eqs (2.93) and (2.95), the method of Frobenius
is applied. A detailed discussion is found in Kersten [4] and Myint-U [5]. For the
Bessel function of the first kind,

e¢]

B B (_1)m (x/z)n+2m
y=Ju(x) = mg) P PRt (2.97)

where I'(k 4+ 1) = k! is the Gamma function. This is the most useful of all Bessel
functions. Some of its important properties and identities are listed in Table 2.1. For
the modified Bessel function of the second kind

(x/2)" 2"

I,(x) = jian(]'X) = Z m (2.98)
m=U

For the Neumann function, when n > 0

2 1 ! —m—=1)! 2)2m—n
Vo) = ZJp(0)In 25— — Zo (n —m nz!of/ )
1 ac (_1)m(x/2)n+2m
i ,;) TGt m D PO Fpetml (299
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(a) Jn(x), n=0,1,2

Y, (%)

Yoy (x)
0.5

®Y, (x),n=0,1,2 (@K, (x),n=0,1,2

Figure 2.5
Bessel functions.

where y = 1.781 is Euler’s constant and

m

1
pmy =3+ pO)=0 (2.100)
k=1
Ifn =0,
2 Yx 2 o (=) tl(x/2)2m
Vo) = ZJo(x)In == + ~ > Tp(m) (2.101)
m=0
For the modified Bessel function of the second kind,
T 41 . . .

Kn(x) = 57 [Jn(jx) + jYn(jx)] (2.102)

© 2001 by CRCPRESSLLC



Table 2.1 Properties and Identities of Bessel Functions' J,, (x)
@) Jon(x) = (=1)"Jy(x)
(0) Jn(=x) = (=1)"Jy(x)
©) Jpr1(x) = zx—".ln x) — Ju—1(x) (recurrence formula)
@) A Tn(x) = $In-1(x) = Jug1 ()]
© L [x" Ty (x)] = X" Jy_1 (x)
O LI (0] = —x T g1 (1)
(@) Ja(x) = %fon cos(nf —xsinf)dd, n >0
(h) Fourier-Bessel expansion of f(x) :

f&) =) AdyOux), n=0

k=1

= m/(;axf(x)ln(kkx)dx, O<x<a
n+ i

where Ay are the positive roots in ascending order of magnitude of J, (A;a) = 0.

2
D Jo pIn(hip)Jn(rjp) dp = G Ipi1 (hia)?8;;
where A; and A ; are the positive roots of J, (Aa) = 0.

Ax

1. Properties (a) to (f) also hold for Y, (x).

Ifn >0,

12 (=) — m — DI(x/2)2m "

Kn(x) = EmZ:O —
byl y e [pm) + por+m) —2m Z2] - 2.103)
2 £ ml(n +m)! p p 2 '
andifn =0,
YE e (/27"
Ko(x) = ~Ip(x)In = + r;) 2 P (2.104)

Other functions closely related to Bessel functions are Hankel functions of the first
and second kinds, defined respectively by

HD (x) = J,(x) + jYu(x) (2.105a)
H® (x) = J,(x) — j¥u(x) (2.105b)

Hankel functions are analogous to functions exp(4jx) just as J, and Y, are analogous
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to cosine and sine functions. This is evident from asymptotic expressions

Ji(x)  x— oo, \/g cos(x —nmw/2 —m/4), (2.106a)
Yo(x) x—> 00, \/g sin(x — nw /2 — 7 /4) (2.106b)
HV(x) x— oo, \/gexp[j (x —nm/2 — /)], (2.106¢)
HP(x) x— oo, % expl—j(x —nw/2 — /4], (2.106d)

1
I(x) x— oo, \/Z—Tex’ (2.106¢)
x
1 —X
e (2.106f)

K,(x) x— o

21X

With the time factor /!, Hn(l) (x) and Hn(z) (x) represent inward and outward traveling
waves, respectively, while J, (x) or Y, (x) represents a standing wave. With the time
factor e~/ the roles of H,fl) (x) and H,EZ) (x) are reversed. For further treatment of
Bessel and related functions, refer to the works of Watson [6] and Bell [7].

Any of the Bessel functions or related functions can be a solution to Eq. (2.90)
depending on the problem. If we choose R(p) = J,(x) = J,(Ap) with Egs. (2.91)
and (2.92) and apply the superposition theorem, the solution to Eq. (2.66) is

Up.d.2) =Y Auudn(hp) exp(Ejng + juz) (2.107)
noou

Introducing the time dependence of Eq. (2.6a), we finally get

(o, ¢, 200 =D D Y AmnpSa(o)exp(E£jnd £ juz £ wr),  (2.108)

m n Q
where w = kc.
Example 2.3

Consider the skin effect on a solid cylindrical conductor. The current density distri-
bution within a good conducting wire (o /we >> 1) obeys the diffusion equation

v2J i
= o —
Y
We want to solve this equation for a long conducting wire of radius a. I
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Solution
We may derive the diffusion equation directly from Maxwell’s equation. We recall
that
VxH=J+J4
aD

where J = oK is the conduction current density and J; = 5 is the displacement

current density. For cwe >> 1, J; is negligibly small compared with J. Hence
VxH>~] (2.109)

Also,

oH
VxE=_—p2o
x Mot

B
VXVXE:VV~E—V2E=—,U,EVXH

Since V - E = 0, introducing Eq. (2.109), we obtain

VE = p— 2.110
Ly ( )
Replacing E with J/o, Eq. (2.110) becomes
ad
szz;wa—f, 2.111)

which is the diffusion equation.
Assuming harmonic field with time factor e/®!,

V2] = jopc) (2.112)

For infinitely long wire, Eq. (2.112) reduces to a one-dimensional problem in cylin-

drical coordinates:
10 aJ; .
o \P3, ) = ene Jz
0
or

p* T + pJ, — jopop*J, =0 (2.113)

Comparing this with Eq. (2.95) shows that Eq. (2.113) is the modified Bessel equation
of zero order. Hence the solution to Eq. (2.113) is

Jz(p) = c1lo(rp) + c2Ko(p) (2.114)

where ¢ and ¢, are constants and

2
?»=W'wuo=j”z%_ (2.115)
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andé =,/ ﬁ is the skin depth. Constant ¢, must vanish if J; is to be finite at p = 0.
Atp =a,
Jz(a) = cilo(ha) — ¢ = J:(a)/lo(ra)

Thus
lo(Ap)
J. = 2.116
2(p) = J:(a) ToGoa) ( )
If welet Ap = ]1/2[,0 = j!/2x, it is convenient to replace
Io(vp) = Io(j'x) = Jo(xe /%)
= berg(x) + jbeip(x) (2.117)

where ber( and beig are ber and bei functions of zero order. Ber and ber functions
are also known as Kelvin functions. For zero order, they are given by

00 2m

bero(x) = Z Os(mi’/n 2'))(2x/ 2™ 2.118)
00 2m

beig(x) = Z sin(m/2)(x/2) (2.119)

(m"?2
Using ber and bei functions, Eq. (2.116) may be written as

bero(x) + jbeip(x)
A 2.120
(0) = Jz(a )b ro(y) + jbeio(y) ( )

where x = \/zp/(S, y = «/Ea/(S. |

Example 2.4
A semi-infinitely long cylinder (z > 0) of radius a has its end at z = 0 maintained
at V,(a? — ,02), 0 < p < a. Find the potential distribution within the cylinder. [

Solution
The problem is that of finding a function V (p, z) satisfying the PDE

2V 19V 3%V
VWVt -— 4 — =0 (2.121)
pdp 372

subject to the boundary conditions:
i) V=Vo(a*—p» z=0,0<p=a,
(i) V — 0asz — o0, i.e., V is bounded,

@iii) V=0o0np =a,
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(iv) V is finite on p = 0.
Let V = R(p)Z(z) and obtain the separated equations

Z"—A2Z =0 (2.122a)
and

0’R" + pR + 22p*R =0 (2.122b)
where A is the separated constant. The solution to Eq. (2.122a) is
Zy = cre ™ + e (2.123)

Comparing Eq. (2.122b) with Eq. (2.93) shows that n = 0 so that Eq. (2.122b) is
Bessel’s equation with solution

R = c3Jo(Ap) + caYo(hp) (2.124)

Condition (ii) forces c; = 0, while condition (iv) implies ¢4 = 0, since Yy(Ap) blows
up when p = 0. Hence the solution to Eq. (2.121) is

oo
V(o,2) =) Ane " Jo(n ) (2.125)
n=0

where A, and A, are constants to be determined using conditions (i) and (iii). Im-
posing condition (iii) on Eq. (2.125) yields the transcendent equation

Jo Gna) = 0 (2.126)

Thus A, are the positive roots of Jyo(A,a). If we take A as the first root, Ay as
the second root, etc., n must start from 1 in Eq. (2.125). Imposing condition (i) on
Eq. (2.125), we obtain

V(p,0) =V, (> = p?) =" Audo Gurp)

n=1

which is simply the Fourier-Bessel expansion of V,(a? — ,02). From Table 2.1,
property (h),

-2 fa oV (a2 - ,02) Jo Gnp) dp (2.127)
T a0 Jo U " '

To evaluate the integral, we utilize property (e) in Table 2.1:

a
=a"J,(a), n>0

a
/ X" 1) dx = x" T, (x)
0 0
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By changing variables, x = Ap,

a a}’l
/0 p" Jn1(Ap)dp = TJn()Va) (2.128)

Ifn=1,

/ * p oGy dp = %Jl (ha) (2.129)
0

Similarly, using property (e) in Table 2.1, we may write

a 3 a ,02 9
/ P* Io(hp) dp = / O )] dp
0 0o A dp

Integrating the right-hand side by parts and applying Eq. (2.128),

3

¢ 3 a 2 (5
p Jo(kp)dp = —Ji(ka) — — | p"Ji(Ap)dp
0 A A Jo

a’ 2a?
= TJI(MI) - )L—ZJZ(KG)

Ja2(x) can be expressed in terms of Jo(x) and Jj(x) using the recurrence relations,
i.e., property (c) in Table 2.1:

2
J(x) = ;Jl (x) — Jo(x)

Hence

4 3 2a? akiy 2
/0 P adp = 25 | o) + (50— ) g | @130)

p aiy

Substitution of Egs. (2.129) and (2.130) into Eq. (2.127) gives

A 2V, 4aJ(A , 2a2J(A )
=7 | a) — —- a
" G 237 T
8V,
T ard i (a)

since Jo(A,a) = 0 from Eq. (2.126). Thus the potential distribution is given by

8Vo o €5 Jo(n )
Vip,z) = —_——
. 2) ; 3371 (hnat)
Example 2.5 _
Aplane wave E = E,e/ @ ~*)a_isincident on an infinitely long conducting cylinder
of radius a. Determine the scattered field. I
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Incident wave E!

conductor

Figure 2.6
Scattering by a conducting cylinder.

Solution

Since the cylinder is infinitely long, the problem is two-dimensional as shown in
Fig. 2.6. We shall suppress the time factor e/’ throughout the analysis. For the sake
of convenience, we need to express the plane wave in terms of cylindrical waves. We
let

o0
eI =TI = N a, Jy(p)el™? (2.131)

n=—oo

where a,, are expansion coefficients to be determined. Since e/"® are orthogo-
nal functions, multiplying both sides of Eq. (2.131) by ¢/% and integrating over
0 < ¢ <2m gives

2
/ e_/pCOS¢e/m¢ :27'rame(/0)
0

Taking the mth derivative of both sides with respect to p and evaluating at p = 0

leads to
2 ]—m . 2 1 m
n—zm = Jmm—Zm = ay =]

Substituting this into Eq. (2.131), we obtain

oo
eI = T (e

n=—oo

(An alternative, easier way of obtaining this is using the generating function for J, (x)
in Table 2.7.) Thus the incident wave may be written as

oo
Ep=Epe /= Ey 37 (=" Jntko)e!™? (2.132)

n=—oo
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Since the scattered field E} must consist of outgoing waves that vanish at infinity, it
contains
Jn(kp) = jYu(kp) = H,? (kp)

Hence

o0
E = Z A HP (kp)el™? (2.133)

n=—0oo
The total field in medium 2 is
E»=E! +ES

while the total field in medium 1 is £y = 0 since medium 1 is conducting. At p = a,
the boundary condition requires that the tangential components of £ and E» be equal.
Hence

Elp=a)+Ei(p=a)=0 (2.134)
Substituting Egs. (2.132) and (2.133) into Eq. (2.134),

oo

> [Eo(—j)”Jn(ka) + AnH,Ez)(ka)] oI — 0

n=—0oo

From this, we obtain
_ Eo(=))" Jn(ka)

H® (ka)

Finally, substituting A,, into Eq. (2.133) and introducing the time factor leads to the
scattered wave as

A, =

; J, (ka)H\" (kp)e'"
B = —Eeia, Y (—jy 8O o) 1
? @
n=—00 H,” (ka)

2.5 Separation of Variables in Spherical Coordinates

Spherical coordinates (r, 6, ¢) may be defined as in Fig. 2.7, where 0 < r <
00, 0 <6 <m, 0<¢ < 2m. In this system, the wave equation (2.5b) becomes
1 9 U 1 a U
VU4 KU = —— (P2 )+ — 7 (sing=—=
+ r2 dr (r ar + r2siné 30 -
U
-+ KU =0 (2.135)
r2sin? 6 9¢?
As usual, we shall first solve Laplace’s equation in two dimensions and later solve
the wave equation in three dimensions.
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P(r, 6, ¢)

Figure 2.7
Coordinate relation in a spherical system.

2.5.1 Laplace’s Equation

Consider the problem of finding the potential distribution due to an uncharged
conducting sphere of radius a located in an external uniform electric field as in Fig. 2.8.

Figure 2.8
An uncharged conducting sphere in a uniform external electric field.

The external electric field can be described as
E = E,a; (2.136)
while the corresponding electric potential can be described as
V=—/E-dl=—E0z
or

V = —E,rcosf (2.137)
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where V(6 = w/2) = 0 has been assumed. From Eq. (2.137), it is evident that
V is independent of ¢, and hence our problem is solving Laplace’s equation in two
dimensions, namely,

2 10 20V 1 0 . oV
VV=—=—1r + sind— ) =0 (2.138)

r2 or or r2sin6 90

subject to the conditions

V(@r,0)=—E,rcosf@ as r — o0, (2.139a)
V(a,0)=0 (2.139b)

We let
V(r,0) = R(r)H (9) (2.140)

so that Eq. (2.138) becomes

L d (r’R)) d (sin6H') = A (2.141)
——(r =— —(sin = .
R dr Hsin6 d6
where X is the separation constant. Thus the separated equations are
r’R"+2rR —AR =0 (2.142)
and
d . / .
@(sm9H)+ksm9H =0 (2.143)

Equation (2.142) is the Cauchy-Euler equation. It can be solved by making the
substitution R = r*. This leads to the solution

R,(r) = A"+ B,r~" D n=0,1,2,... (2.144)

with A = n(n 4 1). To solve Eq. (2.143), we may replace H by y and cos 6 by x so
that

Making these substitutions in Eq. (2.143) yields

d 2. dy _
E[(l—x )Ei|+n(n+1)y—0
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or
(1 —xz)y/’—ny’+n(n—|— Dy=0 (2.145)

which is the Legendre differential equation. Its solution is obtained by the method of
Frobenius [5] as

Yy = cnPu(x) + dnQn(x) (2.146)
where P,(x) and Q,(x) are Legendre functions of the first and second kind, respec-
tively.

N 1)k @n — 2k) 12k
Pu(x) = ];) TR Ty (2.147)

where N =n/2if nisevenand N = (n — 1)/2 if n is odd. For example,

Py(x) =1
Pi(x) = x =cos6

1 1
Pr(x) = 5(3x2 —1) = ;(cos20+1)
1 1
P3(x) = E(5x3 —3x) = §(5 cos 30 + 3 cos )
1 1
Pi(x) = g(35x4 —30x2+3) = 6—4(35 cos 46 + 20 cos 26 + 9)

1 1
Ps(x) = g(63x5 —70x3 + 15x) = 1—28(30 cos 6 + 35 cos 30 + 63 cos 50)

Some useful identities and properties [5] of Legendre functions are listed in Table
2.2. The Legendre functions of the second kind are given by

00 (x) = Py(x) Blniﬂ

— X

- p(n)]

=D +h)! 1 —xT
+,§m"(k> [T} (2.148)

where p(k) is as defined in Eq. (2.100). Typical graphs of P,(x) and Q,(x) are
shown in Fig. 2.9. Q, are not as useful as P, since they are singular at x = %1 (or
0 = 0, ) due to the logarithmic term in Eq. (2.148). We use Q, only when x # +1
(or@ # 0, ), e.g., in problems having conical boundaries that exclude the axis from
the solution region. For the problem at hand, 6 = 0, 7 is included so that the solution
to Eq. (2.143) is

H,(©) = P,(cos09) (2.149)
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Table 2.2 Properties and Identities of Legendre Functions'
@Forn > 1, P,(1) =1, P,(=1) = (=D",

)
P11 =0, Py, (0) = (=D" 22("81)!)2

(b) Pp(—x) = (=1)" Py (x)

© Pu(x) = s (2= )", 020
(Rodriguez formula)

@@+ DPip1(x) = Cn+ DxPr(x) —nPp1(x), n=1
(recurrence relation)

@ P,(x)=xP,_ (x)+nP,_1(x), n=>1

(0 Pa(x) = xPu (1) + 2=LP) (1), =1

@ P, () =P (x)=Q2n+ DPy(x), n=1

Pn+1_Pn—1

or [ Pn(x)dx = 25

(h) Legendre series expansion of f(x) :
o0
f@ =) APx), —l1<x<I
n=0

where

n+1 1
A, =T /f(x)Pn(x)dx, n=0
—1

2
If f(x) is odd,

1
Ap = n + 1)[ F()Pn(x)dx, n=0,24...

and if f(x) is even,
1
An=(2n+1)f f(x)Pn(x)dx, n=1,3,5...
0
(1) Orthogonality property

1
0
/Pn(x)Pm(x)dxz ., T
-1 1 =M

1. Properties (d) to (g) are also valid for O, (x).

Substituting Egs. (2.144) and (2.149) into Eq. (2.140) gives
V(. 0) = [Anr" + B,lr—<"+”] P, (cos0) (2.150)

To determine A, and B,, we apply the boundary conditions in Eq. (2.139). Since as
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+1 P
0
P,
Py
0
P,
1 |
-1 0 +1
X = cos 60—
+1 Q
Q, 3
Q
0
Q
l
-1 0 +1
X = cos 60—

Figure 2.9
Typical Legendre functions of the first and second kinds.

r— 00, V=—E,rcosf,itfollowsthatn =1and A} = —E,, i.e.,
B
V(r,0)=\—E,r + — cosf
r

Also since V = 0 when r = a, B; = E,a’. Hence the complete solution is

3
V(r.0)=—E, (r _ a—z) cos 6 (2.151)
r
The electric field intensity is given by
aV 10V
E=-VV=——a, ———a
or r 060
2a3 al .
=E, |1+ — cosfa, + E, |1 — = sin fay (2.152)
r T
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2.5.2 Wave Equation

To solve the wave equation (2.135), we substitute
U(r,0,¢) = R(r)H(O)F(¢) (2.153)

into the equation. Multiplying the result by r2 sin?6/RHF gives

sin0 d ( ,dR\ sin6 d (. dH
— |+ — [ sinf—
R dr dr H dob do

+ k*r?sin? 0 = “F i (2.154)

Since the left-hand side of this equation is independent of ¢, we let

1 d*F
_FW:mz’ m=20,1,2,...

where m, the first separation constant, is chosen to be nonnegative integer such that
U is periodic in ¢. This requirement is necessary for physical reasons that will be
evident later. Thus Eq. (2.154) reduces to

1d [ ,dR L2 1 d (. ,dH +m2 N
—— |\ re=- — | smf—— —_— =
Rdr \' dr H sin6 d deo sin® 0

where A is the second separation constant. Asin Egs. (2.141)to (2.144),A = n(n+1)
so that the separated equations are now

F’ +m*F =0, (2.155)
R”+§R’+[k2—@]zezo, (2.156)
and
1 d . , 2
ﬁ%(anH)—i—[n(n—l—l)— Sir129:|H=0 (2.157)
As usual, the solution to Eq. (2.155) is
F(¢) = c1e/™? 4 cpe™Im¢ (2.158a)
or
F(¢) = c3sinme + c4 cosme (2.158b)

If welet R(r) = r_l/zﬁ(r), Eq. (2.156) becomes

2
ﬁ//‘f‘lﬁ/‘i‘ kZ_(”+1/2) 13:0,
r r2

© 2001 by CRCPRESSLLC



which has the solution
R = Ar'2z,(kr) = BZyy1/2(kr) (2.159)

Functions z,(x) are spherical Bessel functions and are related to ordinary Bessel
functions Z,, 11,2 according to

Zn(x) =/ %Zn+l/2(x) (2.160)

In Eq. (2.160), Z;,+1/2(x) may be any of the ordinary Bessel functions of half-integer
order, Juy1/2(x), Ynt12(x), Int172(x), Kn1/2(x), Hn(ji—)l/Z(x)’ and H,g_)l/z(x)a
while z, (x) may be any of the corresponding spherical Bessel functions j, (x), y,(x),
in(x), k,(x), hf,l) (x),and hﬁ,z) (x). Bessel functions of fractional order are, in general,

given by
B 00 (_1)kx2k+v
Jy(x) = g AT TR D) (2.161)
_ Jy(x)cos(vm) — J_),
Yy(x) = (o) (2.162)
Ly(x) = (=) Ju(jx) (2.163)
Ky(x) =2 [i} (2.164)
2 | sin(vw)

where J_, and I_, are, respectively, obtained from Eqs. (2.161) and (2.163) by
replacing v with —v. Although v in Egs. (2.161) to (2.164) can assume any fractional
value, in our specific problem, v = n 4 1/2. Since Gamma function of half-integer
order is needed in Eq. (2.161), it is necessary to add that

2n)!

22”n!ﬁ’ nz0
Fn+1/2) = (1221 (2.165)
——Jr, n<0
(2n)!
Thus the lower order spherical Bessel functions are as follows:
. sin x COS X
Jo(x) = , yo(x) = — :
X X
1 el 2 e /x
hy () = —, e ) = —
JX JX
. sinh x e
io(x) = ; ko(x) = )
X x
. sinx cosx cosx  sinx
X)) =— - ; ) =—-——75 - :
X X X X
1 x+j) 2 x—=J) _;
h = -l W (x) = eI
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Other z,(x) can be obtained from the series expansion in Egs. (2.161) and (2.162) or
the recurrence relations and properties of z, (x) presented in Table 2.3.

Table 2.3 Properties and Identities of Spherical Bessel
Functions

@) Zpg1 = (2nx—+1)Zn x) —zp—1(x) (recurrence relation)
(b) %Zn(x) - ﬁ[nzn—l -+ Dzpp1(0)]

© 2 [xzp ()] = —nzn(x) + x2p—1 (x)

(@) "z, (0] = —x"Fz, 1 (x)

© 22y ()] = —x 241 (x)

() [ x" T2z, (x) dx = X"z, 41 (x)

@ [x' "z (0) dx = —x"" 21 (%)

M) [ x2[2a ()12 dx = 3x3[20(x) = 201 () 2n 1 (0)]

By replacing H in Eq. (2.157) with y, cos 8 by x, and making other substitutions
as we did for Eq. (2.143), we obtain

2 " ’ m2
(1—x)y —2xy +|:n(n+1)—m]y=0, (2.166)

which is Legendre’s associated differential equation. Its general solution is of the
form

Y(xX) = amn Py (%) + dpn Q) (x) (2.167)

where P)"(x) and Q}'(x) are called associated Legendre functions of the first and
second kind, respectively. Equation (2.146) is a special case of Eq. (2.167) when
m = 0. P"(x) and Q}}(x) can be obtained from ordinary Legendre functions P, (x)
and O, (x) using

m _ 2 m/2 d™
P™(x) = [1 —x ] = Pa() (2.168)
and
0" (x) = [1 —xZ]m/z - (2.169)
n dxm =" )

where —1 < x < 1. We note that

P(x) = Py(x),

0%(x) = Qu(x),
P'(x)=0 for m>n (2.170)
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Typical associated Legendre functions are:

Pl(x) = (1 —x*"? =sing ,
Pl (x) =3x(1 — x> =3cosfsin6 ,
P}(x) = 3(1 —x%) = 3sin’6 ,

3 3
Pi(x) = S - NH2Gx—1) = 5 sinf(5cost — 1),

Olx) =1 =xHY?|-1n

1 201/2
— (- X
Q== i+ T3

14+x 5x2—3x2
+
1—x  [1—x2)2

[3x  1+4+x 3x2—2i|

3
03 = -x)"2n

Higher-order associated Legendre functions can be obtained using Egs. (2.168) and
(2.169) along with the properties in Table 2.4. As mentioned earlier, Q" (x) is un-
bounded at x = %1, and hence it is only used when x = =1 is excluded. Substituting
Eqgs. (2.158), (2.159), and (2.167) into Eq. (2.153) and applying superposition theo-
rem, we obtain

Ur,0,¢,1) =
SN Apneza(kmer) Py (cos 0) exp(jme £ jot)  (2.171)

n=0m=0¢=0

Note that the products H (6) F (¢) are known as spherical harmonics.

Example 2.6
A thin ring of radius a carries charge of density p. Find the potential at: (a) point
P(0, 0, z) on the axis of the ring, (b) point P (r, 6, ¢) in space.

Solution
Consider the thin ring as in Fig. 2.10.
(a) From elementary electrostatics, at P (0, 0, z)

dl
V= / P
4meR
where dl = ad¢, R = +/a? + z2. Hence
2
padd ap
/0 drwela® + 22112 2e[a® 4 2]1/? ( )
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Table 2.4 Properties and Identities of Associated Legendre
Functions'

(@) Pu(x) =0, m=>n
@n—=1)xP" | (x)—(n+m—1)P" ,(x)
n—m

(b) P (x) =
(recurrence relations for fixed m)

© P (0) = G250 — (n—m + 2)(n +m — P
(recurrence relations for fixed n)
[?] k —k—
m —D*Q2n — 2k)!\x" n
(d)P,f”(x):“‘éi] /2 ) (=D"@2n )Lx
P k!(n — k)!(n — 2k — m)!

where [] is the bracket or greatest integer function, e.g., [3.54] = 3.
pm —nxPm
© %P’"(x) e e
6 LP"(x) =3[ —m+ D +m) P (x) — P (x)]

. mxP"(x)
€3] ﬁpn X)) = ——"7—

S [%] (—D¥@2n — 2k)1xn—2k=m=1
' kl(n — 1)!(n — 2k — m)!

k=0
(h) J5 P () = —(1 =22 L P ()

(i) The series expansion of f (x)

[0 = ZA P (x)

where A, = —<2"+1><" o / F) P (x) dx

2(n+m)!
W dm (n+m)!
Q)] mpn (x) = ml(n—m)!
x=1
(=D (n4m)!
dx'" P ()C)‘ = T 2"ml(n—m)!

&) P (x) = (—1)m mmlpm(xy, m=0,1,...,n

| (n+m)!
2 (m—m)!
1 PT(x)P"(x)dx = — k>
()/,1 TP dr = S
. 0, n#k
where 8, is the kronecker delta defined by 8, = {
s n =

1. Properties (b) and (c) are also valid for Q7' (x).
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(b) To find the potential at P(r, 6, ¢), we may evaluate the integral for the potential as
we did in part (a). However, it turns out that the boundary-value solution is simpler.
So we solve Laplace’s equation V2V = 0 where V (0, 0, z) must conform with the
result in part (a). From Fig. 2.10, it is evident that V' is invariant with ¢. Hence the
solution to Laplace’s equation is

o0
B
v=>" [Anr" + rn-tl] [A}, Pa(u) + B, 0n(u)]
n=0
where u = cos 6. Since Q, is singular atf = 0, 7, B,’l = (0. Thus
o0 D/
v=>" [c,’,rn + rn-:l] Py (u) (2.173)
n=0
Z
P(0,0,z) ¢ IP(L 0, 0)
z r i
YN
o L
d N

Figure 2.10
Charged ring of Example 2.6.

For0 <r <a, D;l = 0 since V must be finite at r = 0.
o
V=Y Cr"Piu) (2.174)
n=0

To determine the coefficients C),, we set = 0 and equate V to the result in part (a).
Butwhen9 =0, u =1, P,(1) = 1,and r = z. Hence

o0
ap ap
V@0,0,2) = ———— = — Cn7" 2.175
( ) ela® + 2] 2620 ¥4 ( )

Using the binomial expansion, the term [a* + z?]'/2 can be written as

1 217 1 1, 13 . 135
E[l+a_2i| —;[l—z(z/a) —l—ﬁ(z/a) —2_4_6(2/61) +]
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Comparing this with the last term in Eq. (2.175), we obtain

1

Co=1, C; =0, sz_ﬁ’ C3=0,
a
1-31 1-3-51
Cs=——, (C5=0, Cog=—————,...
YT 44 3 6 2-4-6ab
or in general,
(2n)!
Con = (D e

Substituting these into Eq. (2.174) gives

0 o= (—=1)"(2n)!

= — (r/a)Z”Pz,,(cos ), 0<r<a
2
2¢ = [n127]

Forr > a, C,; = 0 since V must be finite as r — 00, and

o D,
_ n
V=) P

n=0

Again,when 0 =0, u =1, P,(1)=1,r =z,

ap
—(n+1)
V(©0,0,z) = —26[612 STV E D,z
Using the binomial expansion, the middle term [a* + z2]~1/2
1/2
1 a? 1 1 1-3 1-3.5
B =—-|1== 24— (a/)* -
z|: +22:| z|: 2(a/z) +2.4(a/z)

Comparing this with the last term in Eq. (2.178), we obtain

or in general,

@2n)! ,
_ (_1\yn = 2n
Dy, = (=1 Gk
Substituting these into Eq. (2.177) gives

o0
ap (—=D)"(2n)!
= e W(G/F)Z” Py (cos6), r>a
n=0 ’
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6
6(a/z) +

(2.176)

(2.177)

(2.178)

can be written as

(2.179)



We may combine Egs. (2.176) and (2.179) to get

o
ay ga(r/a)” Py (cosh), 0<r<a

V=1 2=
> gnla/r)*" T Py (cos), r>a
n=0
where ol
yol n!
= (-1
& =D e
Example 2.7

A conducting spherical shell of radius « is maintained at potential V,, cos 2¢; deter-
mine the potential at any point inside the sphere.

Solution

The solution to this problem is somewhat similar to that of the previous problem except
that V is a function of ¢. Hence the solution to Laplace’s equation for 0 < r < a is
of the form

V= Z Z (amn COS M@ + by sinmep) (r/a)”" P (cos 6)

n=0m=0

Since cosm¢ and sinm¢ are orthogonal functions, a,, = 0 = b, except that
app #0. Hence atr = a

o
V, cos2¢p = cos2¢ Z ann Pn2 (cosb)
n=2

or

(0.¢]
Vo= amPl(x),  x=cosd
n=2
which is the Legendre expansion of V,,. Multiplying both sides by P,% (x) gives

2 (n+2)! r 1 N\ d?
2n+lmanz=\/o/71Pn(x)dx=V(,/;1(1—x)WPn(x)dx

Integrating by parts twice yields

_ 1
4y =y, L =2 (2P,,(1) —2P,(~1) — 2/ P,,(x)dx)
1

2 (n+2)! _

Using the generating functions for P, (x) (see Table 2.7 and Example 2.10) it is readily
shown that
Py(D) =1, Py(=1) = (="
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Also X X
/ P,(x)dx = / Py(x)P,(x)dx =0
-1 -1

by the orthogonality property of P,(x). Hence

(n—2)! n
ana = V,(2n + 1)(n -y [1-(=D"]
and
V =V, cos2¢ i(Zn + 1)(n —2)! [1 — (—1)"] (r/a)" P (cos6) |
= (n+2)! "
Example 2.8

Express: (a) the plane wave ¢/% and (b) the cylindrical wave Jo(p) in terms of
spherical wave functions.

Solution
(a) Since /% = ¢/ %39 i5 independent of ¢ and finite at the origin, we let

o0
et = el =% "4, j, (r) Py(cos 0) (2.180)
n=0

where a,, are the expansion coefficients. To determine a,,, we multiply both sides of
Eq. (2.180) by P, (cos 6) sin 6 and integrate over 0 < 6 < m:

T o 1
/ e/ p(cos6) sin 0d = Za,,j,,(r)f Py (x) Py (x) dx
0 n=0 —1
_ 0, n#m
zfﬁanjn (r), n=m

where the orthogonality property (i) of Table 2.2 has been utilized. Taking the nth
derivative of both sides and evaluating at r = 0 gives

T n
" "OP, 0)sin0dl = ——a,,— 2.181
J /0 cos” 6 P, (cos 0) sin 1 Jn(r) L ( )

The left-hand side of Eq. (2.181) yields
1 n+1 2
. 2" (nh)”
n n _ n

j /_lx P,(x)dx = PR (2.182)

To evaluate the right-hand side of Eq. (2.181), we recall that

o0
) T T (_l)mr2m+n
= —J' = —
In(r) =5z Ine12r) = /5 ”;) mIT(m + n + 3/2)22m+n+172
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Hence

di’l
ﬁjn(r)

B \/? n! _2"(n)? 2.183)
o V2T(@m+3/227172 " 2n+ 1) '

Substituting Egs. (2.182) and (2.183) into Eq. (2.181) gives
ap = j"2n+1)
Thus
. ) o
et =m0 = 3" j"(2n + 1) ju(r) Pa(cos 0) (2.184)
n=0

(b) Since Jo(p) = Jo(r sin ) is even, independent of ¢, and finite at the origin,

Jo(p) = Jo(rsinf) = anjzn(r)Pzn (cos ) (2.185)
n=0

To determine the coefficients of expansion b,, we multiply both sides by
P, (cos 6) sin 6 and integrate over 0 < 6 < . We obtain
7 0, m # 2n
f Jo(r sin@) P, (cosB) sin df = 2b,
0 4n +1

Jon(r), m=2n

Differentiating both sides 2n times with respect to r and setting r = 0 gives

, _ (CD"(n+ H2n - 1!

22n=1p1(n — 1)!
Hence
E (—D)"dn + 1H)(2n — 1)!
B =" )225,_”1;(”)(_’;), Y jon ) Prnteost) B
n=0 : ’
.|

2.6 Some Useful Orthogonal Functions

Orthogonal functions are of great importance in mathematical physics and engi-
neering. A system of real functions ®,(n = 0, 1,2, ...) is said to be orthogonal
with weight w(x) on the interval (a, b) if

b
/ wx)D,, (x)P,(x)dx =0 (2.186)
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for every m # n. For example, the system of functions cos(nx) is orthogonal with
weight 1 on the interval (0, ) since

s
f cosmxcosnxdx =0, m#n
0

Orthogonal functions usually arise in the solution of partial differential equations
governing the behavior of certain physical phenomena. These include Bessel, Leg-
endre, Hermite, Laguerre, and Chebyshev functions. In addition to the orthogonality
properties in Eq. (2.186), these functions have many other general properties, which
will be discussed briefly in this section. They are very useful in series expansion
of functions belonging to very general classes, e.g., Fourier-Bessel series, Legendre
series, etc. Although Hermite, Laguerre, and Chebyshev functions are of less impor-
tance in EM problems than Bessel and Legendre functions, they are sometimes useful
and therefore deserve some attention.

An arbitrary function f(x), defined over interval (a, b), can be expressed in terms
of any complete, orthogonal set of functions:

o
) =) Ap®y(x) (2.187)
n=0
where the expansion coefficients are given by

b
A, = NL/ wx) f(x)P,(x)dx (2.188)

and the (weighted) norm N, is defined as
b
N, = / w(x)®2(x) dx (2.189)
a

Simple orthogonality results when w(x) = 1 in Egs. (2.186) to (2.189).

Perhaps the best way to briefly describe the orthogonal functions is in table form.
This is done in Tables 2.5 to 2.7. The differential equations giving rise to each
function are provided in Table 2.5. The orthogonality relations in Table 2.6 are
necessary for expanding a given arbitrary function f(x) in terms of the orthogonal
functions as in Eqs. (2.187) to (2.189). Most of the properties of the orthogonal
functions can be proved using the generating functions of Table 2.7. To the properties
in Tables 2.5 to 2.7 we may add the recurrence relations and series expansion formulas
for calculating the functions for specific argument x and order n. These have been
provided for J, (x) and Y, (x) in Table 2.1 and Egs. (2.97) and (2.99), for P,(x) and
0, (x) in Table 2.2 and Egs. (2.147) and (2.148), for j,(x) and y,(x) in Table 2.3
and Eq. (2.160), and for P (x) and Q" (x) in Table 2.4 and Eqs. (2.168) and (2.169).
For Hermite polynomials, the series expansion formula is

(n/2] k n—2k
(—D)*n!(2x)
Hy (x) = kz_;} T (2.190)
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Table 2.5 Differential Equations with Solutions

Equations Solutions
X2y +xy 4+ @x%—n?y=0 Jo (%) Bessel functions
of the first kind
Y, (x) Bessel functions

of the second kind

H,Sl) (x) Hankel functions
of the first kind

H,Ez) (x) Hankel functions
of the second kind
X2y +xy — (2 4+n)y=0 L, (x) Modified Bessel functions
of the first kind
K, (x) Modified Bessel functions
of the second kind
X2y +2xy +[x2 —nn+ D]y =0 j,(x) Spherical Bessel functions
of the first kind
Yo (x) Spherical Bessel functions
of the second kind

(1—x%)y” —2xy+n(m+1)y=0 P,(x)  Legendre polynomials
0,(x) Legendre functions
of the second kind

(1 —x2)y" —2xy P (x)  Associated Legendre
2
+ [n n+1)— lrf7] y=0 polynomials
O (x)  Associated Legendre
functions of the second kind

v —2xy +2ny =0 H,(x) Hermite polynomials

xy"+ (0 —=x)y+ny=0 L,(x) Laguerre polynomials

xy"+m+1—-x)y +ny=0 L™(x)  Associated Laguerre
polynomials

(1 —x2)y" —xy +n’y=0 T, (x) Chebyshev polynomials
of the first kind

Un(x) Chebyshev polynomials
of the second kind

where [n/2] = N is the largest even integer < n or simply the greatest integer
function. Thus,

Ho(x) =1, Hi(x)=2x, Hy(x)=4x>—2, etc.
The recurrence relations are

Hy11(x) =2xH,(x) —2nH,_1(x) (2.191a)
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Table 2.6 Orthogonality Relations

Functions Relations
Bessel functions f(;l xJy(Aix) (A jx)dx = % [Jn+1 (Aia)]28ij
where A; and A ; are the roots of J,(Aa) =0

Spherical Bessel functions f fooo Jn(X) jm(x)dx = Z’fﬁﬁmn

Legendre polynomials f_ll P,(x)Pyp(x)dx = 2n2+1 Smn
Associated Legendre fi Pk(x)Pk (x)dx = %an
m k
polynomials f_ll B gx)fz @ dx = Yé'grj'mni;,amk
Hermite polynomials ffooo e H, (x)Hp (x) dx = 2"n!(/7)8mn
Laguerre polynomials foo “YLa(x)Ly (x)dx = Sup
Associated Laguerre fooo - kLk (x)Lk (x)dx = (n+k)'8mn
polynomials
0, m#n
Chebyshev polynomials f 1 T("l(xl?;q(/’;) dx=1m/2, m=n#0
T, m=n=0
0, m#£n
1 Uy()Un
f_l%dx_ /2, m=n#0
T, m=n=20
and
H,(x) =2nH,_(x) (2.191b)

For Laguerre polynomials,

n

n!(—x)k
Ly(x)= ; m (2.192)

so that
1 2
Loix)=1, Li(x)=—-x+1, Lg(x)zi(x —4x +2), etc.

The recurrence relations are

Lpt1(x) = 2n 41 —x)Ly(x) —n’Ly_1(x) (2.193a)
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Table 2.7 Generating Functions

Functions Generating function
R =[1-2xt+1t}]/?
oo
Bessel function exp [% (t - %)] = Z "I, (x)
n=—0oo
1 o0
Legendre polynomial = Z " P, (x)
. o emiA =) &
Associated Legendre polynomial o R Z " P, (x)
o0
Hermite polynomial exp(2tx — t2) = Z H (x)
n= 0
Laguerre polynomial exploxt/(=0)] xr/ -l _ Zt L,(x)

o0
Associated Laguerre polynomial % Z "L (x)
n=0

o
2
Chebyshev polynomial lkf—é =To(x)+2 Z "T,(x)

n=1

2
= Zr Unt1(x)

and

d 1

L) =~ [nL,, (x) — n2Ln+1(x)] (2.193b)
dx X

For the associated Laguerre polynomials,

n

dam (m + n)!(—x)k
w00 = (=D Ly (x) gk!(n_k)!(mHﬂ (2.194)
so that
x2 2
Li(x) = —x +2, L%(x)=7—3x+3, L5(x) = ——4x+6 etc.

Note that L (x) =0, m > n. The recurrence relations are

Ly, (x) = ﬁ [(Zn +m+1—-x)L;)(x)—(m+m)L)_ 1(x)] (2.195)
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For Chebyshev polynomials of the first kind,

(/2] kg en—2ke1 _ 20k
T =Y CL ™ 7d -2 o (2.196)
£ Tk — 20)! =t=

so that
Tox)=1, Ti(x)==x, Ta(x)=2x>—1, etc.

The recurrence relation is
Tht1(x) = 2xT (x) — Tp—1(x) (2.197)

For Chebyshev polynomials of the second kind,

N k-1 n—2k+271 _ 2\k—1
Un(x)zz( D¥'(n+ D! x (1 —x°)

2k + DI(n — 2k +2)!

, —1<x<1 (2.198)
k=0

where N = [%] so that

Uo(x) =1, U (x) = 2x, Us(x) =4x* — 1, etc.

The recurrence relation is the same as that in Eq. (2.197).

For example, if a function f(x) is to be expanded on the interval (0, co), Laguerre
functions can be used as the orthogonal functions with an exponential weighting
function, i.e., w(x) = e *. If f(x) is to be expanded on the interval (—o0, 00),
we may use Hermite functions with w(x) = e™* . As we have noticed earlier, if
f(x) is defined on the interval (—1, 1), we may choose Legendre functions with
w(x) = 1. For more detailed treatment of these functions, see Bell [7] or Johnson
and Johnson [8].

Example 2.9
Expand the function

fx) = Ixl, —l=x=1
in a series of Chebyshev polynomials. I

Solution
The given function can be written as

F) = —-x, —-1<x<0

X, O0<x<l1
Let
o0
f) =) ATy (x)
n=0
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where A, are expansion coefficients to be determined. Since f(x) is an even function

the odd terms in the expansion vanish. Hence

)= A0+ ) Ay To(x)

n=1

. . T2m .
If we multiply both sides by w(x) = ———— and integrate over —1 < x < 1, all
V1 —x2

terms in the summation vanish except when m = n. That is, from Table 2.6, the

orthogonality property of 7, (x) requires that

1 0, m#n
Ty (x) T ()
/—l/zdxz /2, m=n#0
2
71(1_)() T, m=n=0
Hence
I 1f<x)To(x) _2
f(x)Tzn(x) 4 xTzn .
1/2 _7, 0 (l_x)l/2 X

Since T}, (x) = cos(n cos™! x), it is convenient to let x = cos 6 so that
4 (% cosHcos2nd 4 (72
———(—sinf df) = — cos cos2nb do
T Jo

Aoy = —
2n /2 sin 6
4 (_1)n+1

4 (721

Hence
( 1)n+1

fe == 242 T

Example 2 1 0

Evaluate (9) atx =1landx = —1. [

Solution
This example serves to illustrate how the generating functions are useful in deriving

some properties of the corresponding orthogonal functions. Since

Plx) Pl

sinf /1 —x2
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direct substitution of x = 1 or x = —1 gives 0/0, which is indeterminate. But
Pl(x)=(1- xz)l/Q%Pn by definition. Hence

Plix) d

n —
. — 5  In
sin dx "’

i.e., the problem is reduced to evaluating d P, /dx at x = 1. We use the generating
function for P,, namely,

-12 &
(1—2xt+t2) Zztnpn(x)
n=0

Differentiating both sides with respect to x,

t S d
- __=N'r"—p, (2.199)
(1 —2xt +12)"? Xz(:) dx
When x =1,
1 > d
— =N "1 p, (2.200)
(1—1)3 nZ:(:) dx | _,
But

o0
(1= =143 +62+ 107 + 154 .= Y %(n + Dl @200
n=1

Comparing this with Eq. (2.200) clearly shows that

d
—P,

I =nn+1)/2

x=1

Similarly, when x = —1, Eq. (2.199) becomes

1 d
— =Y m1=p, (2.202)
(1 + t)3 nZZO dx x=-—1
But
ad n
A+ =1-3t+662— 103 +15t* — ... = Z(—l)"+1§(n + D!
n=1
Hence
d
Py = =D""m+12 |

x=—1
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Example 2.11

Write a program to generate Hermite functions H,, (x) for any argument x and order
n. Use the series expansion and recurrence formulas and compare your results. Take
x=050=<n=<15

Solution

The program is shown in Fig. 2.11. Equation (2.190) is used for the series expansion
method, while Eq. (2.191a) with Hy(x) = 1 and H;(x) = 2x isused for the recurrence
formula. Note that in the program, we have replaced n by n — 1 in Eq. (2.191) so that

Hy(x) =2xHy 1(x) —2(n — 1) H,_»(x)

The result of the computation is in Table 2.8. In this case, the two methods give
identical results. In general, the series expansion method gives results of greater
accuracy since error in one computation is not propagated to the next as is the case
when using recurrence relations.

Table 2.8 Results of the Program in Fig. 2.11
Values of H,(x) forx =0.5, 0<n <15

N  Series Expansion Recurrence Difference
0 1.00 1.00 0.00
1 1.00 1.00 0.00
2 —1.00 —1.00 0.00
3 —5.00 —5.00 0.00
4 1.00 1.00 0.00
5 11.00 1.00 0.00
6 31.00 31.00 0.00
7 —461.00 —461.00 0.00
8 —895.00 —895.00 0.00
9 6181.00 6181.00 0.00

10 22591.00 22591.00 0.00

11 —107029.00 —107029.00 0.00

12 —604031.00 —604031.00 0.00

13 1964665.00 1964665.00 0.00

14 17669472.00 17669472.00 0.00

15 —37341152.00 —37341148.00 —4.00

Generating functions such as this is sometimes needed in numerical computations.
This example has served to illustrate how this can be done in two ways. Special
techniques may be required for very large or very small values of x or n.
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Figure 2.11
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LR T T T
THIS PROGRAM GENERATES HERMITE’S FUNCTIONS BE(X) IN
TWO WAYS USING: 1) SERIES EXPANSION
2) RECURRENCE RELATION
THE TWO METHODS ARE COMPARED
X = ARGUMENT (FIXED IN THIS PROGRAM)
E = ORDER OF THE FUNCTION ( O < ¥ < 15 IN THIS PROGRAM)
R L

DIMERSION HS(0:50), HR(0:50)

X =0.5

EMAX = 15

WRITE(6,1)

FORMAT(2X,68(’-?),/)

WRITE(6,2)

FORMAT(3X,’§’,14X, ’SERIES HS(N)’,7X,’RECURRENCE BR(N)’,
7X,’DIFFERENCE’,/)

WRITE(6,1)

DO 60 N=0,NMAX

METHOD 1: SERIES EXPANSION FORMULA

SUM = 0.0

CALL FACTORIAL(N.FN)

CALL GREATEST(N,I)

DO 10 K=0,I

N =F- 2+K

CALL FACTORIAL(M,FM)

CALL FACTORIAL(X,FK)

A = ( ((-1.)**K)*FE+((2.#X)**M) )/( FK+FM )
FK*FM MAY BE TOO LARGE IF ¥ IS LARGE
SUM = SUM + A

CONTINUE

HS(N) = SUM

METHOD 2: RECURREECE FORMULA

HR(O) = 1.0

HR(1) = 2.#X

IF(§-1) 40,40,20

DO 30 I=2,¥

HR(I) = 2.0¢X+HR(I-1) - 2.*FLOAT(I-1)*HR(I-2)
CONTIKUE

CONTIBUE

DIFFERENCE = HS(N) - HR(E)

WRITE(6,50) N,HS(N) ,HR(N),DIFFERENCE
PRIET +,N,HS(¥),HR(N) ,DIFFERENCE

FORMAT(2X ,12,9X,F12.2,9X ,F12.2,9X .F10.2./)
CONTINUE

WRITE(6,1)

STOP

END

Program for Hermite function H,(x) (Continued).
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0001 CHExt 2225500 R XXX RN RN R RX SRR AR BRI BERRERRRBREREBRRRANER KRN ¥

0002 €
0003 € SUBROUTINE FOR CALCULATING !
0004 SUBROUTINE FACTORIAL(H,FN)
0005
0006 FE = 1.0
0007 IF(X.EQ.0) GO TO 20
0008 DO 10 I=1,¥
0009 FE = FE+FLOAT(I)
0010 10 CONTINUE
0011 20 RETURE
0012 END
0001 CEEEBERER SRR FERRERR RS R R AR R R R R R R RR R R R RN R KRR RN KRR R KRR R R R R X
0002 C SUBROUTINE FOR CALCULATING THE GREATEST INTEGER FUNCTION
0003 ¢ M = [X] WHERE X = /2 IN THIS PARTICULAR CASE
0004 SUBROUTINE GREATEST(MAX,M)
0008
0006 A = MAX/2
0007 M = IFIX(A)
0008 IF(M) 10,20,20
0009 10 M=HM-1
0010 20 RETURK
0011 EED
Figure 2.11

(Cont.) Program for Hermite function H, (x).

2.7 Series Expansion

As we have noticed in earlier sections, partial differential equations can be solved
with the aid of infinite series and, more generally, with the aid of series of orthogonal
functions. In this section we apply the idea of infinite series expansion to those PDEs
in which the independent variables are not separable or, if they are separable, the
boundary conditions are not satisfied by the particular solutions. We will illustrate
the technique in the following three examples.

2.7.1 Poisson’s Equation in a Cube

Consider the problem

v2v Lhld + v + v f( ) (2.203)
= =—f(x,y, :

ax2  9y? o 972 Ve
subject to the boundary conditions

V@O,y,2) =V(a,y,2) =V(x,0,2) =0
V(x,b,2) =V(x,y,00 =V(x,y,c) =0 (2.204)

where f(x,y,z), the source term, is given. We should note that the indepen-
dent variables in Eq. (2.203) are not separable. However, in Laplace’s equation,
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f(x,y,z) = 0, and the variables are separable. Although the problem defined by
Egs. (2.203) and (2.204) can be solved in several ways, we stress the use of series
expansion in this section.

Let the solution be of the form

o0 o o
V)= 330 Aupsin o sin ? sin 7% (2.205)
a &
m=1n=1 p=1

where the triple sine series is chosen so that the individual terms and the entire series
would satisfy the boundary conditions of Eq. (2.204). However, the individual terms
do not satisfy either Poisson’s or Laplace’s equation. Since the expansion coefficients
Aumnp are arbitrary, they can be chosen such that Eq. (2.205) satisfies Eq. (2.203). We
achieve this by substituting Eq. (2.205) into Eq. (2.203). We obtain

. mmx nwy . pnz
—X:X:X:Amnp(mn/a)2 sin smTy smp—
a

c

_ZZZA”’”P(””/b)Z sin mrx sm%smﬂ
c
—ZZZAmnp(Pﬂ/C)ZSiH sn%m prz =—f(x, 52

c

Multiplying both sides by sin(iwx/a) sin(jmy/b) sin(kmwz/c) and integrating over
O0<x<a,0<y<b,0<z<cgives

S A [ /@) + e /8)* + (/2]

¢ mmx | imx b nmy jmwy ¢ pnz kmz
sin sin — dx sin > sin > dy sin sin — dz
0 0

C C
km
///f(xyz)smﬂsmﬂTysdexdydz

Each of the integrals on the left-hand side vanishes except when m = i, n = j, and
p = k. Hence

mnp I:(mﬂ/a) +(l’lT[/b) —i—(pjf/c):l .....

imTx jmy km
f(x ¥, 2) sm—sm—sdexdydz

or
Amnp = i [(mﬂ/a)2 + (n/b)* + (1)71/0)2]_l

km
///f(xyz)smﬂsm]nTysm—dxdydz (2.206)
c

Thus the series expansion solution to the problem is in Eq. (2.205) with A, given
by Eq. (2.206).
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2.7.2 Poisson’s Equation in a Cylinder

The problem to be solved is shown in Fig. 2.12, which illustrates a cylindrical metal
tank partially filled with charged liquid [9]. To find the potential distribution V in the
tank, we let V; and V, be the potential in the liquid and gas portions, respectively,

1.e.,
V= Ve, O0<z<b (liquid)
N Ve, b<z<b+c (gas)

Thus we need to solve a two-dimensional problem:
1a [ 3V 3%V,
- ,0—[ + L= B , for liquid space
p 0p ap 972 €

19 [ aVy\ 8%V,
——|p=—=)+ 32 =0, for gas space

subject to

V=0,p=a (at the wall)
Vo=Vi,z=b (at the gas-liquid interface)
Ve aVy

=¢—,z2=> (at the gas-liquid interface)

3_1 0z

gas

liquid —>

o |
= \_/
Figure 2.12

A cylindrical metal tank partially filled with charged liquid.

JAVAY,
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Applying the series expansion techniques, we let

Ve = JoGnp)Fa(2) (2.208)

n=1
Ve = Z Jo(Anp) [Ap sinh[A, (b + ¢ — 2)] + B, cosh [A,(b+ ¢ —z)]] (2.208b)
n=1

where F},(z), A,, and B,, are to be determined.
Atz = b+ ¢, Vg =0, which implies that B, = 0. Hence, Eq. (2.208b) becomes

Ve = Z AnJo Gunp) sinh [h (b + ¢ — 2)] (2.209)

n=1
Substituting Eq. (2.208a) into (2.207b) yields
o
> do Gap) [F =3 Fa | = =2

€
n=1

If we let F) — A2F, = G, then
- p
2 Gunlo Gp) = == (2.210)
n=1
At p =a, V, = Vy = 0, which makes
Jo (Apa) = 0

indicating that A, are the roots of Jy divided by a. Multiplying Eq. (2.210) by
pJo(Anp) and integrating over the interval 0 < p < a gives

e¢]

a a
o
§jcnfo pJo Ganp) Jo Gunp) dp = —;”/0 pJo Oump) dp

n=1

The left-hand side is zero except when m = n.
¢ Loar 2 2 a’
/0 pI3 Gnp) dp = 30> | J§ (n) + I} Gn) | = T IF (ha)
since Jo(A,a) = 0. Also,

a
a
/ pJo (Amp) dp = —Ji (Ana)
0 )\n

Hence 5
a Py a
Gqff (hna) = —?”Eh (n@)
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or
2py

_eakn Ji1(Ana)

G, =
showing that G, is a constant. Thus
F) —22F, = G,

which is an inhomogeneous ordinary differential equation. Its solution is

G
F,(z) = Cy sinh (\,z) + D, cosh (A,z) — /\—;‘

n

But -
F(0)=0 — D, = E
Thus
> G
Vi = Z Jo (Anp) | Cp sinh (A,z) + — [cosh (A,2) — 1] (2.211)
n=1 A%
Imposing the conditions at z = b, i.e.,
Vi(p,b) = Vg(p, b)
we obtain
. . Gy
A, sinh (A,¢) = C,, sinh (A,b) + 2 [cosh (A,b) — 1] (2.212)
n
Also,
v, aVy
_ — er —_
dz z=b 9z z=b
gives
€Gp .
I A, cosh (A,¢) = —€,1,C,, cosh (A,,b) — - sinh (A,,b) (2.213)
n
Solving Egs. (2.212) and (2.213), we get
2p
A, = Rnlzn [cosh (A,b) — 1]
2
C, = R'OU [cosh (A,b) cosh (A, c) + €, sinh (A, b) sinh (A,c) — cosh (A, ¢)]
n€r

K,, = sinh (A,,b) cosh (A;,¢) + €, cosh (A,,b) sinh (A;,¢)
Ry = €,a)’ J1 (Ana)
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Substituting A, and C,, in Egs. (2.209) and (2.211), we obtain the complete solution
as

o0

2 sinh(A,z
V, = Z va Jo (np) [% [cosh (A, b) cosh (A, c€)

n€r n

n=1

~+€, sinh (A,,b) sinh (A,,c) — cosh (A,,¢)] — cosh (A,,2) + 1] (2.214a)

e¢]

Ve=2. RZH/;; Jo (Anp) [cosh (Anb) — 1] sinh [1,(b + ¢ — 2)] (2.214b)

n=1

2.7.3 Strip Transmission Line

Consider a strip conductor enclosed in a shielded box containing homogeneous
medium as shown in Fig. 2.13(a). If TEM mode of propagation is assumed, our
problem is reduced to finding V satisfying Laplace’s equation V2V = 0. Due to
symmetry, we need only consider one quarter-section of the line as in Fig. 2.13(b).
This quadrant can be subdivided into regions 1 and 2, where region 1 is under the
center conductor and region 2 is not. We now seek solutions V; and V; for regions 1
and 2, respectively.

V=

y
| b
2
V=0— — 1Y 5
] V=0
: i b
- w o w ] a ?
2 2 2 yoo 2
(@
y
Vo X
o—r------
|
@l @ < V=0
-b I
2 I
0 w a
2 2

(b
Figure 2.13
Strip line example.
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If w >> b, region 1 is similar to parallel-plate problem. Thus, we have a one-
dimensional problem similar to Eq. (2.14) with solution

Vi=aiy+a

Since Vi(y =0) =0and Vo(y = —=b/2) = V,,a =0,a; = -2V, /b. Hence

=2V,
Vitx,y) = —— (2.215)
For region 2, the series expansion solution is of the form
> nmw niw
Valx, y) = Z A, sinTysinhT(a/Z—x), (2.216)

n=1,3,5

which satisfies Laplace’s equation and the boundary condition along the box. No-
tice that the even-numbered terms could not be included because they do not sat-
isfy the boundary condition requirements about line y = 0, ie., E,(y = 0) =
—aVa/ 3y|V:O # 0. To determine the expansion coefficients A, in Eq. (2.216), we
utilize the fact that V must be continuous at the interface x = w/2 between regions 1
and 2, i.e.,

Vitx = w/2, Y) =Wx= w/Z’ y)

or
2V,y

o
T T
= Z Ansin%sinh’;—b(a—w),

n=odd

which is Fourier series. Thus,

nmw 2 (Y2 2v,y | nmy 8V, sin Z*
A, sinh (g —w) = —= VoY in Y 4 =SSN
n Sin 2b(a w) b/b/z b sin 3 y 7.2
Hence
8V, sin &-
A, = °” 2 (2.217)

n2m? sinh 5% (a — w)

It is instructive to find the capacitance per unit length C of the strip line using the fact
that the energy stored per length is related to C according to

1
W= 5CVO2 (2.218)

where

1 1
W = E/D.Edvz 56/|E|2dv (2.219)
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For region 1,
A% A% 2V,

E=-VV=——a, — —a,=—a,
ax oy b
Hence
1 (w2 o 472 V2
2 Ji—o Jy=—pp2 b 2b
For region 2,
N ov nnA hnﬁ( P )si nwy
= = — A, cosh —(a/2 — x) sin —=
* 0x b b
oV
Ey:_5:—Z%Ansinh%(aﬂ—x)cos%

1 2 2
Wo = e (E2+ E2) dxay
1 /0 /a/Z mnn,2
—€ —— A AL .
2 y=—b/2 Jx=w/2 Xn: ; b2 e

[sinh2 %(a /2 — x) sinh? %(a /2 — x) cos

mimy nmwy
Ccos 7

. nmwy
sin T] dxdy

mmy

+ cosh? %(u /2 — x) cosh? %(a /2 — x)sin

where the double summation is used to show that we are multiplying two series which
may have different indices m and n. Due to the orthogonality properties of sine and
cosine functions, all terms vanish except when m = n. Thus

Wy, = —¢
2
2 n=odd b 2 w/2

+ cosh? %(a/Z — x)] dx

1 S 2,242 b/2 aj2
n-m nL/ [Sinhz%(a/2—x)

1 X n?r?A2 b nmw

= —¢ — cosh —

2 4b  nmw 2b
n=odd

(a — w) sinh %(a —w)

Substituting for A, gives

W i BV’ coth ™% (@ —w) (2.221)
= —F= CO —(a —w .
2 PP 2b

n=1,3,5
The total energy in the four quadrants is

W =4(W; + W)
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Thus

_ W (W1 + W)

4w N 64 i 1 "¢ ) 2.222)
=€ | — — — CO —a —w .

b n3n_135n3 2b

The characteristic impedance of the lossless line is given by

7 - Ve A Hr€r _\/EL
T Cc T cC T VecC/e
or
120
Zy = (2.223)
4w 64 1 niw
ﬁ 74—;”_12;5;?(:0&1%(0_1”)

where ¢ = 3 x 103 m/s, the speed of light in vacuum, and px, = 1 is assumed.

Example 2.12
Solve the two-dimensional problem

vy = -2
€o
where
ps = x(y — 1) nC/m?
subject to
V(x,0) =0, Vix,b)=V,, VO,)=0=V(@y [
Solution
If we let
Vv, =0, (2.224a)

subject to

Vi(x,0) =0, Vilx,b) =V,, Vi(0,y) =0=V(a,y) (2.224b)
and

Vv, = -2 (2.2252)
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subject to

Va(x,0) =0, Va(x,b) =0, V20,y) =0=V(a,y) (2.225b)

By the superposition principle, the solution to the given problem is

V=Vi+W (2.226)
The solution to Eq. (2.224) is already found in Section 2.3.1, i.e.,
4V, X sin ZZX sinh 27X
Vilx,y) = 2.227
10 y) = — _1235 nsmhm;_}, (2.227)

The solution to Eq. (2.225) is a special case of that of Eq. (2.205). The only difference
between this problem and that of Eqs. (2.203) and (2.204) is that this problem is two-
dimensional while that of Egs. (2.203) and (2.204) is three-dimensional. Hence

Va(x, y) = Z Z A sin 22 sin ””Ty (2.228)

m=1n=1

where, according to Eq. (2.206), A,,, is given by

A = [/ + (m,/b)z]—l

//f(x y)sin -

But f(x,y) = x(y — 1)/€o nC/m?,

[/ [ st

107°
= / xsin—xdx/ (y—l)sinm—ydy
€ Jo a 0 b

10~° a? cosmm b2 cosnr b
= — - + —[cosnm — 1]
nmw

sm T dx dy (2.229)

sm — dx dy

10-2/367 mm nm
367 (— 1)t q2p? 1 R
- 1—~[1—(=1)"] (2.230)
mnm? b

since cos nit = (—1)". Substitution of Eq. (2.230) into Eq. (2.229) leads to

~1 (=1)"*"144ab (1 1

Apn = [(mrr/a)2 + (nn/b)z] -3 [1- (—l)n]) (2.231)

mniw

Substituting Eqgs. (2.227) and (2.228) into Eq. (2.226) gives the complete solution as

Vo = sinZZXsinh 7Y 20X nwx . nwy
V(ix,y)= > — + ) Apasin ——sin == (2.232)
n=1,3,5 a m=1n=1

where A, is in Eq. (2.231). |
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2.8 Practical Applications

The scattering of EM waves by a dielectric sphere, known as the Mie scattering
problem due to its first investigator in 1908, is an important problem whose analytic
solution is usually referred to in assessing some numerical computations. Though
the analysis of the problem is more rigorous, the procedure is similar to that of
Example 2.5, where scattering due to a conducting cylinder was treated. Our treatment
here will be brief; for an in-depth treatment, consult Stratton [10].

2.8.1 Scattering by Dielectric Sphere

Consider a dielectric sphere illuminated by a plane wave propagating in the z
direction and E polarized in the x direction as shown in Fig. 2.14. The incident wave

Figure 2.14
Incident EM plane wave on a dielectric sphere.

is described by

El = E e/ @)y, (2.233a)
. E, .
H = 2%, (wt—kz)ay (2.233Db)
n

The first step is to express this incident wave in terms of spherical wave functions as
in Example 2.8. Since

a, = sinf cos ¢a, + cos O cos pay — sin pay ,

the r-component of E/, for example, is

i i . .Cos¢p 0 .
E =cos¢sinfE;, = Eogfw’J_ (e—Jkrcos(?)
Jjkr 060
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Introducing Eq. (2.184),

o0
. . COS d
El = E,,e/“”jT;p §_ (=)' @+ 1) ju(kr) =5 Pa(cos 0)

But 9P
n 1
—p
96
hence
o
Ei = Eoef'w’% 3 ()" @n + 1) ju(kr) P (cos 0) (2.234)
n=1

where the n = 0 term has been dropped since PO1 = 0. The same steps can be taken
to express E é and E :15 in terms of the spherical wave functions. The result is

E —a.E, ej(wt—kz)

ot )] (D

H' =a,H,el @)
el (1) (1)
D s Mw - Npw] e

where

1
M, (k) = el (kr) P} (cos 0) cos pag

P! (cos@
— (kr)$ sin pa (2.236)
1
N, (k) = %ZH (kr) P (cos 0) cos pa,
r
N 1 [ kr )]aP,}(cose) sa
——|zn ——  CO0S
kror 26 o
+ o sind r [z,, (kr)]P (cos 0) sin pay (2.237)

The superscript (1) on the spherical vector functions M and N in Eq. (2.235) indicates
that these functions are constructed with spherical Bessel function of the first kind;
i.e., z,(kr) in Egs. (2.236) and (2.237) is replaced by j,(kr) when M and N are
substituted in Eq. (2.235).

The induced secondary field consists of two parts. One part applies to the interior
of the sphere and is referred to as the transmitted field, while the other applies to the
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exterior of the sphere and is called the scattered field. Thus the total field outside the
sphere is the sum of the incident and scattered fields. We now construct these fields
in a fashion similar to that of the incident field. For the scattered field, we let

_E e/‘“’Z( 2"* ror Ty LM 6+ 5N ] (2.238)

n2ntl @ ND

where a, and b,, are expansion coefficients and the superscript (4) on M and N shows
that these functions are constructed with spherical Bessel function of the fourth kind
(or Hankel function of the second kind); i.e., z,(kr) in Egs. (2.236) and (2.237) is
replaced by h” (k) when M and N are substituted in Eq. (2.238). The spherical
Hankel function has been chosen to satisfy the radiation condition. In other words,
the asymptotic behavior of hf,z) (kr), namely,

—kr

hPkr)y  ~ j"“—ekr, (2.239)

when combined with the time factor ¢/“’, represents an outgoing spherical wave (see
Eq. (2.106d)). Similarly, the transmitted field inside the sphere can be constructed as

ot n 2n + 1 0 ) "
ot , 2n+1 ) . "
B e’ Z( PYPEN [CnMn (k1) — jdaN, (kl)] (2.240b)

where ¢, and d, are expansion coefficients, kj is the propagation constant in the
sphere. The functions M,(ll) and N,gl) in Eq. (2.240) are obtained by replacing z, (kr)
in Eq. (2.237) by j,(k1r); j, is the only solution in this case since the field must be
finite at the origin, the center of the sphere.

The unknown expansion coefficients a,, b,, ¢,, and d,, are determined by letting
the fields satisfy the boundary conditions, namely, the continuity of the tangential
components of the total electric and magnetic fields at the surface of the sphere. Thus
atr = a,

x (E" FE — E’) =0 (2.241a)

0 (2.241b)

x (H" LH - H’)
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This is equivalent to

E,+E)=E), r=a (2.242a)
Ej + E}, = E}, r=a (2.242b)
Hy+H=H) r=a (2.242¢)
Hj, + Hj = Hj, r=a (2.2424d)

Substituting Egs. (2.235), (2.238), and (2.240) into Eq. (2.242), multiplying the re-

sulting equations by cos ¢ or sin¢ and integrating over 0 < ¢ < 2m, and then
i 1

multiplying by dd_Om or Sin"é and integrating over 0 < 6 < 7, we obtain
Jn(ka) + a,h? (ka) = cp ju (kia) (2.243a)
1 thajnka)] + anpts [kah P ka) | = eapt thiajn i) (2.243b)
11 jn(ka) + bupur hE (ka) = dyprjn (k1) (2.243¢)
k [kajp(ka)] + bpk [kahff) (ka)]/ — doky [kyajn (k1a)] (2.243d)

Solving Egs. (2.243a) and (2.243b) gives a, and c,, while solving Egs. (2.243c)
and (2.243d) gives b, and d,,. Thus, for u = p, = u1,

. jn(ma)[aj;(a)]’ - jnga)[majn(ma)]’ (22442)
Jnma)[ah$ @)) — h? (@) [maj, (ma))
. . /o 2 . . /
b = (g&a)[ma@ (ma)] —m J (ma)[oun( gm (2244)
hy” (o) [majy (ma)) — m?2 j, (ma)[ehy,” (o))
jla
cp = (2.244c)
WP (@) [maj,(ma)l — ju(ma)ahy (@)
dy = i/ (2.244d)
W (@) [maj (ma)l — m2 j, (ma)[ah (@)

where @ = ka = 2ma /) and m = k;/k is the refractive index of the dielectric, which
may be real or complex depending on whether the dielectric is lossless or lossy. The
primes at the square brackets indicate differentiation with respect to the argument
of the Bessel function inside the brackets, i.e., [xz,(x)] = %[xzn (x)]. To obtain
Egs. (2.244c) and (2.244d), we have made use of the Wronskian relationship

2 ' 2
Jn @) [xhP )| = 1P () i )] = =/ (2:245)
If the dielectric is lossy and its surrounding medium is free space,

k} = o, (wer — jo), kK = 0’ o6, (2.246)
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so that the (complex) refractive index m becomes

k1 .
kzx/e_cz €1 — ]

01

m = —

=m' — jm” (2.247)
we,

The problem of scattering by a conducting sphere can be obtained as a special
case of the problem considered above. Since the EM fields must vanish inside the
conducting sphere, the right-hand sides of Eqs. (2.242a), (2.242b), (2.243a), and
(2.243d) must be equal to zero so that (¢, = 0 = d,)

. Jn(@)

n = hl(12) (a) (22483.)
- _—[“J"z ()] (2.248b)
[wh? ()Y

Thus we have completed the Mie solution; the field at any point inside or outside
the sphere can now be determined. We will now apply the solution to problems of
practical interest.

2.8.2 Scattering Cross Sections

Often scattered radiation is most conveniently measured by the scattering cross
section Qyc, (in meter?) which may be defined as the ratio of the total energy scattered
per second W; to the energy density P of the incident wave, i.e.,

Osca = Ws (2.249)
sca — ? .

The energy density of the incident wave is given by

E2 1
P=-0=_p2 /% (2.250)
2n 2 "

The scattered energy from the sphere is

1 2r  pm
W, = ERe/ / [Eoty — EsHi | rsine do dg
0 0

where the star sign denotes complex conjugation and field components are evaluated
at far field (r >> a). By using the asymptotic expressions for spherical Bessel
functions, we can write the resulting field components as

ES = nHS = — L E,e/ @) co5 6.5, (0) (2.251a)
0 ¢ kr
—E} = nHj = —kJ—rEoej @—kr) gin ¢S () (2.251b)

© 2001 by CRCPRESSLLC



where the amplitude functions S1(6) and S>(6) are given by [11]

o0

2n+1 an i dPl(cose)
510) =S T (9 plicosg) + b, T n ST 2252
O =2 o <sin9 n(cos) +bn "0 (2.2522)

n=1
00

2n+1 ( by dP)(cos0)
SO =Y —— P (cos6 Rl At 2.252b
20) Zn(n+1) <sin9 n (cos0) +an—=75 ( )

n=1

Thus,
7TE2 T 2 2 .
Wy =S Re/o (|Sl(0)| +15:0)] )smede

This is evaluated with the help of the identities [10]

/” dP,}dP,},+ L pipt)singdo
S
0 do do sin29 nom

0, n#m
= 2 (m+ 1!
i 1), —
il et n=m
and
™ (dPLdP) P! P\
f _m_ny M Asingdd =0
o \sinf@ do sinf do
We obtain
TE? &
W= >+ 1) (1an + 16,) (2.253)
n=1

Substituting Egs. (2.250) and (2.253) into Eq. (2.249), the scattering cross section is
found to be

2 &
Oa =13 2+ ) (lanl” + 1) (2:254)
n=1

Similarly, the cross section for extinction Qex (in meterz) is obtained [11] from
the amplitude functions for & = 0, i.e.,

4

Oext = 2 Re §(0)

or

2 o
Qexe = Ty Re Y (2n+ 1) (@ +y) (2.255)

n=1
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where

1 oo
S(0) = $1(0°) = $(0°) = 5 3 @+ 1) (@n +b) (2.256)

n=1
In obtaining Eq. (2.256), we have made use of
P}
sin 6

_ ar}

o=0 49

=nn+1)/2
6=0

If the sphere is absorbing, the absorption cross section Qyps (in meter?) is obtained
from

Qabs = Qext — Osca (2.257)

since the energy removed is partly scattered and partly absorbed.

A useful, measurable quantity in radar communications is the radar cross section
or back-scattering cross section oy, of a scattering obstacle. It is a lump measure of
the efficiency of the obstacle in scattering radiation back to the source (6 = 180°).
It is defined in terms of the far zone scattered field as

) |ES|2
E2

o

op =4mr , 0=m (2.258)

From Eq. (2.251),
2 2 2
o =25 [1S1 P + 152007
But

1 00
=S81() = $2(w) = 3 Z(—l)”(2n + 1) (an — by)
n=1

where we have used

P! dp!
. —_n =(—D"n(n+1)/2
sin6 |,__ o |,_.
Thus
0 2
T

=13 z;(—l)”(Zn + 1) (ap, — by) (2.259)

n=

Similarly, we may determine the forward-scattering cross section (6 = 0°) as

2
of = k_Z (1107 + 1520

Substituting Eq. (2.256) into this yields
2

> @n+ 1) (an + bn) (2.260)

n=1

T
O'f:k—z
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2.9 Attenuation Due to Raindrops

The rapid growth in demand for additional communication capacity has put pressure
on engineers to develop microwave systems operating at higher frequencies. It turns
out, however, that at frequencies above 10 GHz attenuation caused by atmospheric
particles can reduce the reliability and performance of radar and space communication
links. Such particles include oxygen, ice crystals, rain, fog, and snow. Prediction of
the effect of these precipitates on the performance of a system becomes important.
In this final subsection, we will examine attenuation and phase shift of an EM wave
propagating through rain drops. We will assume that raindrops are spherical so that
Mie rigorous solution can be applied. This assumption is valid if the rate intensity is
low. For high rain intensity, an oblate spheroidal model would be more realistic [12].

The magnitude of an EM wave traveling through a homogeneous medium (with N
identical spherical particles per unit volume) in a distance £ is given by "¢, where
y is the attenuation coefficient given by [11]

Y = NQext
or
NA?
y = —Re S(0) (2.261)
T
Thus the wave is attenuated by
A =10log, pvi y£10logye

or
A=4343y¢  (indB)

The attenuation per length (in dB/m) is

A =4.343y
or
22N
A =4343""Re 5(0) (2.262)
T

Similarly, it can be shown [11] that the phase shift of the EM wave caused by the

medium is 5

N
o =— o Im S(0) (in radians/unit length)
b4
or
AN 180 .
®=——ImSO0)— (in deg/m) (2.263)
2 T
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Table 2.9 Laws and Parsons Drop-size Distributions for Various
Rain Rates

Rain Rate (mm/hour)

Drop 025 125 25 5 125 25 50 100 150

diameter Percent of total volume

(cm)

0.05 280 109 73 47 26 1.7 1.2 1.0 1.0

0.1 50.1 37.1 278 203 11.5 7.6 54 46 4.1

0.15 182 31.3 328 310 245 184 125 88 7.6

0.2 3.0 13.5 19.0 222 254 239 199 139 117
0.25 07 49 179 11.8 17.3 199 209 17.1 139
0.3 1.5 33 57 10.1 12.8 156 184 17.7
0.35 0.6 1.1 25 43 82 109 150 16.1
0.4 02 0.6 1.0 23 35 67 9.0 11.9
0.45 02 05 1.2 21 33 58 7.7

0.5 03 0.6 1.1 1.8 3.0 36

0.55 02 05 1.1 1.7 22

0.6 03 05 1.0 1.2

0.65 02 0.7 1.0

0.7 0.3

To relate attenuation and phase shift to a realistic rainfall rather than identical
drops assumed so far, it is necessary to know the drop-size distribution for a given
rate intensity. Representative distributions were obtained by Laws and Parsons [13]
as shown in Table 2.9. To evaluate the effect of the drop-size distribution, suppose
for a particular rain rate R, p is the percent of the total volume of water reaching the
ground (as in Table 2.9), which consists of drops whose diameters fall in the interval
centered in D cm (D = 2a), the number of drops in that interval is given by

N. = pN(D) (2.264)

The total attenuation and phase shift over the entire volume become

2
A= 043432 . 106 Y pN(D)ReS©)  (dB/km) (2.265)
T
2
= —9% -10°) " pN(D)Im S(0)  (deg/km) (2.266)
4

where A is the wavelength in cm and N (D) is the number of raindrops with equivo-
lumic diameter D per cm>. The summations are taken over all drop sizes. In order to
relate the attenuation and phase shift to the rain intensity measured in rain rate R (in
mm/hour), it is necessary to have a relationship between N and R. The relationship
obtained by Best [13], shown in Table 2.10, involves the terminal velocity u (in m/s)
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of the rain drops, i.e.,

R=u-N- (volume of a drop)
4 3
= uN% (in m/s)
or
R=6xNuD’-10°  (mm/hr)
Thus
N(D) = R 1077 (2.267)
~ 6ruD3 '

Substituting this into Egs. (2.265) and (2.266) leads to

A2 p
A=4335R > - 57ReS0) (dB/km) (2.268)
® = -90 » RY P _1mS@©)  (deg/km) (2.269)
= — — m m .
73 6uD3 CERI

where N (D) is in per cm?, D and A are in cm, u is in m/s, p is in percent, and S(0)
is the complex forward-scattering amplitude defined in Eq. (2.256). The complex
refractive index of raindrops [14] at 20°C required in calculating attenuation and
phase shift is shown in Table 2.11.

Table 2.10 Raindrop Terminal

Velocity

Radius (cm) Velocity (m/s)
0.025 2.1
0.05 3.9
0.075 5.3
0.10 6.4
0.125 7.3
0.15 7.9
0.175 8.35
0.20 8.7
0.225 9.0
0.25 9.2
0.275 9.35
0.30 9.5
0.325 9.6

Example 2.13
For ice spheres, plot the normalized back-scattering cross section, o, /ma?, as a
function of the normalized circumference, « = 2mwa/A. Assume that the refractive
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Table 2.11 Refractive Index of Water at 20°C
Frequency (GHz) Refractive index (m = m’ — jm”)

0.6 8.960 — j0.1713
0.8 8.956 — j0.2172
1.0 8.952 — j0.2648
1.6 8.933 — j0.4105
2.0 8.915 — j0.5078
3.0 8.858 — j0.7471
4.0 8.780 — j0.9771
6.0 8.574 — j1.399
11 7.884 — j2.184
16 7.148 — j2.614
20 6.614 — j2.780
30 5.581 — j2.848
40 4.886 — j2.725
60 4.052 — j2.393
80 3.581 — j2.100
100 3.282 — j1.864
160 2.820 — j1.382
200 2.668 — j1.174
300 2.481 — j0.8466

index of ice is independent of wavelength, making the normalized cross section for
ice applicable over the entire microwave region. Take m = 1.78 — j2.4 x 1073 at
0°C.

Solution
From Eq. (2.259),

2

D (=" @n+1) (an — by)

n=1

4
op = —=
k2

Since @ = ka, the normalized back-scattering cross section is

2
op 1
wa? o

> (=D"@n+ 1) (an — by)

n=1

(2.270)

Using this expression in conjunction with Eq. (2.244), the subroutine SCATTERING
in the FORTRAN code of Fig. 2.16 was used as the main program to determine
op/ma* for 0.2 < a < 4. Details on the program will be explained in the next
example. It suffices to mention that the maximum number of terms of the infinite
series in Eq. (2.270) was 10. It has been found that truncating the series at n = 2«
provides sufficient accuracy. The plot of the normalized radar cross section versus o
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is shown in Fig. 2.15. From the plot, we note that back-scattering oscillates between
very large and small values. If o is increased further, the normalized radar cross
section increases rapidly. The unexpectedly large cross sections have been attributed
to a lens effect; the ice sphere acts like a lens which focuses the incoming wave on
the back side from which it is reflected backwards in a concentrated beam. This is
recognized as a crude description, but it at least permits visualization of a physical

process which may have some reality. |

10

1k
Nﬁ

£
=)
5

01r

001 1 1 1 1 1 1 1 1 ]
0 5 1 1.5 2 2.5 3 35 4 4.5

Figure 2.15
Normalized back-scattering (radar) cross sections @« = 2a /A for ice at 0°C.

Example 2.14

Assuming the Laws and Parsons’ rain drop-size distribution, calculate the attenuation
in dB/km for rain rates of 0.25, 1.25, 2.5, 5.0, 12.5, 50.0, 100.0, and 150.0 mm/hr.
Consider the incident microwave frequencies of 6, 11, and 30 GHz.

Solution
The FORTRAN code developed for calculating attenuation and phase shift of mi-
crowaves due to rain is shown in Fig. 2.16. The main program calculates attenuation
and phase shift for given values of frequency and rain rate by employing Eqs. (2.268)
and (2.269). For each frequency, the corresponding value of the refractive index
of water at 20°C is taken from Table 2.11. The data in Tables 2.9 and 2.10 on the
drop-size distributions and terminal velocity are incorporated in the main program.
Seven subroutines are involved. The subroutine SCATTERING calculates the ex-
pansion coefficients a,, b, , ¢, and d,, using Eq. (2.244) and also the forward-scattering
amplitude S(0) using Eq. (2.256). The same subroutine was used as the main program
in the previous example to calculate the radar cross section of ice spheres. Enough
comments are inserted to make the program self-explanatory. Subroutine BESSEL
and BESSELCMPLX are exactly the same except that the former is for real argu-
ment, while the latter is for complex argument. They both employ Eq. (2.160) to
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0001 AR ERRRE AR R RR R R AR R R AR RS R RS RS SRR R AR SRRk bbb

c
0002 C MAIN PROGRAM
0003 [
0004 C FOR SPHERICAL RAIN DROPS,
0005 C THIS PROGRAM CALCULATES ATTENUATIOK IN dB/KM AND
0006 C PHASE SHIFT IN DEG/KM FOR A GIVEN RAIN RATE
0007 [
0008 C R = RAIN RATE IN MM/HR
0009 C D = DROP DIAMETER IN CM
0010 C F = FREQUENCY IN GHZ
0011 C AT = ATTENUATION IN dB/KM
0012 C PH = PHASE SHIFT IN DEG/KN
0013 C V = TERMINAL VELOCITY OF RAIN DROPS
0014 C P = PERCENT OF TOTAL VOLUME AS MEASURED
0015 C BY LAWS AND PARSONS
0016 C M = COMPLEX REFRACTIVE INDEX OF WATER AT T = 20 C
0017 C X = ALPHA = K*A
0018
0019 DIMEESION R(9),P(14,9),Vv(14)
0020 REAL*8 LAM MR ,MI
0021 COMPLEX*8 M,S0,S00(15)
0022 DATA V/2.1,3.9,5.3,6.4,7.3,7.9,8.35,8.7,9.0,9.2,
0023 1 9.35,9.5,9.6,9.6/
0024 DATA R/0.25,1.25,2.5,5.0,12.5,25.0,50.0,100.0,150.0/
0025 DATA (( P(I,J),1=1,14),J=1,9) /28.0,50.1,16.2,3.0,0.7,
0026 1 9#0.0, 10.9,37.1,31.3,13.5,4.9,1.5,0.6,0.2,640.0,
0027 1 7.3,27.8,32.8,19.0,7.9,3.3,1.1,0.6,0.2,5%0.0,
0028 2 4.7,20.3,31.0,22.2,11.8,5.7,2.5,1.0,0.5,0.3,4%0.0,
0029 3 2.6,11.5,24.5,25.4,17.3,10.1,4.3,2.3,1.2,0.6,
0030 4 0.2,3#0.0, 1.7,7.6,18.4,23.9,19.9,12.8,8.2,3.5,2.1,
0031 5 1.1,0.5,0.3,2%0.0, 1.2,5.4,12.5,19.9,20.9,15.6,
0032 6 10.9,6.7,3.3,1.8,1.1,0.5,0.2,0.0, 1.0,4.6,8.8,
0033 7 13.9,17.1,18.4,15.0,9.0,5.8,3.0,1.7,1.0,0.7,0.0,
0034 8 1.0,4.1,7.6,11.7,13.9,17.7,16.1,11.9,7.7,3.6,2.2,
0035 9 1.2,1.0,0.3 /
0036
0037 F =30.0
0038 LAM = 30.0/F ! WAVELENGTH IN CM
0039 MR = 5.681
0040 MI = 2.848
0041 M = CMPLY(MR,-MI)
0042 PIE = 3.141592654
0043 DO 10 I = 1,14
0044 D = 0.05%DFLOAT(I)
0045 X = PIE*D/LANM
0046 CALL SCATTERING(X,M,S0,SB)
0047 S00(I) = SO
0048 10 CONTINUE
0049 DO 50 X = 1,9
0050 SUMAT = 0.0
0051 SUMPH = 0.0
0052 WRITE(6,20) R(D),F
0053 20 FORMAT(5X, ’RAIK RATE =’,F8.4,1X, MM/HR’,4X
0054 1 ’FREQUENCY =’ ,F10.5,1X,’GHZ’,/)
0055 DO 30 K=1,14
0056 D = 0.05*DFLOAT(K)
0057 X = PIE*D/LAN
0058 S0 = S00(K)
0059 [
Figure 2.16

FORTRAN program for Examples 2.13 and 2.14 (Continued).
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0060 Cc CALCULATE ATTENUATION AND PHASE SEIFT

0061 c
0062 ACO = REAL(S0)/(6.0%X+X)
0063 PCO = AIMAG(S0D)/(12.0%X+X)
0064 ATO = ACO*( P(K,N)/100.0 )/ (V(K)*D )
0065 SUMAT = SUMAT + ATO
0066 PHO = PCO+*( P(K,N)/100.0 )/ (V(K)*D )
0067 SUMPH = SUMPH + PHO
0068 30 CONTINUE
0069 AT = 4.343%R(N)*SUMAT
0070 PH = 180.0#+R(N)*SUMPH/PIE
0071 PRINT #*,R(N),AT,PH
0072 WRITE(6,40) AT,PH
0073 40 FORMAT(3X,’ATTERUATION =’,F12.6,1X,’dB/KX’,3X,
0074 1 'PHASE SHIFT =’,F12.6,1X,’DEG/KN’,/)
0075 50 CONTINUE
0076 60 FORMAT(I5,F15.8,F15.8)
0077 STOP
0078 END
0001
0002 C #5255 RRXEERE RSB ERRASRERRRRERERRR AR RN RRER SRR E R R R R &
0003 c USING MIE’S SOLUTIOHN,
0004 c THIS SUBROUTINE CALCULATES THE SCATTERING COEFFIEETS
0005 C AND THE FORWARD SCATTERING FUNCTIOKN
0006 c
0007 SUBROUTINE SCATTERING(X,M,SO,SB)
0008
0009 IMPLICIT COMPLEX#8 (A-D)
0010 COMPLEX*8 M,S0,Y,JC,SUM,SUMB
0011 COMPLEX#8 JM(0:20),JMD(0:20) ,H(0:20),HD(0:20)
0012 REAL#*8 J1(0:20),JD(0:20)
0013 DIMENSION A(20),B(20),C(20),D(20)
0014
0015 Y = M*X
0016 JC=(0.0,1.0)
0017 SUM = (0.0,0.0)
0018 SUMB = (0.0,0.0)
0019 EMAX = 10
0020 [
0021 C FIRST, CALCULATE THE SCATTERING COEFFICIEETS an and bn
0022 C
0023 DO 10 N=1,NMAX
0024 CALL BESSEL(X,¥,J,JD)
0025 CALL BESSELCMPLX(Y,N,JM,6JMD)
0026 CALL BAKKEL(X,¥,H,ED)
0027 A1 = JM(X)*+ID(N) - J(N)+JIMD(N)
0028 A2 = JMN(N)*HD(N) - H(N)*JMD(N)
0029 A(N) = A1/A2
0030 Bl = J(N)*JHD(H) - (M+*2)+JM(N)*ID(N)
0031 B2 = H(E)*JMD(N) - (M**2)+JM(N)*HD(N)
0032 B(X) = B1/B2
0033 C(X) = JC/(X*A2)
0034 D(N) = - JC+M/(X*B2)
0035 C
0036 C CALCULATE THE FORWARD SCATTERING AMPLITUDE FUNCTIONK S(0)
0037 C
0038 F = 2. 0«FLOAT(N) + 1.0
0039 SUM = SUM + F»( A(E) + B(N) )
0040 SUMB = SUMB + Fe((-1.)**D)s( A(N) - B(N) )
0041 10 CONTINUE
Figure 2.16

(Cont.) FORTRAN program for Examples 2.13 and 2.14 (Continued).
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0042
0043
0044
0045

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019

0001

0001
0002
0003
0004

Figure 2.16

S0 = SUM/2.0 ! FORWARD SCATTERING AMPLITUDE FUECTION
SB=(CABS( SUMB )/X)#*2 ! NORMALIZED RADAR CROSS-SECTION
RETURN

END

C 50000k a2 R0 RT R X REKRRXERERFRRE SRR EE SRR R ERE R AR R A K

C
C

[
Cc
Cc
C

10

C
C
C
[o]

SUBROUTINE FOR SPHERICAL HANKEL FUNCTIONS H AND HD
OF REAL ARGUMENT (SERIES EXPANSION METHOD)

SUBROUTINE HANKEL(X,¥,H,HD)

IMPLICIT REAL*8(A-G,J,0-Z),COMPLEX*8(H)
DIMENSION J(0:20),JD(0:20),Y(0:20),YD(0:20)
DIMENSION JN(0:20),JED(0:20),H(0:20),ED(0:20)

PIE = 3.141592654

CALL BESSEL(X,¥,J,JD)

CALL BESSELN(X,¥,JN,J¥D)

V = DFLOAT(N) + 0.5

Y(N) = ( DCOS(V+PIE)*J(N) - JN(K) )/DSIN(V+PIE)

H(N) = CMPLX( J(N), - Y(E) ) ! HANKEL OF 2ND XIND
YD(X) = ( DCOS(V+PIE)*JD(N) - JED(N) )/DSIN(V+PIE)
HD(X) = CMPLX( JD(N), - YD(N) )

RETURN

EXD

R AR REE R BB R AR RS R Rk kR kb s sk kb hkb kb bk k

SUBROUTINE FOR SPHERICAL BESSEL FUKCTION J AND JD
OF REAL ARGUMENT (SERIES EXPANSION METHOD)

SUBROUTINE BESSEL(X,¥,J,JD)
IMPLICIT REAL*8(A-H,J,0-2)
DIMENSION J(0:20),JD(0:20)

TOL = 0.00000001 ! TOLERANCE
PIE = 3.141592654

V = DFLOAT(N) + 0.5

K=0

SUM1 0.0

SUM2 = 0.0

PX = V + DFLOAT(K) + 1.0
CALL GAMMA(PN,GN)

CALL FACTORIAL(K,FK)

A= ((-1.)82K)#((.5)#x(V+2%K) ) * (X## (V+24K~-.5)) / (GE*FK)
SUM1 = SUM1 + A

B = A*(V + FLOAT(2#K) + 0.5)
SUM2 = SUM2 + B

K=K+ 1

IF(ABS(A) .GE.TOL) GO TO 10
CONTINUE

Q = DSQRT(PIE/2.0)

J(H) = Q+SUM1

ID(E) = Q#SUM2

RETURN

EXD

FEEEEERRRRES AR RR AR ERNRRR R SRR RN AR SRR R SR KR SRR kb bk Rk

SUBROUTINE FOR SPHERICAL BESSEL FUNCTIOCKS JN AND JED
OF REAL ARGUMENT BUT ¥EGATIVE ORDER (SERIES EXPANSION)

(Cont.) FORTRAN program for Examples 2.13 and 2.14 (Continued).
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0005 SUBROUTINE BESSELN(X,N,JN,6JND)

0006 IMPLICIT REAL#*8(A-H,J,0-Z)
0007 DIMENSION JE(0:20),JED(0:20)
0008
0009 TOL = 0.00000001 ! TOLERANCE
0010 PIE = 3.141592654
0011 V = DFLOAT(N) + 0.5
0012 K=0
0013 SUM1 = 0.0
0014 SUM2 = 0.0
0015 10 PN = -V + DFLOAT(X) + 1.0
0016 CALL GAMMA(PN,GE)
0017 CALL FACTORIAL(K,FK)
0018 A= ((m1.)##K)*((.5) % (-V+2¢K) )« (X#*(-V+2%K- .5) )/ (GN*FK)
0019 SUM1 = SUM1 + A
0020 B = A*(-V + FLOAT(2#K) + 0.5)
0021 SUM2 = SUM2 + B
0022 K=K+ 1
0023 IF(ABS(A) .GE.TOL) GO TO 10
0024 CONTINUE
0025 Q = DSQRT(PIE/2.0)
0026 JE(N) = Q+SUM1
0027 JED(N) = Q#SUM2
0028 RETURK
0029 END
0001 C s 525002 b 00 RR RN R R RR R R R AR R R R AR KRR KR E R R RS R R R E kR
0002 c SUBROUTINE FOR SPHERICAL BESSEL FUNCTIONS JM AND JMD
0003 [ OF COMPLEX ARGUMENT (SERIES EXPANSION)
0004 c
0005 SUBROUTIKE BESSELCMPLX(Z,N,JM,JMD)
0006 IMPLICIT COMPLEX#8(A-D,J,S,Z) ,REAL#8(G,P-R,V)
0007 DIMENSION JM(0:20),JMD(0:20)
0008
0009 TOL = 0.001 t TOLERAKCE
0010 PIE = 3.141592654
0011 V = DFLOAT(N) + 0.5
0012 K=0
0013 SUM1 = (0.0,0.0)
0014 SUM2 = (0.0,0.0)
0015 10 PN = V + DFLOAT(X) + 1.0
0016 CALL GAMMA (P¥,GN)
0017 CALL FACTORIAL(K,FK)
0018 A= ((-1.)##K)*((.5)*#(V+2%K) ) # (Z#* (V+2+K-.5)) / (GN*FK)
0019 SUM1 = SUM1 + A
0020 B = A*(V + FLOAT(2#K) + 0.5)
0021 SUM2 = SUM2 + B
0022 K=K+ 1
0023 IF( CABS(A).GE.TOL) GO TO 10
0024 CONTINUE
0025 Q = DSQRT(PIE/2.0)
0026 JH(E) = Q*SUM1
0027 JHD(N) = Q»SUM2
0028 RETURK
0029 END
0001 C $5 %5585 R AR R RS RRAE R ER AR RR KRR SRS R ER RS S S K E SRR %
0002 c SUBROUTINE FOR GAMMA FUNCTION
0003 c
Figure 2.16

(Cont.) FORTRAN program for Examples 2.13 and 2.14 (Continued).
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0004 SUBROUTINE GAMMA(V,G)

0005 IMPLICIT REAL#8(A-H,0-Z)

0006

0007 PIE = 3.1415927

0008 IF(V-0.5) 10,20,20

0009 10 ¥ =-V+0.5

0010 N2 = 2+X

0011 CALL FACTORIAL(N,FN)

0012 CALL FACTORIAL(¥2,FN2)

0013 G = ((-4.)*+¥)*DSQRT(PIE) *«F¥/FN2
0014 RETURN

0015 20 ¥=V-0.5

0016 ¥2 = 22X

0017 CALL FACTORIAL(N,FN)

0018 CALL FACTORIAL(N2,FN2)

0019 G = FN2+DSQRT(PIE)/(FN*(2.+xN2))
0020 RETURK

0021 END

0001 C %2543 R0 RKEERRRBR R AR R ARRERRB AR R SRR R RE XX B AR R KRR E
0002 c SUBROUTINE FOR FACTORIAL OF N, i.e. N!
0003 c

0004 SUBROUTINE FACTORTIAL(N,F)

0005 REAL*8 F

0006

0007 F=1.0

0008 IF(N.EQ.0) GO TO 20

0009 DO 10 I=1,X

0010 10 F = F*DFLOAT(I)
0011 20 RETURN
0012 END

Figure 2.16
(Cont.) FORTRAN program for Examples 2.13 and 2.14.

find j, (x). Subroutine HANKEL employs Eq. (2.162) to find y, (x), which involves
calling subroutine BESSELN to calculate j_,(x). The derivative of Bessel-Riccati
function [xz, (x)] is obtained from (see Prob. 2.14)

(X2, (X)] = —nzu(x) + xzp—1(x)

where z;, 1S ju, j—n, Yn O h,(x). Subroutine GAMMA calculates I'(n + 1/2) us-
ing Eq. (2.165), while subroutine FACTORIAL determines n!. All computations
were done in double precision arithmetic, although it was observed that using single
precision would only alter results slightly.

Typical results for 11 GHz are tabulated in Table 2.12. A graph of attenuation
vs. rain rate is portrayed in Fig. 2.17. The plot shows that attenuation increases
with rain rate and conforms with the common rule of thumb. We must note that the
underlying assumption of spherical raindrops renders the result as only a first order
approximation of the practical rainfall situation. |
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Table 2.12 Attenuation and Phase Shift at 11 GHz
Rain rate (mm/hr)  Attenuation (dB/km) Phase shift (deg/km)

0.25 2.56 x 1073 0.4119
1.25 1.702 x 1073 1.655
2.5 4.072 x 1073 3.040
5.0 9.878 x 1073 5.601
12.5 0.3155 12.58
25 0.7513 23.19
50 1.740 42.74
100 3.947 78.59
150 6.189 112.16
A 6GHz 11GHz  30GHz
100 -
10

.01

.001

.0001

1 1 1 1 1 1 1 J
l'E_SO 20 40 60 80 100 120 140 160

Figure 2.17
Attenuation vs. rain rate.

2.10 Concluding Remarks

We have reviewed analytic methods for solving partial differential equations. An-
alytic solutions are of major interest as test models for comparison with numerical
techniques. The emphasis has been on the method of separation of variables, the most
powerful analytic method. For an excellent, more in-depth exposition of this method,
consult Myint-U [5]. In the course of applying the method of separation of variables,
we have encountered some mathematical functions such as Bessel functions and Leg-
endre polynomials. For a thorough treatment of these functions and their properties,
Bell [7] and Johnson and Johnson [8] are recommended. The mathematical hand-
book by Abramowitz and Stegun [15] provides tabulated values of these functions
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for specific orders and arguments. A few useful texts on the topics covered in this
chapter are also listed in the references.

As an example of real life problems, we have applied the analytical techniques de-
veloped in this chapter to the problem of attenuation of microwaves due to spherical
raindrops. Spherical models have also been used to assess the absorption charac-
teristics of the human skull exposed to EM plane waves [16]-[20] (see Probs. 2.46
to 2.49).

We conclude this chapter by remarking that the most satisfactory solution of a field
problem is an exact analytical one. In many practical situations, no solution can be
obtained by the analytical methods now available, and one must therefore resort to
numerical approximation, graphical or experimental solutions. (Experimental solu-
tions are usually very expensive, while graphical solutions are not so accurate). The
remainder of this book will be devoted to a study of the numerical methods commonly
used in EM.
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Problems

2.1

Consider the PDE
a®,y +bPyy +cdyy +dP, +edy 4+ fO=0

where the coefficients a, b, ¢, d, ¢, and f are in general functions of x and y.
Under what conditions is the PDE separable?
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y
0
4 y 0
<—VO ¢ )
b [V, ’
0 X Vo>
d (
a T X
0
(a) (b)
Figure 2.18
For problem 2.2.

2.2 Determine the distribution of electrostatic potential inside the conducting rect-
angular boxes with cross sections shown in Fig. 2.18.

2.3 The cross-sections of the cylindrical systems that extend to infinity in the z-
direction are shown in Fig. 2.19. The potentials on the boundaries are as shown.
For each system, find the potential distribution.

2.4 Find the solution U of:
(a) Laplace equation

V2U=O, O<x,y<m
Ux(07 Y) ZOZUX(xﬂ Y), U(X,O)ZO,
Ux,m) =x, O<x<m

(b) Heat equation

kUyy = Uy, 0<x<1,t>0
U@,t) =0, t >0, Ull,t)y=1,1t>0
Ux,0)=0, 0<x<l1

(c) Wave equation

a’*Uyy = Uy, 0<x<1,t>0
U0, 1)=0=U(,1),t>0
U(x,0) =0, U;(x,0) =x

2.5 Find the solution @ of:
(a) Laplace equation

V2o =0, p>1,0<¢<m
O(1, p) =sing, D(p,0) = P(p,71)=0
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y
V=0
b i
V=0 V:
A ,
X
0 a
V= A\ x/a
(a)
y —
b2 /V = V0 cos mx/a
V=0 V=0
\ /
-a/2 0 a2 X
-b/2

V=V, cos mx/a

(b
Figure 2.19

For problem 2.3.

(b) Laplace equation

V2<I>=O, O<p<l1,0<z<L

@(p, 9,00 =0=>(p,¢,L), Pla,¢,2) =1
(c) Heat equation

o, = kV%,

O0<p<l,—o0o<z<o0,t>0
O(a,p,t)=0,1 >0,

D(p,¢,0) = p?cos2p,0 < ¢ <27
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2.6 Solve the PDE

—84® + —82¢ 0 0 1,t>0
=0, <x <lI, >
x4 012

subject to the boundary conditions
CI)(()’ t) = 0 = CD(I’ t) = CDXX(Ov t) = CDXX(I’ t)
and initial conditions

d;(x,0) =0, O(x,0) =x

2.7 A cylinder similar to the one in Fig. 2.20 has its ends z = 0 and z = L held at
zero potential. If

Voz/L, 0<z<L/2

Via,2)= {Vo(l — L), L)2<z<L

find V (p, z). Calculate the potential at (p, z) = (0.8a, 0.3L).

z

L < Vo
4 g N N A\l
=== >
M y
X 0
Figure 2.20
For problem 2.7.

2.8 Determine the potential distribution in a hollow cylinder of radius a and length
L with ends held at zero potential while the lateral surface is held at potential
V, as in Fig. 2.20. Calculate the potential along the axis of the cylinder when
L =2a.

2.9 The conductor whose cross section is shown in Fig. 2.21 is maintained at V. =0
everywhere except on the curved electrode where it is held at V = V,,. Find
the potential distribution V (p, ¢).
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Figure 2.21
For problem 2.9.

2.10 Solve the PDE
az¢_+ 100  3%®
9p2  p dp 912’ -T -
under the conditions

(0, 1) is bounded, ®O(a,t)=0,t>0,

(p,0) = (1-p*/a?), o®

J— =0,0<p<
ot =p=a

t=0

2.11 The generating function for Bessel function is given by
x
Gon=exp| (1=t = 3 e
’ Pl2 t =

(a) By taking the derivatives of both sides with respect to x, show that

d, o_ 1 p
) = 2 [Jam1 (@) = J (0]

(b) By taking the derivatives of both sides with respect to 7, show that

x
Jny1(x) = 20+ D) [Jn(X) + Jug2(x)]

2.12  (a) Prove that
oo
e:l:jpsinq) — Z (il)an(p)ejn(b

n=—0oo

(b) Derive the Bessel’s integral formula

1 T
Ju(p) = ;/0 cos(nf — psinf)do
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2.13 Show that -
cosx = J,y(x) +2 Z(—l)” Jon (x)
n=1
and
o
sinx =2 (=)™ o1 (x)
n=1
which demonstrate the close tie between Bessel function and trigonometric

functions.

2.14 Prove that:

@ Jipk) = \/%sinx,

(b) Joi2(x) = \/%cosx,

© Zlx™Jy(0)] = —x"Jpy1(x).
x=0 -
(e) %[xzn(x)] = —nz,(x) + x2,1(x) = (0 + Dz, (x) + x2,01(x)

@ L5000 =

2.15 Given that o
_ "y _
Io—/o e “JO(Ap)dk_m
find
o
11=/ e My (hp) dA
0
and

o0
I = / e 32 J,(\p) dA
0

2.16 Write a computer program that will evaluate the first five roots 1,,, of Bessel
function J,(x) forn =1,2,...,5,1i.e., J,(Aun) = 0.

2.17 Evaluate:

(a) 1
/ Pi(x) P2 (x) dx
—1

(b) 1
/ [Ps(x)]* dx ,
-1

(©)

1
/ szg(x) dx
0
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o0

2.18 In Legendre series of the form Z A, P, (x), expand:

n=0
0, —-1<x<0,
@ f@x) = 1, 0<x<1
() fx) =x3, —1<x<1,
0, -1<x<0,
(© fx)=
x, 0<x<l1
1+x, —-1<x<0,
d =
@ f® 1—x, 0<x<1

2.19 Solve Laplace’s equation:

I, 0<6<m/2,

(a) V2U =0, 0<rc<a, Ua,0) = .
0, otherwise

oU
a :cos@+3cos39, 0<0<m,
,
r=a

(C)V2U=0, r<a, O0<6<m, O0<¢<2m,
U(a, 0, ¢) = sin’ 6

(b) VU =0, r>a,

2.20 A hollow conducting sphere of radius a has its upper half charged to potential
V, while its lower half is grounded. Find the potential distribution inside and
outside the sphere.

2.21 A circular disk of radius a carries charge of surface charge density p,. Show
that the potential at point (0, 0, z) on its axis 8 = 0 is

1/2
V= Lo |:(z2+a2> —Zi|
2e

From this deduce the potential at any point (r, 6, ¢).
2.22  (a) Verify the three-term recurrence relation
Cn+DxPy(x)=m+ 1) Pry1(x) +nP—1(x)
(b) Use the recurrence relation to find Pg(x) and P;(x).

2.23 Verify the following identities:

L ) P () dx = — 8
(@) f_l n (X) P (x) dx = o

2 (m+m)!
2n+1(n —m)!

®) [1 PP (x)dx = ok
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2.24 Rework the problem in Fig. 2.8 if the boundary conditions are now
Vir=a)=1V,, V(i — o0) = Esrcosf +V,
Find V and E everywhere. Determine the maximum value of the field strength.
2.25 In a sphere of radius a, obtain the solution V (r, 8) of Laplace’s equation
VZV(r,0)=0, r<a

subject to
V(a,6) =3cos6 +3cosh + 1

2.26 Determine the solution to Laplace’s equation
V3V =0

outside a sphere r > a subject to the boundary condition
9 3
a—V(a, 0) = cos6 + 3cos’ O
,

2.27 Find the potential distribution inside and outside a dielectric sphere of radius
a placed in a uniform electric field E,.

Hint: The problem to be solved is V2V = 0 subject to

Vi A%
G — = — onr=a, Vi=Voonr=a,
ar ar
Vo = —E,rcosf asr — 00

2.28 (a) Derive the recurrence relation of the associated Legendre polynomials

2mx

+1 _

P"(x) — [n(n 4+ 1) —m(m — DIP" ! (x)
(b) Using the recurrence relation on the formula for P, find PZ, P3, P},
2
and P;.

229 Expand V = cos2¢sin’ ¢ in terms of the spherical harmonics P (cos )
sinme and P (cos 0) cos me.

2.30 In the prolate spheroidal coordinates (&, n, ¢), the equation
V2O + k20 =0

assumes the form

%[(€2_1>%]+%[(1_”2)%]’{521—1

1 82d> 2 52 2 2
+mi|w+kd (%‘ —)7)@20
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Show that the separated equations are

d [/, dv, v m?
£ 1) N 4 [ KPae? — —c|lw =0
a5 [@ R %[ =R
d dw, m?
£ 1—2)——k2d22 —c|w =0
dn[< k dn] [ (ARl e
492 +m Y3 =0
where m and ¢ are separation constants.
2.31 Solve Eq. (2.203)ifa = b = ¢ = 7w and:
@ f(x,y,2)=e*  (b) f(x,y,2) =sin’x.
2.32 Solve the inhomogeneous PDE
P’d 190 %D .
—+ —— — — = —d, sinwt, 0<p<a,t=0
92 pop 012
subject to the conditions ®(a, t) = 0, (p, 0) = 0, P;(p, 0) = 0, P is finite
forall 0 < p < a. Take ®, as a constant and aw not being a zero of Jy(x).
2.33 Infinitely long metal box has a rectangular cross section shown in Fig. 2.22. If
the box is filled with charge p, = p,x/a, find V inside the box.
y
V=0
b Vi
V=0
V=0
N 4
0 X
N a
v=0
Figure 2.22
For problem 2.33.

2.34 In Section 2.7.2, find E; and Ey, the electric field intensities in gas and liquid,

2.35

respectively.

Consider the potential problem shown in Fig. 2.23. The potentials at
x =0,x =a, and y = 0 sides are zero while the potential at y = b side is V.
Using the series expansion technique similar to that used in Section 2.7.2, find
the potential distribution in the solution region.
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V=0—>

Figure 2.23
Potential system for problem 2.35.

2.36 Consider a grounded rectangular pipe with the cross section shown in Fig. 2.24.
Assuming that the pipe is partially filled with hydrocarbons with charge density
0o, apply the same series expansion technique used in Section 2.7.2 to find the
potential distribution in the pipe.

y
c
€
b
€081
Py
0 - X

Figure 2.24
Earthed rectangular pipe partially filled with charged liquid—for problem 2.36.

2.37 Write aprogram to generate associated Legendre polynomial, withx = cos 6 =
0.5. You may use either series expansion or recurrence relations. Take 0 <
n < 15,0 < m < n. Compare your results with those tabulated in standard
tables.

2.38 The FORTRAN program of Fig. 2.16 uses the series expansion method to gen-
erate j, (x). Write a subroutine for generating j, (x) using recurrence relations.
For x = 2.0 and 0 < n < 10, compare your result with that obtained using
the subroutine BESSEL of Fig. 2.16 and the values in standard tables. Which
result do you consider to be more accurate? Explain.
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2.39 Use the product generating function
Gix+y,n)=G6x,0G(,1)

to derive the addition theorem

e¢]

TG+ =D In@) ()

m=—0oQ0

Recall that

G(x,t):exp[%c <z—%>] = 3

n=—oo

2.40 Use the generating function to prove that:

11 & .
il > /1) Pa(cost),  r <7,
To n=0
1 1= )
z = - Z(rg/r) P,(cosf),r >r,,where R=|r —r,| =

n=0
[r2 — rg — 2rr, cos ]2 and « is the angle between r and r,,.

2.41 Show that
/TO(X)dx =Ti(x)

1 1
/Tl(x)dx = ZTz(x) + 1

/T,,(x)dx:%(T"H(x) _Tn—l(x))’ w1

n+1 n—1
so that integration can be done directly in Chebyshev polynomials.

2.42 A function is defined by

I, -1<x<1

0, otherwise

f(X)={

(a) Expand f(x) in a series of Hermite functions,

(b) expand f(x) in a series of Laguerre functions.

2.43 By expressing Eé and E (lp in terms of the spherical wave functions, show that
Eq. (2.235) is valid.
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2.44 By defining

pn(x) = % n[shPw®]. o = % In [xju()] .

show that the scattering amplitude coefficients can be written as

_ Jn(@) |:Un(a) - mUn(mOl)i|
" P () Lon(@) — moy (ma)
_ Jn(@) |:Un (ma) —moy (Ol)]

" 0D (@) Lon(ma) — mp,(e)

2.45 For the problem in Fig. 2.14, plot |E§|/|E§C| for —a < z < a along the axis of
the dielectric sphere of radius a = 9 cm in the x — z plane. Take E, = 1, w =
27 x 5% 10° rad/s, € = 4e,, L1 = Mo, 01 = 0. You may modify the program
in Fig. 2.16 or write your own.

2.46 In analytical treatment of the radio-frequency radiation effect on the human
body, the human skull is frequently modeled as a lossy sphere. Of major
concern is the calculation of the normalized heating potential

t 2
o0 = Lo B0

-1
2" Ee &

where E' is the internal electric field strength and E,, is the peak incident field
strength. If the human skull can be represented by a homogeneous sphere of
radius a = 10 cm, plot @ (r) against the radial distance —10 < r =z < 10cm.
Assume an incident field as in Fig. 2.14 with f = 1 GHz, u, = 1,¢, = 60,0 =
0.9 mhos/m, E, = 1.

2.47 Instead of the homogeneous spherical model assumed in the previous problem,
consider the multilayered spherical model shown in Fig. 2.25 with each region
labeled by an integer p, such that p = 1 represents the central core region and
p = 4 represents air. At f = 2.45 GHz, plot the heating potential along the x
axis, y axis, and z axis. Assume the data given below.

Region p Tissue Radius (mm) €, o(mho/m)

1 muscle 18.5 46 2.5

2 fat 19 6.95 0.29

3 skin 20 43 2.5

4 air 1 0
Uy = 1
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p=4|p=3 | p=2 | p=I

S

Figure 2.25
For problem 2.47, a multilayered spherical model of the human skull.

2.48

2.49

Note that for each region p, the resultant field consists of the transmitted and
scattered fields and is in general given by

Ep(r.0.) = Eef‘”’2< nz(”:)[ M) &)

+jbnpN,3‘}2 (k) + capMS) (k1) + jdupN) (kl)]

The absorption characteristic of biological bodies is determined in terms of the
specific absorption rate (SAR) defined as the total power absorbed divided as
the power incident on the geometrical cross section. For an incident power
density of 1 mW/cm? in a spherical model of the human head,

SAR = 2 Qabs mW/cm3

where a is in centimeters. Using the above relation, plot SAR against frequency
for 0.1 < f < 3 GHz, a = 10 cm assuming frequency-dependent and
dielectric properties of head as

B (12+ (f/fo)2>
& =5——-12
1+ (f/fo)?

iy (1 +62(f/fo)2)
L+ (f/fo)?
where f is in GHz and f, = 20 GHz.

For the previous problem, repeat the calculations of SAR assuming a six-layered
spherical model of the human skull (similar to that of Fig. 2.25) of outer radius
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a = 10 cm. Plot P,/ P; vs. frequency for 0.1 < f < 3 GHz where

Py
P;

fa _ 0%2 Z(Z” 1) [Re (an + by) — (Ian|2 + |bn|2>] ,

P, = absorbed power, P; = incident power, ¢ = 2mwa/X, A is the wavelength
in the external medium. Use the dimensions and electrical properties shown

below.

Layer p Tissue Radius (mm) €, 0,(mho/m)
1 brain 9 S5V(f) 6A(f)

2 CSF 12 IV(f) 8A(Sf)

3 dura 13 4V (f) 8A(f)

4 bone 17.3 5 62

5 fat 18.5 6.95 0.29

6 skin 20 43 2.5

where u, =1,

V(f) =

A(f) =

1+ 12(f/f,)?
L+ (f/fo)?

1+ 62(f/f,)?
L+ (f/fo)?

’

f is in GHz, and f, = 20 GHz. Compare your result with that from the

previous problem.
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