Appendix D

Solution of Simultaneous Equations

Application of some numerical methods to EM problems often results in a set of
simultaneous equations

aip a2 ... ain X1 by
a1 ay ... axp | | X2 by
= . (D.1a)
Anl An2 ... Ann Xn by
or
[A][X] = [B] (D.1b)

where [A] is the coefficient matrix, [X] is the column matrix of the unknowns to be
determined, and [B] is the column matrix of constants. Familiarity with the various
techniques for solving Eq. (D.1) is therefore vital. In this appendix, we provide a
brief coverage of direct and iterative procedures for solving Eq. (D.1); direct methods
are more versatile for linear problems, while iterative methods are suitable for non-
linear problems. We also consider various techniques for solving eigenvalue systems
[Al[X] = A[X].

D.1 Elimination Methods

Elimination methods constitute the simplest direct approach to the solution of a
set of simultaneous equations. They usually involve successive elimination of the
unknowns by combining equations. Such methods include Gauss’s method, Gauss-
Jordan, Cholesky’s or Crout’s method, and the square-root method. Only Gauss’s
and Cholesky’s methods will be discussed. The reader should consult [1]-[4] for the
treatment of other methods.

© 2001 by CRCPRESSLLC

D.1.1 Gauss’s Method

This simple method involves eliminating one unknown at a time and proceeding
with the remaining equations. This leads to a set of simultaneous equations in triangu-
lar form from which each unknown is determined by back-substitution. To describe
this method, consider Eq. (D.1b), i.e.,

anxiy +apxy + -+ ax, = by (D.2a)
ax1x1 +axnxy + - -+ ayx, = b (D.2b)
an1X1 + anaxo + - - - + apnxy = by (D.2¢)

We divide Eq. (D.2a) by aj; to give
xi+apxs+ - +ap,x, = b (D.3)
where the primes denote that the coefficients are new. We multiply Eq. (D.3) by —a;

fori =2,3,...,nandadd Eq. (D.3) to the ith equation in (D.2) to eliminate x; from
other equations so that Eq. (D.2) becomes

X1+012x2+"'+a;nxn :b/l (D4a)
ahyxy + -+ + ah, Xy = bl (D.4b)
ay,xp + -+ ay,x, = b, (D.4c)

Equation (D.2a) used to eliminate x| from other equations is called the pivot equation
and aq is called the pivot coefficient. We now use Eq. (D.4b) as the pivot equation and
we take similar steps to eliminate x, from all equations following the pivot equation.
Continuing this reduction procedure eventually leads to an equivalent triangular set
of equations:

X1+ upxy +u3x3+ -+ upxy, =Cl
X2 +u3xy 4+ -+ UopXy = C2
X3+ UzXy = 3 (D.5)

Xp = Cp
This completes the first phase known as forward elimination in the Gauss algorithm,

and the system in Eq. (D.5) is said to be in upper triangular form. The second phase
known as back substitution involves solving for the unknowns in Eq. (D.5) by starting

© 2001 by CRCPRESSLLC

at the bottom. That is,

Xn = Cp
Xn—1 = Cn—1 — Up—1,nXn
X1 =C1 —UPRX2 — -+ — UlnXp

In summary, this algorithm can be stated as:

Forward elimination

a//cj:“kj/akkf b, =br/ak, j=kk+1,...

/ — PR E— . / 7 —
a;; = ajj — Aiky;, i=k+1,...,n

bl/'zbi_aikb]/(v z=k+1,,n

Backward substitution

X, = by, for the last row
n
xiZbi—Zainj, i:n—l,...,l
j=i+1

(D.6)

, n

(D.7a)

(D.7b)

Based on the idea outlined above, a general FORTRAN subroutine for solving a
set of simultaneous equations by Gaussian elimination is shown in Fig. D.1.

D.1.2 Cholesky’s Method

This method, also known as Crout’s method or the method of matrix decomposition,
involves determining a lower triangular matrix that will reduce the original system in

Eq. (D.1) to a unit upper triangular matrix. If the original system

or
ailr di2 ... dip X1 b1
a1 ax ... dy, X2 by
Ayl A2 - .. Qup Xn b,

can be redefined in the upper unit triangular matrix [7'] such that

© 2001 by CRCPRESSLLC

(D.1a)

(D.1b)

(D.8a)

0001 o e P T T T e T T T)
0002 C THIS SUBROUTIBE EMPLOYS GAUSSIAN ELIMINATION METHOD
0003 C TO SOLVE A SET OF SIMULTANEOUS EQUATIONS [A]([x] = [B]
0004 C IDM = DIMEESION OF [A] IN THE CALLING PROGRAM

0005 cC ¥ = ACTUAL SIZE OF [A] IF THE CALLING PROGRAM
0006 W Ty
0007

0008 SUBROUTINE GAUSS(A,B,X,N,IDM)

0009 DIMENSION A(IDM,IDM), B(IDM), X(IDM)

0010 C

0011 C FORWARD ELIMINATION

0012 C

0013 DO 40 K=1,¥§-1

0014 DO 30 I=K+1,¥

0015 FACTOR = A(I,K)/A(K,K)

0016 C

0017 C CALCULATE ELEMERTS OF THE NEW MATRIX

0018 C

0019 DO 20 J=K+1,N

0020 A(I,J) =A(I,J) - FACTOR#*A(K,J)

0021 20 CONTINUE

0022 A(I,K) = FACTOR

0023 B(I) = B(I) - FACTOR*B(K)

0024 30 CONTINUE
0025 40 CONTINUE

0026 €
0027 C BACK SUBSTITUTION PROCESS BEGIKS
0028 C
0029 X(¥) = B(N)/A(N,N) '1ST STEP
0030 D0 60 I=N-1,1,-1
0031 SUM = 0.0
0032 DO 50 J=I+1,¥
0033 SUM = SUM + A(I,J)*X(J)
0034 50 COBTINUE
0035 X(I) = (B(I) - SUM)/A(I,I)
0036 60 CONTINUE
0037 RETURN
0038 END

Figure D.1

Gauss elimination method of solving [A][X] = [B].

or
1Ty ... Ty X1 Cq
Doy | | X2 c
= . (D.8b)
00 ... 1 Xn Cn

the unknown x; can be obtained by back substitution. Let [A] be a product of an
upper unit triangular matrix [7] and a lower triangular matrix [L], i.e.,

[L][7] = [4] 09)
Since

[L][TX -C]=0=[AX - B], (D.10)

© 2001 by CRCPRESSLLC

it follows that
[L][c]=[5] (D.11)

For computational reasons, it is convenient to work with the augmented form of the
matrices. The augmented matrix is obtained by adding the column vector of constants
to the square coefficient matrix. Equations (D.8) and (D.11) may be combined to give

ai ap ... ap ;- b
ar) ax ... ay b _
Ldn1 @2 - .. ann : by
Li; 0 ... 0 1Ty ... Ty il
Ly Ly ... 0 01 ...T 0 o120
Lyt Ly ... Lyy)
00 ...1 L Cpy
or
[A:B]=[L][T:C] (D.12b)

The elements of [L], [T'], and [C] can be defined in terms of [A] and [B] as follows [1,
2,5]:

i1
Lij=aj—Y LTy, i>j.i=12...n
k=1
Lij=ai1, j=1
1 i—1
Tisz—ii(ij—ZLikaj), i<j, j=273,...,n (D.13)
k=1

Tij = aij/an, =1

| i—1 .
ci = L_,, (bi —;Likck>, i=2,3,...,n
c1 =bi/Ln
The unknown x; are obtained by back substitution as follows:

Xp = Cp

n
xi=c— Y Tyxj, i=12...n-1 (D.14)
j=i+1

© 2001 by CRCPRESSLLC

Cholesky’s method can easily be applied in calculating the determinant of [A].
Since

det [A] = det [L]det[T] (D.15)
and det[T] = 1 due to the fact that 7;; = 1, it follows that
det[A] =det[L] = LiiLa...Lun

or
n
det[A] =T]Lu (D.16)
i=1
Figure D.2 shows a subroutine based on Cholesky’s method of solving a set of simul-
taneous equations.

D.2 Iterative Methods

The direct or elimination method for solving a system of simultaneous equations
can be used for n = 25 to 60. This number can be greater if the system is well
conditioned or the matrix is sparse. For very large systems, say n = 100 or even
1000, elimination methods become time-consuming and prove inadequate due to
roundoff error. For these types of problems, indirect or iterative methods provide an
alternative.

D.2.1 Jacobi’s Method

This is the simplest iterative method. If the system in Eq. (D.1) is rearranged so
that the ith equation is explicit in x;, we obtain

1

x| = E [b1 —ajpxy —azxz — -+ — apx,] (D.16a)
1
X2 = — [by —az1x1 — ax3xz — - - — Az Xy] (D.16b)
ann
1
Xp = — [bn — apl1X1 — ap2X2 — - — an,n—lxn—l] (D.16¢)
Ann

assuming that the diagonal elements are all nonzero. We start the solution process
by using guesses for the x’s, say x; = xo = --- = x, = 0. The first equation can
be solved for x1, the second for x>, and so on. If we denote the estimates after the

© 2001 by CRCPRESSLLC

0001 CrEsr R a kR kR AR R RRRRXBRERRKRRBRRAREBRR R RAREEF RN R K KK

0002 [THIS SUBROUTIBE APPLIES CHOLESKY ELIMINATION METHOD
0003 c TO SOLVE THE SYSTEM [AA1[X] = [B]

0004 c [A] = AUGMENTED MATRIX = [AA : B]

0005 C MAX = MAXIMUM ROW DIMENSION OF [AA] AKD [X] MATRIX
0006 c MAX1 = MAXIMUM COLUMN DIMENSION OF [AA] = MAX + 1
0007 c | = ACTUAL ROW SIZE OF [AA]

0008 o] M = ACTUAL COLUME SIZE OF [AA] = ¥+1

0009 c [X] = STORES THE RESULTS

0010 c

0011 C REF: [2, PP. 184, 185]

0012 Crestdtbkhkrkbbbkbkrbbkgbbkbbhbsbkbbhbbhbhb kbbb hkhkbkd
0013 SUBROUTINE CHOLESKY(A,MAX ,MAX1,N,M,X)

0014 c

0015 C NOTE: THIS PROGRAM CAN BE USED TO SOLVE COMPLEX EQUATIONS
0016 c BY REPLACIEG EVERY SUM = 0.0 WITH SUM = (0.0,0.0)
0017 c USING THE KEXT LINE INSTEAD OF THE ONE FOLLOWING IT
0018 C COMPLEX A,X,SUM

0019 REAL A,X,SUM

0020 DIMENSION A(MAX,MAX1), X(MAX)

0021

0022 c

0023 C CALCULATE THE FIRST ROW OF THE [T] MATRIX

0024 C

0025 DO 10 J =2, K

0026 A(1,1)=A(1,3)/A(1,1) !'CALCULATES T(1,1)

0027 10 CONTINUE

0028 c

0029 C CALCULATE OTHER ELEMENTS OF [T] AND [L] MATRICES

0030 c

0031 DO 60 I=2,¥

0032 DO 30 II=I,¥

0033 SUM = 0.0

0034 DO 20 K=1,I-1

0035 SUM = SUM + A(II,K)*A(K,I)

0036 20 CONTINUE

0037 A(II,I) = A(II,I) - SUM !CALCULATES [L]

0038 30 CONTINUE

0039 DO 50 J = I+1,M

0040 SUM = 0.0

0041 DO 40 K=1,I-1

0042 SUM= SUM + A(I,K)#A(K,])

0043 40 CONTINUE

0044 A(I,3) = (A(I,3)-SUM)/A(I,I) !CALCULATES [T]

0045 50 CONTINUE
0046 60 CONTINUE

0047 [
0048 C SOLVE FOR [X] BY BACK SUBSTITUTION
0049 c
0050 X(N) = A(E,M)
0051 DO 80 NN = 1,H~-1
0052 SUM = 0.0
0053 I= ¥ - NN
0054 DO 70 J = I+1,¥
0055 SUM = SUM + A(I,J)*X(J)
0056 70 CONTINUE
0057 X(I) = A(I,M) - SUM
0058 80 CONTINUE
0059 RETURN
0060 END
Figure D.2

Cholesky’s elimination method of solving [A][X] = [B].

© 2001 by CRCPRESSLLC

kth iteration as x{‘ , x’z‘ ,..., xk the estimates after (k + D)th iteration can be obtained

M R A
from Eq. (D.16) as

1 n
k+1 _ . ok =
= bi— Y ayxh|, i=1,2,....n (D.17)
j=Lj#1
The iteration process is continued until values of x; at two successive iterations are
within an allowable prescribed deviation.
Convergence is measured in terms of the change in x; from the kth iteration to the
next. If we compute
k+1 k
X TN

e

d; = - 100% (D.18)

for each x;, convergence can be checked using the criterion
d,' < € (D-19)
where «; is a specified small quantity. A better test would be to compute
n
i=1
n

e

i=1

i Xi

okt _ k‘

d= - 100% (D.20)

and require that d < «;.

D.2.2 Gauss-Seidel Method

This is the most commonly used iterative method. In Jacobi’s method the entire
set of x; from the kth iteration is used in calculating the new set during the (k + 1)th
iteration, whereas the most recently calculated value of each variable is used at each
step in the Gauss-Seidel method. This makes the Gauss-Seidel method converge
more rapidly than (about twice as) Jacobi’s method and is always used in preference
to it. Instead of Eq. (D.17), we use

1 ' u
xf = b[—Za[jx;?H— Z aijxk | i=1,2,....,n (D21)
dii j=1 j=i+l

A computer program based on this method is displayed in Fig. D.3.

D.2.3 Relaxation Method

This is a slight modification of the Gauss-Seidel method and is designed to enhance
convergence. If x{‘ is added to the right-hand side of Eq. (D.21) and (ai,-xf‘) /aii is

© 2001 by CRCPRESSLLC

0001 [T e
0002 C THIS SUBROUTINE EMPLOYS GAUSS-SEIDEL ITERATIVE METHOD
0003 C TO SOLVE A SET OF SIMULTANEOUS EQUATIOES [A][X] = [B]
0004 C IDM = DIMEESION OF [A] IN THE CALLING PROGRAM

0005 C § = ACTUAL SIZE OF [A] IN THE CALLING PROGRAM

0006 CHEXEXERX R RARRR R R RR KRR KRR R R R R R KRR R AR AR AR KRR KRR KKK
0007
0008 SUBROUTINE GSEIDEL(A,B,X,N,IDM)
0009 DIMENSION A(IDM,IDM), B(IDM), X(IDM)
0010 c
0011 C INITIALIZATION
0012 c
0013 DO 10 I=1,N
0014 X(I) = 0.0
0015 10 CONTINUE
0016 K = 0 'NO. OF ITERATIONS
0017 TOL = 1.0E-30 !TOLERANCE FOR ZERO
0018 20 RES = 0.0
0019 DO 40 I=1,K
0020 SUM = 0.0
0021 DO 30 J=1,K
0022 IF(J.EQ.I) GO TO 30
0023 SUM = SUM + A(I,J)*X(J)
0024 30 CONTINUE
0025 XNEW = (B(I) - SUM)/A(I,I)
0026 c
0027 C FIND THE LARGEST RESIDUE
0028 c
0029 DIFF = ABS(X(I) - XNEW)
0030 IF(DIFF.GT.RES) RES = DIFF
0031 c
0032 C REPLACE OLD VALUE WITH NEWLY COMPUTED VALUE
0033 c
0034 X(I) = XNEW
0035 40 CONTINUE
0036 C
0037 C TEST FOR CONVERGENCE
0038 c
0039 K=K+1
0040 PRINT *,K
0041 IF(RES.GE.TOL) GO TO 20
0042 RETURN
0043 END
Figure D.3
Gauss-Seidel iterative method of solving [A][X] = [B].
subtracted from it, we obtain
1 i—1 n
Uk | — Za,-jx’f“ - Zaijx’? , i=1,2,....,n (D.22)
! Poay ‘ 7 — J
j= Jj=i

The second term on the right-hand side can be regarded as a correction term. The
correction term tends to zero as convergence is approached. If this term is multiplied
by w, Eq. (D.22) becomes

i—1

n
k+1 Kk, @ k+1 k .
xi+ = X; —|—; b; — E ajjx;" — E aijxj |, i=12,....,n (D.23)
=1 j=i

12

© 2001 by CRCPRESSLLC

The relaxation factor w is selected such that 1 < @w < 2. The choice of a proper
value of w is problem dependent and is often determined by trial and error. The added
weight of w is intended to improve the estimate by pushing it closer to the exact value.

D.2.4 Gradient Methods

The iterative methods considered above may be broadly classified as stationary
while the ones to be presented now are gradient (or nonstationary) methods. The
two common gradient methods are the steepest method and conjugate gradients
method [6]-[8]. A major advantage gradient methods have over stationary meth-
ods is that convergence is faster; hence gradient methods are particularly useful when
the number of simultaneous equations is very large.

A set of n simultaneous equations may be solved by finding the position of the
minimum of an error function defined over an n-dimensional space. In each step of
a gradient method, a trial set of values for the variables is used to generate a new set
corresponding to a lower value of the error function. If X is the trial vector, the vector
residual is

R =B - AX (D.24)
where A is real, symmetric, and positive definite. If we define the error function as
e=R'AT'R, (D.25)
then
e=X'AX —2B'X+B'A™'B (D.26)

showing that e is quadratic in X.
Starting from an arbitrary point X,, we locate a sequence of points

Xit1 = Xk + o Dy (D.27)

which are successively closer to X, where X minimizes e in Eq. (D.26). The parameter
oy is proportional to the distance between X; and X, along the direction vector Dy.
Substituting Eq. (D.27) into Eq. (D.26) and setting de/day equal to zero gives

_ D;{Rk
D;CADk

g (D.28)

Both the methods of steepest descent and conjugate gradients use Eq. (D.28) but differ
in the choice of Dy.

In the method of descent, Dy is taken as the direction of maximum gradient of e at
X. This direction is proportional to X} so that the iterative algorithm has the form:

(i) select an arbitrary Xg

(ii) compute Ry = B — AXp

© 2001 by CRCPRESSLLC

(iii) determine successively

Ur = ARy,
_ R;{Rk
o = —
R, Ug

X1 = Xi +ap Ry
Ri+1 = Ry — oy Uy

(iv) repeat step (iii) until residual vector (R” R) becomes sufficiently small.

(D.29)

In the method of conjugate gradients, Dy are selected as n vectors P, which are

mutually conjugate. The vectors Py are conjugate or orthogonal to A, i.e.,

P{AP. =0, i #j
0, i=j
Thus the conjugate gradients algorithm is as follows:
(i) select an arbitrary X
(i) set Pp= Rgp = B — AXy

(iii) determine successively

Ur = ARy,
_ Plng
o = 7
P Uy

Xir1 = X + o Ry
Ri+1 = R — oy Uy
Bx = —M
P;gUk
Pry1 = Ry + Br Px

(D.30)

(D.31)

(iv) repeat step (iii) until k = n — 1 or the residual vector (RT R) becomes suffi-

ciently small.

This algorithm is guaranteed to yield the true solution in no more than n iterations—a
condition known as quadratic convergence. Because of this, the conjugate gradients
method has the advantage of an iterative scheme in that the roundoff error is limited
only to the final step of the solution and also the advantage of a direct method in that

it converges to the exact solution in a finite number of steps.

The subroutine in Fig. D.4 applies the conjugate gradients method to solve a given
set of simultaneous equations. Typical areas where the conjugate gradient methods

have been applied in EM can be found in [9]-[12].

© 2001 by CRCPRESSLLC

0001 [s T P P T TS P
0002 C THIS SUBROUTINE APPLIES THE CONJUGATE GRADIENTS METHOD
0003 C TO SOLVE A SET OF SIMULTANEOUS EQUATIONS [A][X] = [B]
0004 C IDM = DIMENSION OF [A] IN THE CALLING PROGRAM

0005 (o N = ACTUAL SIZE OF [A] IN THE CALLING PROGRAM

OOOG C“t‘#*tt‘t‘“t#t*ttttt‘t#“*##ttt#t‘t#“#“tttttt‘tt*#"
0007
0008 SUBROUTINE CONJUGATE(A,B,N,IDM,X)
0009
0010 DIMENSION A(CIDM,IDM), B(IDM), X(IDM)
0011 DIMENSION U(100), R(100), P(100) ‘change 100
0012 'if ¥.G6T.100
0013 c
0014 C IBITIALIZATION
0015 c
0016 K=0 !'K=K0. OF ITERATIONS
0017 TOL = 1.0E-30 'TOLERANCE FOR ZERO
0018 D0 10 I=1,K
0019 X(I) = 0.0
0020 P(I) = B(I)
0021 R(I) = B(I)
0022 10 COBTINUE
0023 C
0024 C ITERATION BEGINS HERE
0025 c
0026 20 K=K+ 1
0027 DO 30 I=1,N
0028 U(I) = 0.0
0029 DO 30 J=1,N%
0030 U(I) = U(I) + A(I,J1)*P(J)
0031 30 CONTINUE
0032 SUM1 = 0.0
0033 SUM2 = 0.0
0034 DO 40 I=1,¥§
0035 SUM1 = SUM1 + P(I)*R(I)
0036 SUM2 = SUM2 + P(I)*U(I)
0037 40 CONTINUE
0038 ALPHA = SUM1/SUM2
0039 D0 50 I=1,K
0040 X(I) = X(I) + ALPHA*P(I)
0041 v PRINT #*,K,I,X(I)
0042 R(I) = R(I) - ALPHA*U(I)
0043 50 CONTINUE
0044 c
0045 C CALCULATE RESIDUALS AND DIRECTION VECTORS
0046 C
0047 SUM3 = 0.0
0048 SUM4 = 0.0
0049 DO 60 I=1,E
0050 SUM3 = SUM3 + R(I)*R(I)
0051 SUM4 = SUM4 + R(I)*U(I)
0052 60 CONTIKUE
0053 c
0054 C CHECK IF RESIDUALS ARE ALREADY SMALL
0055 C IF SO ALGORITHM HAS CONVERGED
0056 c
0057 IF((K.EQ.¥).OR.(SUM3.LT.TOL)) GO TO 80
0058 BETA = - SUM4/SUM2
0059 DO 70 I=1,¥
0060 P(I) = R(I) + BETA*P(I)
0061 70 CONTINUE
0062 GO TO 20
0063 80 RETURK
0064 END
Figure D.4
This subroutine applies the conjugate gradients method to solve [A][X] = [B]
(Continued).

© 2001 by CRCPRESSLLC

D.3 Matrix Inversion

If [A] is a square matrix, there is another matrix [A]7!, called the inverse of [A],
such that

[A][A] " = [A]'[4] = [1] 03

where [is the identity or unit matrix. Matrix inversion can be used to solve a set of
simultaneous equations in Eq. (D.1) as

[x]=1[A]""[B] (D.33)

The solution of a system of simultaneous equations by matrix inversion and multi-
plication is most valuable when several systems are to be solved, all of which have
the same coefficient matrix but different column matrices of constants. This situation
requires calculating the inverse matrix only once and using it as a premultiplier of
each of the column matrices of constants [2, 13].

The inversion of matrices is closely related to the solution of sets of simultaneous
equations. The inverse of [A] can be determined from Eq. (D.32). If we let [C] =
[A]7!, then

[A][c] = [1] (D.34a)
or
ail a2 ... din Cl11 C12 ... Cin 10...0
a1 ay ... axy 21 €22 ... Cop 01...0
=|. (D.34b)
ayl A2 ... Qup Cnl Cn2 -+ . Cnn 00...1

This may be regarded as n sets of n simultaneous equations with identical coefficient
matrix. The ith set of n simultaneous equations, for example, is

ajrap ... a | | ci 0
aj) axy ... Ay Coi 0
—|: (D.35)
Qni Qui ... api | | cii 1
L9nl Qn2 - .. Ann_| | Cni_| _0_

Thus, the inversion of [A] may be accomplished by solving n sets of equations like
Eq. (D.35). A common approach for matrix inversion is applying elimination method,
with or without pivotal compensation. This implies that any elimination technique

© 2001 by CRCPRESSLLC

(Gauss, Gauss-Jordan, or Cholesky’s method) can be modified to calculate an inverse
matrix. Here we apply the Gauss-Jordan elimination method.

To apply the Gauss-Jordan method, we first augment the coefficient matrix by the
identity matrix to obtain

aip a1 ... al,,ilo... 0

ay) azp ... app :01...0

[A:1]= (D.36)

Anl Qp2 ... GApy - 00... 1

The goal is to transform this augmented matrix to another augmented matrix of the
form
10... 056’11 C12 ... Cin

01... OEC21 €2 ... Coy

[1:C]= (D.37)

00... lfcnl Cn2 - Cnn

where [C]is the inverse of [A]. The transformation is achieved using the Gauss-Jordan
method, which involves applying the following equations in the order listed [2]:

a,/(j = ayj/akk, j=12,....n, j#k

ay = 1/axk,

aj; = aij — aiay;, i=1,2,....n, i#k (D.38)
j=12,....,n, j#k

aj, = —aixay., i=1,2,...,n, i#k

We apply Eq. (D.38) fork = 1,2, ..., n. A computer program applying Eq. (D.38)
is presented in Fig. D.5. An iterative method of correcting the elements of the inverse
matrix is available in [14].

D.4 Eigenvalue Problems

The nature of these problems is discussed in Section 1.3. Here we are concerned
with the so-called standard eigenproblems

[A—AI][X] =0 (D.39)

© 2001 by CRCPRESSLLC

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046

Figure D.5

(o
C SUBROUTINE FOR MATRIX INVERSION USING GAUSS~JORDAN
C ELIMINATION METHOD

C A IS THE MATRIX TO BE INVERTED; IT IS DESTROYED

C IN THE COMPUTATION AND REPLACED BY THE IKVERSE

Cc | = THE ORDER OF A

C IDM = THE DIMENSION OF A

C
c
Cc

REF: [2, p. 197]

(A A d 2 222 222 2 2 2 2 2 2 2 i s T 22T
SUBROUTINE INVERSE(A,N,IDM)
DIMENSION A(IDM,IDM)

c
C CALCULATE ELEMENTS OF REDUCED MATRIX
c
DO 60 K=1,K
c
C CALCULATE NEW ELEMENTS OF PIVOT ROW
c
DO 40 J=1,K
IF(J.EQ.X) GO TO 40
A(K,J) = A(K,J)/A(K,K)
40 CONTINUE
c
C CALCULATE ELEMENT REPLACING PIVOT ELEMENT
c
A(K,K) = 1.0/A(K,K)
c
C CALCULATE NEW ELEMENTS NOT IN PIVOT ROW OR PIVOT COLUMN
c
DO 50 I=1,X
IF(I.EQ.X) GO TO 50
DO 50 J=1,K
IF(J.EQ.X) GO TO 50
ACI,J) = A(I,J]) - A(I,K)*A(K,J)
50 CONTINUE
c

C CALCULATE REPLACEMENT ELEMERTS FOR PIVOT
C COLUMN-EXCEPT PIVOT ELEMENT

DO 60 I=1,§

IF(I.EQ.X) GO TO 60

A(I,K) = - A(I,K)*A(K,K)
60 COETINUE

RETURK

END

Matrix inversion using Gauss-Jordan elimination method.

or the generalized eigenproblem

To show that Egs. (D.39) and (D.40) are solved in the same way, we premultiply

[A—-AB][X]=0

Eq. (D.40) by B~! to obtain

[B~'A —AIl[X]=0

Assuming C = B~ A gives

[C - AI[X]=0

© 2001 by CRCPRESSLLC

showing that Eq. (D.39) is a special case of Eq. (D.40) in which B = I. Thus, the
procedure for solving Eq. (D.39) applies to Eq. (D.40) or (D.42).

The eigenvalue problems of Egs. (D.39) and (D.40) are solved by either direct or
indirect methods. In direct methods, such as Jacobi’s method, the relevant matrix
elements are stored in the computer, and an explicit procedure is used to obtain some
or all of the eigenvalues A1, A, ..., A, and eigenvalues X1, X2, ..., X,,. Indirect
methods are basically iterative, and the matrix elements are usually generated rather
than stored.

D.4.1 Iteration (or Power) Method

The most commonly used iterative method is the power method. The method is
suitable in situations where either the greatest or the least eigenvalue is required.
Suppose that one of the eigenvalues of A, say A1, satisfies the condition

[A1] > A, i#1, (D.43)

then |A1| is said to be the dominant eigenvalue of A. In many applications, the
dominant eigenvalue is the most important and is probably the only eigenvalue we
are interested in. The iteration method is specifically used for finding the dominant
eigenvalues.

The iterative procedure is essentially based on the condition that should a trial vector
[X]; be assumed, an approximate eigenvalue and a new trial eigenvector [X];4+1 can
be determined from Eq. (D.39) or Eq. (D.40). To find the largest eigenvalue |1{[, we
rewrite Eq. (D.39) as

[AlIX] = A[X] (D.44)

and follow these steps [2]:
(1) Assumeatrial vector [X]o = (x1, X2, ..., xp),e.2.,[X]lo=(1,1,...,1). Sub-
stituting [X]o to the left-hand side of Eq. (D.44) gives the first approximation

to the corresponding eigenvector, i.e.,

AX]1 = (Axg, Axg, ..., Axy)

(2) Normalize the new vector A[X] by dividing it by the magnitude of its first com-
ponent or by dividing the vector [X] by the magnitude of the first component.

(3) Substitute the normalized vector into the left-hand side of Eq. (D.44) and obtain
a new approximate eigenvector.

(4) Repeat steps (2) and (3) until the components of the new and previous eigen-

vectors differ by some prescribed tolerance. The normalizing factor will be the
largest eigenvalue A1 while [X] is the associated eigenvector.

© 2001 by CRCPRESSLLC

To find the smallest eigenvalue, we first premultiply Eq. (D.44) by the inverse of
[A] to obtain
[X]=A[A]7'[X]

or
(A1 1X] = 5 X] (D.43)

Thus the iteration formula becomes
(AT XY = 5 (X (D.46)

In this form, the iteration converges to the largest value 1/A, which corresponds to
the smallest eigenvalue A of [A].

Once the largest eigenvalue is found, the method can be used to obtain the next
largest eigenvalue by transforming [A] to another matrix possessing only the remain-
ing eigenvalues [2]. This so-called matrix deflation procedure assumes that [A] is
symmetric. The matrix deflation is continued until all the eigenvalues have been
extracted. Error propagation from one stage of the deflation to the next leads to in-
accurate results, specially for large eigenproblems. Jacobi’s method, to be discussed
in the next section, is recommended for large eigenproblems.

The subroutine in Fig. D.6 is useful for finding the largest eigenvalues of a matrix.

D.4.2 Jacobi’s Method

Jacobi’s method is perhaps the most reliable method for solving eigenvalue prob-
lems. Its major advantage is that it finds all eigenvalues and eigenvectors simultane-
ously with excellent accuracy.

The method transforms a symmetric matrix [A] into a diagonal matrix having the
same eigenvalues as [A]. This is achieved by eliminating one pair of off-diagonal
elements of [A] at a time. Given

[AlIX] = A[X], (D.47)

let A1, A2,..., A, be the eigenvalues and [V1], [V2], ..., [V,] the corresponding
eigenvectors. Then,

[A][Va] = Ai[Va] (D.48)
or simply

[Al[V] = [V][A] (D.49)

© 2001 by CRCPRESSLLC

0001 CHEEx 2R R AR KR RRRSRRRER AR AR RN RRE R AR AR R RN R R R AR R KKK

0002 c THIS SUBROUTINE FINDS THE LARGEST EIGENVALUE AKD
0003 c THE ASSOCIATED EIGENVECTOR OF
0004 c A MATRIX EQUATION [AJ[X] = LAMBDA*[X]
0005 c IDM = THE DIMENSION OF MATRIX [A]
0006 c ¥ = THE ACTUAL SIZE OF MATRIX [A]
0007 c IT = THE BO. OF ITERATIONS USED
0008 c REF: [2, p. 238,239]
0009 CEs 2255k R R SRR AR AR ER R R AR RR SRR RRERR R SRR KR KRR KR KRR KK
0010 SUBROUTINE POWER(A,LAMBDA,X,IDM,N,IT)
0011 REAL LAMBDA
0012 PARAMETER (ISIZE=100) 'IKCREASE ISIZE IF IDM > 100
0013 DIMENSION A(IDM,IDM),X(IDM)
0014 DIMENSION D(ISIZE), Z(ISIZE)
0015
0016 EPSI = 1.0E-30 !'TOLERANCE FOR ZERO
0017 c
0018 C INITIALIZATION
0019 c
0020 D0 20 I=1,N
0021 X(I) =1.0
0022 20 CONTINUE
0023 c
0024 C CALCULATE [A][X] AND CALL IT [D]
0025 c
0026 IT = 0
0027 30 DO 40 I=1,%
0028 D(I) = 0.0
0029 DO 40 J=1,K
0030 D(I) = D(I) + A(I,))*Xx(J)
0031 40 CONTINUE
0032 IT = IT + 1
0033 c
0034 C NORMALIZE VECTOR [D] AND CALL IT [Z]
0035 c
0036 DO 50 I=1,K
0037 Z(1) = p(I)/p(1)
0038 50 CONTINUE
0039 c
0040 C CHECK IF RESULT IS SUFFICIENTLY ACCURATE
0041 c
0042 DO 60 I=1,¥
0043 DIFF = X(I) - Z(I)
0044 IF(ABS(DIFF) - ESPI#ABS(Z(I))) 60, 60, 70
0045 60 CONTINUE
0046 GO TO 90
0047 c
0048 C SUFFICIENT ACCURACY HAS NOT BEEN ATTAINED
0049 C LET [X] = [Z] AND REPEAT THE PROCESS
0050 c
0051 70 DO 80 I=1,K
0052 X(I) = z(I)
0053 80 CONTINUE
0054 IF(IT.GE.100) GO TO 110
0055 GO TO 30
Figure D.6
Subroutine for finding the largest eigenvalue of equation [A][X] = LAMBDA[X]
(Continued).

© 2001 by CRCPRESSLLC

0056 C
0057 C SUFFICIENT ACCURACY HAS BEEN ATTAINED

0058 ¢
0059 90 DO 100 I=1,N
0060 X(I) = (D)
0061 100 COBTINUE
0062 C
0063 C OR MAXIMUM NUMBER OF ITERATIONS HAS BEEN REACHED
0064 C
0065 110 LAMBDA = D(1)
0066 RETURKE
0067 END

Figure D.6

(Cont.) Subroutine for finding the largest eigenvalue of equation [A][X] =
LAMBDA[X].

where
V1= [Vi].[Va]. ... [Val] (D.50a)
A O ... 0
0x... 0
A= . . . (D.50b)
00 .. A

From the theory of matrices, if [A] is symmetric, [V'] is orthogonal, i.e.,
vl =vi! (D.51)
hence, premultiplying Eq. (D.49) by [V]’ leads to
[VI'TAIIV] = [A] (D.52)

signifying that the eigenvalues of [V][A][V], which is known as the orthogonal
transformation of [A], are the same as those of [A]. Thus the problem of finding the
eigenvalues is reduced to finding the [V] matrix.

The [V] matrix is constructed iteratively by using unitary matrix (or plane rotation
matrix) [R]. If we let

[A1] = [4]
[42] = [Ri] [AI][R1]
[43] = [Re] [A2][Ro] = [Re] [Ra] [A][RV][R:]

[Akj = [Ri1]" ... [Ri)[A][R1]. - [Re=1] (D.53)
then as k — oo
[Ak] = [2]
[Ri][R2]. .- [Re-1] = [V] (D.54)

© 2001 by CRCPRESSLLC

The unitary transformation matrix [R] eliminates the pair of equal elements a,, and
agp. Itis given by [1, 2, 7]

4 q
1
1
[Rk] _ cosf 1 —sin6 p (D.552)
sinf cos@ q
1
1.e.,
Ryq = Rpp = cos0
—Rpq = Ryp =sin6
Ri=1 i#p.gq
R;j =0, elsewhere (D.55b)
The choice of 6 in the transformation matrix must be such that new elements a}, g =
PR
ag, = 0,1.e.,
a;q = (—ap,, + aqq) cosf sinf + apq <0052 6 — sin® 9) =0 (D.56)
Hence
2apq o o
tan20 = —————, —45° <0 <45 (D.57)
App — Aqq
An alternative manipulation of Eq. (D.56) gives
1/2
\/(app — agq)* +4ag, + (app — agq)
cosf = (D.58a)

2\/(ap,, —agg)* + 4af,q

. Apq
sinf = (D.58b)
\/(app — agq)* +4a3, cos 6

Notice that Eq. (D.53) requires an infinite number of transformations because the
elimination of elements a,, and a,, in one step will in general undo the elimination of
previously treated elements in the same row or column. However, the transformation
converges rapidly and ceases when all the off-diagonal elements become negligible
in magnitude.

The program in Fig. D.7 determines all the eigenvalues and eigenvectors of sym-
metric matrices employing Jacobi’s method.

© 2001 by CRCPRESSLLC

0001 CrERRREERRREREREEERRERR R R RN R AR RN RAR R R KRR RN R R R AR K

0002 C USING JACOBI METHOD,
0003 c THIS SUBROUTINE FINDS ALL THE EIGENVALUES AND
0004 c THE ASSOCIATED EIGENVECTORS OF
0005 c A MATRIX EQUATION [AJ[X] = LAMBDA*[X]
0006 c A = SYMMETRIC MATRIX
0007 c LAMBDA(J) = EIGENVALUES, ORDERED FROM ALGEBRAICALLY
0008 c LARGEST TO SMALLEST
0009 [RT(I,J) = MATRIX THAT WILL EVENTUALLY COBTAIR THE
0010 c EIGENVECTORS (J) ASSOCIATED WITH LAMBDA (J)
0011 c IDM = THE DIMENSION OF MATRIX [A]
0012 c | = THE ACTUAL SIZE OF MATRIX [A]
0013 c IT = THE NO. OF ITERATIONS USED
0014 c REF: [2, p. 268-271]
0015 CHEES AR R R AR AR R RE AR R PSR AR RR R AR R RRRR R kR AR R
0016 SUBROUTINE EIGEN(A,RT,IDM,N,LAMBDA)
0017 DIMENSION A(IDM,IDM) ,RT(IDM,IDM)
0018 REAL LAMBDA(IDNM)
0019 c
0020 C GENERATE AN ¥ X ¥ IDENTITY MATRIX RT WHICH WILL
0021 C EVENTUALLY CONTAIN THE EIGEEVECTORS
0022 c
0023 DO 20 I=1,K
0024 DO 10 J=1,%
0025 RT(X,1) = 0.0
0026 10 CONTINUE
0027 RT(I,I) = 1.0
0028 20 CONTINUE
0029 NSWEEP = 0
0030 30 NRSKIP = 0
0031 c
0032 C BEGIN A SWEEP WHICH WILL TRANSFORM EACH OFF-DIAGONAL
0033 C ELEMENT IN TURN TO ZERO
0034 c
0035 EMIN1 = §-1
0036 DO 130 I=1,NMIN1
0037 IPL =1 + 1
0038 D0 120 J=IP1.N
0039 AV = 0.5+(A(I,1) + aQJ,))
0040 DIFF = A(I,I) - A(J,J)
0041 RAD = SQRT(DIFF*DIFF + 4 .0%AV%AV)
0042 c
0043 C CHECK IF RAD IS ZERO. IF SO, ¥O NEED OF
0044 C ROTATION
0045 c
0046 IF(RAD.EQ.0.0) GO TO 80
0047 c
0048 C CHECK IF DIFF IS MEGATIVE. IF SO, INTERCHAKGE
0049 C A(I,I) AND A(J,J) AND PERFORM ROTATION
0050 c
0051 IF(DIFF.LT.0.0) GO TO 60
0052 IF(ABS(A(I,I)).EQ.ABS(A(I,I))+100.+ABS(AV)) GO TO 40
0053 GO TO 40
0054 40 IF(ABS(A(J,J)).EQ.ABS(A(J,J)))+100.*ABS(AV)) GO TO 80
0055 50 COSINE = SQRT((RAD + DIFF)/(2.0%RAD))
0056 SINE = AV/(RAD*COSINE)
0057 G0 TO 70
0058 c
0059 C FOR THE DIAGONAL ELEMENTS, PERFORM ROTATIOR
0060 c
0061 60 SINE = SQRT((RAD-DIFF)/(2.0%RAD))
0062 IF(AV.LT.0.0) SINE = -SIKEE
0063 COSINE = AV/(RAD#*SIEE)
Figure D.7

Subroutine for finding all the eigenvalues and eigenvectors of equation [A][X] =
LAMBDA[x] (Continued.)

© 2001 by CRCPRESSLLC

0064 C
0065 C CHECK IF SIN(THETA) IS EEGLIGIBLE
0066 C IF S0, SKIP ROTATION

0067 C

0068 70 IF(1.0.LT.1.0 + ABS(SIKE)) GO TO 90
0069 80 NRSKIP = NRSKIP + 1

0070 GO TO 120

0071 C

0072 C FERFORM ROTATION
0073 C PREMULTIPLY BY THE ROTATION MATRIX

0074 (o]

0075 90 DO 100 K=1,K

0076 Q = A(I,K)

0077 ACI,K) = COSINE+Q + SINE#A(J,K)

0078 A(J,K) = - SINE#*Q + COSINE*A(J,K)

0079 100 CONTINUE

0080 C

0081 C POSTMULTIPLY BY THE TRANSFORM OF THE ROTATION MATRIX
0082 C

0083 DO 110 K=1,K

0084 Q = A(K,T)

0085 A(K,I) = COSINE*Q + SINE#A(K,J)

0086 A(K,J) = - SINE#Q + COSINE*A(K,J)

0087 €

0088 C POSTMULTIPLY THE CURRENT PRODUCT OF ALL THE RT MATRICES
0089 C UP TO THIS POINT BY THE CURRENT RT MATRIX

0090 C

0091 Q = RT(K,I)

0092 RT(K,I) = COSINE#Q + SINE*RT(K,J)

0093 RT(K,J) = - SINE*Q + COSINE*RT(K,J)

0094 110 CONTINUE
0095 120 CONTIRUE
0096 130 CONTINUE

0097 C

0098 C KEEP A TALLY OF THE NUMBER OF SWEEPS
0099 C

0100 NSWEEP = NSWEEP + 1

0101 IF(NSWEEP_.GT.50) GO TO 140

0102 C WRITE(6,+)NRSKIP ,NSWEEP

0103 C

0104 C CHECKIF THE NUMBER OF ROTATIONS SKIPPED IS LESS/
0105 C EQUAL TO THE NO. OF ELEMENTS ABOVE THE MAIN DIAGONAL
0106 C IF EQUAL, CONVERGENCE HAS OCCURRED

0107 ¢
0108 IF(NRSKIP.LT.N*(¥-1)/2) GO TO 30
0109 140 CONTINUE
0110 ¢ WRITE(6,*) NSWEEP
0111 DO 150 J=1,N
0112 LAMBDA(J) = A(J,J)
0113 150 CONTINUE
0114 RETURN
0115 END
Figure D.7

(Cont.) Subroutine for finding all the eigenvalues and eigenvectors of equation
[A][X] = LAMBDA[x].

© 2001 by CRCPRESSLLC

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

A.W. Al-Khafaji and J.R. Tooley, Numerical Methods in Engineering Practice.
New York: Rinehart and Winston, 1986, pp. 84-159, 203-270.

M.L. James et al., Applied Numerical Methods for Digital Computation. 3rd
ed., New York: Harper & Row, 1985, pp. 146-298.

S.A. Hovanessian and L.A. Pipes, Digital Computer Methods in Engineering.
New York: McGraw-Hill, 1969, pp. 1-48.

W. Cheney and D. Kincaid, Numerical Mathematics and Computing, 2nd ed.,
Monterey, CA: Brooks/Cole, 1985, pp. 201-257.

R.L. Ketter and S.P. Prawel, Modern Methods of Engineering Computation.
New York: MacGraw-Hill, 1969, pp. 66—117.

A. Ralston and H.S. Wilf (eds.), Mathematical Methods for Digital Computers.
New York: John Wiley, 1960, pp. 62-72.

A. Jennings, Matrix Computation for Engineers and Scientists. New York: John
Wiley, 1977, pp. 182-222, 250-254.

J.C. Nash, Compact Numerical Methods for Computers: Linear Algebra and
Function Minimization. New York: John Wiley, 1979, pp. 195-199.

T.K. Sarkar, et al., “A limited survey of various conjugate gradient methods for
solving complex matrix equations arising in electromagnetic wave interaction,”
Wave Motion, vol. 10, no. 6, 1988, pp. 527-546.

A.F. Peterson and R. Mittra, “Method of conjugate gradients for the numerical
solution of large-body electromagnetic scattering problems,” J. Opt. Soc. Am.,
Pt. A, vol. 2, no. 6, June 1985, pp. 971-977.

T.K. Sarkar, “Application of the Fast Fourier transform and the conjugate gradi-
ent method for efficient solution of electromagnetic scattering from both elec-
trically large and small conducting bodies,” Electromagnetics, vol. 5, 1985,
pp. 99-122.

D.T. Borup and O.P. Gandhi, “Calculation of high-resolution SAR distributions
in biological bodies using the FFT algorithm and conjugate gradient method,”
IEEE Trans. Micro. Theo. Tech., vol. MTT-33, no. 5, May 1985, pp. 417-419.

R.W. Southworth and S.L. Deleeuw, Digital Computation and Numerical Meth-
ods. New York: MacGraw-Hill, 1965, pp. 247-251.

S. Hovanessian, Computational Mathematics in Engineering. Lexington, MA:
Lexington Books, 1976, p. 25.

© 2001 by CRCPRESSLLC

	Numerical Techniques in Electromagnetics
	Contents
	Appendix D
	D.1 Elimination Methods
	D.1.1 Gauss’s Method
	D.1.2 Cholesky’s Method

	D.2 Iterative Methods
	D.2.1 Jacobi’s Method
	D.2.2 Gauss-Seidel Method
	D.2.3 Relaxation Method
	D.2.4 Gradient Methods

	D.3 Matrix Inversion
	D.4 Eigenvalue Problems
	D.4.1 Iteration (or Power) Method
	D.4.2 Jacobi’s Method

	References

