
Chapter 5

Moment Methods

“He who will not reason is a bigot; he who cannot is a fool; he who dares not is
a slave.” William Drummond

5.1 Introduction

In Section 1.3.2, it was mentioned that most EM problems can be stated in terms
of an inhomogeneous equation

L� = g (5.1)

where L is an operator which may be differential, integral or integro-differential,
g is the known excitation or source function, and � is the unknown function to be
determined. So far, we have limited our discussion to cases for whichL is differential.
In this chapter, we will treat L as an integral or integro-differential operator.

The method of moments (MOM) is a general procedure for solving Eq. (5.1).
The method owes its name to the process of taking moments by multiplying with
appropriate weighing functions and integrating, as discussed in Section 4.6. The
name “method of moments” has its origin in Russian literature [1, 2]. In western
literature, the first use of the name is usually attributed to Harrington [3]. The origin
and development of the moment method are fully documented by Harrington [4, 5].

The method of moments is essentially the method of weighted residuals discussed
in Section 4.6. Therefore, the method is applicable for solving both differential and
integral equations.

The use of MOM in EM has become popular since the work of Richmond in
1965 and Harrington [7] in 1967. The method has been successfully applied to a
wide variety of EM problems of practical interest such as radiation due to thin-wire
elements and arrays, scattering problems, analysis of microstrips and lossy structures,
propagation over an inhomogeneous earth, and antenna beam pattern, to mention a
few. An updated review of the method is found in a paper by Ney [8]. The literature
on MOM is already so large as to prohibit a comprehensive bibliography. A partial
bibliography is provided by Adams [9].
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The procedure for applying MOM to solve Eq. (5.1) usually involves four steps:

(1) derivation of the appropriate integral equation (IE),

(2) conversion (discretization) of the IE into a matrix equation using basis (or
expansions) functions and weighting (or testing) functions,

(3) evaluation of the matrix elements, and

(4) solving the matrix equation and obtaining the parameters of interest.

The basic tools for step (2) have already been mastered in Section 4.6; in this chapter
we will apply them to IEs rather than PDEs. Just as we studied PDEs themselves in
Section 1.3.2, we will first study IEs.

5.2 Integral Equations

An integral equation is any equation involving unknown function � under the
integral sign. Simple examples of integral equations are Fourier, Laplace, and Hankel
transforms.

5.2.1 Classification of Integral Equations

Linear integral equations that are most frequently studied fall into two categories
named after Fredholm and Volterra. One class is the Fredholm equations of the first,
second, and third kind, namely,

f (x) =
∫ b

a

K(x, t)�(t) dt , (5.2)

f (x) = �(x) − λ

∫ b

a

K(x, t)�(t) dt , (5.3)

f (x) = a(x)�(x) − λ

∫ b

a

K(x, t)�(t) dt , (5.4)

where λ is a scalar (or possibly complex) parameter. Functions K(x, t) and f (x) and
the limits a and b are known, while �(x) is unknown. The function K(x, t) is known
as the kernel of the integral equation. The parameter λ is sometimes equal to unity.

The second class of integral equations are the Volterra equations of the first, second,
and third kind, namely,
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f (x) =
∫ x

a

K(x, t)�(t) dt , (5.5)

f (x) = �(x) − λ

∫ x

a

K(x, t)�(t) dt , (5.6)

f (x) = a(x)�(x) − λ

∫ x

a

K(x, t)�(t) dt , (5.7)

with a variable upper limit of integration. If f (x) = 0, the integral equations (5.2)
to (5.7) become homogeneous. Note that Eqs. (5.2) to (5.7) are all linear equations
in that � enters the equations in a linear manner. An integral equation is nonlinear if
� appears in the power of n > 1 under the integral sign. For example, the integral
equation

f (x) = �(x) −
∫ b

a

K(x, t)�2(t) dt (5.8)

is nonlinear. Also, if limit a or b or the kernel K(x, t) becomes infinite, an integral
equation is said to be singular. Finally, a kernel K(x, t) is said to be symmetric if
K(x, t) = K(t, x).

5.2.2 Connection Between Differential and Integral Equations

The above classification of one-dimensional integral equations arises naturally from
the theory of differential equations, thereby showing a close connection between the
integral and differential formulation of a given problem. Most ordinary differential
equations can be expressed as integral equations, but the reverse is not true. While
boundary conditions are imposed externally in differential equations, they are incor-
porated within an integral equation.

For example, consider the first order ordinary differential equation

d�

dx
= F(x,�), a ≤ x ≤ b (5.9)

subject to �(a) = constant. This can be written as the Volterra integral of the second
kind. Integrating Eq. (5.9) gives

�(x) =
∫ x

a

F (t,�(t)) dt + c1

where c1 = �(a). Hence Eq. (5.9) is the same as

�(x) = �(a) +
∫ x

a

F (t,�) dt (5.10)

Any solution of Eq. (5.10) satisfies both Eq. (5.9) and the boundary conditions. Thus
an integral equation formulation includes both the differential equation and the bound-
ary conditions.
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Similarly, consider the second order ordinary differential equation

d2�

dx2
= F(x,�), a ≤ x ≤ b (5.11)

Integrating once yields

d�

dx
=
∫ x

a

F (x,�(t)) dt + c1 (5.12)

where c1 = �′(a). Integrating Eq. (5.12) by parts,

�(x) = c2 + c1x +
∫ x

a

(x − t)F (x,�(t)) dt

where c2 = �(a) − �′(a)a. Hence

�(x) = �(a) + (x − a)�′(a) +
∫ x

a

(x − t)F (x,�) dt (5.13)

Again, we notice that the integral equation (5.13) represents both the differential equa-
tion (5.11) and the boundary conditions. We have only considered one-dimensional
integral equations. Integral equations involving unknown functions in two or more
space dimensions will be discussed later.

Example 5.1
Solve the Volterra integral equation

�(x) = 1 +
∫ x

0
�(t) dt

Solution
This can be solved directly or indirectly by finding the solution of the corresponding
differential equation. To solve it directly, we differentiate both sides of the given
integral equation. In general, given an integral

g(x) =
∫ β(x)

α(x)

f (x, t) dt (5.14)

with variable limits, we differentiate this using the Leibnitz rule, namely,

g′(x) =
∫ β(x)

α(x)

∂f (x, t)

∂x
dt + f (x, β)β ′ − f (x, α)α′ (5.15)

Differentiating the given integral equation, we obtain

d�

dx
= �(x) (5.16a)
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or

d�

�
= dx (5.16b)

Integrating gives
ln � = x + ln co

or
� = coe

x

where ln co is the integration constant. From the given integral equation

�(0) = 1 = co

Hence

�(x) = ex (5.17)

is the required solution. This can be checked by substituting it into the given integral
equation.

An indirect way of solving the integral equation is by comparing it with Eq. (5.10)
and noting that

a = 0,�(a) = �(0) = 1

and that F(x,�) = �(x). Hence the corresponding first order differential equation
is

d�

dx
= �, �(0) = 1

which is the same as Eq. (5.16), and the solution in Eq. (5.17) follows.

Example 5.2
Find the integral equation corresponding to the differential equation

�′′′ − 3�′′ − 6�′ + 8� = 0

subject to �′′(0) = �′(0) = �(0) = 1.

Solution
Let �′′′ = F(�,�, φ, x) = 3�′′ + 6�′ − 8�. Integrating both sides,

�′′ = 3�′ + 6� − 8
∫ x

0
�(t) dt + c1 (5.18)

where c1 is determined from the initial values, i.e.,

1 = 3 + 6 + c1 → c1 = −8
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Integrating both sides of Eq. (5.18) gives

�′ = 3� + 6
∫ x

o

�(t) dt − 8
∫ x

0
(x − t)�(t) dt − 8x + c2 (5.19)

where

1 = 3 + c2 → c2 = −2

Finally, we integrate both sides of Eq. (5.19) to get

� = 3
∫ x

o

�(t) dt + 6
∫ x

o

(x − t)�(t) dt − 4
∫ x

o

(x − t)2�(t) dt − 4x2 − 2x + c3

where 1 = c3. Thus the integral equation equivalent to the given differential equation
is

�(x) = 1 − 2x − 4x2 +
∫ x

o

[
3 + 6(x − t) − 4(x − t)2

]
�(t) dt

5.3 Green’s Functions

A more systematic means of obtaining an IE from a PDE is by constructing an
auxiliary function known as the Green’s function1 for that problem [10]–[13]. The
Green’s function, also known as the source function or influence function, is the kernel
function obtained from a linear boundary value problem and forms the essential link
between the differential and integral formulations. Green’s function also provides a
method of dealing with the source term (g in L� = g) in a PDE. In other words, it
provides an alternative approach to the series expansion method of Section 2.7 for
solving inhomogeneous boundary-value problems by reducing the inhomogeneous
problem to a homogeneous one.

To obtain the field caused by a distributed source by the Green’s function technique,
we find the effects of each elementary portion of source and sum them up. If G(r, r′)
is the field at the observation point (or field point) r caused by a unit point source
at the source point r′, then the field at r by a source distribution g(r′) is the integral
of g(r′)G(r, r′) over the range of r′ occupied by the source. The function G is
the Green’s function. Thus, physically, the Green’s function G(r, r′) represents the
potential at r due to a unit point charge at r′. For example, the solution to the Dirichlet
problem

∇2� = g in R

� = f on B
(5.20)

1Named after George Green (1793–1841), an English mathematician.
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is given by

� =
∫
R

g
(
r′)G (

r, r′) dv′ +
∮
B

f
∂G

∂n
dS (5.21)

where n denotes the outward normal to the boundary B of the solution region R. It is
obvious from Eq. (5.21) that the solution � can be determined provided the Green’s
function G is known. So the real problem is not that of finding the solution but that
of constructing the Green’s function for the problem.

Consider the linear second order PDE

L� = g (5.22)

We define the Green’s function corresponding to the differential operator L as a
solution of the point source inhomogeneous equation

LG
(
r, r′) = δ

(
r, r′) (5.23)

where r and r′ are the position vectors of the field point (x, y, z) and source point
(x′, y′, z′), respectively, and δ(r, r′) is the Dirac delta function, which vanishes for
r �= r′ and satisfies ∫

δ
(
r, r′) g (r′) dv′ = g(r) (5.24)

From Eq. (5.23), we notice that the Green function G(r, r′) can be interpreted as the
solution to the given boundary value problem with the source term g replaced by the
unit impulse function. Thus G(r, r′) physically represents the response of the linear
system to a unit impulse applied at the point r = r′.

The Green’s function has the following properties [13]:
(a) G satisfies the equation LG = 0 except at the source point r′, i.e.,

LG
(
r, r′) = δ

(
r, r′) (5.23)

(b) G is symmetric in the sense that

G
(
r, r′) = G

(
r′, r

)
(5.25)

(c) G satisfies that prescribed boundary value f on B, i.e.,

G = f on B (5.26)

(d) The directional derivative ∂G/∂n has a discontinuity at r′ which is specified
by the equation

lim
ε→0

∮
S

∂G

∂n
dS = 1 (5.27)

where n is the outward normal to the sphere of radius ε as shown in Fig. 5.1, i.e.,∣∣r − r′∣∣ = ε2

Property (b) expresses the principle of reciprocity; it implies that an exchange of
source and observer does not affect G. The property is proved by Myint–U [13] by
applying Green’s second identity in conjunction with Eq. (5.23) while property (d) is
proved by applying divergence theorem along with Eq. (5.23).
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Figure 5.1
Illustration of the field point (x, y, z) and source point (x′, y′, z′).

5.3.1 For Free Space

We now illustrate how to construct the free space Green’s functionG corresponding
to a PDE. It is usually convenient to let G be the sum of a particular integral of the
inhomogeneous equation LG = g and the solution of the associated homogeneous
equation LG = 0. In other words, we let

G
(
r, r′) = F

(
r, r′)+ U

(
r, r′) (5.28)

where F , known as the free-space Green’s function or fundamental solution, satisfies

LF = δ
(
r, r′) in R (5.29)

and U satisfies

LU = 0 in R (5.30)

so that by superpositionG = F +U satisfies Eq. (5.23). AlsoG = f on the boundary
B requires that

U = −F + f on B (5.31)

Notice that F need not satisfy the boundary condition.
We apply this to two specific examples. First, consider the two-dimensional prob-

lem for which

L = ∂2

∂x2
+ ∂2

∂y2
= ∇2 (5.32)

The corresponding Green’s function G(x, y; x′, y′) satisfies

∇2G
(
x, y; x′, y′) = δ

(
x − x′) δ (y − y′) (5.33)
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Hence, F must satisfy
∇2F = δ

(
x − x′) δ (y − y′)

For ρ = [(x − x′)2 + (y − y′)2]1/2 > 0, i.e., for x �= x′, y �= y′,

∇2F = 1

ρ

∂

∂ρ

(
ρ
∂F

∂ρ

)
= 0 (5.34)

which is integrated twice to give

F = A ln ρ + B (5.35)

Applying the property in Eq. (5.27)

lim
ε→0

∮
dF

dρ
dl = lim

ε→0

∫ 2π

0

A

ρ
ρ dφ = 2πA = 1

or A = 1

2π
. Since B is arbitrary, we may choose B = 0. Thus

F = 1

2π
ln ρ

and

G = F + U = 1

2π
ln ρ + U (5.36)

We choose U so that G satisfies prescribed boundary conditions.
For the three-dimensional problem,

L = ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(5.37)

and the corresponding Green’s function G(x, y, z; x′, y′, z′) satisfies

LG
(
x, y, z; x′, y′, z′) = δ

(
x − x′) δ (y − y′) δ (z − z′) (5.38)

Hence, F must satisfy

∇2F = δ
(
x − x′) δ (y − y′) δ (z − z′)

= δ
(
r − r′)

For r �= r′,

∇2F = 1

r2

d

dr

(
r2 dF

dr

)
= 0 (5.39)

which is integrated twice to yield

F = −A

r
+ B (5.40)
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Applying Eq. (5.27),

1 = lim
ε→0

∮
dF

dr
dS = lim

ε→0

∫ 2π

0

∫ π

0

A

r2
r2 sin φ dθ dφ = 4πA

or A = 1

4π
. Choosing B = 0 leads to

F = − 1

4πr

and

G = F + U = − 1

4πr
+ U (5.41)

where U is chosen so that G satisfies prescribed boundary conditions.
Table 5.1 lists some Green functions that are commonly used in the solution of

EM-related problems. It should be observed from Table 5.1 that the form of the
three-dimensional Green’s function for the steady-state wave equation tends to the
Green’s function for Laplace’s equation as the wave number k approaches zero. It is
also worthy of remark that each of the Green’s functions in closed form as in Table 5.1
can be expressed in series form. For example, the Green’s function

F = −j

4
H

(1)
0

(
k
∣∣ρ − ρ′∣∣)

= −j

4
H

(1)
0

(
k
[
ρ2 + ρ′ 2 − 2ρρ′ cos

(
φ − φ′)]1/2

)
(5.42)

can be written in series form as

F =




−j

4

∞∑
n=−∞

H(1)
n

(
kρ′) Jn(kρ)e−jn(φ−φ′), ρ < ρ′

−j

4

∞∑
n=−∞

H(1)
n (kρ)Jn

(
kρ′) e−jn(φ−φ′), ρ > ρ′

(5.43)

This is obtained from addition theorem for Hankel functions [14]. It should be
noted that Green’s functions are very difficult to construct in an explicit form except
for the simplest shapes of domain.

With the aid of the Green’s function, we can construct the integral equation corre-
sponding to Poisson’s equation in three dimensions

∇2V = −ρv

ε
(5.44)

as

V =
∫

ρv

ε
G
(
r, r′) dv′
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Table 5.1 Free-Space Green’s Functions
Operator Laplace’s Steady-state Modified
equation equation Helmholtz’s steady-state

(or wave) Helmholtz’s
equation1 (or wave)

equation

Solution ∇2G = δ
(
r, r′) ∇2G + k2G = δ

(
r, r′) ∇2G − k2G = δ

(
r, r′)

Region

1- dimensional no solution − j
2k exp

(
jk
∣∣x − x′∣∣) − 1

2k exp
(−k

∣∣x − x′∣∣)
for (−∞,∞)

2-dimensional 1
2π ln

∣∣ρ − ρ′∣∣ − j
4H

(1)
0 (k|ρ − ρ′|) − 1

2π Ko

(
k
∣∣ρ − ρ′∣∣)

3-dimensional − 1
4π(r−r′) − exp(jk|r−r′|)

4π |r−r′| − exp(−k|r−r′|)
4π |r−r′|

1 The wave equation has the time factor ejωt so that k = ω
√
µε.

or

V =
∫

ρv dv
′

4πεr
(5.45)

Similarly, the integral equation corresponding to Helmholtz’s equation in three di-
mensions

∇2� + k2� = g (5.46)

as

� =
∫

gG
(
r, r′) dv′

or

� =
∫

gejkr dv′

4πr
(5.47)

where an outgoing wave is assumed.

5.3.2 For Domain with Conducting Boundaries

The Green’s functions derived so far are useful if the domain is free space. When
the domain is bounded by one or more grounded planes, there are two ways to obtain
Green’s function:

(a) the method of images [12], [15]–[22] and
(b) the eigenfunction expansion [12, 16, 17], [22]–[30].
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(a) Method of Images

The method of images is a powerful technique for obtaining the field due to one
or more sources with conducting boundary planes. If a point charge q is at some
distance h from a grounded conducting plane, the boundary condition imposed by
the plane on the resulting potential field may be satisfied by replacing the plane with
an “image charge” −q located at a position which is the mirror location of q. Using
this idea to obtain the Green’s function is perhaps best illustrated with an example.

Consider the region between the ground planes at y = 0 and y = h as shown
in Fig. 5.2. The Green’s function G(x, y; x′, y′) is the potential at the point (x, y),
which results when a unit line charge of 1 C/m is placed at the point (x′, y′). If no
ground planes were present, the potential at distance ρ from a unit line charge would
be

V (ρ) = 1

4πε
ln ρ2 (5.48)

In order to satisfy the boundary conditions on the ground planes, an infinite set of
images is derived as shown in Fig. 5.2. The potential due to such a sequence of line
charges (including the original) within the strip is the superposition of an infinite
series of images:

G
(
x, y; x′, y′) = 1

4πε

(
ln
[(
x − x′)2 + (

y + y′)2
]

− ln
[(
x − x′)2 + (

y + y′)2
]

+
∞∑
n=1

(−1)n
{

ln
[(
x − x′)2 + (

y + y′ − 2nh
)2
]

− ln
[(
x − x′)2 + (

y − y′ − 2nh
)2
]

+ ln
[(
x − x′)2 + (

y + y′ − 2nh
)2
]

− ln
[(
x − x′)2 + (

y − y′ − 2nh
)2
]})

= 1

4πε

∞∑
n=−∞

ln

[(
x − x′)2 + (

y + y′ − 2nh
)2

(x − x′)2 + (y − y′ − 2nh)2

]
(5.49)

This series converges slowly and is awkward for numerical computation. It can be
summed to give [15]

G
(
x, y; x′, y′) = 1

4πε
ln


 sinh2

(
π(x−x′)

2h

)
+ sin2

(
π(y+y′)

2h

)
sinh2

(
π(x−x′)

2h

)
+ sin2

(
π(y−y′)

2h

)

 (5.50)

This expression can be shown to satisfy the appropriate boundary conditions along
the ground plane, i.e., G(x, y; x′, y′) = 0 at y = 0 or y = h. Note that G has exactly
one singularity at x = x′, y = y′ in the region 0 ≤ y ≤ h.
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Figure 5.2
A single charge placed between two conducting planes produces the same poten-
tial as does the system of image charges when no conducting planes are present.

In order to evaluate an integral involving G(x, y; x′, y′) in Eq. (5.50), it is conve-
nient to take out the singular portion of the unit source function. We rewrite Eq. (5.50)
as

G
(
x, y; x′, y′) = − 1

4πε
ln
[(
x − x′)2 + (

y + y′)2
]

+ g
(
x, y; x′, y′) (5.51)

where

g
(
x, y; x′, y′) =

1

4πε
ln



[(
x − x′)2 (

y − y′)2
] [

sinh2
(
π(x−x′)

2h

)
+ sin2

(
π(y+y′)

2h

)]
sinh2

(
π(x−x′)

2h

)
+ sin2

(
π(y−y′)

2h

)

 (5.52)

Note that g(x, y; x′, y′) is finite everywhere in 0 ≤ y ≤ h. The integral involving
g is evaluated numerically, while the one involving the singular logarithmic term is
evaluated analytically with the aid of integral tables.
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The method of images has been applied in derivating the Green’s functions for
multiconductor transmission lines [18]–[20] and planar microwave circuits [16, 17,
21]. The method is restricted to the shapes enclosed by boundaries that are straight
conductors.

(b) Eigenfunction Expansion

This method is suitable for deriving the Green’s function for differential equations
whose homogeneous solution is known. The Green’s function is represented in terms
of a series of orthonormal functions that satisfy the boundary conditions associated
with the differential equation. To illustrate the eigenfunction expansion procedure,
suppose we are interested in the Green’s function for the wave equation

∂24

∂x2
+ ∂24

∂y2
+ k24 = 0 (5.53)

subject to

∂4

∂n
= 0 or 4 = 0 (5.54)

Let the eigenfunctions and eigenvalues of Eq. (5.53) that satisfy Eq. (5.54) be 4j and
kj , respectively, i.e.,

∇24j + k2
j4j = 0 (5.55)

Assuming that 4j form a complete set of orthonormal functions,

∫
S

4∗
j 4i dxdy =

{
1, j = i

0, j �= i
(5.56)

where the asterisk (∗) denotes complex conjugation. G(x, y; x′, y′) can be expanded
in terms of 4j , i.e.,

G
(
x, y; x′, y′) =

∞∑
j=1

aj4j (x, y) (5.57)

Since the Green’s function must satisfy(
∇2 + k2

)
G
(
x, y; x′, y′) = δ

(
x − x′) δ

(
y − y′) , (5.58)

substituting Eqs. (5.55) and (5.57) into Eq. (5.58), we obtain

∞∑
j=1

aj

(
k2 − k2

j

)
4j = δ

(
x − x′) δ

(
y − y′) (5.59)
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Multiplying both sides by 4∗
i and integrating over the region S gives

∞∑
j=1

aj

(
k2 − k2

j

) ∫
S

4j4
∗
i dxdy = 4∗

i

(
x′, y′) (5.60)

Imposing the orthonormal property in Eq. (5.56) leads to

ai

(
k2 − k2

i

)
= 4∗

i

(
x′, y′)

or

ai = 4∗
i

(
x′, y′)(

k2 − k2
i

) (5.61)

Thus

G
(
x, y; x′, y′) =

∞∑
j=1

4j(x, y)4
∗
j

(
x′, y′)(

k2 − k2
j

) (5.62)

The eigenfunction expansion approach has been applied to derive the Green’s
functions for plane conducting boundaries such as rectangular box and prism [22],
planar microwave circuits [16, 17, 25], multilayered dielectric structures [23, 24],
waveguides [28], and surfaces of revolution [27]. The approach is limited to separable
coordinate systems since the requisite eigenfunctions can be determined for only these
cases.

Example 5.3
Construct a Green’s function for

∇2V = 0

subject to V (a, φ) = f (φ) within a circular disk ρ ≤ a.

Solution
Since g = 0, the solution is obtained from Eq. (5.21) as

V =
∮
C

f
∂G

∂n
dl (5.63)

where the circle C is the boundary of the disk as shown in Fig. 5.3. Let

G = F + U ,

where F is already found to be

F = 1

2π
ln
∣∣ρ − ρ′∣∣ ,
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Figure 5.3
A disk of radius a.

i.e.,

F
(
ρ, φ; ρ′, φ′) = 1

4π
ln
[
ρ′ 2 + ρ′ 2 − 2ρρ′ cos

(
φ − φ′)] (5.64)

The major problem is finding U . But

∇2U = 0 in R (5.65a)

with

U = −F on C

or

U
(
a, φ; ρ′, φ′) = − 1

4π
ln
[
a2 + ρ′ 2 − 2aρ′ cos

(
φ − φ′)] (5.65b)

Thus U can be found by solving the PDE in Eq. (5.65a) subject to the condition in
Eq. (5.65b). Applying the separation of variables method,

U = A0

2

∞∑
n=1

ρn [An cos nφ + Bn sin nφ] (5.66)

The term ρ−n is not included since U must be bounded at ρ = 0. To impose
the boundary condition in Eq. (5.65b) on the solution in Eq. (5.66), we first express
Eq. (5.65b) in Fourier series using the identity

∞∑
n=1

zn

n
cos nθ =

∫ z

0

cos θ − λ

1 + λ2 − 2λ cos θ
dλ = −1

2
ln
[
1 + z2 − 2z cos θ

]
(5.67)
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Hence Eq. (5.65b) becomes

U
(
a, φ; ρ′, φ′) = − 1

4π
ln a2

[
1 + (

ρ′/a
)2 − 2ρ′

a
cos

(
φ − φ′)]

= − 1

2π
ln a + 1

2π

∞∑
n=1

[
ρ′

a

]n cos n
(
φ − φ′)
n

= − 1

2π
ln a + 1

2π

∞∑
n=1

[
ρ′

a

]n
·

(
cos nφ cos nφ′ + sin nφ sin nφ′)

n
(5.68)

Comparing Eq. (5.66) with Eq. (5.68) at ρ = a, we obtain the coefficients An and Bn

as

A0

2
= − 1

2π
ln a

anAn = 1

2πn

[
ρ′

a

]n
cos nφ′

anBn = 1

2πn

[
ρ′

a

]n
sin nφ′

Thus Eq. (5.66) becomes

U
(
ρ, φ; ρ′, φ′) = − 1

2π
ln a + 1

2π

∞∑
n=1

[
ρ′

a

]n [
ρ

a

]n
cos n

(
φ − φ′)
n

= − 1

2π
ln a − 1

4π
ln

[
1 +

[
ρρ′

a2

]2

− 2ρρ′

a2
cos

(
φ − φ′)] (5.69)

From Eqs. (5.64) and Eq. (5.69), we obtain the Green’s function as

G = 1

4π
ln
[
ρ2 + ρ′ 2 − 2ρρ′ cos

(
φ − φ′)]

− 1

4π
ln

[
a2 + ρ′ 2ρ2

a2
− 2ρρ′ cos

(
φ − φ′)] (5.70)

An alternative means of constructing the Green’s function is the method of images.
Let us obtain Eq. (5.70) using the method of images. Let

G
(
P,P ′) = 1

2π
ln r + U

The problem reduces to finding the induced field U , which is harmonic within the

disk and is equal to − 1

2π
ln r on C. Let P ′ be the singular point of Green’s function
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Figure 5.4
The image point Po of P ′ with respect to circle C so that OP ′.OPo = OQ = a2

and OQP ′ and OPoQ are similar triangles.

and let Po be the image of P ′ with respect to the circle C as shown in Fig. 5.4. The
triangles OQP ′ and OQP0 are similar because the angle at O is common and the
sides adjacent to it are proportional. Thus

ρ′

a
= a

ρo

→ ρ′ρo = a2 (5.71)

That is, the product of OP ′ and OPo is equal to the square of the radius OQ. At a
point Q on C, it is evident from Fig. 5.4 that

rQP ′ = ρ′

a
rQPo

Therefore,

U = − 1

2π
ln

ρ′rPPo

a
(5.72)

and

G = 1

2π
ln rPP ′ − 1

2π
ln

ρ′

a
rPPo (5.73)

Since rPP ′ is the distance between P(ρ, φ) and P ′(ρ′, φ′) while rPPo is the distance
between P(ρ, φ) and Po(ρ

′
o, φ) = Po(a

2/ρ′, φ),

r2
PP ′ = ρ2 + ρ′ 2 − 2ρρ′ cos

(
φ − φ′) ,

r2
PPo

= ρ2 + a4

ρ′ 2
− 2ρ

a2

ρ′ cos
(
φ − φ′)
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Substituting these in Eq. (5.73), we obtain

G = 1

4π
ln
[
ρ2 + ρ′ 2 − 2ρρ′ cos

(
φ − φ′)]

− 1

4π
ln

[
a2 + ρ′ 2ρ2

a2
− 2ρρ′ cos

(
φ − φ′)] (5.74)

which is the same as Eq. (5.70). From Eq. (5.70) or (5.74), the directional derivative
∂G/∂n = (∇G · an) on C is given by

∂G

∂ρ′

∣∣∣∣
ρ′=a

= 2a − 2ρ cos
(
φ − φ′)

4π
[
a2 + ρ2 − 2aρ cos (φ − φ′)

]
−

2ρ2

a
− 2ρ cos

(
φ − φ′)

4π
[
a2 + ρ2 − 2aρ cos (φ − φ′)

] ,

= a2 − ρ2

2πa
[
a2 + ρ2 − 2aρ cos (φ − φ′)

]
Hence the solution in Eq. (5.63) becomes (with dl = adφ′)

V (ρ, φ) = 1

2π

∫ 2π

0

(
a2 − ρ2

)
f
(
φ′) dφ′[

a2 + ρ2 − 2aρ cos (φ − φ′)
] (5.75)

which is known as Poisson’s integral formula.

Example 5.4
Obtain the solution for the Laplace operator on unbounded half-space, z ≤ 0 with

the condition V (z = 0) = f .

Solution
Again the solution is

V =
∮
S

f
∂G

∂n
dS

where S is the plane z = 0. We let

G = 1

4π |r − r′| + U ,

so that the major problem is reduced to finding U . Using the method of images, it is
easy to see that the image point of P ′(x′, y′, z′) is Po(x

′, y′,−z′) as shown in Fig. 5.5.
Hence

U = − 1

4π |r − ro|
and

G = 1

4π |r − r′| − 1

4π |r − ro| ,
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Figure 5.5
Half-space problem of Example 5.4.

where

∣∣r − r′∣∣ =
[(
x − x′)2 + (

y − y′)2 + (
z − z′)2

]1/2

|r − ro| =
[(
x − x′)2 + (

y − y′)2 + (
z + z′)2

]1/2

Notice thatG reduces to zero at z = 0 and has the required singularity atP ′(x′, y′, z′).
The directional derivative ∂G/∂n on plane z = 0 is

∂G

∂z′

∣∣∣∣
z′=0

= 1

4π

[ (
z − z′)

|r − r′|3 +
(
z + z′)

|r − ro|3
]∣∣∣∣∣

z′=0

= z

2π
[
(x − x′)2 + (y − y′)2 + z2

]3/2

Hence

V (x, y, z) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
zf
(
x′, y′) dx′dy′[

(x − x′)2 + (y − y′)2 + z2
]3/2

Example 5.5
Using Green’s function, construct the solution for Poisson’s equation

∂2V

∂x2
+ ∂2V

∂y2
= f (x, y)

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



subject to the boundary conditions

V (0, y) = V (a, y) = V (x, 0) = V (x, b) = 0

Solution
According to Eq. (5.21), the solution is

V (x, y) =
∫ b

0

∫ a

0
f
(
x′, y′)G (

x, y; x′, y′) dx′dy′ (5.76)

so that our problem is essentially that of obtaining the Green’s function G(x, y;
x′, y′). The Green’s function satisfies

∂2G

∂x2
+ ∂2G

∂y2
= δ

(
x − x′) δ (y − y′) (5.77)

To apply the series expansion method of finding G, we must first determine eigen-
functions 4(x, y) of Laplace’s equation, i.e.,

∇24 = λ4

where 4 satisfies the boundary conditions. It is evident that the normalized eigen-
functions are

4mn = 2√
ab

sin
mπx

a
sin

nπy

b

with the corresponding eigenvalues

λmn = −
(
m2π2

a2
+ n2π2

b2

)

Thus,

G
(
x, y; x′, y′) = 2√

ab

∞∑
m=1

∞∑
n=1

Amn

(
x′, y′) sin

mπx

a
sin

nπy

b
(5.78)

The expansion coefficients, Amn are determined by substituting Eq. (5.78) into

Eq. (5.77), multiplying both sides by sin
mπx

a
sin

nπy

b
and integrating over

0 < x < a, 0 < y < b. Using the orthonormality property of the eigenfunctions
and the shifting property of the delta function results in

−
(
m2π2

a2
+ n2π2

b2

)
Amn = 2√

ab
sin

mπx′

a
sin

nπy′

b

Obtaining Amn from this and substituting in Eq. (5.78) gives

G
(
x, y; x′, y′) = − 4

ab

∞∑
m=1

∞∑
n=1

sin mπx
a

sin mπx′
a

sin nπy
b

sin nπy′
b

m2π2/a2 + n2π2/b2
(5.79)
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Another way of obtaining Green’s function is by means of a single series rather
than a double summation in Eq. (5.79). It can be shown that [28, 29]

G
(
x, y; x′, y′) =


− 2

π

∞∑
n=1

sin nπx
b

sinh
nπ(a−x′)

b
sin nπy

b
sinh nπy′

b

n sinh nπa
b

, x < x′

− 2
π

∞∑
n=1

sinh nπx′
b

sinh nπ(a−x)
b

sin nπy
b

sinh nπy′
b

n sinh nπa
b

, x > x′
(5.80)

By Fourier series expansion, it can be verified that the expressions in Eqs. (5.79)

and (5.80) are identical. Besides the factor
1

ε
, the Green’s function in Eq. (5.79)

or Eq. (5.80) gives the potential V due to a unit line source at (x′, y′) in the region
0 < x < a, 0 < y < b as shown in Fig. 5.6.

Figure 5.6
Line source in a rectangular region.

Example 5.6
An infinite line source Iz is located at (ρ′, φ′) in a wedge waveguide shown in Fig. 5.7.
Derive the electric field due to the line.

Solution
Assuming the time factor ejωt , the z-component of E for the TE mode satisfies the
wave equation

∇2Ez + k2Ez = jωµIz (5.81)

with
∂Ez

∂n
= 0
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Figure 5.7
Line source in a waveguide.

where k = ω
√
µε and n is the outward unit normal at any point on the periphery of

the cross section. The Green’s function for this problem satisfies

∇2G + k2G = jωµδ
(
ρ − ρ′) (5.82)

with
∂G

∂n
= 0

so that the solution to Eq. (5.81) is

Ez = jωµ

∫
S

Iz
(
ρ′, φ′)G (

ρ, φ; ρ′, φ′) dS (5.83)

To determine the Green’s function G(ρ, φ; ρ′, φ′), we find 4i so that Eq. (5.62)

can be applied. The boundary condition
∂G

∂n
= 0 implies that

1

ρ

∂G

∂φ

∣∣∣∣
φ=0

= 0 = 1

ρ

∂G

∂φ

∣∣∣∣
φ=α

= ∂G

∂ρ

∣∣∣∣
ρ=a

(5.84)

The set of functions which satisfy the boundary conditions are

4mν(ρ, φ) = Jν (kmνρ) cos νφ (5.85)

where

ν = nπ/α, n = 0, 1, 2, . . . , (5.86a)

kmν are chosen to satisfy

∂

∂ρ
Jν (kmνρ)

∣∣∣∣
ρ=a

= 0 , (5.86b)

and the subscript m is used to denote the mth root of Eq. (5.86b); m can take the
value zero for n = 0. The functions 4mν are orthogonal if and only if ν is an integer
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which implies that ν is an integral multiple of α. Let α = π/?, where ? is a positive
integer, so that �mν are mutually orthogonal. To obtain the Green’s function using
Eq. (5.62), these eigenfunctions must be normalized over the region, i.e.,

∫ a

0
J 2
ν (kmνρ) dρ =

{
a2/2, m = ν
1

2

[
a2 −

(
ν2/k2

mν

)]
J 2
ν (kmνa) , otherwise

(5.87a)

∫ α

0
cos2 νφ dφ =




π

?
, ν = 0

π

2?
, otherwise

(5.87b)

where ν = n?. Using the normalized eigenfunctions, we obtain

G
(
ρ, φ; ρ′, φ′) = j2?

ωεπa2
− 4j?ωµ

∞∑
n=1

∞∑
m=1

Jν (kmνρ) Jν
(
kmνρ

′) cos νφ cos νφ′

ενπ
(
a2 − ν2

k2
mν

)
J 2
ν (kmνa)

(
k2 − k2

mν

) (5.88)

where

εν =
{

2, ν = 0

1, ν �= 0
(5.89)

We have employed the fact thatωµ/k2 = 1

ωε
to obtain the first term on the right-hand

side of Eq. (5.88).

5.4 Applications I — Quasi-Static Problems

The method of moments has been applied to so many EM problems that covering
all of them is practically impossible. We will only consider the relatively easy ones
to illustrate the techniques involved. Once the basic approach has been mastered, it
will be easy for the reader to extend the idea to attack more complicated problems.

We will apply MOM to a static problem in this section; more involved applica-
tion will be considered in the sections to follow. We will consider the problem of
determining the characteristic impedance Zo of a strip transmission line [31].

Consider the strip transmission of Fig. 5.8(a). If the line is assumed to be infinitely
long, the problem is reduced to a two-dimensional TEM problem of line sources in
a plane as in Fig. 5.8(b). Let the potential difference of the strips be Vd = 2V so
that strip 1 is maintained at +1V while strip 2 is at −1V . Our objective is to find the
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Figure 5.8
(a) The strip transmission line. (b) The two-dimensional view.

surface charge density ρ(x, y) on the strips so that the total charge per unit length on
one strip can be found as

Q? =
∫

ρ dl (5.90)

(Q? is charge per unit length as distinct from the total charge on the strip because
we are treating a three-dimensional problem as a two-dimensional one.) Once Q is
known, the capacitance per unit length C? can be found from

C? = Q?

Vd

(5.91)

Finally, the line characteristic impedance is obtained:

Zo = (µε)1/2

C?

= 1

uC?

(5.92)

where u = 1/
√
µε is the speed of the wave in the (lossless) dielectric medium

between the strips. Everything is straightforward once the charge density ρ(x, y) in
Eq. (5.90) is known. To find ρ using MOM, we divide each strip into n subareas of
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equal width B so that subareas in strip 1 are numbered 1, 2, . . . , n, while those in
strip 2 are numbered n + 1, n + 2, n + 3, . . . , 2n. The potential at an arbitrary field
point is

V (x, y) = 1

2πε

∫
ρ
(
x′, y′) ln

R

ro
dx′dy′ (5.93)

where R is the distance between source and field points, i.e.,

R =
[(
x − x′)2 + (

y − y′)2
]1/2

(5.94)

Since the integral in Eq. (5.93) may be regarded as rectangular subareas in a nu-
merical sense, the potential at the center of a typical subarea Si is

Vi = 1

2πε

2n∑
j=1

ρj

∫
Si

ln
Rij

ro
dx′

or

Vi =
2n∑
j=1

Aijρj (5.95)

where

Aij = 1

2πε

∫
Si

ln
Rij

ro
dx′ , (5.96)

Rij is the distance between ith and j th subareas, and Aijρj represents the potential
at point i due to subarea j . In Eq. (5.95), we have assumed that the charge density ρ

is constant within each subarea. For all the subareas Si, i = 1, 2, . . . , 2n we have

V1 =
2n∑
j=1

ρjA1j = 1

V2 =
2n∑
j=1

ρjA2j = 1

...

Vn =
2n∑
j=1

ρjAnj = 1

Vn+1 =
2n∑
j=1

ρjAn+1,j = −1

...

V2n =
2n∑
j=1

ρjA2n,j = −1
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Thus we obtain a set of 2n simultaneous equations with 2n unknown charge densities
ρi . In matrix form,




A11 A12 · · · A1,2n
A21 A22 · · · A2,2n
...

A2n,l A2n,2 · · · A2n,2n







ρ1
ρ2
...

ρ2n


 =




1
1
...

−1
−1




or simply

[A][ρ] = [B] (5.97)

It can be shown that [32] the elements of matrix [A] expressed in Eq. (5.96) can be
reduced to

Aij =




B

2πε
ln

Rij

ro
, i �= j

B

2πε

[
ln

B

ro
− 1.5

]
, i = j

(5.98)

where ro is a constant scale factor (commonly taken as unity). From Eq. (5.97), we
obtain [ρ] either by solving the simultaneous equation or by matrix inversion, i.e.,

[ρ] = [A]−1[B] (5.99)

Once [ρ] is known, we determine C? from Eqs. (5.90) and (5.91) as

C? =
n∑

j=1

ρjB/Vd (5.100)

where Vd = 2V . Obtaining Zo follows from Eqs. (5.92) and (5.100).

Example 5.7
Write a program to find the characteristic impedance Zo of a strip line with H =

2m,W = 5m, ε = εo, µo = µo, and Vd = 2V .

Solution
The FORTRAN program is shown in Fig. 5.9. With the given data, the program
calculates the elements of matrices [A] and [B] and determines [ρ]by matrix inversion.
With the computed charge densities the capacitance per unit length is calculated using
Eq. (5.100) and the characteristic impedance from Eq. (5.92). Table 5.2 presents the
computed values of Zo for a different number of segments per strip, n. The results
agree well with Zo = 50 D from Wheeler’s curve [33].
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Figure 5.9
FORTRAN program for Example 5.7 (Continued).
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Figure 5.9
(Cont.) FORTRAN program for Example 5.7.

Table 5.2 Characteristic
Impedance of a Strip
Transmission Line
n Zo(in D)

3 53.02
7 51.07

11 50.49
18 50.39
39 49.71
59 49.61

5.5 Applications II — Scattering Problems

The purpose of this section is to illustrate, with two examples, how the method
of moments can be applied to solve electromagnetic scattering problems. The first
example is on scattering of a plane wave by a perfectly conducting cylinder [3], while
the second is on scattering of a plane wave by an arbitrary array of parallel wires [34].
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5.5.1 Scattering by Conducting Cylinder

Consider an infinitely long, perfectly conducting cylinder located at a far distance
from a radiating source. Assuming a time-harmonic field with time factor ejωt ,
Maxwell’s equations can be written in phasor form as

∇ · Es = 0 (5.101a)

∇ · Hs = 0 (5.101b)

∇ × Es = −jωµHs (5.101c)

∇ × Hs = Js + jωεEs (5.101d)

where the subscript s denotes phasor or complex quantities. Henceforth, we will
drop subscript s for simplicity and use the same symbols for the frequency-domain
quantities and time-domain quantities. It is assumed that the reader can differentiate
between the two quantities. Taking the curl of Eq. (5.101c) and applying Eq. (5.101d),
we obtain

∇ × ∇ × E = −jωµ∇ × H = −jωµ(J + jωεE) (5.102)

Introducing the vector identity

∇ × ∇ × A = ∇(∇ · A) − ∇2A

into Eq. (5.102) gives

∇(∇ · E) − ∇2E = −jωµ(J + jωεE)

In view of Eq. (5.101a), ∇(∇ · E) = 0 so that

∇2E + k2E = jωµJ (5.103)

where k = ω(µε)1/2 = 2π/λ is the wave number and λ is the wavelength. Equa-
tion (5.103) is the vector form of the Helmholtz wave equation. If we assume a TM
wave (Hz = 0) with E = Ez(x, y)az, the vector equation (5.103) becomes a scalar
equation, namely,

∇2Ez + k2Ez = jωµJz (5.104)

where J = Jzaz is the source current density. The integral solution to Eq. (5.104) is

Ez(x, y) = Ez(ρ) = −kηo

4

∫
S

Jz
(
ρ′)H(2)

0

(
k
∣∣ρ − ρ′∣∣) dS′ (5.105)

where ρ = xax + yay is the field point, ρ′ = x′ax + y′ay is the source point,

ηo = (µo/εo)
1/2 � 377D is the intrinsic impedance of free space, and H

(2)
0 =

Hankel function of the second kind of zero order since an outward-traveling wave
is assumed and there is no φ dependence. The integration in Eq. (5.105) is over the
cross section of the cylinder shown in Fig. 5.10.
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Figure 5.10
Cross section of the cylinder.

If field Ei
z is incident on a perfectly conducting cylinder, it induces surface current

Jz on the conducting cylinder, which in turn produces a scattered field Es
z . The

scattered field Es
z due to Jz is expressed by Eq. (5.105). On the boundary C, the

tangential component of the total field must vanish. Thus

Ei
z + Es

z = 0 on C (5.106)

Substitution of Eq. (5.105) into Eq. (5.106) yields

Ei
z(ρ) = kηo

4

∫
C

Jz
(
ρ′)H(2)

0

(
k
∣∣ρ − ρ′∣∣) dl′ (5.107)

In the integral equation (5.107), the induced surface current density Jz is the only
unknown. We determine Jz using the moment method.

We divide the boundaryC intoN segments and apply the point matching technique.
On a segment BCn, Eq. (5.107) becomes

Ei
z (ρn) = kηo

4

N∑
m=1

Jz (ρm)H
(2)
0 (k |ρn − ρm|)BCm (5.108)

where the integration in Eq. (5.107) has been replaced by summation. On applying
Eq. (5.108) to all segments, a system of simultaneous equations results. The system
of equations can be cast in matrix form as


Ei

z (ρ1)

Ei
z (ρ2)
...

Ei
z (ρN)


 =




A11 A12 . . . A1N
A21 A22 . . . A2N
...

...

AN1 AN2 . . . ANN







Jz (ρ1)

Jz (ρ2)
...

Jz (ρN)


 (5.109a)

or

[E] = [A][J ] (5.109b)
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Hence

[J ] = [A]−1[E] (5.110)

To determine the exact values of elements of matrix [A] may be difficult. Approxi-
mately [6],

Amn �




ηok

4
BCnH

(2)
0

{
k (xn − xm)

2 + (yn − ym)
2
](1/2)

}
, m �= n

ηok

4

[
1 − j

2

π
log10

(
γ kBCn

4e

)]
, m = n

(5.111)

where (xn, yn) is the midpoint of BCn, e = 2.718 . . . , and γ = 1.781 . . . . Thus
for a given cross section and specified incident field Ei

z, the induced surface current
density Jz can be found from Eq. (5.110). To be specific, assume the propagation
vector k is directed as shown in Fig. 5.11 so that

Ei
z = Eoe

jk·r

where r = xax +yay,k = k(cosφiax +sin φiay), k = 2π/λ, and φi is the incidence
angle. Taking Eo = 1 so that |Ei

z| = 1,

Ei
z = ejk(x cosφi+y sin φi) (5.112)

Given any C (dictated by the cross section of the cylinder), we can substitute Eqs. (5.111)
and (5.112) into Eq. (5.109) and determine [J ] from Eq. (5.110). Once Jz, the in-
duced current density, is known, we calculate the scattering cross section σ defined
by

σ (φ, φi) = 2πρ

∣∣∣∣ Es
z(φ)

Es
z (φi)

∣∣∣∣
2

= kη2
o

4

∣∣∣∣
∫
C

Jz
(
x′, y′) ejk(x′ cosφ+y′ sin φ) dl′

∣∣∣∣
2

(5.113)

where φ is the angle at the observation point, the point at which σ is evaluated. In
matrix form,

σ (φi, φ) = kη2

4

∣∣∣[V s
n

]
[Znm]−1

[
V i
m

]∣∣∣2 (5.114)

where

V i
m = BCme

jk(xm cosφi+ym cosφi) , (5.115a)

V s
n = BCne

jk(xn cosφ+yn cosφ) , (5.115b)

and

Zmn = BCmAmn (5.115c)
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Figure 5.11
Typical propagation of vector k.

5.5.2 Scattering by an Arbitrary Array of Parallel Wires

This problem is of more general nature than the one just described. As a matter
of fact, any infinitely long, perfectly conducting, thin metal can be modeled as an
array of parallel wires. It will be shown that the scattering pattern due to an arbitrary
array of line sources approaches that of a solid conducting cylinder of the same cross-
sectional geometry if a sufficiently large number of wires are present and they are
arrayed on a closed curve. Hence the problem of scattering by a conducting cylinder
presented above can also be modeled with the techniques to be described here (see
Problems 5.17 and 5.19).

Consider an arbitrary array of N parallel, infinitely long wires placed parallel to
the z-axis [34]. Three of such wires are illustrated in Fig. 5.12. Let a harmonic TM
wave be incident on the wires. Assuming a time factor ejωt , the incident wave in
phasor form is given by

Figure 5.12
An array of three wires parallel to the z-axis.
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Ei
z = Ei(x, y)e

−jhz (5.116)

where

Ei(x, y) = Eoe
−jk(x sin θi cosφi+y sin θi sin φi) (5.117a)

h = k cos θi , (5.117b)

k = 2π

λ
= ω(µε)1/2 , (5.117c)

and θiand φi define the axis of propagation as illustrated in Fig. 5.13. The incident
wave induces current on the surface of wire n. The induced current density has only
z component.

Figure 5.13
Propagation vector k.

It can be shown that the field due to a harmonic current In uniformly distributed
on a circular cylinder of radius an has a z component given by

En = −I ′
nH

(2)
0 (gρn) e

−jhz, ρn > an (5.118)

where

I ′
n = ωµg2

4k2
InJ0 (gan) , (5.119)

g2 + h2 = k2 , (5.120)

J0 is Bessel function of order zero, and H0 is Hankel function of the second kind of
order zero. By induction theorem, if In is regarded as the induced current, Eq. (5.118)
may be considered as the scattered field, i.e.,

Es
z = −

N∑
n=1

I ′
nH

(2)
0 (gρn) e

−jhz (5.121)

where the summation is taken over all the N wires. On the surface of each wire
(assumed perfectly conducting),

Ei
z + Es

z = 0
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or

Ei
z = −Es

z, ρ = ρn (5.122)

Substitution of Eqs. (5.116) and (5.121) into Eq. (5.122) leads to

N∑
n=1

I ′
nH

(2)
0 (gρmn) = Ei (xm, ym) (5.123)

where

ρmn =
{√

(xm − xn)
2 + (ym − yn)

2 ,m �= n

am ,m = n
(5.124)

and am is the radius of the mth wire. In matrix form, Eq. (5.123) can be written as

[A][I ] = [B]
or

[I ] = [A]−1[B] (5.125)

where

In = I ′
n , (5.126a)

Amn = H
(2)
0 (gρmn) , (5.126b)

Bm = Eoe
−jk(xm sin θi cosφi+ym sin θi sin φi) (5.126c)

Once I ′
n is calculated from Eq. (5.125), the scattered field can be obtained as

Es
z = −

N∑
n=1

I ′
nH

(2)
0 (gρn) e

−jhz (5.127)

Finally, we may calculate the “distant scattering pattern,” defined as

E(φ) =
N∑

n=1

I ′
ne

jg(xn cosφ+yn sin φ) (5.128)

The following example, taken from Richmond’s work [34], will be used to illustrate
the techniques discussed in the latter half of this section.

Example 5.8
Consider the two arrays shown in Fig. 5.14. For Fig. 5.14(a), take

no. of wires, N = 15

wire radius, ka = 0.05

wire spacing, ks = 1.0

θo = 90◦, φo = 40◦, 270◦ < φ < 90◦
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and for Fig. 5.14(b), take

no. of wires, N = 30

wire radius, ka = 0.05

cylinder radius, R = 1.12 λ

θo = 90◦, φo = 0, 0 < φ < 180◦

For the two arrays, calculate and plot the scattering pattern as a function of φ.

Figure 5.14
For Example 5.8: (a) A plane array of 15 parallel wires, (b) a semicircular array
of 30 parallel wires.

Solution
The FORTRAN code for calculating the scattering pattern E(φ) based on
Eq. (5.128) is shown in Fig. 5.15. The same program can be used for the two arrays
in Fig. 5.14, except that the input data on N, ka, ks and the locations (xn, yn), n =
1, 2, . . . , N of the wires are different. The program essentially calculates In required
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Figure 5.15
Computer program for Example 5.8 (Continued).
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Figure 5.15
(Cont.) Computer program for Example 5.8 (Continued).
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Figure 5.15
(Cont.) Computer program for Example 5.8.

Figure 5.16
Scattering pattern for the plane array of Fig. 5.14(a).
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Figure 5.17
Scattering pattern for the semicircular array of Fig. 5.14(b).

Figure 5.18
Cylindrical antenna of length l and radius a.
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in Eq. (5.128) using Eqs. (5.125) and (5.126). The plots of E(φ) against φ are por-
trayed in Figs. 5.16 and 5.17 for the arrays in Fig. 5.14(a) and 5.14(b), respectively.

5.6 Applications III — Radiation Problems

In this section, we consider the application of MOM to wires or cylindrical antennas.
The distinction between scatterers considered in the previous section and antennas
to be treated here is primarily that of the location of the source. An object acts as a
scatterer if it is far from the source; it acts as an antenna if the source is on it [3].

Consider a perfectly conducting cylindrical antenna of radius a, extending from
z = −?/2 to z = ?/2 as shown in Fig. 5.18. Let the antenna be situated in a lossless
homogeneous dielectric medium (σ = 0). Assuming a z-directed current on the
cylinder (J = Jzaz), only axial electric field Ez is produced due to axial symmetry.
The electric field can be expressed in terms of the retarded potentials of Eq. (1.38) as

Ez = −jωAz − ∂V

∂z
(5.129)

Applying the Lorentz condition of Eq. (1.41), namely,

∂Az

∂z
= −jωµεV , (5.130)

Eq. (5.129) becomes

Ez = −jω

(
1 + 1

k2

∂2

∂z2

)
Az (5.131)

where k = ω(µε)1/2 = 2π/λ, ω is the angular frequency of the suppressed harmonic
time variation ejωt . From Eq. (1.44)

Az = µ

∫ ?/2

−?/2
I
(
z′)G (

x, y, z; x′, y′, z′) dz′ (5.132)

where G(x, y, z; x′, y′, z′) is the free space Greens’ function, i.e.,

G
(
x, y, z; x′, y′, z′) = e−jkR

4πR
(5.133)

and R is the distance between observation point (x, y, z) and source point (x′, y′, z′)
or

R =
[(
x − x′)2 + (

y − y′)2 + (
z − z′)2

]1/2
(5.134)
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Combining Eqs. (5.131) and (5.132) gives

Ez = −jωµ

(
1 + 1

k2

d2

dz2

)∫ ?/2

−?/2
I
(
z′)G (

x, y, z; x′, y′, z′) dz′ (5.135)

This integro-differential equation is not convenient for numerical analysis because it
requires evaluation of the second derivative with respect to z of the integral. We will
now consider two types of modification of Eq. (5.135) leading to Hallen’s (magnetic
vector potential) and Pocklington’s (electric field) integral equations. Either of these
integral equations can be used to determine the current distribution on a cylindrical
antenna or scatterer and subsequently calculate all other quantities of interest.

5.6.1 Hallen’s Integral Equation

We can rewrite Eq. (5.135) in a compact form as(
d2

dz2
+ k2

)
F(z) = k2S(z), −?/2 < z < ?/2 (5.136)

where

F(z) =
∫ ?/2

−?/2
I
(
z′)G (

z, z′) dz′ , (5.137a)

S(z) = − Ez

jωµ
(5.137b)

Equation (5.136) is a second-order linear ordinary differential equation. The general
solution to the homogeneous equation(

d2

dz2
+ k2

)
F(z) = 0 ,

which is consistent with the boundary condition that the current must be zero at the
wire ends (z = ±?/2), is

Fh(z) = c1 cos kz + c2 sin kz (5.138)

where c1 and c2 are integration constants. The particular solution of Eq. (5.136) can
be obtained, for example, by the Lagrange method of varying constants [35] as

Fp(z) = k

∫ ?/2

−?/2
S
(
z′) sin k

∣∣z − z′∣∣ dz′ (5.139)

Thus from Eqs. (5.137) to (5.139), the solution to Eq. (5.136) is∫ ?/2

−?/2
I
(
z′)G (

z, z′) dz′ = c1 cos kz + c2 sin kz

− j

η

∫ ?/2

−?/2
Ez

(
z′) sin k

∣∣z − z′∣∣ dz′ (5.140)
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where η = √
µ/ε is the intrinsic impedance of the surrounding medium. Equa-

tion (5.140) is referred to as Hallen’s integral equation [36] for a perfectly conducting
cylindrical antenna or scatterer. The equation has been generalized by Mei [37] to
perfectly conducting wires of arbitrary shape. Hallen’s IE is computationally conve-
nient since its kernel contains only ?/r terms. Its major advantage is the ease with
which a converged solution may be obtained, while its major drawback lies in the
additional work required in finding the integration constants c1 and c2 [35, 38].

5.6.2 Pocklington’s Integral Equation

We can also rewrite Eq. (5.135) by introducing the operator in parentheses under
the integral sign so that∫ ?/2

−?/2
I
(
z′) ( ∂2

∂z2
+ k2

)
G
(
z, z′) dz′ = jωεEz (5.141)

This is known as Pocklington’s integral equation [39]. Note that Pocklington’s IE
has Ez, which represents the field from the source on the right-hand side. Both
Pocklington’s and Hallen’s IEs can be used to treat wire antennas. The third type of
IE derivable from Eq. (5.135) is the Schelkunoff’s IE, found in [35].

5.6.3 Expansion and Weighting Functions

Having derived suitable integral equations, we can now find solutions for a variety
of wire antennas or scatterers. This usually entails reducing the integral equations to
a set of simultaneous linear equations using the method of moments. The unknown
current I (z) along the wire is approximated by a finite setun(z) of basis (or expansion)
functions with unknown amplitudes as discussed in the last chapter. That is, we let

I (z) =
N∑

n=1

Inun(z) , (5.142)

where N is the number of basis functions needed to cover the wire and the expansion
coefficients In are to be determined. The functions un are chosen to be linearly
independent. The basis functions commonly used in solving antenna or scattering
problems are of two types: entire domain functions and subdomain functions. The
entire domain basis functions exist over the full domain −?/2 < z < ?/2. Typical
examples are [8, 40]:

(1) Fourier:

un(z) = cos(n − 1)ν/2 , (5.143a)

(2) Chebychev:

un(z) = T2n−2(ν) , (5.143b)
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(3) Mauclaurin:

un(z) = ν2n−2 , (5.143c)

(4) Legendre:

un(z) = P2n−2(ν) , (5.143d)

(5) Hermite:

un(z) = H2n−2(ν) , (5.143e)

where ν = 2z/? and n = 1, 2, . . . , N . The subdomain basis functions exist only on
one of the N nonoverlapping segments into which the domain is divided. Typical
examples are [41, 42]:

(1) piecewise constant (pulse) function:

un(z) =
{

1, zn−1/2 < z < zn+1/2

0, otherwise,
(5.144a)

(2) piecewise linear (triangular) function:

un(z) =



B − |z − zn|
B

, zn−1 < z < zn+1

0, otherwise,
(5.144b)

(3) piecewise sinusoidal function:

un(z) =



sin k (z − |z − zn|
sin kB

, zn−1 < z < zn+1

0, otherwise,
(5.144c)

where B = ?/N , assuming equal subintervals although this is unnecessary.
Figure 5.19 illustrates these subdomain functions. The entire domain basis func-
tions are of limited applications since they require a prior knowledge of the nature
of the function to be represented. The subdomain functions are the most commonly
used, particularly in developing general-purpose user-oriented computer codes for
treating wire problems. For this reason, we will focus on using subdomain functions
as basis functions.

Substitution of the approximate representation of current I (z) in Eq. (5.142) into
Pocklington’s IE of Eq. (5.141) gives

∫ ?/2

−?/2

N∑
n=1

Inun

(
z′)K (

zm, z
′) dz′ � Ez (zm) (5.145)
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Figure 5.19
Typical subdomain weighting functions: (a) Piecewise uniform function,
(b) piecewise linear function, (c) piecewise sinusoidal function.

where

K
(
zm, z

′) = 1

jωε

(
∂2

∂z2
+ k2

)
G
(
zm, z

′)
is the kernel z = zm on segment m is the point on the wire at which the IE is being
enforced. Equation (5.145) may be written as

N∑
n=1

In

∫
Bzn

K
(
zm, z

′) un

(
z′) dz′ � Ez (zm)

or

N∑
n=1

Ingm = Ez (zm) (5.146)

where

gm =
∫
Bz′

n

K
(
zm, z

′) un

(
z′) dz′ (5.147)

In order to solve for the unknown current amplitudes In (n = 1, 2, . . . , N),N

equations need to be derived from Eq. (5.146). We achieve this by multiplying
Eq. (5.146) by weighting (or testing) functions wn (n = 1, 2, . . . , n) and integrating
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over the wire length. In other words, we let Eq. (5.146) be satisfied in an average
sense over the entire domain. This leads to forming the inner product between each
of the weighting functions and gm so that Eq. (5.146) is reduced to

N∑
n=1

In 〈ωn, gm〉 = 〈ωn,Ez〉 , m = 1, 2, . . . , N (5.148)

Thus we have a set of N simultaneous equations which can be written in matrix form
as 


〈ω1, g1〉 . . . 〈ω1, gN 〉
〈ω2, g1〉 . . . 〈ω2, gN 〉

...
...

〈ωN, g1〉 . . . 〈ωN, gN 〉







I1
I2
...

IN


 =




〈ω1, Ez1〉
〈ω2, Ez2〉

...

〈ωN,EzN 〉




or

[Z][I ] = [V ] (5.149)

where zmn = 〈ωn, gm〉 and Vm = 〈ωm,Ez〉. The desired solution for the current is
then obtained by solving the simultaneous equations (5.149) or by matrix inversion,
i.e.,

[I ] = [Z]−1[V ] (5.150)

Because of the similarity of Eq. (5.149) to the network equations, the matrices
[Z], [V ], and [I ] are referred to as generalized impedance, voltage, and current
matrices, respectively [6]. Once the current distribution I (z′) is determined from
Eq. (5.149) or (5.150), parameters of practical interest such as input impedance and
radiation patterns are readily obtained.

The weighting functions {wn} must be chosen so that each Eq. (5.148) is linearly
independent and computation of the necessary numerical integration is minimized.
Evaluation of the integrals in Eq. (5.149) is often the most time-consuming portion
of scattering or radiation problems. Sometimes we select similar types of functions
for both weighting and expansion. As discussed in the previous chapter, choosing
wn = un leads to Galerkin’s method, while choosing wn = δ(z − zn) results in
point matching (or colocation) method. The point matching method is simpler than
Galerkin’s method and is sufficiently adequate for many EM problems. However, it
tends to be a slower converging method. The general rules that should be followed
in selecting the weighting functions are addressed in [43]. The following examples
are taken from [41], [44]–[46].

Example 5.9
Solve the Hallen’s integral equation∫ ?/2

−?/2
I
(
z′)G (

z, z′) dz′ = − j

ηo
(A cos kz + B sin k|z|)
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where k = 2π/λ is the phase constant and ηo = 377 � is the intrinsic impedance
of free space. Consider a straight wire dipole with length L = 0.5 λ and radius
a = 0.005 λ.

Solution
The integral equation has the form∫ �/2

−�/2
I
(
z′
)
K

(
z, z′

)
dz′ = D(z) (5.151)

which is a Fredholm integral equation of the first kind. In Eq. (5.151),

K
(
z, z′

) = G (
z, z′

) = e−jkR

4πR
, (5.152a)

R =
√
a2 + (z− z′)2 , (5.152b)

and

D(z) = − j

ηo
[A cos(kz)+ B sin(k|z|)] (5.152c)

If the terminal voltage of the wire antenna is VT , the constant B = VT /2. The ab-
solute value in sin k|z| expresses the assumption of antenna symmetry, i.e., I (−z′) =
I (z′). Thus∫ �/2

−�/2
I
(
z′
) e−jkR

4πR
dz′ = − j

ηo

[
A cos kz+ VT

2
sin k|z|

]
(5.153)

If we let

I (z) =
N∑
n=1

Inun(z) , (5.154)

Eq. (5.153) will contain N unknown variables In and the unknown constant A. To
determine the N + 1 unknowns, we divide the wire into N segments. For the sake
of simplicity, we choose segments of equal lengths �z = �/N and select N + 1
matching points such as:

z = −�/2,−�/2 +�z, . . . , 0, . . . , �/2 −�z, �/2
At each match point z = zm,

∫ �/2

−�/2

N∑
n=1

Inun
(
z′
)
K

(
zm, z

′) dz′ = D (zm) (5.155)
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Taking the inner products (moments) by multiplying either side with a weighting
function wm(z) and integrating both sides,

∫ �/2

−�/2

∫ �/2

−�/2

N∑
n=1

Inun
(
z′
)
K

(
zm, z

′) dz′wm(z)dz
=

∫ �/2

−�/2
D (zm)wm(z) dz (5.156)

By reversing the order of the summation and integration,

N∑
n=1

In

∫ �/2

−�/2
un

(
z′
) ∫ �/2

−�/2
K

(
zm, z

′)wm(z) dzdz′
=

∫ �/2

−�/2
D (zm)wm(z) dz (5.157)

The integration on either side of Eq. (5.157) can be carried out numerically or ana-
lytically if possible. If we use the point matching method by selecting the weighting
function as delta function, then

wm(z) = δ (z− zm)
Since the integral of any function multiplied by δ(z − zm) gives the value of the
function at z = zm, Eq. (5.157) becomes

N∑
n=1

In

∫ �/2

−�/2
un

(
z′
)
K

(
zm, z

′) dz′ = D (zm) , (5.158)

where m = 1, 2, . . . , N + 1. Also, if we choose pulse function as the basis or
expansion function,

un(z) =
{

1, zn −�z/2 < z < zn +�z/2
0, elsewhere,

and Eq. (5.158) yields

N∑
n=1

In

∫ zn+�z/2

zn−�z/2
K

(
zm, z

′) dz′ = D (zm) (5.159)

Substitution of Eq. (5.152) into Eq. (5.159) gives

N∑
n=1

In

∫ zn+�z/2

zn−�z/2
ejkRm

4πRm
dz′ = − j

ηo

[
A cos kzm + VT

2
sin k |zm|

]
(5.160)
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where m = 1, 2, . . . , N + 1 and Rm = [a2 + (zm − z′)2]1/2. Thus we have a set of
N + 1 simultaneous equations, which can be cast in matrix form as

F11 F12 . . . F1,N
j

η
cos (kz1)

F21 F22 . . . F2,N
j

η
cos (kz2)

...
...

FN+1,1 FN+1,2 . . . FN+1,N
j

η
cos (kzN+1)




I1
I2
...

A



=



− j

2η
VT sin k |z1|

− j

2η
VT sin k |z2|
...

− j

2η
VT sin k |zN+1|


(5.161a)

or

[F ][X] = [Q] (5.161b)

where

Fmn =
∫ zn+�z/2

zn−�z/2
e−jkRm
4πRm

dz′ (5.162)

The N + 1 unknowns are determined by solving Eq. (5.161) in the usual manner. To
evaluate Fmn analytically rather than numerically, let the integrand in Eq. (5.162) be
separated into its real (RE) and imaginary (IM) parts,

e−jkRm
Rm

= RE +j IM

= cos kRm
Rm

− j sin kRm
Rm

(5.163)

IM as a function of z′ is a smooth curve so that

∫ zn+�z/2

zn−�z/2
IM

(
z′
)
dz′ = −

∫ zn+�z/2

zn−�z/2

sin k
[
a2 + (

zm − z′)2
]1/2

[
a2 + (zm − z′)2

]1/2
dz′

� −�z sin k
[
a2 + (zm − zn)2

]1/2[
a2 + (zm − zn)2

]1/2
(5.164)
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The approximation is accurate as long as �z < 0.05 λ. On the other hand, RE
changes rapidly as z′ → zm due to Rm. Hence

∫ zn+�z/2

zn−�z/2
RE

(
z′
)
dz′ = −

∫ zn+�z/2

zn−�z/2

cos k
[
a2 + (

zm − z′)2
]1/2

[
a2 + (zm − z′)2

]1/2
dz′

� cos k
[
a2 + (zm − zn)2

]1/2
∫ zn+�z/2

zn−�z/2
dz′[

a2 + (zm − z′)2
]1/2

= cos k
[
a2 + (zm − zn)2

]1/2

ln

[
zm +�z/2 − zn + [

a2 + (zm − zn +�z/2)2]1/2

zm −�z/2 − zn + [
a2 + (zm − zn −�z/2)2]1/2

]
(5.165)

Thus

Fmn � 1

4π
cos k

[
a2 + (zm − zn)2

]1/2

× ln

[
zm +�z/2 − zn + [

a2 + (zm − zn +�z/2)2]1/2

zm −�z/2 − zn + [
a2 + (zm − zn −�z/2)2]1/2

]

− j�z sin k
[
a2 + (zm − zn)2

]1/2

4π
[
a2 + (zm − zn)2

]1/2
(5.166)

A typical example of the current distribution obtained for � = λ, a = 0.01 λ is shown
in Fig. 5.20, where the sinusoidal distribution commonly assumed for wire antennas
is also shown for comparison. Notice the remarkable difference between the two near
the dipole center.

Example 5.10

Consider a perfectly conducting scatterer or antenna of cylindrical cross section
shown in Fig. 5.21. Determine the axial current I (z) on the structure by solving the
electric field integral equation (EFIE)

jη

4kπ

(
d2

dz2
+ k2

)∫ h

−h
I
(
z′
)
G

(
z, z′

)
dz′ = Eiz(z) (5.167)
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Figure 5.20
Current distribution of straight center-fed dipole.

where

G
(
z, z′

) = 1

2π

∫ 2π

0

e−jkR

R
dφ′ ,

R =
[(
z− z′)2 + 4a2 sin2 φ

′

2

]1/2

,

η =
√
µ

ε
, and k = 2π

λ

Solution
If the radius a << λ (the wavelength) and a << 2h (the length of the wire), the
structure can be regarded as a “thin-wire” antenna or scatterer. As a scatterer, we may
consider a plane wave excitation

Eiz(z) = Eo sin θejkz cos θ (5.168a)

where θ is the angle of incidence. As an antenna, we may assume a delta-gap generator

Eiz = V δ (z− zg
)

(5.168b)

where V is the generator voltage and z = zg is the location of the generator.
In order to apply the method of moments to the given integral equation (5.167), we

expand the currents in terms of pulse basis function as

I (z) =
N∑
n=1

Inun(z) (5.169)
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Figure 5.21
Cylindrical scatterer or antenna.

where

un(z) =
{

1, zn−1/2 < z < zn+1/2

0, elsewhere

Substituting Eq. (5.169) into Eq. (5.167) and weighting the result with triangular
functions

wm(z) =


z− zm−1

�
, zm−1 < z < zm

−z− zm+1

�
, zm−1 < z < zm+1

0, elsewhere,

(5.170)

where � = 2h/N , leads to

N∑
n=1

ZmnIn = Vm, m = 1, 2, . . . , N (5.171)

Figure 5.22 illustrates un(z) and wm(z). Equation (5.171) can be cast in matrix form
as

[Z][I ] = [V ] (5.172)

where [I ] can be solved using any standard method. For the impedance matrix [Z],
the elements are given by

Zmn = jη

4πk

2

�

[
1

2
Gm−1,n −

(
1 − k2�2

2

)
Gm,n + 1

2
Gm+1,n

]
(5.173)
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where

Gm,n =
∫ zn+�/2

zn−�/2
G

(
zm, z

′) dz′ (5.174)

To obtain Eq. (5.173), we have used the approximation∫ zm+1

zm−1

wm(z)f (z) dz = �f (zm)

For the plane wave excitation, the elements of the forcing vector [V] are

Vm = �E0e
jkzm cos θ (5.175a)

For delta-gap generator,

Vm = V δmg (5.175b)

where g is the index of the feed zone pulse.

Figure 5.22
For Example 5.10: (a) Pulse basis function, (b) triangular weighting function.
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Solving Eq. (5.172) requires that we incorporate a method to perform numerically
the double integration in Eq. (5.174). The kernel G(z, z′) exhibits a logarithmic
singularity as |z− z′| → 0, and therefore care must be exercised. To circumvent the
difficulty, we let

G
(
z, z′

) = 1

2π

∫ 2π

0

e−jkR

R
dφ′ = Go

(
z, z′

) +G1
(
z, z′

)
(5.176)

where

Go
(
z, z′

) = 1

2π

∫ 2π

0

dφ′

R
(5.177)

and

G1
(
z, z′

) = 1

2π

∫ 2π

0

e−jkR − 1

R
dφ′ (5.178)

We note that

Go
(
z, z′

) (
z−z′
2a

)
→ 0

−−−−−−−−−−→ − 1

πa
ln

∣∣z− z′∣∣
8a

and hence we replace Go(z, z′) by[
Go

(
z, z′

) + 1

πa
ln

∣∣z− z′∣∣
8a

]
− 1

πa
ln

∣∣z− z′∣∣
8a

(5.179)

The term G1(z, z
′) is nonsingular, while the singularity of Go(z, z′) can be avoided

by using Eq. (5.179). Thus the double integral involved in evaluating Zmn is easily
done numerically. It is interesting to note that Zmn would remain the same if we had
chosen the triangular basis function and pulse weighting function [46].

5.7 Applications IV — EM Absorption in the Human Body

The interest in hyperthermia (or electromagnetic heating of deep-seated tumors)
and in the assessment of possible health hazards due to EM radiation have prompted
the development of analytical and numerical techniques for evaluating EM power
deposition in the interior of the human body or a biological system [47]. The overall
need is to provide a scientific basis for the establishment of an EM radiation safety
standard. Since human experimentation is not possible, irradiation experiments must
be performed on animals. Theoretical models are required to interpret and confirm
the experiment, develop an extrapolation process, and thereby develop a radiation
safety standard for man [48].

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



The mathematical complexity of the problem has led researchers to investigate sim-
ple models of tissue structures such as plane slab, dielectric cylinder homogeneous
and layered spheres, and prolate spheroid. A review of these earlier efforts is given
in [49, 50]. Although spherical models are still being used to study the power deposi-
tion characteristics of the head of man and animals, realistic block model composed
of cubical cells is being used to simulate the whole body.

The key issue in this bioelectromagnetic effort is how much EM energy is absorbed
by a biological body and where is it deposited. This is usually quantified in terms
of the specific absorption rate (SAR), which is the mass normalized rate of energy
absorbed by the body. At a specific location, SAR may be defined by

SAR = σ

ρ
|E|2 (5.180)

where σ = tissue conductivity, ρ = tissue mass density, E = RMS value of the
internal field strength. Thus the localized SAR is directly related to the internal electric
field and the major effort involves the determination of the electric field distribution
within the biological body. The method of moments has been extensively utilized to
calculate localized SARs in block model representation of humans and animals.

As mentioned in Section 5.1, an application of MOM to EM problems usually
involves four steps:

• deriving the appropriate IE,

• transforming the IE into a matrix equation (discretization),

• evaluating the matrix elements, and

• solving the resulting set of simultaneous equations.

We will apply these steps for calculating the electric field induced in an arbitrary
human body or a biological system illuminated by an incident EM wave.

5.7.1 Derivation of Integral Equations

In general, the induced electric field inside a biological body was found to be quite
complicated even for the simple case of assuming the plane wave as the incident
field. The complexity is due to the irregularity of the body geometry, and the fact
that the body is finitely conducting. To handle the complexity, the so-called tensor
integral-equation (TIE) was developed by Livesay and Chen [51]. Only the essential
steps will be provided here; the interested reader is referred to [51]–[53].

Consider a biological body of an arbitrary shape, with constitutive parameters
ε, µ, σ illuminated by an incident (or impressed) plane EM wave as shown in Fig. 5.23.
The induced current in the body gives rise to a scattered field Es , which may be
accounted for by replacing the body with an equivalent free-space current density Jeq
given by

Jeq(r) = (
σ(r)+ jω [ε(r)− εo]

)
E(r) = τ(r)E(r) (5.181)
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Figure 5.23
A biological body illuminated by a plane EM wave.

where a time factor ejωt is assumed. The first term in Eq. (5.181) is the conduction
current density, while the second term is the polarization current density. With the
equivalent current density Jeq , we can obtain the scattered fields Es and Hs by solving
Maxwell’s equations

∇ × Es = −Jeq − jωHs (5.182a)

∇ × Hs = jωEs (5.182b)

where Es ,Hs , and Jeq are all in phasor (complex) form. Elimination of Es or Hs in
Eq. (5.182) leads to

∇ × ∇ × Es − k2
oEs = −jωµoJeq (5.183a)

∇ × ∇ × Hs − k2
oHs = ∇ × Jeq (5.183b)

where k2
o = ω2µoεo. The solutions to Eq. (5.183) are

Es = −jω
[

1 + 1

k2
o

∇∇·
]

A (5.184a)

Hs = 1

µo
∇ × A (5.184b)

where

A = µo
∫
v

Go
(
r, r′) Jeq

(
r′) dv′ (5.185)

and

Go
(
r, r′) = e−jko(r−r′)

4π |r − r′| (5.186)

is the free-space scalar Green’s function. By the operator ∇∇· , we mean that ∇∇·A =
∇(∇ · A). It is evident from Eqs. (5.184) to (5.186) that Es and Hs depend on Jeq .
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Suppose Jeq is an infinitesimal, elementary source at r′ pointed in the x direction so
that

Jeq = δ (r − r′) ax , (5.187)

the corresponding vector potential is obtained from Eq. (5.185) as

A = µoGo
(
r, r′) ax (5.188)

If Gox(r, r′) is the electric field produced by the elementary source, then Gox(r, r′)
must satisfy

∇ × ∇ × Gox
(
r, r′) − k2

oGox
(
r, r′) = −jωµoδ

(
r, r′) (5.189)

with solution

Gox
(
r, r′) = −jωµo

(
1 + 1

k2
∇∇·

)
Go

(
r, r′) (5.190)

Gox(r, r′) is referred to as a free-space vector Green’s function with a source pointed
in the x direction. We could also have Goy(r, r′) and Goz(r, r′) corresponding to
infinitesimal, elementary sources pointed in the y and z direction, respectively. We
now introduce a dyadic function2 which can store the three vector Green functions
Gox(r, r′),Goy(r, r′), and Goz(r, r′), i.e.,

Go
(
r, r′) = Gox

(
r, r′) ax + Goy

(
r, r′) ay + Goz

(
r, r′) az (5.191)

This is called free-space dyadic Green’s function [53]. It is a solution to the dyadic
differential equation

∇ × ∇ × Go
(
r, r′) − k2

oGo
(
r, r′) = Ĩ δ (r − r′) (5.192)

where Ĩ denotes the unit dyad (or idem factor) defined by

Ĩ = axax + ayay + azaz (5.193)

The physical meaning of Go(r, r′) is rather obvious. Go(r, r′) is the electric field at
a field point r due to an infinitesimal source at r′.

From Eqs. (5.183a) and (5.192), the solution of E is

Es(r) = −jωµo
∫

Go
(
r, r′) · Jeq

(
r′) dv′ (5.194)

Since Go(r, r′) has a singularity of the order |r − r′|3, the integral in Eq. (5.194)
diverges if the field point r is inside the volume v of the body (or source region).

2A dyad is a group of two or a pair of quantities. A dyadic function, denoted by D̃, is formed by two
functions, i.e., D̃ = AB. See Tai [53] or Balanis [28] for an exposition on dyadic functions.
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This difficulty is overcome by excluding a small volume surrounding the field point
first and then letting the small volume approach zero. The process entails defining
the principal value (PV ) and adding a correction term needed to yield the correct
solution. Thus

Es(r) = PV
∫
v

Jeq(r) · G
(
r, r′) dv′ + [

Es(r)
]

correction (5.195)

The correction term has been evaluated [51, 52] to be −Jeq/j3ωεo so that

Es(r) = PV
∫
v

Jeq(r) · G
(
r, r′) dv′ − Jeq(r)

j3ωεo
(5.196)

The total electric field inside the body is the sum of the incident field Ei and scattered
field Es , i.e.,

E(r) = Ei (r)+ Es(r) (5.197)

Combining Eqs. (5.181), (5.196), and (5.197) gives the desired tensor integral equa-
tion for E(r):[

1 + τ(r)
3jωεo

]
E(r)− PV

∫
v

τ
(
r′)E(r) · G

(
r, r′) dv′ = Ei (r) (5.198)

In Eq. (5.198), τ(r) = σ(r) + jω[ε(r) − εo] and the incident electric field Ei are
known quantities; the total electric field E inside the body is unknown and is to be
determined by MOM.

5.7.2 Transformation to Matrix Equation (Discretization)

The inner product E(r) · G(r, r′) in Eq. (5.198) may be represented as

E(r) · G
(
r, r′) =

Gxx
(
r, r′) Gxy

(
r, r′) Gxz

(
r, r′)

Gyx
(
r, r′) Gyy

(
r, r′) Gyz

(
r, r′)

Gzx
(
r, r′) Gzy

(
r, r′) Gzz

(
r, r′)


Ex (r′)
Ey

(
r′)

Ez
(
r′)

 (5.199)

showing that G(r, r′) is a symmetric dyad. If we let

x1 = x, x2 = y, x3 = z ,
then Gxpxq (r, r

′) can be written as

Gxpxq
(
r, r′) = −jωµo

[
δpq + 1

k2
o

∂2

∂xq∂xp

]
Go

(
r, r′) , p, q = 1, 2, 3 (5.200)

We now apply MOM to transform Eq. (5.198) into a matrix equation. We partition
the body into N subvolumes or cells, each denoted by vm (m = 1, 2, . . . , N), and
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assume that E(r) and τ(r) are constant within each cell. If rm is the center of themth
cell, requiring that each scalar component of Eq. (5.198) be satisfied at rm this leads
to[

1 + τ(r)
3jωεo

]
Exp (rm)−

3∑
q=1

 3∑
q=1

τ (rn) PV
∫
vm

Gxpxq
(
rm, r′) dv′

Exq (rn)
= Eixp (rm) (5.201)

If we let [Gxpxq ] be an N ×N matrix with elements

Gmnxpxq = τ (rn) PV
∫
vn

Gxpxq
(
rm, r′) dv′ − δpqδmn

[
1 + τ(r)

3jωεo

]
, (5.202)

where m, n = 1, 2, . . . , N, p, q = 1, 2, 3, and let [Exp ] and [Eixp ] be column
matrices with elements

Exp =
 Exp (r1)

...

Exp (rN)

 , Eixp =
 E

i
xp
(r1)

...

Eixp (rN)

 , (5.203)

then from Eqs. (5.198) and (5.201), we obtain 3N simultaneous equations forEx,Ey
andEz at the centers ofN cells by the point matching technique. These simultaneous
equations can be written in matrix form as

[Gxx]
[
Gxy

] [
Gxz

]
− − − − − − − − −[
Gyx

] [
Gyy

] [
Gyz

]
− − − − − − − − −[
Gzx

] [
Gzy

] [
Gzz

]




[Ex]
− − −[
Ey

]
− − −[
Ez

]

 = −



[
Eix

]
− − −[
Eiy

]
− − −[
Eiz

]

 (5.204a)

or simply [
G
][
E
] = −[

Ei
]

(5.204b)

where [G] is 3N × 3N matrix and [E] and [Ei] are 3N column matrices.

5.7.3 Evaluation of Matrix Elements

Although the matrix [Ei] in Eq. (5.204) is known, while the matrix [E] is to be
determined, the elements of the matrix [G], defined in Eq. (5.202), are yet to be
calculated. For the off-diagonal elements of [Gxpxq ], rm is not in the nth cell (rm is
not in vn) so that Gxpxq (rm, r

′) is continuous in vn and the principal value operation
can be dropped. Equation (5.202) becomes

Gmnxpxq = τ (rn)
∫
vn

Gxpxq
(
rm, r′) dv′, m 
= n (5.205)
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As a first approximation,

Gmnxpxq = τ (rn)Gxpxq
(
rm, r′)�vn, m 
= n (5.206)

where �vn is the volume of cell vn. Incorporating Eqs. (5.190) and (5.200) into
Eq. (5.206) yields

Gmnxpxq = −jωµko�vnτ (rn) exp(−jαmn)
4πα3

mn

[
(αmn − 1 − jαmn) δpq

+ cos θmnxp cos θmnxq

(
3 − α2

mn + 3jαmn
)]
, m 
= n (5.207)

where

αmn = koRmn, Rmn = |rm − rn| ,
cos θmnxp = xmp − xnp

Rmn
, cos θmnxq = xmq − xnq

Rmn
,

rm = (
xm1 , x

m
2 , x

m
3

)
, rn = (

xn1 , x
n
2 , x

n
3

)
The approximation in Eq. (5.207) yields adequate results provided N is large. If
greater accuracy is desired, the integral in Eq. (5.205) must be evaluated numerically.

For the diagonal terms (m = n), Eq. (5.202) becomes

Gnnxpxq = τ (rn) PV
∫
vn

Gxpxq
(
rn, r′) dv′ − δpq

[
1 + τ(r)

3jωεo

]
(5.208)

To evaluate this integral, we approximate cell vn by an equivolumic sphere of radius
an centered at rn, i.e.,

�v = 4

3
πa3

n

or

an =
(

3�v

4π

)1/3

(5.209)

After a lengthy calculation, we obtain [51]

Gnnxpxq = δpq

[−2jωµoτ (rn)

3k3
o

(exp (−jkoan) (1 + jkoan)− 1)

−
(

1 + τ (rn)

3jωεo

)]
, m = n (5.210)

In case the shape of cell vn differs considerably from that of a sphere, the approx-
imation in Eq. (5.210) may yield poor results. To have a greater accuracy, a small
cube, cylinder, or sphere is created around rn to evaluate the correction term, and the
integration through the remainder of vn is performed numerically.
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5.7.4 Solution of the Matrix Equation

Once the elements of matrix [G] are evaluated, we are ready to solve Eq. (5.204),
namely, [

G
][
E
] = −[

Ei
]

(5.204)

With the known incident electric field represented by [Ei], the total induced electric
field represented by [E] can be obtained from Eq. (5.204) by inverting [G] or by
employing a Gauss–Jordan elimination method. If matrix inversion is used, the total
induced electric field inside the biological body is obtained from[

E
] = −[

G
]−1[

Ei
]

(5.211)

Guru and Chen [55] have developed computer programs that yield accurate results
on the induced electric field and the absorption power density in various biological
bodies irradiated by various EM waves. The validity and accuracy of their numerical
results were verified by experiments.

In the following examples, we illustrate the accuracy of the numerical procedure
with one simple elementary shape and one advanced shape of biological bodies. The
examples are taken from the works of Chen and others [52], [56]–[58].

Example 5.11
Determine the distribution of the energy absorption rate or EM heating induced by

plane EM waves of 918 MHz in spherical models of animal brain having radius 3 cm.
Assume the Ei field expressed as

Ei = Eoe−jkozax = axEo (cos koz− j sin koz) V/m (5.212)

where ko = 2π/λ = 2πf/c, Eo = √
2ηoPi, Pi is the incident power in mW/cm2

and ηo = 377 � is the intrinsic impedance of free space. Take Pi = 1 mW/cm2

(Eo = 86.83 V/m), εr = 35, σ = 0.7 mhos/m.

Solution
In order to apply MOM, we first approximate the spherical model by a “cubic sphere.”
Figure 5.24 portrays an example in which one eighth of a sphere is approximated by
40 or 73 cubic cells. The center of each cell, for the case of 40 cells, is determined
from Fig. 5.25. Ei at the center of each cell can be calculated using Eq. (5.212). With
the computed Ei and the elements of the matrix [Gxpxq ] calculated using Eqs. (5.207)
and (5.210), the induced electric field E in each cell is computed from Eq. (5.211).
Once E is obtained, the absorption rate of the EM energy is determined using

P = σ

2
|E|2 (5.213)

The average heating is obtained by averaging P in the brain. The curve showing
relative heating as a function of location is obtained by normalizing the distribution
of P with respect to the maximum value of P at a certain location in the brain.
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Figure 5.24
For Example 5.11: (a) One eighth of a sphere, (b) a “cubic sphere” constructed
from 73 cubic cells.

Figure 5.25
Geometry and dimensions of one half of the spherical model of the brain con-
structed from 40 cells. The cell numbering is used in the program of Fig. 5.26.
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The computer program for the computation is shown in Fig. 5.26. It is a modified
version of the one developed by Jongakiem [58]. The numerical results are shown in
Fig. 5.27(a), where relative heating along the x-, y-, and z-axes in the brain is plotted.
The three curves identified by X, Y , and Z correspond with the distributions of the
relative heating along x-, y-, and z-axes, respectively. Observe the strong standing
wave patterns with peak heating located somewhere near the center of the brain. The
average and maximum heating are found to be 0.3202 and 0.885 in mW/cm3. The
exact solution obtained from Mie theory (see Section 2.8) is shown in Fig. 5.27(b).
The average and maximum heating from exact solution are 0.295 and 0.814 mW/cm3,
respectively. A comparison of Figs. 5.27(a) and (b) confirms the accuracy of the
numerical procedure.

Example 5.12
Having validated the accuracy of the tensor-integral-equation (TIE) method, deter-

mine the induced electric field and specific absorption rate (SAR) of EM energy inside
a model of typical human body irradiation (Fig. 5.28), by EM wave at 80 MHz with
vertical polarization, i.e.,

E = ax V/m

at normal incidence. Assume the body at 80 MHz is that of a high-water content
tissue with ε = 80εo, µ = µo, σ = 0.84 mhos/m.

Solution
The body is partitioned into 108 cubic cells of various sizes ranging from 5 cm3

to 12 cm3. To ensure accurate results, the cell size is kept smaller than a quarter-
wavelength (of the medium). With the coordinates of the center of each cell figured
out from Fig. 5.28, the program in Fig. 5.26 can be used to find induced electric field
components Ex,Ey , and Ez at the centers of the cells due to an incident electric
field 1 V/m (maximum value) at normal incidence. The SAR is calculated from
(σ/2)(E2

x + E2
y + E2

z ). Figures 5.29 to 5.31 illustrate Ex,Ey , and Ez at the center
of each cell. Observe that Ey and Ez are much smaller than Ex at this frequency due
to the polarization of the incident wave.

As mentioned earlier, the model of the human body shown in Fig. 5.28 is due to
Chen et al. [52]. An improved, more realistic model due to Gandhi et al. [59]–[61] is
shown in Fig. 5.32.

5.8 Concluding Remarks

The method of moments is a powerful numerical method capable of applying
weighted residual techniques to reduce an integral equation to a matrix equation. The
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Figure 5.26
Computer program for Example 5.11 (Continued).
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Figure 5.26
(Cont.) Computer program for Example 5.11 (Continued).

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



Figure 5.26
(Cont.) Computer program for Example 5.11. (Continued).
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Figure 5.26
(Cont.) Computer program for Example 5.11. (Continued).
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Figure 5.26
(Cont.) Computer program for Example 5.11.

solution of the matrix equation is usually carried out via inversion, elimination, or
iterative techniques. Although MOM is commonly applied to open problems such
as those involving radiation and scattering, it has been successfully applied to closed
problems such as waveguides and cavities.

Needless to say, the issues on MOM covered in this chapter have been carefully
selected. We have only attempted to cover the background and reference material
upon which the reader can easily build. The interested reader is referred to the
literature for more in-depth treatment of each subject. General concepts on MOM
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Figure 5.27
Distributions of heating along the x-, y-, and z-axis of a spherical model of an
animal brain [57]: (a) MOM solution, (b) exact solution.

Figure 5.28
Geometry and dimensions of a model of typical human body of height 1.77 m [52].
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Figure 5.29
Induced Ex (in mV/m) at the center of each cell due to Eix of 1 V/m [52].

Figure 5.30
Induced Ey (in mV/m) at the center of each cell due to Eix of 1 V/m [52].
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Figure 5.31
Induced Ez (in mV/m) at the center of each cell due to Eix of 1 V/m [52].

Figure 5.32
A more realistic block model of the human body [59]: (a) In three dimensions
(Continued).
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Figure 5.32
(Cont.) A more realistic block model of the human body [59]: (b) Front and

side views.

are covered in [10] and [62]. Clear and elementary discussions on IEs and Green’s
functions may be found in [12], [28]–[30], [62]–[65]. For further study on the theory
of the method of moments, one should see [6, 9, 10, 28, 40].

The number of problems that can be treated by MOM is endless, and the examples
given in this chapter just scratch the surface. The following problems represent typical
EM-related application areas:

• electrostatic problems [31], [66]–[69]

• wire antennas and scatterers [34, 37, 42, 44, 70, 78]

• scattering and radiation from bodies of revolution [79, 80]

• scattering and radiation from bodies of arbitrary shapes [38, 81, 82]

• transmission lines [18]–[20], [23, 24], [83]–[86]

• aperture problems [87]–[89]

• biomagnetic problems [47]–[52], [90]–[92].

A number of user-oriented computer programs have evolved over the years to
solve electromagnetic integral equations by the method of moments. These codes
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can handle radiation and scattering problems in both the frequency and time do-
mains. Reviews of the codes may be found in [7, 38, 93]. The most popular of these
codes is the Numerical Electromagnetic Code (NEC) developed at the Lawrence Liv-
ermore National Laboratory [7, 94]. NEC is a frequency domain antenna modeling
FORTRAN code applying the MOM to IEs for wire and surface structures. Its most
notable features are probably that it is user oriented, includes documentation, and is
available; for these reasons, it is being used in public and private institutions. A com-
pact version of NEC is the mini-numerical electromagnetic code (MININEC) [95],
which is intended to be used in personal computers.

It is important that we recognize the fact that MOM is limited in application to
radiation and scattering from bodies that are electrically large. The size of the scatterer
or radiator must be of the order λ3. This is because the cost of storing, inverting,
and computing matrix elements becomes prohibitively large. At high frequencies,
asymptotic techniques such as the geometrical theory of diffraction (GTD) are usually
employed to derive approximate but accurate solutions [46, 96, 97].

References

[1] L.V. Kantorovich and V.I. Krylov, Approximate Methods of Higher Analysis
(translated from Russian by C.D. Benster). New York: John Wiley, 1964.

[2] Y.U. Vorobev, Method of Moments in Applied Mathematics (translated from
Russian by Seckler). New York: Gordon & Breach, 1965.

[3] R.F. Harrington, Field Computation by Moment Methods. Malabar, FL: Krieger,
1968.

[4] B.J. Strait, Applications of the Method of Moments to Electromagnetics. St.
Cloud, FL: SCEEE Press, 1980.

[5] R.F. Harrington, “Origin and development of the method moments for field com-
putation,” in E.K. Miller et al., Computational Electromagnetics. New York:
IEEE Press, 1992, pp. 43–47.

[6] J.H. Richmond, “Digital computer solutions of the rigorous equations for scat-
tering problems,” Proc. IEEE, vol. 53, Aug. 1965, pp. 796–804.

[7] R.F. Harrington, “Matrix methods for field problems,” Proc. IEEE, vol. 55,
no. 2, Feb. 1967, pp. 136–149.

[8] M.M. Ney, “Method of moments as applied to electromagnetics problems,”
IEEE Trans. Micro. Theo. Tech., vol. MTT-33, no. 10, Oct. 1985, pp. 972–980.

[9] A.T. Adams, “An introduction to the method of moments,” Syracuse Univ.,
Report RADC TR-73-217, vol. 1, Aug. 1974.

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



[10] M.D. Greenberg, Application of Green Functions in Science and Engineering.
Englewood Cliffs, NJ: Prentice-Hall, 1971.

[11] A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering.
Englewood Cliffs, NJ: Prentice-Hall, 1991, pp. 121–148.

[12] P.M. Morse and H. Feshbach, Methods of Theoretical Physics. New York:
McGraw-Hill, Part I, Chap. 7, 1953, pp. 791–895.

[13] T. Myint-U, Partial Differential Equations of Mathematical Physics. New York:
North-Holland, 1980, 2nd ed., Chap. 10, pp. 282–305.

[14] R.F. Harrington, Time-harmonic Electromagnetic Fields. New York: McGraw-
Hill, 1961, p. 232.

[15] I.V. Bewley, Two-dimensional Fields in Electrical Engineering. New York:
Dover Publ., 1963, pp. 151–166.

[16] K.C. Gupta, et al., Computer-aided Design of Microwave Circuits. Dedham:
Artech House, 1981, pp. 237–261.

[17] T. Itoh (ed.), Numerical Techniques for Microwaves and Millimeterwave Pas-
sive Structures. New York: John Wiley & Sons, 1989, pp. 221–250.

[18] D.W. Kammler, “Calculation of characteristic admittance and coupling coef-
ficients for strip transmission lines,” IEEE Trans. Micro. Tech., vol. MTT-16,
no. 11, Nov. 1968, pp. 925–937.

[19] Y.M. Hill, et al., “A general method for obtaining impedance and coupling char-
acteristics of practical microstrip and triplate transmission line configurations,”
IBM J. Res. Dev., vol. 13, May 1969, pp. 314–322.

[20] W.T. Weeks, “Calculation of coefficients of capacitance of multiconductor
transmission lines in the presence of a dielectric interface,” IEEE Trans. Micro.
Theo. Tech., vol. MTT-18, no. 1, Jan. 1970, pp. 35–43.

[21] R. Chadha and K.C. Gupta, “Green’s functions for triangular segments in planar
microwave circuits,” IEEE Trans. Micro. Theo. Tech., vol. MTT-28, no. 10, Oct.
1980, pp. 1139–1143.

[22] R. Terras and R. Swanson, “Image methods for constructing Green’s functions
and eigenfunctions for domains with plane boundaries,” J. Math. Phys., vol. 21,
no. 8, Aug. 1980, pp. 2140–2153.

[23] E. Yamashita and K. Atsuki, “Stripline with rectangular outer conductor and
three dielectric layers,” IEEE Trans. Micro. Theo. Tech., vol. MTT-18, no. 5,
May 1970, pp. 238–244.

[24] R. Crampagne, et al., “ A simple method for determining the Green’s function
for a large class of MIC lines having multilayered dielectric structures,” IEEE
Trans. Micro. Theo. Tech., vol. MTT-26, no. 2, Feb. 1978, pp. 82–87.

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



[25] R. Chadha and K.C. Gupta, “Green’s functions for circular sectors, annular
rings, and annular sectors in planar microwave circuits,” IEEE Trans. Micro.
Theo. Tech., vol. MTT-29, no. 1, Jan. 1981, pp. 68–71.

[26] P.H. Pathak, “On the eigenfunction expansion of electromagnetic dydadic
Green’s functions,” IEEE Trans. Ant. Prog., vol. AP-31, no. 6, Nov. 1983.

[27] R.F. Harrington and J.R. Mautz, “Green’s functions for surfaces of revolution,”
Radio Sci., vol. 7, no. 5, May 1972, pp. 603–611.

[28] C.A. Balanis, Advanced Engineering Electromagnetics. New York: John Wiley,
1989, pp. 670–742, 851–916.

[29] E. Butkov, Mathematical Physics. New York: Addison-Wesley, 1968, pp. 503–
552.

[30] J.D. Jackson, Classical Electrodynamics, 2nd ed., New York: John Wiley, 1975,
pp. 119–135.

[31] L.L. Tsai and C.E. Smith, “Moment Methods in electromagnetics undergradu-
ates,” IEEE Trans. Educ., vol. E-21, no. 1, Feb. 1978, pp. 14–22.

[32] P.P. Silvester and R.L. Ferrari, Finite Elements for Electrical Engineers. Cam-
bridge, UK: Cambridge University Press, 1983, pp. 103–105.

[33] H.A. Wheeler, “Transmission-line properties of parallel strips separated by a
dielectric sheet,” IEEE Trans. Micro. Theo. Tech., vol. MTT-13, Mar. 1965,
pp. 172–185.

[34] J.H. Richmond, “Scattering by an arbitrary array of parallel wires,” IEEE Trans.
Micro. Theo. Tech., vol. MTT-13, no. 4, July 1965, pp. 408–412.

[35] B.D. Popovic, et al., Analysis and Synthesis of Wire Antennas. Chichester, UK:
Research Studies Press, 1982, pp. 3–21.

[36] E. Hallen, “Theoretical investigations into the transmitting and receiving quali-
ties of antennae,” Nova Acta Regiae Soc. Sci. Upsaliensis, Ser. IV, no. 11, 1938,
pp. 1–44.

[37] K.K. Mei, “ On the integral equations of thin wire antennas,” IEEE Trans. Ant.
Prog., vol. AP-13, 1965, pp. 374–378.

[38] J. Moore and P. Pizer (eds.), Moment Methods in Electromagnetics: Techniques
and Applications. Letchworth, UK: Research Studies Press, 1984.

[39] H.C. Pocklington, “ Electrical oscillations in wire,” Cambridge Phil. Soc. Proc.,
vol. 9, 1897, pp. 324–332.

[40] R. Mittra (ed.), Computer Techniques for Electromagnetics. Oxford: Pergamon
Press, 1973, pp. 7–95.

[41] C.A. Balanis, Antenna Theory: Analysis and Design. New York: Harper &
Row, 1982, pp. 283–321.

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



[42] C.M. Butler and D.R. Wilton, “Analysis of various numerical techniques applied
to thin-wire scatterers,” IEEE Trans. Ant. Prog., vol. AP-23, no. 4, July 1975,
pp. 524–540. Also in [46, pp. 46–52].

[43] T.K. Sarkar, “A note on the choice of weighting functions in the method of
moments,” IEEE Trans. Ant. Prog., vol. AP-33, no. 4, April 1985, pp. 436–441.

[44] F.M. Landstorfer and R.F. Sacher, Optimisation of Wire Antenna. Letchworth,
UK: Research Studies Press, 1985, pp. 18–33.

[45] K.A. Michalski and C.M. Butler, “An efficient technique for solving the wire
integral equation with non-uniform sampling,” Conf. Proc. IEEE Southeastcon.,
April 1983, pp. 507–510.

[46] R.F. Harrington, et al. (eds.), Lectures on Computational Methods in Electro-
magnetics. St. Cloud, FL: SCEEE Press, 1981.

[47] R. Kastner and R. Mittra, “A new stacked two-dimensional spectral iterative
technique (SIT) for analyzing microwave power deposition in biological me-
dia,” IEEE Trans. Micro. Theo. Tech., vol. MTT-31, no. 1, Nov. 1983, pp. 898–
904.

[48] P.W. Barber, “Electromagnetic power deposition in prolate spheroidal models
of man and animals at resonance,” IEEE Trans. Biomed. Engr., vol. BME-24,
no. 6, Nov. 1977, pp. 513–521.

[49] J.M. Osepchuk (ed.), Biological Effects of Electromagnetic Radiation. New
York: IEEE Press, 1983.

[50] R.J. Spiegel, “A review of numerical models for predicting the energy deposition
and resultant thermal response of humans exposed to electromagnetic fields,”
IEEE Trans. Micro. Theo. Tech., vol. MTT-32, no. 8, Aug. 1984, pp. 730–746.

[51] D.E. Livesay and K.M. Chen, “Electromagnetic fields induced inside arbitrary
shaped biological bodies,” IEEE Trans. Micro. Theo. Tech., vol. MTT-22, no. 12,
Dec. 1974, pp. 1273–1280.

[52] J.A. Kong (ed.), Research Topics in Electromagnetic Theory. New York: John
Wiley, 1981, pp. 290–355.

[53] C.T. Tai, Dyadic Green’s Functions in Electromagnetic Theory. Scranton, PA:
Intex Educational Pub., 1971, pp. 46–54.

[54] J. Van Bladel, “Some remarks on Green’s dyadic infinite space,” IRE Trans.
Ant. Prog., vol. AP-9, Nov. 1961, pp. 563–566.

[55] B.S. Guru and K.M. Chen, “A computer program for calculating the induced
EM field inside an irradiated body,” Dept. of Electrical Engineering and System
Science, Michigan State Univ., East Lansing, MI, 48824, 1976.

[56] K.M. Chen and B.S. Guru,“Internal EM field and absorbed power density in
human torsos induced by 1-500 MHz EM waves,” IEEE Micro. Theo. Tech.,
vol. MTT-25, no. 9, Sept. 1977, pp. 746–756.

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



[57] R. Rukspollmuang and K.M. Chen, “Heating of spherical versus realistic mod-
els of human and infrahuman heads by electromagnetic waves,” Radio Sci.,
vol. 14, no. 6S, Nov.-Dec., 1979, pp. 51–62.

[58] R. Jongakiem, “Electromagnetic absorption in biological bodies,” M. S. Thesis,
Dept. of Electrical and Computer Engr., Florida Atlantic Univ., Boca Raton,
Aug. 1988.

[59] O.P. Gandhi, “Electromagnetic absorption in an inhomogeneous model of man
for realistic exposure conditions,” Bioelectromagnetics, vol. 3, 1982, pp. 81–90.

[60] O.P. Gandhi, et al., “Part-body and multibody effects on absorption of radio-
frequency electromagnetic energy by animals and by models of man,” Radio
Sci., vol. 14, no. 6S, Nov.-Dec., 1979, pp. 15–21.

[61] M.J. Hagmann, O.P. Gandhi, and C.H. Durney, “Numerical calculation of elec-
tromagnetic energy deposition for a realistic model of man,” IEEE Trans. Micro.
Theo. Tech., vol. MTT-27, no. 9, Sept. 1979, pp. 804–809.

[62] J.J. Wang, “Generalized moment methods in electromagnetics,” IEEE Proc.,
vol. 137, Pt. H, no. 2, April 1990, pp. 127–132.

[63] G. Goertzel and N. Tralli, Some Mathematical Methods of Physics. New York:
McGraw-Hill, 1960.

[64] W.V. Lovitt, Linear Integral Equations. New York: Dover Publ., 1950.

[65] C.D. Green, Integral Equation Methods. New York: Barnes & Nobles, 1969.

[66] R.F. Harrington, et al., “Computation of Laplacian potentials by an equivalent
source method,” Proc. IEEE, vol. 116, no. 10, Oct. 1969, pp. 1715–1720.

[67] J.R. Mautz and R.F. Harrington, “Computation of rotationally symmetric Lapla-
cian,” Proc. IEEE, vol. 117, no. 4, April 1970, pp. 850–852.

[68] S.M. Rao, et al., “A simple numerical solution procedure for static problems
involving arbitrary-shaped surfaces,” IEEE Trans. Ant. Prog., vol. AP-27, no. 5,
Sept. 1979, pp. 604–608.

[69] K. Adamiak, “Application of integral equations for solving inverse problems
in stationary electromagnetic fields,” Int. J. Num. Meth. Engr., vol. 21, 1985,
pp. 1447–1485.

[70] A.W. Glisson, “An integral equation for electromagnetic scattering from ho-
mogeneous dielectric bodies,” IEEE Trans. Ant. Prog., vol. AP-33, no. 2, Sept.
1984, pp. 172–175.

[71] E. Max, “Integral equation for scattering by a dielectric,” IEEE Trans. Ant.
Prog., vol. AP-32, no. 2, Feb. 1984, pp. 166–172.

[72] A.T. Adams, et al., “Near fields of wire antennas by matrix methods,” IEEE
Trans. Ant. Prog., vol. AP-21, no. 5, Sept. 1973, pp. 602–610.

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



[73] R.F. Harrington and J.R. Mautz, “Electromagnetic behavior of circular wire
loops with arbitrary excitation and loading,” Proc. IEEE, vol. 115, Jan. 1969,
pp. 68–77.

[74] S.A. Adekola and O.U. Okereke, “Analysis of a circular loop antenna using
moment methods,” Int. J. Elect., vol. 66, no. 5, 1989, pp. 821–834.

[75] E.K. Miller, et al., “Computer evaluation of large low-frequency antennas,”
IEEE Trans. Ant. Prog., vol. AP-21, no. 3, May 1973, pp. 386–389.

[76] K.S.H. Lee, et al., “Limitations of wire-grid modeling of a closed surface,”
IEEE Trans. Elect. Comp., vol. EMC-18, no. 3, Aug. 1976, pp. 123–129.

[77] E.H. Newman and D.M. Pozar, “Considerations for efficient wire/surface mod-
eling,” IEEE Trans. Ant. Prog., vol. AP-28, no. 1, Jan. 1980, pp. 121–125.

[78] J. Perini and D.J. Buchanan, “Assessment of MOM techniques for shipboard
applications,” IEEE Trans. Elect. Comp., vol. EMC-24, no. 1, Feb. 1982, pp. 32–
39.

[79] J.R. Mautz and R.F. Harrington, “Radiation and scattering from bodies of rev-
olution,” Appl. Sci. Res., vol. 20, June 1969, pp. 405–435.

[80] A.W. Glisson and C.M. Butler, “Analysis of a wire antenna in the presence of a
body of revolution,” IEEE Trans. Ant. Prog., vol. AP-28, Sept. 1980, pp. 604–
609.

[81] J.H. Richmond, “A wire-grid model for scattering by conducting bodies,” IEEE
Trans. Ant. Prog., vol. AP-14, Nov. 1966, pp. 782–786.

[82] S.M. Rao, et al., “Electromagnetic scattering by surfaces of arbitrary shape,”
IEEE Trans. Ant. Prog., vol. AP-30, May 1966, pp. 409–418.

[83] A. Farrar and A.T. Adams, “ Matrix methods for microstrip three-dimensional
problems,” IEEE Trans. Micro. Theo. Tech., vol. MTT-20, no. 8, Aug. 1972,
pp. 497–505.

[84] A. Farrar and A.T. Adams, “Computation of propagation constants for the
fundamental and higher-order modes in microstrip,” IEEE Trans. Micro. Theo.
Tech., vol. MTT-24, no. 7, July 1972, pp. 456–460.

[85] A. Farrar and A.T. Adams, “Characteristic impedance of microstrip by the
method of moments,” IEEE Trans. Micro. Theo. Tech., vol. MTT-18, no. 1, Jan
1970, pp. 68, 69.

[86] A. Farrar and A.T. Adams, “Computation of lumped microstrip capacitance
by matrix methods—rectangular sections and end effects,” IEEE Trans. Micro.
Theo. Tech., vol. MTT-19, no. 5, May 1971, pp. 495, 496.

[87] R.F. Harrington and J.R. Mautz, “A generalized network formulation for aper-
ture problems,” IEEE Trans. Ant. Prog., vol. AP-24, Nov. 1976, pp. 870–873.

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



[88] R.H. Harrington and D.T. Auckland, “Electromagnetic transmission through
narrow slots in thick conducting screens,” IEEE Trans. Ant. Prog., vol. AP-28,
Sept. 1980, pp. 616–622.

[89] C.M. Butler and K.R. Umashankar, “Electromagnetic excitation of a scatterer
coupled to an aperture in a conducting screen,” Proc. IEEE, vol. 127, Pt. H,
June 1980, pp. 161–169.

[90] Special issue on electromagnetic wave interactions with biological systems,
IEEE Trans. Micro. Theo. Tech., vol. MTT-32, no. 8, Aug. 1984.

[91] Special issue on effects of electromagnetic radiation, IEEE Engr. Med. Biol.
Mag., March 1987.

[92] Helsinki symposium on biological effects of electromagnetic radiation, Radio
Sci., vol. 17, no. 5S, Sept.-Oct. 1982.

[93] R.M. Bevensee, “Computer codes for EMP interaction and coupling,” IEEE
Trans. Ant. Prog., vol. AP-26, no. 1, Jan. 1978, pp. 156–165.

[94] G.J. Burke and A.J. Poggio, Numerical Electromagnetic Code (NEC)—Method
of Moments. Lawrence Livermore National Lab., Jan. 1981.

[95] J.W. Rockway, et al., The MININEC System: Microcomputer Analysis of Wire
Antennas. Norwood, MA: Artech House, 1988.

[96] R. Mittra (ed.), Numerical and Asymptotic Techniques in Electromagnetics.
New York: Springer-Verlag, 1975.

[97] G.L. James, Geometrical Theory of Diffraction for Electromagnetic Waves, 3rd
ed. London: Peregrinus, 1986.

Problems

5.1 Classify the following integral equations and show that they have the stated
solutions:

(a) B(x)= 5x

b
+ 1

2

∫ 1

0
xtB(t) dt [solution B(x) = x],

(b) B(x)=cos x− sin x+2
∫ x

0
sin(x− t)B(t) dt [solution B(x) = e−x],

(c) B(x) = − cosh x + λ

∫ 1

−1
cosh(x + t)B(t) dt [solution B(x) =

cosh x
λ
2 sinh 2 + λ− 1

]
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5.2 Solve the following Volterra integral equations:

(a) B(x) = 5 + 2
∫ x

0 tB(t) dt ,

(b) B(x) = x + ∫ x
0 (t − x)B(t) dt

5.3 Find the integral equation corresponding to each of the following differential
equations:

(a) y′′ = −y, y(0) = 0, y′(1) = 1,

(b) y′′ + y = cos x, y(0) = 0, y′(0) = 1

5.4 Construct the Green’s function for the differential equation

Gxx + k2G = −δ (x − x′) , 0 < x < a

subject to G(0) = G(a) = 0

5.5 Show that

G
(
x, z; x′, z′

) = j

a

∞∑
n=1

sin(nπx/a) sin
(
nπx′/a

)
kn

ejkn(z−z′) ,

where k2
n = k2 − (nπ/a)2 is the Green’s function for Helmholtz’s equation.

5.6 Derive the Green’s function for

∇2B = f, 0 < x, y < 1

subject to zero boundary conditions.

5.7 Find the Green’s function satisfying

Gxx +Gyy + 2Gx = δ (x − x′) δ (y − y′) , 0 < x < a, 0 < y < b

and
G(0, y) = G(a, y) = G(x, 0) = G(x, b) = 0

5.8 (a) Verify by Fourier expansion that Eqs. (5.79) and (5.80) in Example 5.5
are equivalent.

(b) Show that another form of expressing Eq. (5.79) is

G
(
x, y; x′, y′) =


− 2

π

∞∑
m=1

sinh
mπ

(
b − y′)
a

sin
mπy

a

mπx

a

mπx′
a

, y < y′

− 2

π

∞∑
m=1

sinh
mπy′
a

sin
mπ(b − y)

a

mπx

a

mπx′
a

, y > y′
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5.9 The two-dimensional delta function expressed in cylindrical coordinates reads

δ
(
ρ − ρ′) = 1

ρ
δ
(
ρ − ρ′) δ (φ − φ′)

Obtain the Green’s function for the potential problem

∇2G = 1

ρ
δ
(
ρ − ρ′) δ (φ − φ′)

with the region defined in Fig. 5.33. Assume homogeneous Dirichlet boundary
conditions.

Figure 5.33
For Problem 5.9.

5.10 Consider the transmission line with cross section as shown in Fig. 5.34. In a
TEM wave approximation, the potential distribution satisfies Poisson’s equa-
tion

∇2V = −ρs
ε

subject to the following continuity and boundary conditions:

∂

∂x
V (x, h1 − 0) = ∂

∂x
V (x, h1 + 0)

∂

∂x
V (x, h1 + h2 − 0) = ∂

∂x
V (x, h1 + h2 + 0)

ε1
∂

∂y
V (x, h1 − 0) = ε2

∂

∂y
V (x, h1 + 0)

ε2
∂

∂y
V (x, h1 + h2 − 0) = ε3

∂

∂y
V (x, h1 + h2 + 0)− ρs (x, h1 + h2)

V (0, y) = V (a, y) = V (x, 0) = V (x, b) = 0

Using series expansion method, evaluate the Green’s function at y = h1 + h2,
i.e., G(x, y; x′, h1 + h2).

5.11 Show that the free-space Green’s function forL = ∇2 +k2 in two-dimensional
space is − j

4H
(1)
0 (kρ).
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Figure 5.34
For Problem 5.10.

5.12 The spherical Green’s function h(2)0 (|r − r′|) can be expanded in terms of
spherical Bessel functions and Legendre polynomials. Show that

h
(2)
0

(∣∣r − r′∣∣) =

j exp
(−j ∣∣r − r′∣∣)
(|r − r′|) =



∞∑
n=0

(2n+ 1)h2
n

(
r′) jn(r)Pn(cosα), r < r ′

∞∑
n=0

(2n+ 1)h2
n(r)jn

(
r ′
)
Pn(cosα), r > r ′

where cosα = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′). From this, derive the
plane wave expansion

e−j k·r =
∞∑
n=0

(−j)n(2n+ 1)jn(kr)Pn(cosα)

5.13 Given the kernel

K(x, y) =
{
(1 − x)y, 0 ≤ y ≤ x ≤ 1

(1 − y)x, 0 ≤ x ≤ y ≤ 1

Show that

K(x, y) = 2
∞∑
n=1

sin nπx sin nπy

n2π2

and that
π2

4
=

∞∑
n=1

1

n2
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5.14 Derive the closed form solution for Poisson’s equation

∇2V = g
in the quarter-plane shown in Fig. 5.35 with

V = f (x), y = 0,
∂V

∂x
= h(y), x = 0

Figure 5.35
For Problem 5.14.

5.15 Consider the cross section of a microstrip transmission line shown in Fig. 5.36.
Let Gijρj be the potential at the field point i on the center conductor due to
the charge on subsection j . (It is assumed that the charge is concentrated in
the filament along the center of the subsection.) Gij is the Green’s function for
this problem and is given by

Gij = 1

4πεr

∞∑
n=1

[
k2(n−1) ln

A2
ij + (4n− 2)2

A2
ij + (4n− 4)2

+ k2n−1 ln
A2
ij + (4n− 2)2

A2
ij + (4n)2

]

where

Aij = �

H
|2(i − 1)− 2(j − 1)− 1|, k = εr − 1

εr + 1
,

� = W/N , and N is the number of equal subsections into which the center
conductor is divided. By setting the potential equal to unity on the center
conductor, one can find

C =
∞∑
j=1

ρj (farads/m)
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and

Zo = 1

c
√
CoC

where c = 3×108 m/s andCo is the capacitance per unit length for an air-filled
transmission line (i.e., set k = 1 in Gij ). Find Zo for N = 30 and:

(a) εr = 6.0, W = 4 cm, H = 4 cm

(b) εr = 16.0, W = 8 cm, H = 4 cm.

Figure 5.36
For Problem 5.15.

5.16 A rectangular section of microstrip transmission line of length L, width W ,
and height H above the ground plane is shown in Fig. 5.37. The section is
subdivided into N subsections. A typical subsection �Sj , of sides �xj and
�yj , is assumed to bear a uniform surface charge density ρj . The potential Vi
at �Si due to a uniform charge density ρj on �Sj (j = 1, 2, . . . , N) is

Vi =
N∑
j=1

Gijρj
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where

Gij =
∞∑
n=1

kn−1(−1)n+1

2πεo (εr + 1)(
xj − xi

)
ln

(
yj − yi

) +
√(
xj − xi

)2 + (
yj − yi

)2 + (2n− 2)2H 2(
yj +�yj − yi

) +
√(
xj − xi

)2 + (
yj +�yj − yi

)2 + (2n− 2)2H 2

+ (
xj +�xj − xi

)
ln

(
yj +�yj − yi

) +
√(
xj +�xj − xi

)2 + (
yj +�yj − yi

)2 + (2n− 2)2H 2(
yj − yi

) +
√(
xj +�xj − xi

)2 + (
yj − yi

)2 + (2n− 2)2H 2

+ (
yj − yi

)
ln

(
xj − xi

) +
√(
xj − xi

)2 + (
yj − yi

)2 + (2n− 2)2H 2(
xj +�xj − xi

) +
√(
xj +�xj − xi

)2 + (
yj − yi

)2 + (2n− 2)2H 2

+ (
yj +�yj − yi

)
ln

(
xj +�xj − xi

) +
√(
xj +�xj − xi

)2 + (
yj +�yj − yi

)2 + (2n− 2)2H 2(
xj − xi

) +
√(
xj − xi

)2 + (
yj +�yj − yi

)2 + (2n− 2)2H 2

− (2n− 2)H tan−1
(
xj − xi

) (
yj − yi

)
(2n− 2)H

√(
xj − xi

)2 + (
yj − yi

)2 + (2n− 2)2H 2

− (2n− 2)

H tan−1
(
xj +�xj − xi

) (
yj +�yj − yi

)
(2n− 2)H

√(
xj +�xj − xi

)2 + (
yj +�yj − yi

)2 + (2n− 2)2H 2

+ (2n− 2)H tan−1
(
xj − xi

) (
yj +�yj − yi

)
(2n− 2)H

√(
xj − xi

)2 + (
yj +�yj − yi

)2 + (2n− 2)2H 2

+ (2n− 2)H tan−1
(
xj +�xj − xi

) (
yj − yi

)
(2n− 2)H

√(
xj +�xj − xi

)2 + (
yj − yi

)2 + (2n− 2)2H 2



and k = εr − 1

εr + 1
. If the ground plane is assumed to be at zero potential while

the conducting strip at 1 V potential, we can find

C =
N∑
j=1

ρj

Find C for:

(a) εr = 9.6, W = L = H = 2 cm,

(b) εr = 9.6, W = H = 2 cm , L = 1 cm.
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Figure 5.37
For Problem 5.16.

5.17 For a conducting elliptic cylinder with cross section in Fig. 5.38(a), write a
program to determine the scattering cross section σ(φi, φ) due to a plane TM
wave. Consider φ = 0◦, 10◦, · · · , 180◦ and cases φi = 0◦, 30◦, and 90◦. Plot
σ(φi, φ) against φ for each φi . Take λ = 1m, 2a = λ/2, 2b = λ,N = 18.

Hint: Due to symmetry, consider only one half of the cross section as in
Fig. 5.38(b). An ellipse is described by

x2

a2
+ y2

b2
= 1

With x = r cosφ, y = r sin φ, it is readily shown that

r = a√
cos2 φ + ν2 sin2 φ

, ν = a/b, dl = rdφ.

5.18 Use the program in Fig. 5.17 (or develop your own program) to calculate the
scattering pattern for each array of parallel wires shown in Fig. 5.39.

5.19 Repeat Problem 5.17 using the techniques of Section 5.5.2. That is, consider
the cylinder in Fig. 5.38(a) as an array of parallel wires.

5.20 Consider the scattering problem of a dielectric cylinder with cross section
shown in Fig. 5.40. It is illuminated by a TM wave. To obtain the field [E]
inside the dielectric cylinder, MOM formulation leads to the matrix equation

[A][E] =
[
Ei

]
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Figure 5.38
For Problem 5.17.

Figure 5.39
Arrays of parallel wires: (a) cylinder, (b) square, (c) I-beam, for Problem 5.18.
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Figure 5.40
For Problem 5.20.

where

Amn =
{
εm + j π

2
(εm − 1) kanH

(2)
1 (kam) , m = n

j π2 (εm − 1) kanJ1 (kan)H
(2)
0 (kρmn) , m 
= n

Eim = ejk(xm cosφi+ym sin φi)

ρmn =
√
(xm − xn)2 + (ym − yn)2, m, n = 1, 2, . . . , N

N is the number of cells the cylinder is divided into, εm is the average dielec-
tric constant of cell m, am is the radius of the equivalent circular cell which
has the same cross section as cell m. Solve the above matrix equation and
obtain En, n = 1, 2, . . . , N . Use En to obtain the echo width of the dielectric
cylinder, i.e.,

W(φ) = π2k∣∣Ei∣∣2
∣∣∣∣∣
N∑
n=1

(εn − 1) EnanJ1 (kan) e
jk(xn cosφ+yn sin φ)

∣∣∣∣∣
2

for φ = 0◦, 5◦, 10◦, . . . , 180◦. PlotW(φ)versusφ. For the dielectric cylinder,
take µ = µo, ε = 4εo, inner radius is 0.25λ, outer radius is 0.4λ, and λ = 1m.

5.21 The integral equation

− 1

2π

∫ w

−w
I
(
z′
)

ln
∣∣z− z′∣∣ dz′ = f (z), −w < z < w

can be cast into matrix equation

[S][I ] = [F ]
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using pulse basis function and delta expansion function (point matching).

(a) Show that

Smn = �

2π

[
1 − ln�− 1

2
ln

∣∣∣∣(m− n)2 − 1

4

∣∣∣∣ − (m− n) ln
|m− n+ 1/2|
|m− n− 1/2|

]
Fn = f (zn)

where zn = −w +�(n − 1/2), n = 1, 2, . . . , N,� = 2w/N . Note that [S]
is a Toepliz matrix having only N distinct elements.

(b) Determine the unknowns {Im} with f (z) = 1, N = 10, 2w = 1.

(c) Repeat part (b) with f (z) = z, N = 10, 2w = 1.

5.22 A two-term representation of the current distribution on a thin, center-fed half-
wavelength dipole antenna is given by

I (z) =
2∑
n=1

Bn sin

(
2πn

λ
(λ/4 − |z|)

)
Substituting this into Hallen’s integral equation gives

2∑
n=1

Bn

∫ λ/4

−λ/4
sin

[
2πn

λ

(
λ/4 − ∣∣z′∣∣]G (

z, z′
)
dz′ + jC1

ηo
cos koz

= − j

ηo
VT sin ko|z|

where ηo = 120 π, ko = 2π

λ
= 2πf

c
, and G(z, z′) is given by Eq. (5.152).

Taking VT = 1 volt, λ = 1 m, a/λ = 7.022 × 10−3, and match points at
z = 0, λ/8, λ/4, determine the constants B1, B2, and C1. Plot the real and
imaginary parts of I (z) against z.

5.23 Using Hallen’s IE, determine the current distribution I (z) on a straight dipole
of length �. Plot |I | = |Ir+jIi | against z. Assume excitation by a unit voltage,

N = 51, � = 2 ln
�

a
= 12.5, and consider cases: (a) � = λ/2, (b) � = 1.5λ.

5.24 (a) Show that Pocklington integral equation (5.141) can be written as

−Eiz = λ
√
µ/ε

8jπa2

∫ �/2

−�/2
I
(
z′
)
e−jkR

R5

[
(1 + jkR)

(
2R2 − 3a2

)
+ k2a2R2

]
dz′

(b) By changing variables, z′ − z = a tan θ , show that

−Eiz = λ
√
µ/ε

8jπ2a2

∫ θ2

θ1

I
(
θ ′) e−jka/ cos θ ′

·
[(
jka + cos θ ′) (2 − 2 cos2 θ ′) + k2a2 cos θ ′] dθ ′
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where θ1 = − tan−1 �/2 + z
a

, θ2 = tan−1 �/2 − z
a

.

5.25 Using the program in Fig. 5.26 (or your own self-developed program), calcu-
late the electric field inside a thin conducting layer (µ = µo, ε = 70εo, σ =
1 mho/m) shown in Fig. 5.41. Assume plane wave with electric field perpen-
dicular to the plane of the layer, i.e.,

Ei = e−jkozax V/m

where ko = 2πf/c. Consider only one half of the layer. Calculate |Ex |/|Ei |
and neglect Ey and Ez at the center of the cells since they are very small
compared with Ex . Take a = 0.5 cm, b = 4 cm, c = 6 cm.

Figure 5.41
For Problem 5.25.

5.26 Consider an adult torso with a height 1.7 m and a shape shown in Fig. 5.42. If
the torso is illuminated by a vertically polarized EM wave of 80 MHz with an
incident electric field of 1 V/m, calculate the absorbed power density given by

σ

2

(
E2
x + E2

y + E2
z

)
at the center of each cell. Take µ = µo, ε = 80εo, σ = 0.84 mhos/m.

5.27 Suppose the dielectric cylinder in Problem 5.20 is a biological body modeled
by a cylinder of cross-section 75 × 50 cm2, shown in Fig. 5.43. A TM wave of
frequency f = 300 MHz is normally incident on the body. Compute the fields
inside the body using the MOM formulation of Problem 5.20. In this case, take
εm as complex permittivity of cell m, i.e.,

εm = εrm − j (σm/ωεo) , m = 1, 2, . . . , N = 150

To make the body inhomogeneous, take εrm = 8 and σm = 0.03 for cells 65,
66, 75, 85, and 86; take εrm = 7 and σm = 0.04 for cells 64, 67, 74, 77, 84,
and 87; and take εrm = 5 and σm = 0.02 for all the other cells. Compute En.
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Figure 5.42
An adult torso: for Problem 5.26.
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Figure 5.43
For Problem 5.27.
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