
Chapter 2

Analytical Methods

“I’ve learned that about 90 percent of the things that happen to me are good
and only about 10 percent are bad. To be happy, I just have to focus on the 90
percent.” Anonymous

2.1 Introduction

The most satisfactory solution of a field problem is an exact mathematical one.
Although in many practical cases such an analytical solution cannot be obtained
and we must resort to numerical approximate solution, analytical solution is useful
in checking solutions obtained from numerical methods. Also, one would hardly
appreciate the need for numerical methods without first seeing the limitations of
the classical analytical methods. Hence our objective in this chapter is to briefly
examine the common analytical methods and thereby put numerical methods in proper
perspective.

The most commonly used analytical methods in solving EM-related problems in-
clude:

(1) separation of variables

(2) series expansion

(3) conformal mapping

(4) integral methods

Perhaps the most powerful analytical method is the separation of variables; it is the
method that will be emphasized in this chapter. Since the application of conformal
mapping is restricted to certain EM problems, it will not be discussed here. The
interested reader is referred to Gibbs [1]. The integral methods will be covered in
Chapter 5, and fully discussed in [2].
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2.2 Separation of Variables

The method of separation of variables (sometimes called the method of Fourier)
is a convenient method for solving a partial differential equation (PDE). Basically,
it entails seeking a solution which breaks up into a product of functions, each of
which involves only one of the variables. For example, if we are seeking a solution
�(x, y, z, t) to some PDE, we require that it has the product form

�(x, y, z, t) = X(x)Y (y)Z(z)T (t) (2.1)

A solution of the form in Eq. (2.1) is said to be separable in x, y, z, and t . For example,
consider the functions

(1) x2yz sin 10t ,
(2) xy2 + 2

t
,

(3) (2x + y2)z cos 10t .
(1) is completely separable, (2) is not separable, while (3) is separable only in z and
t .

To determine whether the method of independent separation of variables can be ap-
plied to a given physical problem, we must consider the PDE describing the problem,
the shape of the solution region, and the boundary conditions — the three elements that
uniquely define a problem. For example, to apply the method to a problem involving
two variables x and y (or ρ and φ, etc.), three things must be considered [3]:

(i) The differential operator L must be separable, i.e., it must be a function of
�(x, y) such that

L{X(x)Y (y)}
�(x, y)X(x)Y (y)

is a sum of a function of x only and a function of y only.

(ii) All initial and boundary conditions must be on constant-coordinate surfaces,
i.e., x = constant, y = constant.

(iii) The linear operators defining the boundary conditions at x = constant (or y =
constant) must involve no partial derivatives of � with respect to y (or x), and
their coefficient must be independent of y (or x).

For example, the operator equation

L� = ∂2�

∂x2
+ ∂2�

∂x∂y
+ ∂2�

∂y2

violates (i). If the solution region R is not a rectangle with sides parallel to the x and
y axes, (ii) is violated. With a boundary condition � = 0 on a part of x = 0 and
∂�/∂x = 0 on another part, (iii) is violated.

With this preliminary discussion, we will now apply the method of separation
of variables to PDEs in rectangular, circular cylindrical, and spherical coordinate
systems. In each of these applications, we shall always take these three major steps:
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(1) separate the (independent) variables

(2) find particular solutions of the separated equations, which satisfy some of the
boundary conditions

(3) combine these solutions to satisfy the remaining boundary conditions

We begin the application of separation of variables by finding the product solution
of the homogeneous scalar wave equation

∇2�− 1

c2

∂2�

∂t2
= 0 (2.2)

Solution to Laplace’s equation can be derived as a special case of the wave equation.
Diffusion and heat equation can be handled in the same manner as we will treat wave
equation. To solve Eq. (2.2), it is expedient that we first separate the time dependence.
We let

�(r, t) = U(r)T (t) (2.3)

Substituting this in Eq. (2.2),

T∇2U − 1

c2
UT ′′ = 0

Dividing by UT gives

∇2U

U
= T ′′

c2T
(2.4)

The left side is independent of t , while the right side is independent of r; the equality
can be true only if each side is independent of both variables. If we let an arbitrary
constant −k2 be the common value of the two sides, Eq. (2.4) reduces to

T ′′ + c2k2T = 0 , (2.5a)

∇2U + k2U = 0 (2.5b)

Thus we have been able to separate the space variable r from the time variable t . The
arbitrary constant −k2 introduced in the course of the separation of variables is called
the separation constant. We shall see that in general the total number of independent
separation constants in a given problem is one less than the number of independent
variables involved.

Equation (2.5a) is an ordinary differential equation with solution

T (t) = a1e
jckt + a2e

−jckt (2.6a)

or

T (t) = b1 cos(ckt)+ b2 sin(ckt) (2.6b)

Since the time dependence does not change with a coordinate system, the time de-
pendence expressed in Eq. (2.6) is the same for all coordinate systems. Therefore,
we shall henceforth restrict our effort to seeking solution to Eq. (2.5b). Notice that if
k = 0, the time dependence disappears and Eq. (2.5b) becomes Laplace’s equation.
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2.3 Separation of Variables in Rectangular Coordinates

In order not to complicate things, we shall first consider Laplace’s equation in two
dimensions and later extend the idea to wave equations in three dimensions.

2.3.1 Laplace’s Equations

Consider the Dirichlet problem of an infinitely long rectangular conducting trough
whose cross section is shown in Fig. 2.1. For simplicity, let three of its sides be

Figure 2.1
Cross section of the rectangular conducting trough.

maintained at zero potential while the fourth side is at a fixed potential Vo. This is a
boundary value problem. The PDE to be solved is

∂2V

∂x2
+ ∂2V

∂y2
= 0 (2.7)

subject to (Dirichlet) boundary conditions

V (0, y) = 0 (2.8a)

V (a, y) = 0 (2.8b)

V (x, 0) = 0 (2.8c)

V (x, b) = Vo (2.8d)

We let

V (x, y) = X(x)Y (y) (2.9)

Substitute this into Eq. (2.7) and divide by XY . This leads to

X′′

X
+ Y ′′

Y
= 0
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or

X′′

X
= −Y ′′

Y
= λ (2.10)

where λ is the separation constant. Thus the separated equations are

X′′ − λX = 0 (2.11)

Y ′′ + λY = 0 (2.12)

To solve the ordinary differential equations (2.11) and (2.12), we must impose the
boundary conditions in Eq. (2.8). However, these boundary conditions must be trans-
formed so that they can be applied directly to the separated equations. SinceV = XY ,

V (0, y) = 0 → X(0) = 0 (2.13a)

V (a, y) = 0 → X(a) = 0 (2.13b)

V (x, 0) = 0 → Y (0) = 0 (2.13c)

V (x, b) = Vo → X(x)Y (b) = Vo (2.13d)

Notice that only the homogeneous conditions are separable. To solve Eq. (2.11), we
distinguish the three possible cases: λ = 0, λ > 0, and λ < 0.

Case 1: If λ = 0, Eq. (2.11) reduces to

X′′ = 0 or
d2X

dx2
= 0 (2.14)

which has the solution

X(x) = a1x + a2 (2.15)

where a1 and a2 are constants. Imposing the conditions in Eq. (2.13a) and Eq. (2.13b),

X(0) = 0 → a2 = 0

X(a) = 0 → a1 = 0

Hence X(x) = 0, a trivial solution. This renders case λ = 0 as unacceptable.

Case 2: If λ > 0, say λ = α2, Eq. (2.11) becomes

X′′ − α2X = 0 (2.16)

with the corresponding auxiliary equations m2 − α2 = 0 or m = ±α. Hence the
general solution is

X = b1e
−αx + b2e

αx (2.17)
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or

X = b3 sinh αx + b4 cosh αx (2.18)

The boundary conditions are applied to determine b3 and b4.

X(0) = 0 → b4 = 0

X(a) = 0 → b3 = 0

since sinh αx is never zero for α > 0. Hence X(x) = 0, a trivial solution, and we
conclude that case λ > 0 is not valid.

Case 3: If λ < 0, say λ = −β2,

X′′ + β2X = 0 (2.19)

with the auxiliary equation m2 + β2 = 0 or m = ±jβ. The solution to
Eq. (2.19) is

X = A1e
jβx + A2e

jβx (2.20a)

or

X = B1 sin βx + B2 cosβx (2.20b)

Again,

X(0) = 0 → B2 = 0

X(a) = 0 → sin βa = 0 = sin nπ

or

β = nπ

a
, n = 1, 2, 3, . . . (2.21)

since B1 cannot vanish for nontrivial solutions, whereas sin βa can vanish without its
argument being zero. Thus we have found an infinite set of discrete values of λ for
which Eq. (2.11) has nontrivial solutions, i.e.,

λ = −β2 = −n2π2

a2
, n = 1, 2, 3, . . . (2.22)

These are the eigenvalues of the problem and the corresponding eigenfunctions are

Xn(x) = sin βx = sin
nπx

a
(2.23)

From Eq. (2.22) note that it is not necessary to include negative values of n since they
lead to the same set of eigenvalues. Also we exclude n = 0 since it yields the trivial
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solution X = 0 as shown under Case 1 when λ = 0. Having determined λ, we can
solve Eq. (2.12) to find Yn(y) corresponding to Xn(x). That is, we solve

Y ′′ − β2Y = 0 , (2.24)

which is similar to Eq. (2.16), whose solution is in Eq. (2.18). Hence the solution to
Eq. (2.24) has the form

Yn(y) = an sinh
nπy

a
+ bn cosh

nπy

a
(2.25)

Imposing the boundary condition in Eq. (2.13c),

Y (0) = 0 → bn = 0

so that

Yn(y) = an sinh
nπy

a
(2.26)

Substituting Eqs. (2.23) and (2.26) into Eq. (2.9), we obtain

Vn(x, y) = Xn(x)Yn(y) = an sin
nπx

a
sinh

nπy

a
, (2.27)

which satisfies Eq. (2.7) and the three homogeneous boundary conditions in Eqs.
(2.8a), (2.8b), and (2.8c). By the superposition principle, a linear combination of the
solutions Vn, each with different values of n and arbitrary coefficient an, is also a
solution of Eq. (2.7). Thus we may represent the solution V of Eq. (2.7) as an infinite
series in the function Vn, i,e.,

V (x, y) =
∞∑
n=1

an sin
nπx

a
sinh

nπy

a
(2.28)

We now determine the coefficient an by imposing the inhomogeneous boundary
condition in Eq. (2.8d) on Eq. (2.28). We get

V (x, b) = Vo =
∞∑
n=1

an sin
nπx

a
sinh

nπb

a
, (2.29)

which is Fourier sine expansion of Vo. Hence,

an sinh
nπb

a
= 2

b

∫ b

0
Vo sin

nπx

a
dx = 2Vo

nπ
(1 − cos nπ)

or

an =


4Vo
nπ

1

sinh nπb
a

, n = odd ,

0, n = even
(2.30)
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Substitution of Eq. (2.30) into Eq. (2.28) gives the complete solution as

V (x, y) = 4Vo
π

∞∑
n=odd

sin nπx
a

sinh nπy
a

n sinh nπb
a

(2.31a)

By replacing n by 2k − 1, Eq. (2.31a) may be written as

V (x, y) = 4Vo
π

∞∑
k=1

sin nπx
a

sinh nπy
a

n sinh nπb
a

, n = 2k − 1 (2.31b)

2.3.2 Wave Equation

The time dependence has been taken care of in Section 2.2. We are left with solving
the Helmholtz equation

∇2U + k2U = 0 (2.5b)

In rectangular coordinates, Eq. (2.5b) becomes

∂2U

∂x2
+ ∂2U

∂y2
+ ∂2U

∂z2
+ k2U = 0 (2.32)

We let

U(x, y, z) = X(x)Y (y)Z(z) (2.33)

Substituting Eq. (2.33) into Eq. (2.32) and dividing by XYZ, we obtain

X′′

X
+ Y ′′

Y
+ Z′′

Z
+ k2 = 0 (2.34)

Each term must be equal to a constant since each term depends only on the corre-
sponding variable; X on x, etc. We conclude that

X′′

X
= −k2

x,
Y ′′

Y
= −k2

y,
Z′′

Z
= −k2

z (2.35)

so that Eq. (2.34) reduces to

k2
x + k2

y + k2
z = k2 (2.36)

Notice that there are four separation constants k, kx, ky , and kz since we have four
variables t, x, y, and z. But from Eq. (2.36), one is related to the other three so that
only three separation constants are independent. As mentioned earlier, the number of
independent separation constants is generally one less than the number of independent
variables involved. The ordinary differential equations in Eq. (2.35) have solutions

X = A1e
jkxx + A2e

−jkxx (2.37a)
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or

X = B1 sin kxx + B2 cos kxx , (2.37b)

Y = A3e
jkyy + A4e

jkyy (2.37c)

or

Y = B3 sin kyy + B4 cos kyy , (2.37d)

Z = A5e
jkzz + A6e

−jkzz (2.37e)

or

Z = B5 sin kzz + B6 cos kzz , (2.37f)

Various combinations of X, Y , and Z will satisfy Eq. (2.5b). Suppose we choose

X = A1e
jkxx, Y = A3e

jkyy, Z = A5e
jkzz , (2.38)

then

U(x, y, z) = Aej(kxx+kyy+kzz) (2.39)

or

U(r) = Aejk·r (2.40)

Introducing the time dependence of Eq. (2.6a) gives

�(x, y, z, t) = Aej(k·r+ωt) (2.41)

where ω = kc is the angular frequency of the wave and k is given by Eq. (2.36).
The solution in Eq. (2.41) represents a plane wave of amplitude A propagating in the
direction of the wave vector k = kxax + kyay + kzaz with velocity c.

Example 2.1
In this example, we would like to show that the method of separation of variables

is not limited to a problem with only one inhomogeneous boundary condition as
presented in Section 2.3.1. We reconsider the problem of Fig. 2.1, but with four
inhomogeneous boundary conditions as in Fig. 2.2(a).

Solution
The problem can be stated as solving Laplace’s equation

∂2V

∂x2
+ ∂2V

∂y2
= 0 (2.42)
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Figure 2.2
Applying the principle of superposition reduces the problem in (a) to those in (b).

subject to the following inhomogeneous Dirichlet conditions:

V (x, 0) = V1

V (x, b) = V3

V (0, y) = V4

V (a, y) = V2 (2.43)

Since Laplace’s equation is a linear homogeneous equation, the problem can be sim-
plified by applying the superposition principle. If we let

V = VI + VII + VIII + VIV , (2.44)

we may reduce the problem to four simpler problems, each of which is associated with
one of the inhomogeneous conditions. The reduced, simpler problems are illustrated
in Fig. 2.2 (b) and stated as follows:

∂2VI

∂x2
+ ∂2VI

∂y2
= 0 (2.45)
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subject to

VI (x, 0) = V1

VI (x, b) = 0

VI (0, y) = 0

VI (a, y) = 0 ; (2.46)

∂2VII

∂x2
+ ∂2VII

∂y2
= 0 (2.47)

subject to

VII (x, 0) = 0

VII (x, b) = 0

VII (0, y) = 0

VII (a, y) = V2 ; (2.48)

∂2VIII

∂x2
+ ∂2VIII

∂y2
= 0 (2.49)

subject to

VIII (x, 0) = 0

VIII (x, b) = V3

VIII (0, y) = 0

VIII (a, y) = 0 ; (2.50)

and

∂2VIV

∂x2
+ ∂2VIV

∂y2
= 0 (2.51)

subject to

VIV (x, 0) = 0

VIV (x, b) = 0

VIV (0, y) = V4

VIV (a, y) = 0 (2.52)

It is obvious that the reduced problem in Eqs. (2.49) and (2.50) with solution VIII
is the same as that in Fig. 2.1. The other three reduced problems are quite similar.
Hence the solutions VI , VII , and VIV can be obtained by taking the same steps as in
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Section 2.3.1 or by a proper exchange of variables in Eq. (2.31). Thus

VI = 4V1

π

∞∑
n=odd

sin nπx
a

sinh nπ(b−y)
a

n sinh nπb
a

, (2.53)

VII = 4V2

π

∞∑
n=odd

sin nπx
b

sinh nπy
b

n sinh nπa
b

, (2.54)

VIII = 4V3

π

∞∑
n=odd

sin nπx
a

sinh nπy
a

n sinh nπb
a

, (2.55)

VIV = 4V4

π

∞∑
n=odd

sin nπ(a−x)
b

sinh nπy
b

n sinh nπa
b

(2.56)

We obtain the complete solution by substituting Eqs. (2.53) to (2.56) in
Eq. (2.44).

Example 2.2
Find the product solution of the diffusion equation

�t = k�xx, 0 < x < 1, t > 0 (2.57)

subject to the boundary conditions

�(0, t) = 0 = �(1, t), t > 0 (2.58)

and initial condition

�(x, 0) = 5 sin 2πx, 0 < x < 1 (2.59)

Solution
Let

�(x, t) = X(x)T (t) (2.60)

Substitute this into Eq. (2.57) and divide by kXT to obtain

T ′

kT
= X′′

X
= λ

where λ is the separation constant. Thus

X′′ − λX = 0 (2.61)

T ′ − λkT = 0 (2.62)

As usual, in order for the solution of Eq. (2.61) to satisfy Eq. (2.58), we must choose
λ = −β2 = −n2π2 so that n = 1, 2, 3, . . . and

Xn(x) = sin nπx (2.63)
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Equation (2.62) becomes
T ′ + kn2π2T = 0 ,

which has solution

Tn(t) = e−kn2π2t (2.64)

Substituting Eqs. (2.63) and (2.64) into Eq. (2.60),

�n(x, t) = an sin nπx exp(−kn2π2t)

where the coefficients an are to be determined from the initial condition in Eq. (2.59).
The complete solution is a linear combination of �n, i.e.,

�(x, t) =
∞∑
n=1

an sin nπx exp(−kn2π2t)

This satisfies Eq. (2.59) if

�(x, 0) =
∞∑
n=1

an sin nπx = 5 sin 2πx (2.65)

The coefficients an are determined as (T = 1)

an = 2

T

∫ 1

0
5 sin 2πx sin nπx dx =

{
5, n = 2

0, n 
= 0

Alternatively, by comparing the middle term in Eq. (2.65) with the last term, the two
are equal only when n = 2, an = 5, otherwise an = 0. Hence the solution of the
diffusion problem becomes

�(x, t) = 5 sin 2πt exp(−4kπ2t)

2.4 Separation of Variables in Cylindrical Coordinates

Coordinate geometries other than rectangular Cartesian are used to describe many
EM problems whenever it is necessary and convenient. For example, a problem
having cylindrical symmetry is best solved in cylindrical system where the coordinate
variables (ρ, φ, z)  are related as shown in Fig. 2.3 and 0 ≤ ρ ≤ ∞, 0 ≤ φ <

2π,−∞ ≤ z ≤ ∞. In this system, the wave equation (2.5b) becomes

∇2U + k2U = 1

ρ

∂

∂ρ

(
ρ
∂U

∂ρ

)
+ 1

ρ2

∂2U

∂φ2
+ ∂2U

∂z2
+ k2U = 0 (2.66)

As we did in the previous section, we shall first solve Laplace’s equation (k = 0) in
two dimensions before we solve the wave equation.
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Figure 2.3
Coordinate relations in a cylindrical system.

2.4.1 Laplace’s Equation

Consider an infinitely long conducting cylinder of radius a with the cross section
shown in Fig. 2.4. Assume that the upper half of the cylinder is maintained at potential
Vo while the lower half is maintained at potential −Vo. This is a Laplacian problem
in two dimensions. Hence we need to solve for V (ρ, φ) in Laplace’s equation

∇2V = 1

ρ

∂

∂ρ

(
ρ
∂V

∂ρ

)
+ 1

ρ2

∂2V

∂φ2
= 0 (2.67)

subject to the inhomogeneous Dirichlet boundary condition

V (a, φ) =
{
Vo, 0 < φ < π

−Vo, π < φ < 2π
(2.68)

We let

V (ρ, φ) = R(ρ)F (φ) (2.69)

Substituting Eq. (2.69) into Eq. (2.67) and dividing through by RF/ρ2 result in

ρ

R

d

dρ

(
ρ
dR

dρ

)
+ 1

F

d2F

dφ2
= 0

or

ρ2

R

d2R

dρ2
+ ρ

R

dR

dρ
= − 1

F

d2F

dφ2
= λ2 (2.70)

where λ is the separation constant. Thus the separated equations are:

F ′′ + λ2F = 0 (2.71a)

ρ2R′′ + ρR′ − λ2R = 0 (2.71b)
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Figure 2.4
A two-dimensional Laplacian problem in cylindrical coordinates.

It is evident that Eq. (2.71a) has the general solution of the form

F(φ) = c1 cos(λφ)+ c2 sin(λφ) (2.72)

From the boundary conditions of Eq. (2.68), we observe thatF(φ)must be a periodic,
odd function. Thus c1 = 0, λ = n, a real integer, and hence Eq. (2.72) becomes

Fn(φ) = c2 sin nφ (2.73)

Equation (2.71b), known as the Cauchy-Euler equation, can be solved by making a
substitution ρ = eu and reducing it to an equation with constant coefficients. This
leads to

Rn(ρ) = c3ρ
n + c4ρ

−n, n = 1, 2, . . . (2.74)

Note that case n = 0 is excluded; if n = 0, we obtain R(ρ) = ln ρ+ constant, which
is not finite at ρ = 0. For the problem of a coaxial cable, a < ρ < b, ρ 
= 0 so
that case n = 0 is the only solution. However, for the problem at hand, n = 0 is not
acceptable.

Substitution of Eqs. (2.73) and (2.74) into Eq. (2.69) yields

Vn(ρ, φ) = sin nφ(Anρ
n + Bnρ

−n) (2.75)

where An and Bn are constants to be determined. As usual, it is possible by the
superposition principle to form a complete series solution

V (ρ, φ) =
∞∑
n=1

(Anρ
n + Bnρ

−n) sin nφ (2.76)

For ρ < a, inside the cylinder, V must be finite as ρ → 0 so that Bn = 0. At
ρ = a,

V (a, φ) =
∞∑
n=1

Ana
n sin nφ =

{
Vo, 0 < φ < π

−Vo, π < φ < 2π
(2.77)
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Multiplying both sides by sinmφ and integrating over 0 < φ < 2π , we get∫ π

0
Vo sinmφ dφ −

∫ 2π

π

Vo sinmφ dφ =
∞∑
n=1

Ana
n

∫ 2π

0
sin nφ sinmφ dφ

All terms in the right-hand side vanish except when m = n. Hence

2Vo
n

(1 − cos nπ) = Ana
n

∫ 2π

0
sin2 φ dφ = πAna

n

or

An =


4Vo
nnan

, n = odd

0, n = even
(2.78)

Thus,

V (ρ, φ) = 4Vo
π

∞∑
n=odd

ρn sin nφ

nan
, ρ < a (2.79)

For ρ > a, outside the cylinder, V must be finite as ρ → ∞ so that An = 0
in Eq. (2.76) for this case. By imposing the boundary condition in Eq. (2.68) and
following the same steps as for case ρ < a, we obtain

Bn =


4Voan

nπ
, n = odd

0, n = even
(2.80)

Hence,

V (ρ, φ) = 4Vo
π

∞∑
n=odd

an sin nφ

nρn
, ρ > a (2.81)

2.4.2 Wave Equation

Having taken care of the time-dependence in Section 2.2, we now solve Helmholtz’s
equation (2.66), i.e.,

1

ρ

∂

∂ρ

(
ρ
∂U

∂ρ

)
+ 1

ρ2

∂2U

∂φ2
+ ∂2U

∂z2
+ k2U = 0 (2.66)

Let

U(ρ, φ, z) = R(ρ)F (φ)Z(z) (2.82)
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Substituting Eq. (2.82) into Eq. (2.66) and dividing by RFZ/ρ2 yields

ρ

R

d

dρ

(
ρ
dR

dρ

)
+ ρ2

Z

d2Z

dz2
+ k2ρ2 = − 1

F

d2F

dφ2
= n2

where n = 0, 1, 2, . . . and n2 is the separation constant. Thus

F ′′ + n2F = 0 (2.83)

and

ρ

R

d

dρ

(
ρ
dR

dρ

)
+ ρ2

Z

d2Z

dz2
+ k2ρ2 = n2 (2.84)

Dividing both sides of Eq. (2.84) by ρ2 leads to

1

ρR

d

dρ

(
ρ
dR

dρ

)
+
(
k2 − n2

ρ2

)
= − 1

Z

d2Z

dz2
= µ2

where µ2 is another separation constant. Hence

− 1

Z

d2Z

dz2
= µ2 (2.85)

and

1

ρR

d

dρ

(
ρ
dR

dρ

)
+
(
k2 − µ2 − n2

ρ2

)
= 0 (2.86)

If we let

λ2 = k2 − µ2 , (2.87)

the three separated equations (2.83), (2.85), and (2.86) become

F ′′ + n2F = 0 , (2.88)

Z′′ + µ2Z = 0 , (2.89)

ρ2R′′ + ρR +
(
λ2ρ2 − n2

)
R = 0 (2.90)

The solution to Eq. (2.88) is given by

F(φ) = c1e
jnφ + c2e

−jnφ (2.91a)

or

F(φ) = c3 sin nφ + c4 cos nφ (2.91b)
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Similarly, Eq. (2.89) has the solution

Z(z) = c5e
jnµ + c6e

−jnµ (2.92a)

or

Z(z) = c7 sin nµ+ c8 cos nµ (2.92b)

To solve Eq. (2.90), we let x = λρ and replace R by y; the equation becomes

x2y′′ + xy′ + (x2 − n2)y = 0 (2.93)

This is called Bessel’s equation. It has a general solution of the form

y(x) = b1Jn(x)+ b2Yn(x) (2.94)

where Jn(x) and Yn(x) are, respectively, Bessel functions of the first and second
kinds of order n and real argument x. Yn is also called the Neumann function. If x in
Eq. (2.93) is imaginary so that we may replace x by jx, the equation becomes

x2y′′ + xy′ − (x2 + n2)y = 0 (2.95)

which is called modified Bessel’s equation. This equation has a solution of the form

y(x) = b3In(x)+ b4Kn(x) (2.96)

where In(x) and Kn(x) are respectively modified Bessel functions of the first and
second kind of order n. For small values of x, Fig. 2.5 shows the sketch of some
typical Bessel functions (or cylindrical functions) Jn(x), Yn(x), In(x), and Kn(x).

To obtain the Bessel functions from Eqs (2.93) and (2.95), the method of Frobenius
is applied. A detailed discussion is found in Kersten [4] and Myint-U [5]. For the
Bessel function of the first kind,

y = Jn(x) =
∞∑
m=0

(−1)m(x/2)n+2m

m!/(n+m+ 1)
(2.97)

where /(k + 1) = k! is the Gamma function. This is the most useful of all Bessel
functions. Some of its important properties and identities are listed in Table 2.1. For
the modified Bessel function of the second kind

In(x) = j−nJn(jx) =
∞∑

m=U

(x/2)n+2m

m!/(n+m+ 1)
(2.98)

For the Neumann function, when n > 0

Yn(x) = 2

π
Jn(x) ln

γ x

2
− 1

π

n−1∑
m=0

(n−m− 1)!(x/2)2m−n

m!

− 1

π

∞∑
m=0

(−1)m(x/2)n+2m

m!/(n+m+ 1)
[p(m)+ p(n+m)] (2.99)
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Figure 2.5
Bessel functions.

where γ = 1.781 is Euler’s constant and

p(m) =
m∑
k=1

1

k
, p(0) = 0 (2.100)

If n = 0,

Y0(x) = 2

π
J0(x) ln

γ x

2
+ 2

π

∞∑
m=0

(−1)m+1(x/2)2m

(m!)2 p(m) (2.101)

For the modified Bessel function of the second kind,

Kn(x) = π

2
jn+1 [Jn(jx)+ jYn(jx)] (2.102)
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Table 2.1 Properties and Identities of Bessel Functions1 Jn(x)

(a) J−n(x) = (−1)nJn(x)
(b) Jn(−x) = (−1)nJn(x)
(c) Jn+1(x) = 2n

x
Jn(x)− Jn−1(x) (recurrence formula)

(d) d
dx
Jn(x) = 1

2 [Jn−1(x)− Jn+1(x)]
(e) d

dx
[xnJn(x)] = xnJn−1(x)

(f) d
dx

[x−nJn(x)] = −x−nJn+1(x)

(g) Jn(x) = 1
π

∫ π
0 cos(nθ − x sin θ) dθ, n ≥ 0

(h) Fourier-Bessel expansion of f (x) :
f (x) =

∞∑
k=1

AkJn(λkx), n ≥ 0

Ak = 2

[aJn+1(λia)]2

∫ a

0
xf (x)Jn(λkx) dx, 0 < x < a

where λk are the positive roots in ascending order of magnitude of Jn(λia) = 0.

(i)
∫ a

0 ρJn(λiρ)Jn(λjρ) dρ = a2

2 [Jn+1(λia)]2δij

where λi and λj are the positive roots of Jn(λa) = 0.

1. Properties (a) to (f) also hold for Yn(x).

If n > 0,

Kn(x) = 1

2

n−1∑
m=0

(−1)m(n−m− 1)!(x/2)2m−n

m!

+ (−1)n
1

2

∞∑
m=0

(x/2)n+2m

m!(n+m)!
[
p(m)+ p(n+m)− 2 ln

γ x

2

]
(2.103)

and if n = 0,

K0(x) = −I0(x) ln
γ x

2
+

∞∑
m=0

(x/2)2m

(m!)2 p(m) (2.104)

Other functions closely related to Bessel functions are Hankel functions of the first
and second kinds, defined respectively by

H(1)
n (x) = Jn(x)+ jYn(x) (2.105a)

H(2)
n (x) = Jn(x)− jYn(x) (2.105b)

Hankel functions are analogous to functions exp(±jx) just as Jn andYn are analogous
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to cosine and sine functions. This is evident from asymptotic expressions

Jn(x) x → ∞−−−−−→
√

2

πx
cos(x − nπ/2 − π/4) , (2.106a)

Yn(x) x → ∞−−−−−→
√

2

πx
sin(x − nπ/2 − π/4) , (2.106b)

H(1)
n (x) x → ∞−−−−−→

√
2

πx
exp[j (x − nπ/2 − π/4)] , (2.106c)

H(2)
n (x) x → ∞−−−−−→

√
2

πx
exp[−j (x − nπ/2 − π/4)] , (2.106d)

In(x) x → ∞−−−−−→
1√
2πx

ex , (2.106e)

Kn(x) x → ∞−−−−−→
1√
2πx

e−x (2.106f)

With the time factor ejωt , H (1)
n (x) andH(2)

n (x) represent inward and outward traveling
waves, respectively, while Jn(x) or Yn(x) represents a standing wave. With the time
factor e−jωt , the roles of H(1)

n (x) and H(2)
n (x) are reversed. For further treatment of

Bessel and related functions, refer to the works of Watson [6] and Bell [7].
Any of the Bessel functions or related functions can be a solution to Eq. (2.90)

depending on the problem. If we choose R(ρ) = Jn(x) = Jn(λρ) with Eqs. (2.91)
and (2.92) and apply the superposition theorem, the solution to Eq. (2.66) is

U(ρ, φ, z) =
∑
n

∑
µ

AnµJn(λρ) exp(±jnφ ± jµz) (2.107)

Introducing the time dependence of Eq. (2.6a), we finally get

�(ρ, φ, z, t) =
∑
m

∑
n

∑
µ

AmnµJn(λρ) exp(±jnφ ± jµz ± ωt) , (2.108)

where ω = kc.

Example 2.3
Consider the skin effect on a solid cylindrical conductor. The current density distri-
bution within a good conducting wire (σ/ωε >> 1) obeys the diffusion equation

∇2J = µσ
∂J

∂t

We want to solve this equation for a long conducting wire of radius a.
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Solution
We may derive the diffusion equation directly from Maxwell’s equation. We recall
that

∇ × H = J + Jd

where J = σE is the conduction current density and Jd = ∂D
∂t

is the displacement
current density. For σωε >> 1, Jd is negligibly small compared with J. Hence

∇ × H � J (2.109)

Also,

∇ × E = −µ∂H
∂t

∇ × ∇ × E = ∇∇ · E − ∇2E = −µ ∂

∂t
∇ × H

Since ∇ · E = 0, introducing Eq. (2.109), we obtain

∇2E = µ
∂J
∂t

(2.110)

Replacing E with J/σ , Eq. (2.110) becomes

∇2J = µσ
∂J
∂t

, (2.111)

which is the diffusion equation.
Assuming harmonic field with time factor ejωt ,

∇2J = jωµσJ (2.112)

For infinitely long wire, Eq. (2.112) reduces to a one-dimensional problem in cylin-
drical coordinates:

1

ρ

∂

∂ρ

(
ρ
∂Jz

∂ρ

)
= jωµσJz

or

ρ2J ′′
z + ρJ ′

z − jωµσρ2Jz = 0 (2.113)

Comparing this with Eq. (2.95) shows that Eq. (2.113) is the modified Bessel equation
of zero order. Hence the solution to Eq. (2.113) is

Jz(ρ) = c1I0(λρ)+ c2K0(λρ) (2.114)

where c1 and c2 are constants and

λ = √
jωµσ = j1/2

√
2

δ
(2.115)
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and δ =
√

2
σµω

is the skin depth. Constant c2 must vanish if Jz is to be finite at ρ = 0.

At ρ = a,
Jz(a) = c1I0(λa) → c1 = Jz(a)/I0(λa)

Thus

Jz(ρ) = Jz(a)
I0(λρ)

I0(λa)
(2.116)

If we let λρ = j1/2
√

2
δ
ρ = j1/2x, it is convenient to replace

I0(λρ) = I0(j
1/2x) = J0(xe

j3π/4)

= ber0(x)+ jbei0(x) (2.117)

where ber0 and bei0 are ber and bei functions of zero order. Ber and ber functions
are also known as Kelvin functions. For zero order, they are given by

ber0(x) =
∞∑
m=0

cos(mπ/2)(x/2)2m

(m!)2 , (2.118)

bei0(x) =
∞∑
m=0

sin(mπ/2)(x/2)2m

(m!)2 (2.119)

Using ber and bei functions, Eq. (2.116) may be written as

Jz(ρ) = Jz(a)
ber0(x)+ jbei0(x)

ber0(y)+ jbei0(y)
(2.120)

where x = √
2ρ/δ, y = √

2a/δ.

Example 2.4
A semi-infinitely long cylinder (z ≥ 0) of radius a has its end at z = 0 maintained

at Vo(a2 − ρ2), 0 ≤ ρ ≤ a. Find the potential distribution within the cylinder.

Solution
The problem is that of finding a function V (ρ, z) satisfying the PDE

∇2V = ∂2V

∂ρ2
+ 1

ρ

∂V

∂ρ
+ ∂2V

∂z2
= 0 (2.121)

subject to the boundary conditions:

(i) V = Vo(a
2 − ρ2), z = 0, 0 ≤ ρ ≤ a,

(ii) V → 0 as z → ∞, i.e., V is bounded,

(iii) V = 0 on ρ = a,
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(iv) V is finite on ρ = 0.

Let V = R(ρ)Z(z) and obtain the separated equations

Z′′ − λZ = 0 (2.122a)

and

ρ2R′′ + ρR′ + λ2ρ2R = 0 (2.122b)

where λ is the separated constant. The solution to Eq. (2.122a) is

Z1 = c1e
−λz + c2e

λz (2.123)

Comparing Eq. (2.122b) with Eq. (2.93) shows that n = 0 so that Eq. (2.122b) is
Bessel’s equation with solution

R = c3J0(λρ)+ c4Y0(λρ) (2.124)

Condition (ii) forces c2 = 0, while condition (iv) implies c4 = 0, since Y0(λρ) blows
up when ρ = 0. Hence the solution to Eq. (2.121) is

V (ρ, z) =
∞∑
n=0

Ane
−λnzJ0(λnρ) (2.125)

where An and λn are constants to be determined using conditions (i) and (iii). Im-
posing condition (iii) on Eq. (2.125) yields the transcendent equation

J0 (λna) = 0 (2.126)

Thus λn are the positive roots of J0(λna). If we take λ1 as the first root, λ2 as
the second root, etc., n must start from 1 in Eq. (2.125). Imposing condition (i) on
Eq. (2.125), we obtain

V (ρ, 0) = Vo

(
a2 − ρ2

)
=

∞∑
n=1

AnJ0 (λnρ)

which is simply the Fourier-Bessel expansion of Vo(a2 − ρ2). From Table 2.1,
property (h),

An = 2

a2[J1(λna)]2

∫ a

0
ρVo

(
a2 − ρ2

)
J0 (λnρ) dρ (2.127)

To evaluate the integral, we utilize property (e) in Table 2.1:∫ a

0
xnJn−1(x) dx = xnJn(x)

∣∣∣∣a
0

= anJn(a), n > 0
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By changing variables, x = λρ,∫ a

0
ρnJn−1(λρ) dρ = an

λ
Jn(λa) (2.128)

If n = 1, ∫ a

0
ρJ0(λρ) dρ = a

λ
J1(λa) (2.129)

Similarly, using property (e) in Table 2.1, we may write∫ a

0
ρ3J0(λρ) dρ =

∫ a

0

ρ2

λ

∂

∂ρ
[ρJ1(λρ)] dρ

Integrating the right-hand side by parts and applying Eq. (2.128),∫ a

0
ρ3J0(λρ) dρ = a3

λ
J1(λa)− 2

λ

∫ a

0
ρ2J1(λρ) dρ

= a3

λ
J1(λa)− 2a2

λ2
J2(λa)

J2(x) can be expressed in terms of J0(x) and J1(x) using the recurrence relations,
i.e., property (c) in Table 2.1:

J2(x) = 2

x
J1(x)− J0(x)

Hence∫ a

0
ρ3J0(λnρ) dρ = 2a2

λ2
n

[
J0(λna)+

(
aλn

2
− 2

aλn

)
J1(λna)

]
(2.130)

Substitution of Eqs. (2.129) and (2.130) into Eq. (2.127) gives

An = 2Vo
a2[J1(λna)]2

[
4a

λ3
n

J1(λna)− 2a2

λ2
n

J0(λna)

]
= 8Vo

aλ3
nJ1(λna)

since J0(λna) = 0 from Eq. (2.126). Thus the potential distribution is given by

V (ρ, z) = 8Vo
a

∞∑
n=1

e−λnzJ0(λnρ)

λ3
nJ1(λna)

Example 2.5
A plane wave E = Eoe

j (ωt−kx)az is incident on an infinitely long conducting cylinder
of radius a. Determine the scattered field.
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Figure 2.6
Scattering by a conducting cylinder.

Solution
Since the cylinder is infinitely long, the problem is two-dimensional as shown in
Fig. 2.6. We shall suppress the time factor ejωt throughout the analysis. For the sake
of convenience, we need to express the plane wave in terms of cylindrical waves. We
let

e−jx = e−jρ cosφ =
∞∑

n=−∞
anJn(ρ)e

jnφ (2.131)

where an are expansion coefficients to be determined. Since ejnφ are orthogo-
nal functions, multiplying both sides of Eq. (2.131) by ejmφ and integrating over
0 ≤ φ ≤ 2π gives ∫ 2π

0
e−jρ cosφejmφ = 2πamJm(ρ)

Taking the mth derivative of both sides with respect to ρ and evaluating at ρ = 0
leads to

2π
j−m

2m
= 2πam

1

2m
→ am = j−m

Substituting this into Eq. (2.131), we obtain

e−jx =
∞∑

n=−∞
j−nJn(ρ)ejnφ

(An alternative, easier way of obtaining this is using the generating function for Jn(x)
in Table 2.7.) Thus the incident wave may be written as

Ei
z = Eoe

−jkx = Eo

∞∑
n=−∞

(−j)nJn(kρ)ejnφ (2.132)
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Since the scattered field Es
z must consist of outgoing waves that vanish at infinity, it

contains
Jn(kρ)− jYn(kρ) = H(2)

n (kρ)

Hence

Es
z =

∞∑
n=−∞

AnH
(2)
n (kρ)ejnφ (2.133)

The total field in medium 2 is

E2 = Ei
z + Es

z

while the total field in medium 1 is E1 = 0 since medium 1 is conducting. At ρ = a,
the boundary condition requires that the tangential components ofE1 andE2 be equal.
Hence

Ei
z(ρ = a)+ Es

z(ρ = a) = 0 (2.134)

Substituting Eqs. (2.132) and (2.133) into Eq. (2.134),

∞∑
n=−∞

[
Eo(−j)nJn(ka)+ AnH

(2)
n (ka)

]
ejnφ = 0

From this, we obtain

An = −Eo(−j)nJn(ka)
H

(2)
n (ka)

Finally, substituting An into Eq. (2.133) and introducing the time factor leads to the
scattered wave as

Es
z = −Eoe

jωtaz
∞∑

n=−∞
(−j)n Jn(ka)H

(2)
n (kρ)ejnφ

H
(2)
n (ka)

2.5 Separation of Variables in Spherical Coordinates

Spherical coordinates (r, θ, φ)  may be defined as in Fig. 2.7, where 0 ≤ r ≤
∞, 0 ≤ θ ≤ π, 0 ≤ φ < 2π . In this system, the wave equation (2.5b) becomes

∇2U + k2U = 1

r2

∂

∂r

(
r2 ∂U

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂U

∂θ

)
+ 1

r2 sin2 θ

∂2U

∂φ2
+ k2U = 0 (2.135)

As usual, we shall first solve Laplace’s equation in two dimensions and later solve
the wave equation in three dimensions.
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Figure 2.7
Coordinate relation in a spherical system.

2.5.1 Laplace’s Equation

Consider the problem of finding the potential distribution due to an uncharged
conducting sphere of radius a located in an external uniform electric field as in Fig. 2.8.

Figure 2.8
An uncharged conducting sphere in a uniform external electric field.

The external electric field can be described as

E = Eoaz (2.136)

while the corresponding electric potential can be described as

V = −
∫

E · dl = −Eoz

or

V = −Eor cos θ (2.137)
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where V (θ = π/2) = 0 has been assumed. From Eq. (2.137), it is evident that
V is independent of φ, and hence our problem is solving Laplace’s equation in two
dimensions, namely,

∇2V = 1

r2

∂

∂r

(
r2 ∂V

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
= 0 (2.138)

subject to the conditions

V (r, θ) = −Eor cos θ as r → ∞ , (2.139a)

V (a, θ) = 0 (2.139b)

We let

V (r, θ) = R(r)H(θ) (2.140)

so that Eq. (2.138) becomes

1

R

d

dr
(r2R′) = − 1

H sin θ

d

dθ
(sin θH ′) = λ (2.141)

where λ is the separation constant. Thus the separated equations are

r2R′′ + 2rR′ − λR = 0 (2.142)

and

d

dθ
(sin θH ′)+ λ sin θH = 0 (2.143)

Equation (2.142) is the Cauchy-Euler equation. It can be solved by making the
substitution R = rk . This leads to the solution

Rn(r) = Anr
n + Bnr

−(n+1), n = 0, 1, 2, . . . (2.144)

with λ = n(n + 1). To solve Eq. (2.143), we may replace H by y and cos θ by x so
that

d

dθ
= dx

dθ

d

dx
= − sin θ

d

dx

d

dθ

(
sin θ

dH

dθ

)
= − sin θ

d

dx

(
sin θ

dx

dθ

dH

dx

)
= sin θ

d

dx

(
sin2 θ

dy

dx

)
=
√

1 − x2 d

dx

[
(1 − x2)

dy

dx

]
Making these substitutions in Eq. (2.143) yields

d

dx

[
(1 − x2)

dy

dx

]
+ n(n+ 1)y = 0

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



or

(1 − x2)y′′ − 2xy′ + n(n+ 1)y = 0 (2.145)

which is the Legendre differential equation. Its solution is obtained by the method of
Frobenius [5] as

y = cnPn(x)+ dnQn(x) (2.146)

where Pn(x) and Qn(x) are Legendre functions of the first and second kind, respec-
tively.

Pn(x) =
N∑
k=0

(−1)k(2n− 2k)!xn−2k

2nk!(n− k)!(n− 2k)! (2.147)

where N = n/2 if n is even and N = (n− 1)/2 if n is odd. For example,

P0(x) = 1

P1(x) = x = cos θ

P2(x) = 1

2
(3x2 − 1) = 1

4
(3 cos 2θ + 1)

P3(x) = 1

2
(5x3 − 3x) = 1

8
(5 cos 3θ + 3 cos θ)

P4(x) = 1

8
(35x4 − 30x2 + 3) = 1

64
(35 cos 4θ + 20 cos 2θ + 9)

P5(x) = 1

8
(63x5 − 70x3 + 15x) = 1

128
(30 cos θ + 35 cos 3θ + 63 cos 5θ)

Some useful identities and properties [5] of Legendre functions are listed in Table
2.2. The Legendre functions of the second kind are given by

Qn(x) = Pn(x)

[
1

2
ln

1 + x

1 − x
− p(n)

]
+

n∑
k=1

(−1)k(n+ k)!
(k!)2(n− k)! p(k)

[
1 − x

2

]k
(2.148)

where p(k) is as defined in Eq. (2.100). Typical graphs of Pn(x) and Qn(x) are
shown in Fig. 2.9. Qn are not as useful as Pn since they are singular at x = ±1 (or
θ = 0, π ) due to the logarithmic term in Eq. (2.148). We use Qn only when x 
= ±1
(or θ 
= 0, π ), e.g., in problems having conical boundaries that exclude the axis from
the solution region. For the problem at hand, θ = 0, π is included so that the solution
to Eq. (2.143) is

Hn(θ) = Pn(cos θ) (2.149)
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Table 2.2 Properties and Identities of Legendre Functions1

(a) For n ≥ 1, Pn(1) = 1, Pn(−1) = (−1)n,

P2n+1 = 0, P2n(0) = (−1)n (2n)!
22n(n!)2

(b) Pn(−x) = (−1)nPn(x)

(c) Pn(x) = 1
2nn!

dn

dxn
(x2 − 1)n, n ≥ 0

(Rodriguez formula)

(d) (n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), n ≥ 1

(recurrence relation)

(e) P ′
n(x) = xP ′

n−1(x)+ nPn−1(x), n ≥ 1

(f) Pn(x) = xPn−1(x)+ x2−1
n

P ′
n−1(x), n ≥ 1

(g) P ′
n+1(x)− P ′

n−1(x) = (2n+ 1)Pn(x), n ≥ 1

or
∫
Pn(x) dx = Pn+1−Pn−1

2n+1

(h) Legendre series expansion of f (x) :
f (x) =

∞∑
n=0

AnPn(x), −1 ≤ x ≤ 1

where

An = 2n+ 1

2

∫ 1

−1
f (x)Pn(x) dx, n ≥ 0

If f (x) is odd,

An = (2n+ 1)
∫ 1

0
f (x)Pn(x) dx, n = 0, 2, 4 . . .

and if f (x) is even,

An = (2n+ 1)
∫ 1

0
f (x)Pn(x) dx, n = 1, 3, 5 . . .

(i) Orthogonality property∫ 1

−1
Pn(x)Pm(x) dx =

{
0, n 
= m

2
2n+1 , n = m

1. Properties (d) to (g) are also valid for Qn(x).

Substituting Eqs. (2.144) and (2.149) into Eq. (2.140) gives

Vn(r, θ) =
[
Anr

n + Bnr
−(n+1)

]
Pn(cos θ) (2.150)

To determine An and Bn we apply the boundary conditions in Eq. (2.139). Since as
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Figure 2.9
Typical Legendre functions of the first and second kinds.

r → ∞, V = −Eor cos θ , it follows that n = 1 and A1 = −Eo, i.e.,

V (r, θ) =
(

−Eor + B1

r2

)
cos θ

Also since V = 0 when r = a, B1 = Eoa
3. Hence the complete solution is

V (r, θ) = −Eo

(
r − a3

r2

)
cos θ (2.151)

The electric field intensity is given by

E = −∇V = −∂V

∂r
ar − 1

r

∂V

∂θ
aθ

= Eo

[
1 + 2a3

r3

]
cos θar + Eo

[
1 − a3

r3

]
sin θaθ (2.152)
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2.5.2 Wave Equation

To solve the wave equation (2.135), we substitute

U(r, θ, φ) = R(r)H(θ)F (φ) (2.153)

into the equation. Multiplying the result by r2 sin2 θ/RHF gives

sin2 θ

R

d

dr

(
r2 dR

dr

)
+ sin θ

H

d

dθ

(
sin θ

dH

dθ

)
+ k2r2 sin2 θ = − 1

F

d2F

dφ2
(2.154)

Since the left-hand side of this equation is independent of φ, we let

− 1

F

d2F

dφ2
= m2, m = 0, 1, 2, . . .

where m, the first separation constant, is chosen to be nonnegative integer such that
U is periodic in φ. This requirement is necessary for physical reasons that will be
evident later. Thus Eq. (2.154) reduces to

1

R

d

dr

(
r2 dR

dr

)
+ k2r2 = − 1

H sin θ

d

dθ

(
sin θ

dH

dθ

)
+ m2

sin2 θ
= λ

where λ is the second separation constant. As in Eqs. (2.141) to (2.144), λ = n(n+1)
so that the separated equations are now

F ′′ +m2F = 0, (2.155)

R′′ + 2

r
R′ +

[
k2 − n(n+ 1)

r2

]
R = 0 , (2.156)

and

1

sin θ

d

dθ
(sin θH ′)+

[
n(n+ 1)− m2

sin2 θ

]
H = 0 (2.157)

As usual, the solution to Eq. (2.155) is

F(φ) = c1e
jmφ + c2e

−jmφ (2.158a)

or

F(φ) = c3 sinmφ + c4 cosmφ (2.158b)

If we let R(r) = r−1/2R̃(r), Eq. (2.156) becomes

R̃′′ + 1

r
R̃′ +

[
k2 − (n+ 1/2)2

r2

]
R̃ = 0 ,
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which has the solution

R̃ = Ar1/2zn(kr) = BZn+1/2(kr) (2.159)

Functions zn(x) are spherical Bessel functions and are related to ordinary Bessel
functions Zn+1/2 according to

zn(x) =
√
π

2x
Zn+1/2(x) (2.160)

In Eq. (2.160), Zn+1/2(x) may be any of the ordinary Bessel functions of half-integer

order, Jn+1/2(x), Yn+1/2(x), In+1/2(x),Kn+1/2(x),H
(1)
n+1/2(x), and H

(2)
n+1/2(x),

while zn(x)may be any of the corresponding spherical Bessel functions jn(x), yn(x),
in(x), kn(x), h

(1)
n (x), and h(2)n (x). Bessel functions of fractional order are, in general,

given by

Jν(x) =
∞∑
k=0

(−1)kx2k+ν

22k+νk!/(ν + k + 1)
(2.161)

Yν(x) = Jν(x) cos(νπ)− J−ν
sin(νπ)

(2.162)

Iν(x) = (−j)νJν(jx) (2.163)

Kν(x) = π

2

[
I−ν − Iν

sin(νπ)

]
(2.164)

where J−ν and I−ν are, respectively, obtained from Eqs. (2.161) and (2.163) by
replacing ν with −ν. Although ν in Eqs. (2.161) to (2.164) can assume any fractional
value, in our specific problem, ν = n + 1/2. Since Gamma function of half-integer
order is needed in Eq. (2.161), it is necessary to add that

/(n+ 1/2) =


(2n)!
22nn!

√
π , n ≥ 0

(−1)n22nn!
(2n)!

√
π , n < 0

(2.165)

Thus the lower order spherical Bessel functions are as follows:

j0(x) = sin x

x
, y0(x) = −cos x

x
,

h
(1)
0 (x) = ejx

jx
, h

(2)
0 (x) = e−jx

−jx ,

i0(x) = sinh x

x
, k0(x) = e−x

x
,

j1(x) = sin x

x2
− cos x

x
, y1(x) = −cos x

x2
− sin x

x
,

h
(1)
1 = − (x + j)

x2
ejx , h

(2)
1 (x) = − (x − j)

x2
e−jx
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Other zn(x) can be obtained from the series expansion in Eqs. (2.161) and (2.162) or
the recurrence relations and properties of zn(x) presented in Table 2.3.

Table 2.3 Properties and Identities of Spherical Bessel
Functions

(a) zn+1 = (2n+1)
x

zn(x)− zn−1(x) (recurrence relation)

(b) d
dx
zn(x) = 1

2n+1 [nzn−1 − (n+ 1)zn+1(x)]
(c) d

dx
[xzn(x)] = −nzn(x)+ xzn−1(x)

(d) d
dx

[xn+1zn(x)] = −xn+1zn−1(x)

(e) d
dx

[x−nzn(x)] = −x−nzn+1(x)

(f)
∫
xn+2zn(x) dx = xn+2zn+1(x)

(g)
∫
x1−nzn(x) dx = −x1−nzn−1(x)

(h)
∫
x2[zn(x)]2 dx = 1

2x
3[zn(x)− zn−1(x)zn+1(x)]

By replacing H in Eq. (2.157) with y, cos θ by x, and making other substitutions
as we did for Eq. (2.143), we obtain(

1 − x2
)
y′′ − 2xy′ +

[
n(n+ 1)− m2

1 − x2

]
y = 0 , (2.166)

which is Legendre’s associated differential equation. Its general solution is of the
form

y(x) = amnP
m
n (x)+ dmnQ

m
n (x) (2.167)

where Pm
n (x) and Qm

n (x) are called associated Legendre functions of the first and
second kind, respectively. Equation (2.146) is a special case of Eq. (2.167) when
m = 0. Pm

n (x) and Qm
n (x) can be obtained from ordinary Legendre functions Pn(x)

and Qn(x) using

Pm
n (x) =

[
1 − x2

]m/2 dm

dxm
Pn(x) (2.168)

and

Qm
n (x) =

[
1 − x2

]m/2 dm

dxm
Qn(x) (2.169)

where −1 < x < 1. We note that

P 0
n (x) = Pn(x) ,

Q0
n(x) = Qn(x) ,

Pm
n (x) = 0 for m > n (2.170)
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Typical associated Legendre functions are:

P 1
1 (x) = (1 − x2)1/2 = sin θ ,

P 1
2 (x) = 3x(1 − x2)1/2 = 3 cos θ sin θ ,

P 2
2 (x) = 3(1 − x2) = 3 sin2 θ ,

P 1
3 (x) = 3

2
(1 − x2)1/2(5x − 1) = 3

2
sin θ(5 cos θ − 1) ,

Q1
1(x) = (1 − x2)1/2

[
1

2
ln

1 + x

1 − x
+ x

1 − x2

]
,

Q1
2 = (1 − x2)1/2

[
3x

2
ln

1 + x

1 − x
+ 3x2 − 2

1 − x2

]
,

Q2
2 = (1 − x2)1/2

[
3

2
ln

1 + x

1 − x
+ 5x2 − 3x2

[1 − x2]2

]
Higher-order associated Legendre functions can be obtained using Eqs. (2.168) and
(2.169) along with the properties in Table 2.4. As mentioned earlier, Qm

n (x) is un-
bounded at x = ±1, and hence it is only used when x = ±1 is excluded. Substituting
Eqs. (2.158), (2.159), and (2.167) into Eq. (2.153) and applying superposition theo-
rem, we obtain

U(r, θ, φ, t) =
∞∑
n=0

n∑
m=0

∞∑
A=0

AmnAzn(kmAr)P
m
n (cos θ) exp(±jmφ ± jωt) (2.171)

Note that the products H(θ)F (φ) are known as spherical harmonics.

Example 2.6
A thin ring of radius a carries charge of density ρ. Find the potential at: (a) point
P(0, 0, z) on the axis of the ring, (b) point P(r, θ, φ) in space.

Solution
Consider the thin ring as in Fig. 2.10.
(a) From elementary electrostatics, at P(0, 0, z)

V =
∫

ρdl

4πεR

where dl = adφ, R = √
a2 + z2. Hence

V =
∫ 2π

0

ρadφ

4πε[a2 + z2]1/2
= aρ

2ε[a2 + z2]1/2
(2.172)

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



Table 2.4 Properties and Identities of Associated Legendre
Functions1

(a) Pm(x) = 0, m > n

(b) Pm
n (x) = (2n−1)xPm

n−1(x)−(n+m−1)Pm
n−2(x)

n−m
(recurrence relations for fixed m)

(c) Pm
n (x) = 2(m−1)x

(1−x2)1/2P
m−1
n (x)− (n−m+ 2)(n+m− 1)Pm−2

n

(recurrence relations for fixed n)

(d) Pm
n (x) = [1−x2]m/2

2n

[
m−n

2

]∑
k=0

(−1)k(2n− 2k)!xn−2k−m

k!(n− k)!(n− 2k −m)!
where [t] is the bracket or greatest integer function, e.g., [3.54] = 3.

(e) d
dx
Pm
n (x) = (n+m)Pm

n−1(x)−nxPm
n (x)

1−x2

(f) d
dθ
Pm
n (x) = 1

2 [(n−m+ 1)(n+m)Pm−1
n (x)− Pm+1

n (x)]
(g) d

dx
Pm
n (x) = −mxPm

n (x)

1−x2

+ (1−x2)m/2

2n

[
m−n

2

]∑
k=0

(−1)k(2n− 2k)!xn−2k−m−1

k!(n− k)!(n− 2k −m)!
(h) d

dθ
Pm
n (x) = −(1 − x2)1/2 d

dx
Pm
n (x)

(i) The series expansion of f (x):

f (x) =
∞∑
n=0

AnP
m
n (x) ,

where An = (2n+1)(n−m)!
2(n+m)!

∫ 1

−1
f (x)Pm

n (x) dx

(j) dm

dxm
Pn(x)

∣∣∣∣
x=1

= (n+m)!
2mm!(n−m)!

dm

dxm
Pn(x)

∣∣∣
x=−1

= (−1)n+m(n+m)!
2mm!(n−m)!

(k) P−m
n (x) = (−1)m (n−m)!

(n+m)!P
m
n (x), m = 0, 1, . . . , n

(l)

∫ 1

−1
Pm
n (x)P

m
n (x) dx = 2

2n+ 1

(n−m)!
(n+m)!δnk ,

where δnk is the kronecker delta defined by δnk =
{

0, n 
= k

1, n = k

1. Properties (b) and (c) are also valid for Qm
n (x).
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(b) To find the potential at P(r, θ, φ), we may evaluate the integral for the potential as
we did in part (a). However, it turns out that the boundary-value solution is simpler.
So we solve Laplace’s equation ∇2V = 0 where V (0, 0, z) must conform with the
result in part (a). From Fig. 2.10, it is evident that V is invariant with φ. Hence the
solution to Laplace’s equation is

V =
∞∑
n=0

[
Anr

n + Bn

rn+1

] [
A′
nPn(u)+ B ′

nQn(u)
]

where u = cos θ . Since Qn is singular at θ = 0, π, B ′
n = 0. Thus

V =
∞∑
n=0

[
C′
nr

n + D′
n

rn+1

]
Pn(u) (2.173)

Figure 2.10
Charged ring of Example 2.6.

For 0 ≤ r ≤ a, D′
n = 0 since V must be finite at r = 0.

V =
∞∑
n=0

C′
nr

nPn(u) (2.174)

To determine the coefficients C′
n, we set θ = 0 and equate V to the result in part (a).

But when θ = 0, u = 1, Pn(1) = 1, and r = z. Hence

V (0, 0, z) = aρ

2ε[a2 + z2]1/2
= aρ

2ε

∞∑
n=0

Cnz
n (2.175)

Using the binomial expansion, the term [a2 + z2]1/2 can be written as

1

a

[
1 + z2

a2

]−1/2

= 1

a

[
1 − 1

2
(z/a)2 + 1 · 3

2 · 4
(z/a)4 − 1 · 3 · 5

2 · 4 · 6
(z/a)6 + . . .

]
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Comparing this with the last term in Eq. (2.175), we obtain

C0 = 1, C1 = 0, C2 = − 1

2a2
, C3 = 0 ,

C4 = 1 · 3

2 · 4

1

a4
, C5 = 0, C6 = −1 · 3 · 5

2 · 4 · 6

1

a6
, . . .

or in general,

C2n = (−1)n
(2n)!

[n!2n]2a2n

Substituting these into Eq. (2.174) gives

V = aρ

2ε

∞∑
n=0

(−1)n(2n)!
[n!2n]2

(r/a)2nP2n(cos θ), 0 ≤ r ≤ a (2.176)

For r ≥ a, C′
n = 0 since V must be finite as r → ∞, and

V =
∞∑
n=0

D′
n

rn+1
Pn(u) (2.177)

Again, when θ = 0, u = 1, Pn(1) = 1, r = z,

V (0, 0, z) = aρ

2ε[a2 + z2]1/2
= aρ

2ε

∞∑
n=0

Dnz
−(n+1) (2.178)

Using the binomial expansion, the middle term [a2 + z2]−1/2 can be written as

1

z

[
1 + a2

z2

]−1/2

= 1

z

[
1 − 1

2
(a/z)2 + 1 · 3

2 · 4
(a/z)4 − 1 · 3 · 5

2 · 4 · 6
(a/z)6 + · · ·

]
Comparing this with the last term in Eq. (2.178), we obtain

D0 = 1, D1 = 0, D2 = −a2

2
, D3 = 0 ,

D4 = 1 · 3

2 · 4
a4, D5 = 0, D6 = −1 · 3 · 5

2 · 4 · 6
a6, . . .

or in general,

D2n = (−1)n
(2n)!

[n!2n]2
a2n

Substituting these into Eq. (2.177) gives

V = aρ

2εr

∞∑
n=0

(−1)n(2n)!
[n!2n]2

(a/r)2nP2n(cos θ), r ≥ a (2.179)
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We may combine Eqs. (2.176) and (2.179) to get

V =


a

∞∑
n=0

gn(r/a)
2nP2n(cos θ), 0 ≤ r ≤ a

∞∑
n=0

gn(a/r)
2n+1P2n(cos θ), r ≥ a

where

gn = (−1)n
ρ

2ε

2n!
[n!2n]2

Example 2.7
A conducting spherical shell of radius a is maintained at potential Vo cos 2φ; deter-

mine the potential at any point inside the sphere.

Solution
The solution to this problem is somewhat similar to that of the previous problem except
that V is a function of φ. Hence the solution to Laplace’s equation for 0 ≤ r ≤ a is
of the form

V =
∞∑
n=0

∞∑
m=0

(amn cosmφ + bmn sinmφ) (r/a)nPm
n (cos θ)

Since cosmφ and sinmφ are orthogonal functions, amn = 0 = bmn except that
an2 
= 0. Hence at r = a

Vo cos 2φ = cos 2φ
∞∑
n=2

an2P
2
n (cos θ)

or

Vo =
∞∑
n=2

an2P
2
n (x), x = cos θ

which is the Legendre expansion of Vo. Multiplying both sides by P 2
m(x) gives

2

2n+ 1

(n+ 2)!
(n− 2)!an2 = Vo

∫ 1

−1
P 2
n (x) dx = Vo

∫ 1

−1

(
1 − x2

) d2

dx2
Pn(x) dx

Integrating by parts twice yields

an2 = Vo
2n+ 1

2

(n− 2)!
(n+ 2)!

(
2Pn(1)− 2Pn(−1)− 2

∫ 1

−1
Pn(x) dx

)
Using the generating functions forPn(x) (see Table 2.7 and Example 2.10) it is readily
shown that

Pn(1) = 1, Pn(−1) = (−1)n
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Also ∫ 1

−1
Pn(x) dx =

∫ 1

−1
P0(x)Pn(x) dx = 0

by the orthogonality property of Pn(x). Hence

an2 = Vo(2n+ 1)
(n− 2)!
(n+ 2)!

[
1 − (−1)n

]
and

V = Vo cos 2φ
∞∑
n=2

(2n+ 1)
(n− 2)!
(n+ 2)!

[
1 − (−1)n

]
(r/a)nP 2

n (cos θ)

Example 2.8
Express: (a) the plane wave ejz and (b) the cylindrical wave J0(ρ) in terms of

spherical wave functions.

Solution
(a) Since ejz = ejr cos θ is independent of φ and finite at the origin, we let

ejz = ejr cos θ =
∞∑
n=0

anjn(r)Pn(cos θ) (2.180)

where an are the expansion coefficients. To determine an, we multiply both sides of
Eq. (2.180) by Pm(cos θ) sin θ and integrate over 0 < θ < π :∫ π

0
ejr cos θPm(cos θ) sin θdθ =

∞∑
n=0

anjn(r)

∫ 1

−1
Pn(x)Pm(x) dx

=
{

0, n 
= m
2

2n+1anjn(r), n = m

where the orthogonality property (i) of Table 2.2 has been utilized. Taking the nth
derivative of both sides and evaluating at r = 0 gives

jn
∫ π

0
cosn θPn(cos θ) sin θdθ = 2

2n+ 1
an

dn

drn
jn(r)

∣∣∣∣
r=0

(2.181)

The left-hand side of Eq. (2.181) yields

jn
∫ 1

−1
xnPn(x) dx = 2n+1(n!)2

(2n+ 1)! j
n (2.182)

To evaluate the right-hand side of Eq. (2.181), we recall that

jn(r) =
√
π

2x
Jn+1/2(r) =

√
π

2

∞∑
m=0

(−1)mr2m+n

m!/(m+ n+ 3/2)22m+n+1/2
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Hence

dn

drn
jn(r)

∣∣∣∣
r=0

=
√
π

2

n!
/(n+ 3/2)2n+1/2

= 2n(n!)2
(2n+ 1)! (2.183)

Substituting Eqs. (2.182) and (2.183) into Eq. (2.181) gives

an = jn(2n+ 1)

Thus

ejz = ejr cos θ =
∞∑
n=0

jn(2n+ 1)jn(r)Pn(cos θ) (2.184)

(b) Since J0(ρ) = J0(r sin θ) is even, independent of φ, and finite at the origin,

J0(ρ) = J0(r sin θ) =
∞∑
n=0

bnj2n(r)P2n(cos θ) (2.185)

To determine the coefficients of expansion bn, we multiply both sides by
Pm(cos θ) sin θ and integrate over 0 < θ < π . We obtain

∫ π

0
J0(r sin θ)Pm(cos θ) sin θ dθ =

0, m 
= 2n
2bn

4n+ 1
j2n(r), m = 2n

Differentiating both sides 2n times with respect to r and setting r = 0 gives

bn = (−1)n(4n+ 1)(2n− 1)!
22n−1n!(n− 1)!

Hence

J0(ρ) =
∞∑
n=0

(−1)n(4n+ 1)(2n− 1)!
22n−1n!(n− 1)! j2n(r)P2n(cos θ)

2.6 Some Useful Orthogonal Functions

Orthogonal functions are of great importance in mathematical physics and engi-
neering. A system of real functions �n(n = 0, 1, 2, . . . ) is said to be orthogonal
with weight w(x) on the interval (a, b) if∫ b

a

w(x)�m(x)�n(x) dx = 0 (2.186)
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for every m 
= n. For example, the system of functions cos(nx) is orthogonal with
weight 1 on the interval (0, π) since∫ π

0
cosmx cos nx dx = 0 , m 
= n

Orthogonal functions usually arise in the solution of partial differential equations
governing the behavior of certain physical phenomena. These include Bessel, Leg-
endre, Hermite, Laguerre, and Chebyshev functions. In addition to the orthogonality
properties in Eq. (2.186), these functions have many other general properties, which
will be discussed briefly in this section. They are very useful in series expansion
of functions belonging to very general classes, e.g., Fourier-Bessel series, Legendre
series, etc. Although Hermite, Laguerre, and Chebyshev functions are of less impor-
tance in EM problems than Bessel and Legendre functions, they are sometimes useful
and therefore deserve some attention.

An arbitrary function f (x), defined over interval (a, b), can be expressed in terms
of any complete, orthogonal set of functions:

f (x) =
∞∑
n=0

An�n(x) (2.187)

where the expansion coefficients are given by

An = 1

Nn

∫ b

a

w(x)f (x)�n(x) dx (2.188)

and the (weighted) norm Nn is defined as

Nn =
∫ b

a

w(x)�2
n(x) dx (2.189)

Simple orthogonality results when w(x) = 1 in Eqs. (2.186) to (2.189).
Perhaps the best way to briefly describe the orthogonal functions is in table form.

This is done in Tables 2.5 to 2.7. The differential equations giving rise to each
function are provided in Table 2.5. The orthogonality relations in Table 2.6 are
necessary for expanding a given arbitrary function f (x) in terms of the orthogonal
functions as in Eqs. (2.187) to (2.189). Most of the properties of the orthogonal
functions can be proved using the generating functions of Table 2.7. To the properties
in Tables 2.5 to 2.7 we may add the recurrence relations and series expansion formulas
for calculating the functions for specific argument x and order n. These have been
provided for Jn(x) and Yn(x) in Table 2.1 and Eqs. (2.97) and (2.99), for Pn(x) and
Qn(x) in Table 2.2 and Eqs. (2.147) and (2.148), for jn(x) and yn(x) in Table 2.3
and Eq. (2.160), and for Pm

n (x) andQm
n (x) in Table 2.4 and Eqs. (2.168) and (2.169).

For Hermite polynomials, the series expansion formula is

Hn(x) =
[n/2]∑
k=0

(−1)kn!(2x)n−2k

k!(n− 2k)! (2.190)

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



Table 2.5 Differential Equations with Solutions
Equations Solutions

x2y′′ + xy′ + (x2 − n2)y = 0 Jn(x) Bessel functions
of the first kind

Yn(x) Bessel functions
of the second kind

H
(1)
n (x) Hankel functions

of the first kind

H
(2)
n (x) Hankel functions

of the second kind
x2y′′ + xy′ − (x2 + n2)y = 0 In(x) Modified Bessel functions

of the first kind
Kn(x) Modified Bessel functions

of the second kind
x2y′′ + 2xy′ + [x2 − n(n+ 1)]y = 0 jn(x) Spherical Bessel functions

of the first kind
yn(x) Spherical Bessel functions

of the second kind

(1 − x2)y′′ − 2xy + n(n+ 1)y = 0 Pn(x) Legendre polynomials
Qn(x) Legendre functions

of the second kind
(1 − x2)y′′ − 2xy′ Pm

n (x) Associated Legendre

+
[
n(n+ 1)− m2

1−x2

]
y = 0 polynomials

Qm
n (x) Associated Legendre

functions of the second kind

y′′ − 2xy′ + 2ny = 0 Hn(x) Hermite polynomials

xy′′ + (1 − x)y′ + ny = 0 Ln(x) Laguerre polynomials

xy′′ + (m+ 1 − x)y′ + ny = 0 Lm
n (x) Associated Laguerre

polynomials

(1 − x2)y′′ − xy′ + n2y = 0 Tn(x) Chebyshev polynomials
of the first kind

Un(x) Chebyshev polynomials
of the second kind

where [n/2] = N is the largest even integer ≤ n or simply the greatest integer
function. Thus,

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2 , etc.

The recurrence relations are

Hn+1(x) = 2xHn(x)− 2nHn−1(x) (2.191a)
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Table 2.6 Orthogonality Relations

Functions Relations

Bessel functions
∫ a

0 xJn(λix)Jn(λjx) dx = a2

2 [Jn+1(λia)]2δij

where λi and λj are the roots of Jn(λa) = 0

Spherical Bessel functions
∫∞
−∞ jn(x)jm(x) dx = π

2n+1δmn

Legendre polynomials
∫ 1
−1 Pn(x)Pm(x) dx = 2

2n+1δmn

Associated Legendre
∫ 1
−1 P

k
n (x)P

k
m(x) dx = 2(n+k)!

(2n+1)(n−k) δmn

polynomials
∫ 1
−1

Pm
n (x)P k

n (x)

1−x2 dx = (n+m)!
m(n−m)!δmk

Hermite polynomials
∫∞
−∞ e−x2

Hn(x)Hm(x) dx = 2nn!(√π)δmn

Laguerre polynomials
∫∞

0 e−xLn(x)Lm(x) dx = δmn

Associated Laguerre
∫∞

0 e−xxkLk
n(x)L

k
m(x) dx = (n+k)!

n! δmn
polynomials

Chebyshev polynomials
∫ 1
−1

Tn(x)Tm(x)

(1−x2)1/2 dx =


0, m 
= n

π/2, m = n 
= 0

π, m = n = 0

∫ 1
−1

Un(x)Um(x)

(1−x2)1/2 dx =


0, m 
= n

π/2, m = n 
= 0

π, m = n = 0

and

H ′
n(x) = 2nHn−1(x) (2.191b)

For Laguerre polynomials,

Ln(x) =
n∑

k=0

n!(−x)k
(k!)2(n− k)! (2.192)

so that

L0(x) = 1, L1(x) = −x + 1, L2(x) = 1

2! (x
2 − 4x + 2) , etc.

The recurrence relations are

Ln+1(x) = (2n+ 1 − x)Ln(x)− n2Ln−1(x) (2.193a)
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Table 2.7 Generating Functions

Functions Generating function

R = [1 − 2xt + t2]1/2

Bessel function exp
[
x
2

(
t − 1

t

)]
=

∞∑
n=−∞

tnJn(x)

Legendre polynomial
1

R
=

∞∑
n=0

tnPn(x)

Associated Legendre polynomial
(2m)!(1 − x2)m/2

2mm!Rm+1
=

∞∑
n=0

tnPm
n+m(x)

Hermite polynomial exp(2tx − t2) =
∞∑
n=0

tn

n!Hn(x)

Laguerre polynomial exp[−xt/(1−t)]
1−t =

∞∑
n=0

tnLn(x)

Associated Laguerre polynomial exp[−xt/(1−t)]
(1−t)m+1 =

∞∑
n=0

tnLm
n (x)

Chebyshev polynomial 1−t2
R2 = T0(x)+ 2

∞∑
n=1

tnTn(x)

√
1−x2

R2 =
∞∑
n=0

tnUn+1(x)

and

d

dx
Ln(x) = 1

x

[
nLn(x)− n2Ln+1(x)

]
(2.193b)

For the associated Laguerre polynomials,

Lm
n (x) = (−1)m

dm

dxm
Ln+m(x) =

n∑
k=0

(m+ n)!(−x)k
k!(n− k)!(m+ k)! (2.194)

so that

L1
1(x) = −x + 2, L2

2(x) = x2

2
− 3x + 3, L2

2(x) = x2

2
− 4x + 6 , etc.

Note that Lm
n (x) = 0, m > n. The recurrence relations are

Lm
n+1(x) = 1

n+ 1

[
(2n+m+ 1 − x)Lm

n (x)− (n+m)Lm
n−1(x)

]
(2.195)
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For Chebyshev polynomials of the first kind,

Tn(x) =
[n/2]∑
k=0

(−1)kn!xn−2k(1 − x2)k

(2k)!(n− 2k)! , −1 ≤ x ≤ 1 (2.196)

so that
T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1 , etc.

The recurrence relation is

Tn+1(x) = 2xTn(x)− Tn−1(x) (2.197)

For Chebyshev polynomials of the second kind,

Un(x) =
N∑
k=0

(−1)k−1(n+ 1)! xn−2k+2(1 − x2)k−1

(2k + 1)!(n− 2k + 2)! , −1 ≤ x ≤ 1 (2.198)

where N =
[
n+1

2

]
so that

U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1, etc.

The recurrence relation is the same as that in Eq. (2.197).
For example, if a function f (x) is to be expanded on the interval (0,∞), Laguerre

functions can be used as the orthogonal functions with an exponential weighting
function, i.e., w(x) = e−x . If f (x) is to be expanded on the interval (−∞,∞),
we may use Hermite functions with w(x) = e−x2

. As we have noticed earlier, if
f (x) is defined on the interval (−1, 1), we may choose Legendre functions with
w(x) = 1. For more detailed treatment of these functions, see Bell [7] or Johnson
and Johnson [8].

Example 2.9
Expand the function

f (x) = |x|, −1 ≤ x ≤ 1

in a series of Chebyshev polynomials.

Solution
The given function can be written as

f (x) =
{

−x, −1 ≤ x < 0

x, 0 < x ≤ 1

Let

f (x) =
∞∑
n=0

AnTn(x)
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whereAn are expansion coefficients to be determined. Since f (x) is an even function,
the odd terms in the expansion vanish. Hence

f (x) = A0 +
∞∑
n=1

A2nT2n(x)

If we multiply both sides by w(x) = T2m√
1 − x2 

and integrate over −1 ≤ x ≤ 1, all

terms in the summation vanish except when m = n. That is, from Table 2.6, the
orthogonality property of Tn(x) requires that

∫ 1

−1

Tm(x)Tn(x)(
1 − x2

)1/2
dx =


0, m 
= n

π/2, m = n 
= 0

π, m = n = 0

Hence

A0 = 1

π

∫ 1

−1

f (x)T0(x)(
1 − x2

)1/2
dx = 2

π

∫ 1

0

x(
1 − x2

)1/2
dx = 2

π
,

A2n = 2

π

∫ 1

−1

f (x)T2n(x)(
1 − x2

)1/2
dx = 4

π

∫ 1

0

xT2n(
1 − x2

)1/2
dx

Since Tn(x) = cos(n cos−1 x), it is convenient to let x = cos θ so that

A2n = 4

π

∫ 0

π/2

cos θ cos 2nθ

sin θ
(− sin θ dθ) = 4

π

∫ π/2

0
cos θ cos 2nθ dθ

= 4

π

∫ π/2

0

1

2
[cos(2n+ 1)θ + cos(2n− 1)θ ] dθ = 4

π

(−1)n+1

4n2 − 1

Hence

f (x) = 2

π
+ 4

π

∞∑
n=1

(−1)n+1

4n2 − 1
T2n(x)

Example 2.10

Evaluate
P 1
n (x)

sin θ
at x = 1 and x = −1.

Solution
This example serves to illustrate how the generating functions are useful in deriving
some properties of the corresponding orthogonal functions. Since

P 1
n (x)

sin θ
= P 1

n (x)√
1 − x2

,
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direct substitution of x = 1 or x = −1 gives 0/0, which is indeterminate. But
P 1
n (x) = (1 − x2)1/2 d

dx
Pn by definition. Hence

P 1
n (x)

sin θ
= d

dx
Pn ,

i.e., the problem is reduced to evaluating dPn/dx at x = ±1. We use the generating
function for Pn, namely,

(
1 − 2xt + t2

)−1/2 =
∞∑
n=0

tnPn(x)

Differentiating both sides with respect to x,

t(
1 − 2xt + t2

)3/2
=

∞∑
n=0

tn
d

dx
Pn (2.199)

When x = 1,

1

(1 − t)3
=

∞∑
n=0

tn−1 d

dx
Pn

∣∣∣∣
x=1

(2.200)

But

(1 − t)−3 = 1 + 3t + 6t2 + 10t3 + 15t4 + · · · =
∞∑
n=1

n

2
(n + 1)tn−1 (2.201)

Comparing this with Eq. (2.200) clearly shows that

d

dx
Pn

∣∣∣∣
x=1

= n(n + 1)/2

Similarly, when x = −1, Eq. (2.199) becomes

1

(1 + t)3
=

∞∑
n=0

tn−1 d

dx
Pn

∣∣∣∣
x=−1

(2.202)

But

(1 + t)−3 = 1 − 3t + 6t2 − 10t3 + 15t4 − · · · =
∞∑
n=1

(−1)n+1 n

2
(n + 1)tn−1

Hence
d

dx
Pn

∣∣∣∣
x=−1

= (−1)n+1n(n + 1)/2
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Example 2.11

Write a program to generate Hermite functions Hn(x) for any argument x and order
n. Use the series expansion and recurrence formulas and compare your results. Take
x = 0.5, 0 ≤ n ≤ 15.

Solution

The program is shown in Fig. 2.11. Equation (2.190) is used for the series expansion
method, while Eq. (2.191a) withH0(x) = 1 andH1(x) = 2x is used for the recurrence
formula. Note that in the program, we have replaced n by n− 1 in Eq. (2.191) so that

Hn(x) = 2xHn−1(x) − 2(n − 1)Hn−2(x)

The result of the computation is in Table 2.8. In this case, the two methods give
identical results. In general, the series expansion method gives results of greater
accuracy since error in one computation is not propagated to the next as is the case
when using recurrence relations.

Table 2.8 Results of the Program in Fig. 2.11

Values of Hn(x) for x = 0.5, 0 ≤ n ≤ 15
N Series Expansion Recurrence Difference

0 1.00 1.00 0.00
1 1.00 1.00 0.00
2 −1.00 −1.00 0.00
3 −5.00 −5.00 0.00
4 1.00 1.00 0.00
5 11.00 1.00 0.00
6 31.00 31.00 0.00
7 −461.00 −461.00 0.00
8 −895.00 −895.00 0.00
9 6181.00 6181.00 0.00

10 22591.00 22591.00 0.00
11 −107029.00 −107029.00 0.00
12 −604031.00 −604031.00 0.00
13 1964665.00 1964665.00 0.00
14 17669472.00 17669472.00 0.00
15 −37341152.00 −37341148.00 −4.00

Generating functions such as this is sometimes needed in numerical computations.
This example has served to illustrate how this can be done in two ways. Special
techniques may be required for very large or very small values of x or n.
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Figure 2.11
Program for Hermite function Hn(x) (Continued).
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Figure 2.11
(Cont.) Program for Hermite function Hn(x).

2.7 Series Expansion

As we have noticed in earlier sections, partial differential equations can be solved
with the aid of infinite series and, more generally, with the aid of series of orthogonal
functions. In this section we apply the idea of infinite series expansion to those PDEs
in which the independent variables are not separable or, if they are separable, the
boundary conditions are not satisfied by the particular solutions. We will illustrate
the technique in the following three examples.

2.7.1 Poisson’s Equation in a Cube

Consider the problem

∇2V = ∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2
= −f (x, y, z) (2.203)

subject to the boundary conditions

V (0, y, z) = V (a, y, z) = V (x, 0, z) = 0

V (x, b, z) = V (x, y, 0) = V (x, y, c) = 0 (2.204)

where f (x, y, z), the source term, is given. We should note that the indepen-
dent variables in Eq. (2.203) are not separable. However, in Laplace’s equation,
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f (x, y, z) = 0, and the variables are separable. Although the problem defined by
Eqs. (2.203) and (2.204) can be solved in several ways, we stress the use of series
expansion in this section.

Let the solution be of the form

V (x, y, z) =
∞∑
m=1

∞∑
n=1

∞∑
p=1

Amnp sin
mπx

a
sin

nπy

b
sin

pπz

c
(2.205)

where the triple sine series is chosen so that the individual terms and the entire series
would satisfy the boundary conditions of Eq. (2.204). However, the individual terms
do not satisfy either Poisson’s or Laplace’s equation. Since the expansion coefficients
Amnp are arbitrary, they can be chosen such that Eq. (2.205) satisfies Eq. (2.203). We
achieve this by substituting Eq. (2.205) into Eq. (2.203). We obtain

−
∑ ∑ ∑

Amnp(mπ/a)
2 sin

mπx

a
sin

nπy

b
sin

pπz

c

−
∑ ∑ ∑

Amnp(nπ/b)
2 sin

mπx

a
sin

nπy

b
sin

pπz

c

−
∑ ∑ ∑

Amnp(pπ/c)
2 sin

mπx

a
sin

nπy

b
sin

pπz

c
= −f (x, y, z)

Multiplying both sides by sin(iπx/a) sin(jπy/b) sin(kπz/c) and integrating over
0 < x < a, 0 < y < b, 0 < z < c gives∑ ∑ ∑

Amnp

[
(mπ/a)2 + (nπ/b)2 + (pπ/c)2

]
.∫ a

0
sin

mπx

a
sin

iπx

a
dx

∫ b

0
sin

nπy

b
sin

jπy

b
dy

∫ c

0
sin

pπz

c
sin

kπz

c
dz

=
∫ a

0

∫ b

0

∫ c

0
f (x, y, z) sin

iπx

a
sin

jπy

b
sin

kπz

c
dx dy dz

Each of the integrals on the left-hand side vanishes except when m = i, n = j , and
p = k. Hence

Amnp

[
(mπ/a)2 + (nπ/b)2 + (pπ/c)2

] a
2

· b
2

· c
2

=
∫ a

0

∫ b

0

∫ c

0
f (x, y, z) sin

iπx

a
sin

jπy

b
sin

kπz

c
dx dy dz

or

Amnp = 8

abc

[
(mπ/a)2 + (nπ/b)2 + (pπ/c)2

]−1
.∫ a

0

∫ b

0

∫ c

0
f (x, y, z) sin

iπx

a
sin

jπy

b
sin

kπz

c
dx dy dz (2.206)

Thus the series expansion solution to the problem is in Eq. (2.205) with Amnp given
by Eq. (2.206).
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2.7.2 Poisson’s Equation in a Cylinder

The problem to be solved is shown in Fig. 2.12, which illustrates a cylindrical metal
tank partially filled with charged liquid [9]. To find the potential distribution V in the
tank, we let V� and Vg be the potential in the liquid and gas portions, respectively,
i.e.,

V =
{
V�, 0 < z < b (liquid)

Vg, b < z < b + c (gas)

Thus we need to solve a two-dimensional problem:

1

ρ

∂

∂ρ

(
ρ
∂V�

∂ρ

)
+ ∂2V�

∂z2
= −ρv

ε
, for liquid space (2.207a)

1

ρ

∂

∂ρ

(
ρ
∂Vg

∂ρ

)
+ ∂2Vg

∂z2
= 0 , for gas space (2.207b)

subject to

V = 0, ρ = a (at the wall)

Vg = V�, z = b (at the gas-liquid interface)
∂Vg

∂z
= εr

∂V�

∂z
, z = b (at the gas-liquid interface)

Figure 2.12
A cylindrical metal tank partially filled with charged liquid.
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Applying the series expansion techniques, we let

V� =
∞∑
n=1

J0(λnρ)Fn(z) (2.208a)

Vg =
∞∑
n=1

J0(λnρ) [An sinh[λn(b + c − z)] + Bn cosh [λn(b + c − z)]] (2.208b)

where Fn(z), An, and Bn are to be determined.
At z = b + c, Vg = 0, which implies that Bn = 0. Hence, Eq. (2.208b) becomes

Vg =
∞∑
n=1

AnJ0 (λnρ) sinh [λn(b + c − z)] (2.209)

Substituting Eq. (2.208a) into (2.207b) yields

∞∑
n=1

J0 (λnρ)
[
F ′′
n − λ2

nFn

]
= −ρv

ε

If we let F ′′
n − λ2

nFn = Gn, then

∞∑
n=1

GnJ0 (λnρ) = −ρv

ε
(2.210)

At ρ = a, Vg = V� = 0, which makes

J0 (λna) = 0

indicating that λn are the roots of J0 divided by a. Multiplying Eq. (2.210) by
ρJ0(λmρ) and integrating over the interval 0 < ρ < a gives

∞∑
n=1

Gn

∫ a

0
ρJ0 (λmρ) J0 (λnρ) dρ = −ρv

ε

∫ a

0
ρJ0 (λmρ) dρ

The left-hand side is zero except when m = n.∫ a

0
ρJ 2

0 (λmρ) dρ = 1

2
a2

[
J 2

0 (λna) + J 2
1 (λna)

]
= a2

2
J 2

1 (λna)

since J0(λna) = 0. Also,∫ a

0
ρJ0 (λmρ) dρ = a

λn
J1 (λna)

Hence

Gn

a2

2
J 2

1 (λna) = −ρv

ε

a

λn
J1 (λna)
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or

Gn = − 2ρv
εaλnJ1(λna)

showing that Gn is a constant. Thus

F ′′
n − λ2

nFn = Gn

which is an inhomogeneous ordinary differential equation. Its solution is

Fn(z) = Cn sinh (λnz) + Dn cosh (λnz) − Gn

λ2
n

But

Fn(0) = 0 −→ Dn = Gn

λ2
n

Thus

V� =
∞∑
n=1

J0 (λnρ)

[
Cn sinh (λnz) + Gn

λ2
n

[cosh (λnz) − 1]

]
(2.211)

Imposing the conditions at z = b, i.e.,

V�(ρ, b) = Vg(ρ, b)

we obtain

An sinh (λnc) = Cn sinh (λnb) + Gn

λ2
n

[cosh (λnb) − 1] (2.212)

Also,
∂Vg

∂z

∣∣∣∣
z=b

= εr
∂V�

∂z

∣∣∣∣
z=b

gives

λnAn cosh (λnc) = −εrλnCn cosh (λnb) − εrGn

λn
sinh (λnb) (2.213)

Solving Eqs. (2.212) and (2.213), we get

An = 2ρv
RnKn

[cosh (λnb) − 1]

Cn = 2ρv
Rnεr

[cosh (λnb) cosh (λnc) + εr sinh (λnb) sinh (λnc) − cosh (λnc)]

where

Kn = sinh (λnb) cosh (λnc) + εr cosh (λnb) sinh (λnc)

Rn = εoaλ
3
nJ1 (λna)
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SubstitutingAn andCn in Eqs. (2.209) and (2.211), we obtain the complete solution
as

V� =
∞∑
n=1

2ρv
Rnεr

J0 (λnρ)
[ sinh(λnz)

Kn

[cosh (λnb) cosh (λnc)

+εr sinh (λnb) sinh (λnc) − cosh (λnc)] − cosh (λnz) + 1
]

(2.214a)

Vg =
∞∑
n=1

2ρv
RnKn

J0 (λnρ) [cosh (λnb) − 1] sinh [λn(b + c − z)] (2.214b)

2.7.3 Strip Transmission Line

Consider a strip conductor enclosed in a shielded box containing homogeneous
medium as shown in Fig. 2.13(a). If TEM mode of propagation is assumed, our
problem is reduced to finding V satisfying Laplace’s equation ∇2V = 0. Due to
symmetry, we need only consider one quarter-section of the line as in Fig. 2.13(b).
This quadrant can be subdivided into regions 1 and 2, where region 1 is under the
center conductor and region 2 is not. We now seek solutions V1 and V2 for regions 1
and 2, respectively.

Figure 2.13
Strip line example.
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If w >> b, region 1 is similar to parallel-plate problem. Thus, we have a one-
dimensional problem similar to Eq. (2.14) with solution

V1 = a1y + a2

Since V1(y = 0) = 0 and V2(y = −b/2) = Vo, a2 = 0, a1 = −2Vo/b. Hence

V1(x, y) = −2Vo
b

y (2.215)

For region 2, the series expansion solution is of the form

V2(x, y) =
∞∑

n=1,3,5

An sin
nπy

b
sinh

nπ

b
(a/2 − x) , (2.216)

which satisfies Laplace’s equation and the boundary condition along the box. No-
tice that the even-numbered terms could not be included because they do not sat-
isfy the boundary condition requirements about line y = 0, i.e., Ey(y = 0) =
−∂V2/∂y

∣∣
y=0 
= 0. To determine the expansion coefficients An in Eq. (2.216), we

utilize the fact that V must be continuous at the interface x = w/2 between regions 1
and 2, i.e.,

V1(x = w/2, y) = V2(x = w/2, y)

or

−2Voy

b
=

∞∑
n=odd

An sin
nπy

b
sinh

nπ

2b
(a − w) ,

which is Fourier series. Thus,

An sinh
nπ

2b
(a − w) = −2

b

∫ b/2

−b/2

2Voy

b
sin

nπy

b
dy = −8Vo sin nπ

2

n2π2

Hence

An = − 8Vo sin nπ
2

n2π2 sinh nπ
2b (a − w)

(2.217)

It is instructive to find the capacitance per unit length C of the strip line using the fact
that the energy stored per length is related to C according to

W = 1

2
CV 2

o (2.218)

where

W = 1

2

∫
D · E dv = 1

2
ε

∫
|E|2 dv (2.219)
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For region 1,

E = −∇V = −∂V

∂x
ax − ∂V

∂y
ay = 2Vo

b
ay

Hence

W1 = 1

2
ε

∫ w/2

x=0

∫ 0

y=−b/2

4V 2
o

b2
dy dx = εV 2

o w

2b
(2.220)

For region 2,

Ex = −∂V

∂x
=

∑ nπ

b
An cosh

nπ

b
(a/2 − x) sin

nπy

b

Ey = −∂V

∂y
= −

∑ nπ

b
An sinh

nπ

b
(a/2 − x) cos

nπy

b

and

W2 = 1

2
ε

∫∫ (
E2
x + E2

y

)
dx dy

= 1

2
ε

∫ 0

y=−b/2

∫ a/2

x=w/2

∑
n

∑
m

mnπ2

b2
AnAm .

[
sinh2 mπ

b
(a/2 − x) sinh2 nπ

b
(a/2 − x) cos

mπy

b
cos

nπy

b

+ cosh2 mπ

b
(a/2 − x) cosh2 nπ

b
(a/2 − x) sin

mπy

b
sin

nπy

b

]
dx dy

where the double summation is used to show that we are multiplying two series which
may have different indices m and n. Due to the orthogonality properties of sine and
cosine functions, all terms vanish except when m = n. Thus

W2 = 1

2
ε

∞∑
n=odd

n2π2A2
n

b2
· b/2

2

∫ a/2

w/2

[
sinh2 nπ

b
(a/2 − x)

+ cosh2 nπ

b
(a/2 − x)

]
dx

= 1

2
ε

∞∑
n=odd

n2π2A2
n

4b

b

nπ
cosh

nπ

2b
(a − w) sinh

nπ

2b
(a − w)

Substituting for An gives

W2 =
∞∑

n=1,3,5

8εV 2
o

n3π3
coth

nπ

2b
(a − w) (2.221)

The total energy in the four quadrants is

W = 4(W1 + W2)
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Thus

C = 2W

V 2
o

= 8

V 2
o

(W1 + W2)

= ε


4w

b
+ 64

π3

∞∑
n=1,3,5

1

n3
coth

nπ

2b
(a − w)


 (2.222)

The characteristic impedance of the lossless line is given by

Zo =
√
µε

C
=

√
µrεr

cC
=

√
µ

ε

1

C/ε

or

Zo = 120π

√
εr


4w

b
+ 64

π3

∞∑
n=1,3,5

1

n3
coth

nπ

2b
(a − w)




(2.223)

where c = 3 × 108 m/s, the speed of light in vacuum, and µr = 1 is assumed.

Example 2.12
Solve the two-dimensional problem

∇2V = −ρs

εo

where
ρs = x(y − 1) nC/m2

subject to

V (x, 0) = 0, V (x, b) = Vo, V (0, y) = 0 = V (a, y)

Solution
If we let

∇2V1 = 0 , (2.224a)

subject to

V1(x, 0) = 0, V1(x, b) = Vo, V1(0, y) = 0 = V (a, y) (2.224b)

and

∇2V2 = −ρs

εo
, (2.225a)
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subject to

V2(x, 0) = 0, V2(x, b) = 0, V2(0, y) = 0 = V (a, y) (2.225b)

By the superposition principle, the solution to the given problem is

V = V1 + V2 (2.226)

The solution to Eq. (2.224) is already found in Section 2.3.1, i.e.,

V1(x, y) = 4Vo
π

∞∑
n=1,3,5

sin nπx
a

sinh nπy
a

n sinh nπb
a

(2.227)

The solution to Eq. (2.225) is a special case of that of Eq. (2.205). The only difference
between this problem and that of Eqs. (2.203) and (2.204) is that this problem is two-
dimensional while that of Eqs. (2.203) and (2.204) is three-dimensional. Hence

V2(x, y) =
∞∑
m=1

∞∑
n=1

Amn sin
nπx

a
sin

nπy

b
(2.228)

where, according to Eq. (2.206), Amn is given by

Amn = 4

ab

[
(mπ/a)2 + (nπ/b)2

]−1

·
∫ b

0

∫ a

0
f (x, y) sin

nπx

a
sin

nπy

b
dx dy (2.229)

But f (x, y) = x(y − 1)/ε0 nC/m2,∫ b

0

∫ a

0
f (x, y) sin

nπx

a
sin

nπy

a
dx dy

= 10−9

εo

∫ a

0
x sin

nπx

a
dx

∫ b

0
(y − 1) sin

nπy

b
dy

= 10−9

10−9/36π

(
−a2 cosmπ

mπ

) (
−b2 cos nπ

nπ
+ b

nπ
[cos nπ − 1]

)

= 36π(−1)m+na2b2

mnπ2

(
1 − 1

b
[1 − (−1)n]

)
(2.230)

since cos nπ = (−1)n. Substitution of Eq. (2.230) into Eq. (2.229) leads to

Amn =
[
(mπ/a)2 + (nπ/b)2

]−1 (−1)m+n144ab

mnπ

(
1 − 1

b

[
1 − (−1)n

])
(2.231)

Substituting Eqs. (2.227) and (2.228) into Eq. (2.226) gives the complete solution as

V (x, y) = 4Vo
π

∞∑
n=1,3,5

sin nπx
a

sinh nπy
a

n sinh nπb
a

+
∞∑
m=1

∞∑
n=1

Amn sin
nπx

a
sin

nπy

b
(2.232)

where Amn is in Eq. (2.231).
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2.8 Practical Applications

The scattering of EM waves by a dielectric sphere, known as the Mie scattering
problem due to its first investigator in 1908, is an important problem whose analytic
solution is usually referred to in assessing some numerical computations. Though
the analysis of the problem is more rigorous, the procedure is similar to that of
Example 2.5, where scattering due to a conducting cylinder was treated. Our treatment
here will be brief; for an in-depth treatment, consult Stratton [10].

2.8.1 Scattering by Dielectric Sphere

Consider a dielectric sphere illuminated by a plane wave propagating in the z

direction and E polarized in the x direction as shown in Fig. 2.14. The incident wave

Figure 2.14
Incident EM plane wave on a dielectric sphere.

is described by

Ei = Eoe
j (ωt−kz)ax (2.233a)

Hi = Eo

η
ej (ωt−kz)ay (2.233b)

The first step is to express this incident wave in terms of spherical wave functions as
in Example 2.8. Since

ax = sin θ cosφar + cos θ cosφaθ − sin φaφ ,

the r-component of Ei , for example, is

Ei
r = cosφ sin θEi

x = Eoe
jωt cosφ

jkr

∂

∂θ

(
e−jkr cos θ

)
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Introducing Eq. (2.184),

Ei
r = Eoe

jωt cosφ

jkr

∞∑
n=0

(−j)n(2n + 1)jn(kr)
∂

∂θ
Pn(cos θ)

But
∂Pn

∂θ
= P 1

n

hence

Ei
r = Eoe

jωt cosφ

jkr

∞∑
n=1

(−j)n(2n + 1)jn(kr)P
1
n (cos θ) (2.234)

where the n = 0 term has been dropped since P 1
0 = 0. The same steps can be taken

to express Ei
θ and Ei

φ in terms of the spherical wave functions. The result is

Ei = axEoe
j (ωt−kz)

= Eoe
jωt

∞∑
n=1

(−j)n
2n + 1

n(n + 1)

[
M(1)

n (k) + jN(1)
n (k)

]
(2.235a)

Hi = ayHoe
j (ωt−kz)

= −kEo

µω
ejωt

∞∑
n=1

(−j)n
2n + 1

n(n + 1)

[
M(1)

n (k) − jN(1)
n (k)

]
(2.235b)

where

Mn(k) = 1

sin θ
zn(kr)P

1
n (cos θ) cosφaθ

− zn(kr)
∂P 1

n (cos θ)

∂θ
sin φaφ (2.236)

Nn(k) = n(n + 1)

kr
zn(kr)P

1
n (cos θ) cosφar

+ 1

kr

∂

∂r
[zn(kr)]∂P

1
n (cos θ)

∂θ
cosφaθ

+ 1

kr sin θ

∂

∂r
[zn(kr)]P 1

n (cos θ) sin φaφ (2.237)

The superscript (1) on the spherical vector functions M and N in Eq. (2.235) indicates
that these functions are constructed with spherical Bessel function of the first kind;
i.e., zn(kr) in Eqs. (2.236) and (2.237) is replaced by jn(kr) when M and N are
substituted in Eq. (2.235).

The induced secondary field consists of two parts. One part applies to the interior
of the sphere and is referred to as the transmitted field, while the other applies to the
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exterior of the sphere and is called the scattered field. Thus the total field outside the
sphere is the sum of the incident and scattered fields. We now construct these fields
in a fashion similar to that of the incident field. For the scattered field, we let

Es = Eoe
jωt

∞∑
n=1

(−j)n
2n + 1

n(n + 1)

[
anM(4)

n (k) + jbnN(4)
n (k)

]
(2.238a)

Hs = −kEo

µω
ejωt

∞∑
n=1

(−j)n
2n + 1

n(n + 1)

[
anM(4)

n (k) − jbnN(4)
n (k)

]
(2.238b)

where an and bn are expansion coefficients and the superscript (4) on M and N shows
that these functions are constructed with spherical Bessel function of the fourth kind
(or Hankel function of the second kind); i.e., zn(kr) in Eqs. (2.236) and (2.237) is
replaced by h

(2)
n (kr) when M and N are substituted in Eq. (2.238). The spherical

Hankel function has been chosen to satisfy the radiation condition. In other words,
the asymptotic behavior of h(2)n (kr), namely,

h(2)n (kr) ∼ jn+1 e
−kr

kr
, (2.239)

when combined with the time factor ejωt , represents an outgoing spherical wave (see
Eq. (2.106d)). Similarly, the transmitted field inside the sphere can be constructed as

Et = Eoe
jωt

∞∑
n=1

(−j)n
2n + 1

n(n + 1)

[
cnM(1)

n (k1) + jdnN(1)
n (k1)

]
(2.240a)

Ht = −kEo

µω
ejωt

∞∑
n=1

(−j)n
2n + 1

n(n + 1)

[
cnM(1)

n (k1) − jdnN(1)
n (k1)

]
(2.240b)

where cn and dn are expansion coefficients, k1 is the propagation constant in the
sphere. The functions M(1)

n and N(1)
n in Eq. (2.240) are obtained by replacing zn(kr)

in Eq. (2.237) by jn(k1r); jn is the only solution in this case since the field must be
finite at the origin, the center of the sphere.

The unknown expansion coefficients an, bn, cn, and dn are determined by letting
the fields satisfy the boundary conditions, namely, the continuity of the tangential
components of the total electric and magnetic fields at the surface of the sphere. Thus
at r = a,

ar ×
(

Ei + Es − Et
)

= 0 (2.241a)

ar ×
(

Hi + Hs − Ht
)

= 0 (2.241b)
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This is equivalent to

Ei
θ + Es

θ = Et
θ , r = a (2.242a)

Ei
φ + Es

φ = Et
φ, r = a (2.242b)

Hi
θ + Hs

θ = Ht
θ , r = a (2.242c)

Hi
φ + Hs

φ = Ht
φ, r = a (2.242d)

Substituting Eqs. (2.235), (2.238), and (2.240) into Eq. (2.242), multiplying the re-
sulting equations by cosφ or sin φ and integrating over 0 ≤ φ < 2π , and then

multiplying by
dP 1

m

dθ
or

dP 1
m

sinθ
and integrating over 0 ≤ θ ≤ π , we obtain

jn(ka) + anh
(2)
n (ka) = cnjn (k1a) (2.243a)

µ1 [kajn(ka)]
′ + anµ1

[
kah(2)n (ka)

]′ = cnµ [k1ajn (k1a)]
′ (2.243b)

µ1jn(ka) + bnµ1h
(2)
n (ka) = dnµjn (k1a) (2.243c)

k [kajn(ka)]
′ + bnk

[
kah(2)n (ka)

]′ = dnk1 [k1ajn (k1a)]
′ (2.243d)

Solving Eqs. (2.243a) and (2.243b) gives an and cn, while solving Eqs. (2.243c)
and (2.243d) gives bn and dn. Thus, for µ = µo = µ1,

an = jn(mα)[αjn(α)]′ − jn(α)[mαjn(mα)]′
jn(mα)[αh(2)n (α)]′ − h

(2)
n (α)[mαjn(mα)]′

(2.244a)

bn = jn(α)[mαjn(mα)]′ − m2jn(mα)[αjn(α)]′
h
(2)
n (α)[mαjn(mα)]′ − m2jn(mα)[αh(2)n (α)]′

(2.244b)

cn = j/α

h
(2)
n (α)[mαjn(mα)]′ − jn(mα)[αh(2)n (α)]′

(2.244c)

dn = j/α

h
(2)
n (α)[mαjn(mα)]′ − m2jn(mα)[αh(2)n (α)]′

(2.244d)

where α = ka = 2πa/λ andm = k1/k is the refractive index of the dielectric, which
may be real or complex depending on whether the dielectric is lossless or lossy. The
primes at the square brackets indicate differentiation with respect to the argument
of the Bessel function inside the brackets, i.e., [xzn(x)]′ = ∂

∂x
[xzn(x)]. To obtain

Eqs. (2.244c) and (2.244d), we have made use of the Wronskian relationship

jn(x)
[
xh(2)n (x)

]′ − h(2)n (x) [xjn(x)]
′ = −j/x (2.245)

If the dielectric is lossy and its surrounding medium is free space,

k2
1 = ωµo (ωε1 − jσ ) , k2 = ω2µoεo (2.246)
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so that the (complex) refractive index m becomes

m = k1

k
= √

εc =
√
εr1 − j

σ1

ωεo
= m′ − jm′′ (2.247)

The problem of scattering by a conducting sphere can be obtained as a special
case of the problem considered above. Since the EM fields must vanish inside the
conducting sphere, the right-hand sides of Eqs. (2.242a), (2.242b), (2.243a), and
(2.243d) must be equal to zero so that (cn = 0 = dn)

an = − jn(α)

h
(2)
n (α)

(2.248a)

bn = − [αjn(α)]′
[αh(2)n (α)]′

(2.248b)

Thus we have completed the Mie solution; the field at any point inside or outside
the sphere can now be determined. We will now apply the solution to problems of
practical interest.

2.8.2 Scattering Cross Sections

Often scattered radiation is most conveniently measured by the scattering cross
sectionQsca (in meter2) which may be defined as the ratio of the total energy scattered
per second Ws to the energy density P of the incident wave, i.e.,

Qsca = Ws

P
(2.249)

The energy density of the incident wave is given by

P = E2
o

2η
= 1

2
E2
o

√
ε

µ
(2.250)

The scattered energy from the sphere is

Ws = 1

2
Re

∫ 2π

0

∫ π

0

[
EθH

∗
φ − EφH

∗
θ

]
r2 sin θ dθ dφ

where the star sign denotes complex conjugation and field components are evaluated
at far field (r >> a). By using the asymptotic expressions for spherical Bessel
functions, we can write the resulting field components as

Es
θ = ηHs

φ = − j

kr
Eoe

j (ωt−kr) cosφS2(θ) (2.251a)

−Es
φ = ηHs

θ = − j

kr
Eoe

j (ωt−kr) sin φS1(θ) (2.251b)
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where the amplitude functions S1(θ) and S2(θ) are given by [11]

S1(θ) =
∞∑
n=1

2n + 1

n(n + 1)

(
an

sin θ
P 1
n (cos θ) + bn

dP 1
n (cos θ)

dθ

)
(2.252a)

S2(θ) =
∞∑
n=1

2n + 1

n(n + 1)

(
bn

sin θ
P 1
n (cos θ) + an

dP 1
n (cos θ)

dθ

)
(2.252b)

Thus,

Ws = πE2
o

2k2η
Re

∫ π

0

(
|S1(θ)|2 + |S2(θ)|2

)
sin θ dθ

This is evaluated with the help of the identities [10]

∫ π

0

(
dP 1

n

dθ

dP 1
m

dθ
+ 1

sin2 θ
P 1
n P

1
m

)
sin θ dθ

=



0, n 
= m

2

2n + 1

(n + 1)!
(n − 1)

n(n + 1), n = m

and ∫ π

0

(
dP 1

m

sin θ

dP 1
n

dθ
+ P 1

n

sin θ

P 1
m

dθ

)
sin θ dθ = 0

We obtain

Ws = πE2
o

k2η

∞∑
n=1

(2n + 1)
(
|an|2 + |bn|2

)
(2.253)

Substituting Eqs. (2.250) and (2.253) into Eq. (2.249), the scattering cross section is
found to be

Qsca = 2π

k2

∞∑
n=1

(2n + 1)
(
|an|2 + |bn|2

)
(2.254)

Similarly, the cross section for extinction Qext (in meter2) is obtained [11] from
the amplitude functions for θ = 0, i.e.,

Qext = 4π

k2
Re S(0)

or

Qext = 2π

k2
Re

∞∑
n=1

(2n + 1) (an + bn) (2.255)
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where

S(0) = S1(0
o) = S2(0

o) = 1

2

∞∑
n=1

(2n + 1) (an + bn) (2.256)

In obtaining Eq. (2.256), we have made use of

P 1
n

sin θ

∣∣∣∣
θ=0

= dP 1
n

dθ

∣∣∣∣
θ=0

= n(n + 1)/2

If the sphere is absorbing, the absorption cross section Qabs (in meter2) is obtained
from

Qabs = Qext − Qsca (2.257)

since the energy removed is partly scattered and partly absorbed.
A useful, measurable quantity in radar communications is the radar cross section

or back-scattering cross section σb of a scattering obstacle. It is a lump measure of
the efficiency of the obstacle in scattering radiation back to the source (θ = 180◦).
It is defined in terms of the far zone scattered field as

σb = 4πr2 |Es |2
E2
o

, θ = π (2.258)

From Eq. (2.251),

σb = 2π

k2

[
|S1(π)|2 + |S2(π)|2

]
But

−S1(π) = S2(π) = 1

2

∞∑
n=1

(−1)n(2n + 1) (an − bn)

where we have used

− P 1
n

sin θ

∣∣∣∣
θ=π

= dP 1
n

dθ

∣∣∣∣
θ=π

= (−1)nn(n + 1)/2

Thus

σb = π

k2

∣∣∣∣∣
∞∑
n=1

(−1)n(2n + 1) (an − bn)

∣∣∣∣∣
2

(2.259)

Similarly, we may determine the forward-scattering cross section (θ = 0o) as

σf = 2π

k2

[
|S1(0)|2 + |S2(0)|2

]
Substituting Eq. (2.256) into this yields

σf = π

k2

∣∣∣∣∣
∞∑
n=1

(2n + 1) (an + bn)

∣∣∣∣∣
2

(2.260)
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2.9 Attenuation Due to Raindrops

The rapid growth in demand for additional communication capacity has put pressure
on engineers to develop microwave systems operating at higher frequencies. It turns
out, however, that at frequencies above 10 GHz attenuation caused by atmospheric
particles can reduce the reliability and performance of radar and space communication
links. Such particles include oxygen, ice crystals, rain, fog, and snow. Prediction of
the effect of these precipitates on the performance of a system becomes important.
In this final subsection, we will examine attenuation and phase shift of an EM wave
propagating through rain drops. We will assume that raindrops are spherical so that
Mie rigorous solution can be applied. This assumption is valid if the rate intensity is
low. For high rain intensity, an oblate spheroidal model would be more realistic [12].

The magnitude of an EM wave traveling through a homogeneous medium (with N
identical spherical particles per unit volume) in a distance � is given by e−γ �, where
γ is the attenuation coefficient given by [11]

γ = NQext

or

γ = Nλ2

π
Re S(0) (2.261)

Thus the wave is attenuated by

A = 10 log10
1

e−γ �
= γ �10 log10 e

or
A = 4.343γ � (in dB)

The attenuation per length (in dB/m) is

A = 4.343γ

or

A = 4.343
λ2N

π
Re S(0) (2.262)

Similarly, it can be shown [11] that the phase shift of the EM wave caused by the
medium is

@ = −λ2N

2π
Im S(0) (in radians/unit length)

or

@ = −λ2N

2π
Im S(0)

180

π
(in deg/m) (2.263)
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Table 2.9 Laws and Parsons Drop-size Distributions for Various
Rain Rates

Rain Rate (mm/hour)

Drop 0.25 1.25 2.5 5 12.5 25 50 100 150
diameter Percent of total volume
(cm)

0.05 28.0 10.9 7.3 4.7 2.6 1.7 1.2 1.0 1.0
0.1 50.1 37.1 27.8 20.3 11.5 7.6 5.4 4.6 4.1
0.15 18.2 31.3 32.8 31.0 24.5 18.4 12.5 8.8 7.6
0.2 3.0 13.5 19.0 22.2 25.4 23.9 19.9 13.9 11.7
0.25 0.7 4.9 7.9 11.8 17.3 19.9 20.9 17.1 13.9
0.3 1.5 3.3 5.7 10.1 12.8 15.6 18.4 17.7
0.35 0.6 1.1 2.5 4.3 8.2 10.9 15.0 16.1
0.4 0.2 0.6 1.0 2.3 3.5 6.7 9.0 11.9
0.45 0.2 0.5 1.2 2.1 3.3 5.8 7.7
0.5 0.3 0.6 1.1 1.8 3.0 3.6
0.55 0.2 0.5 1.1 1.7 2.2
0.6 0.3 0.5 1.0 1.2
0.65 0.2 0.7 1.0
0.7 0.3

To relate attenuation and phase shift to a realistic rainfall rather than identical
drops assumed so far, it is necessary to know the drop-size distribution for a given
rate intensity. Representative distributions were obtained by Laws and Parsons [13]
as shown in Table 2.9. To evaluate the effect of the drop-size distribution, suppose
for a particular rain rate R, p is the percent of the total volume of water reaching the
ground (as in Table 2.9), which consists of drops whose diameters fall in the interval
centered in D cm (D = 2a), the number of drops in that interval is given by

Nc = pN(D) (2.264)

The total attenuation and phase shift over the entire volume become

A = 0.4343
λ2

π
· 106

∑
pN(D)Re S(0) (dB/km) (2.265)

@ = −9λ2

π2
· 106

∑
pN(D) Im S(0) (deg/km) (2.266)

where λ is the wavelength in cm and N(D) is the number of raindrops with equivo-
lumic diameter D per cm3. The summations are taken over all drop sizes. In order to
relate the attenuation and phase shift to the rain intensity measured in rain rate R (in
mm/hour), it is necessary to have a relationship between N and R. The relationship
obtained by Best [13], shown in Table 2.10, involves the terminal velocity u (in m/s)
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of the rain drops, i.e.,

R = u · N · (volume of a drop)

= uN
4πa3

3
(in m/s)

or
R = 6πNuD3 · 105 (mm/hr)

Thus

N(D) = R

6πuD3
10−5 (2.267)

Substituting this into Eqs. (2.265) and (2.266) leads to

A = 4.343
λ2

π2
R

∑ p

6uD3
Re S(0) (dB/km) (2.268)

@ = −90
λ2

π3
R

∑ p

6uD3
Im S(0) (deg/km) , (2.269)

where N(D) is in per cm3, D and λ are in cm, u is in m/s, p is in percent, and S(0)
is the complex forward-scattering amplitude defined in Eq. (2.256). The complex
refractive index of raindrops [14] at 20◦C required in calculating attenuation and
phase shift is shown in Table 2.11.

Table 2.10 Raindrop Terminal
Velocity

Radius (cm) Velocity (m/s)

0.025 2.1
0.05 3.9
0.075 5.3
0.10 6.4
0.125 7.3
0.15 7.9
0.175 8.35
0.20 8.7
0.225 9.0
0.25 9.2
0.275 9.35
0.30 9.5
0.325 9.6

Example 2.13
For ice spheres, plot the normalized back-scattering cross section, σb/πa2, as a

function of the normalized circumference, α = 2πa/λ. Assume that the refractive
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Table 2.11 Refractive Index of Water at 20◦C
Frequency (GHz) Refractive index (m = m′ − jm′′)
0.6 8.960 − j0.1713
0.8 8.956 − j0.2172
1.0 8.952 − j0.2648
1.6 8.933 − j0.4105
2.0 8.915 − j0.5078
3.0 8.858 − j0.7471
4.0 8.780 − j0.9771
6.0 8.574 − j1.399
11 7.884 − j2.184
16 7.148 − j2.614
20 6.614 − j2.780
30 5.581 − j2.848
40 4.886 − j2.725
60 4.052 − j2.393
80 3.581 − j2.100
100 3.282 − j1.864
160 2.820 − j1.382
200 2.668 − j1.174
300 2.481 − j0.8466

index of ice is independent of wavelength, making the normalized cross section for
ice applicable over the entire microwave region. Take m = 1.78 − j2.4 × 10−3 at
0◦C.

Solution
From Eq. (2.259),

σb = π

k2

∣∣∣∣∣
∞∑
n=1

(−1)n(2n + 1) (an − bn)

∣∣∣∣∣
2

Since α = ka, the normalized back-scattering cross section is

σb

πa2
= 1

α2

∣∣∣∣∣
∞∑
n=1

(−1)n(2n + 1) (an − bn)

∣∣∣∣∣
2

(2.270)

Using this expression in conjunction with Eq. (2.244), the subroutine SCATTERING
in the FORTRAN code of Fig. 2.16 was used as the main program to determine
σb/πa

2 for 0.2 < α < 4. Details on the program will be explained in the next
example. It suffices to mention that the maximum number of terms of the infinite
series in Eq. (2.270) was 10. It has been found that truncating the series at n = 2α
provides sufficient accuracy. The plot of the normalized radar cross section versus α
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is shown in Fig. 2.15. From the plot, we note that back-scattering oscillates between
very large and small values. If α is increased further, the normalized radar cross
section increases rapidly. The unexpectedly large cross sections have been attributed
to a lens effect; the ice sphere acts like a lens which focuses the incoming wave on
the back side from which it is reflected backwards in a concentrated beam. This is
recognized as a crude description, but it at least permits visualization of a physical
process which may have some reality.

Figure 2.15
Normalized back-scattering (radar) cross sections α = 2πa/λ for ice at 0◦C.

Example 2.14
Assuming the Laws and Parsons’ rain drop-size distribution, calculate the attenuation
in dB/km for rain rates of 0.25, 1.25, 2.5, 5.0, 12.5, 50.0, 100.0, and 150.0 mm/hr.
Consider the incident microwave frequencies of 6, 11, and 30 GHz.

Solution
The FORTRAN code developed for calculating attenuation and phase shift of mi-
crowaves due to rain is shown in Fig. 2.16. The main program calculates attenuation
and phase shift for given values of frequency and rain rate by employing Eqs. (2.268)
and (2.269). For each frequency, the corresponding value of the refractive index
of water at 20◦C is taken from Table 2.11. The data in Tables 2.9 and 2.10 on the
drop-size distributions and terminal velocity are incorporated in the main program.

Seven subroutines are involved. The subroutine SCATTERING calculates the ex-
pansion coefficientsan, bn, cn anddn using Eq. (2.244) and also the forward-scattering
amplitude S(0) using Eq. (2.256). The same subroutine was used as the main program
in the previous example to calculate the radar cross section of ice spheres. Enough
comments are inserted to make the program self-explanatory. Subroutine BESSEL
and BESSELCMPLX are exactly the same except that the former is for real argu-
ment, while the latter is for complex argument. They both employ Eq. (2.160) to
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Figure 2.16
FORTRAN program for Examples 2.13 and 2.14 (Continued).
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Figure 2.16
(Cont.) FORTRAN program for Examples 2.13 and 2.14 (Continued).
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Figure 2.16
(Cont.) FORTRAN program for Examples 2.13 and 2.14 (Continued).
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Figure 2.16
(Cont.) FORTRAN program for Examples 2.13 and 2.14 (Continued).
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Figure 2.16
(Cont.) FORTRAN program for Examples 2.13 and 2.14.

find jn(x). Subroutine HANKEL employs Eq. (2.162) to find yn(x), which involves
calling subroutine BESSELN to calculate j−n(x). The derivative of Bessel-Riccati
function [xzn(x)] is obtained from (see Prob. 2.14)

[xzn(x)]
′ = −nzn(x) + xzn−1(x)

where zn is jn, j−n, yn or hn(x). Subroutine GAMMA calculates B(n + 1/2) us-
ing Eq. (2.165), while subroutine FACTORIAL determines n!. All computations
were done in double precision arithmetic, although it was observed that using single
precision would only alter results slightly.

Typical results for 11 GHz are tabulated in Table 2.12. A graph of attenuation
vs. rain rate is portrayed in Fig. 2.17. The plot shows that attenuation increases
with rain rate and conforms with the common rule of thumb. We must note that the
underlying assumption of spherical raindrops renders the result as only a first order
approximation of the practical rainfall situation.

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



Table 2.12 Attenuation and Phase Shift at 11 GHz

Rain rate (mm/hr) Attenuation (dB/km) Phase shift (deg/km)

0.25 2.56 × 10−3 0.4119
1.25 1.702 × 10−3 1.655
2.5 4.072 × 10−3 3.040
5.0 9.878 × 10−3 5.601
12.5 0.3155 12.58
25 0.7513 23.19
50 1.740 42.74
100 3.947 78.59
150 6.189 112.16

Figure 2.17
Attenuation vs. rain rate.

2.10 Concluding Remarks

We have reviewed analytic methods for solving partial differential equations. An-
alytic solutions are of major interest as test models for comparison with numerical
techniques. The emphasis has been on the method of separation of variables, the most
powerful analytic method. For an excellent, more in-depth exposition of this method,
consult Myint-U [5]. In the course of applying the method of separation of variables,
we have encountered some mathematical functions such as Bessel functions and Leg-
endre polynomials. For a thorough treatment of these functions and their properties,
Bell [7] and Johnson and Johnson [8] are recommended. The mathematical hand-
book by Abramowitz and Stegun [15] provides tabulated values of these functions
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for specific orders and arguments. A few useful texts on the topics covered in this
chapter are also listed in the references.

As an example of real life problems, we have applied the analytical techniques de-
veloped in this chapter to the problem of attenuation of microwaves due to spherical
raindrops. Spherical models have also been used to assess the absorption charac-
teristics of the human skull exposed to EM plane waves [16]–[20] (see Probs. 2.46
to 2.49).

We conclude this chapter by remarking that the most satisfactory solution of a field
problem is an exact analytical one. In many practical situations, no solution can be
obtained by the analytical methods now available, and one must therefore resort to
numerical approximation, graphical or experimental solutions. (Experimental solu-
tions are usually very expensive, while graphical solutions are not so accurate). The
remainder of this book will be devoted to a study of the numerical methods commonly
used in EM.
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Problems

2.1 Consider the PDE

a@xx + b@xy + c@yy + d@x + e@y + f@ = 0

where the coefficients a, b, c, d, e, and f are in general functions of x and y.
Under what conditions is the PDE separable?
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Figure 2.18
For problem 2.2.

2.2 Determine the distribution of electrostatic potential inside the conducting rect-
angular boxes with cross sections shown in Fig. 2.18.

2.3 The cross-sections of the cylindrical systems that extend to infinity in the z-
direction are shown in Fig. 2.19. The potentials on the boundaries are as shown.
For each system, find the potential distribution.

2.4 Find the solution U of:

(a) Laplace equation

∇2U = 0, 0 < x, y < π

Ux(0, y) = 0 = Ux(x, y), U(x, 0) = 0 ,

U(x, π) = x, 0 < x < π

(b) Heat equation

kUxx = Ut, 0 ≤ x ≤ 1, t > 0

U(0, t) = 0, t > 0, U(1, t) = 1, t > 0

U(x, 0) = 0, 0 ≤ x ≤ 1

(c) Wave equation

a2Uxx = Utt , 0 ≤ x ≤ 1, t > 0

U(0, t) = 0 = U(1, t), t > 0

U(x, 0) = 0, Ut (x, 0) = x

2.5 Find the solution @ of:

(a) Laplace equation

∇2@ = 0, ρ ≥ 1, 0 < φ < π

@(1, φ) = sin φ, @(ρ, 0) = @(ρ, π) = 0
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Figure 2.19
For problem 2.3.

(b) Laplace equation

∇2@ = 0, 0 < ρ < 1, 0 < z < L

@(ρ, φ, 0) = 0 = @(ρ, φ,L),@(a, φ, z) = 1

(c) Heat equation

@t = k∇2@, 0 ≤ ρ ≤ 1,−∞ < z < ∞, t > 0

@(a, φ, t) = 0, t > 0, @(ρ, φ, 0) = ρ2 cos 2φ, 0 ≤ φ < 2π

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



2.6 Solve the PDE

4
∂4@

∂x4
+ ∂2@

∂t2
= 0, 0 < x < 1, t > 0

subject to the boundary conditions

@(0, t) = 0 = @(1, t) = @xx(0, t) = @xx(1, t)

and initial conditions

@t(x, 0) = 0, @(x, 0) = x

2.7 A cylinder similar to the one in Fig. 2.20 has its ends z = 0 and z = L held at
zero potential. If

V (a, z) =
{
Voz/L, 0 < z < L/2

Vo(1 − z/L), L/2 < z < L

find V (ρ, z). Calculate the potential at (ρ, z) = (0.8a, 0.3L).

Figure 2.20
For problem 2.7.

2.8 Determine the potential distribution in a hollow cylinder of radius a and length
L with ends held at zero potential while the lateral surface is held at potential
Vo as in Fig. 2.20. Calculate the potential along the axis of the cylinder when
L = 2a.

2.9 The conductor whose cross section is shown in Fig. 2.21 is maintained atV = 0
everywhere except on the curved electrode where it is held at V = Vo. Find
the potential distribution V (ρ, φ).
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Figure 2.21
For problem 2.9.

2.10 Solve the PDE

∂2@

∂ρ2
+ 1

ρ

∂@

∂ρ
= ∂2@

∂t2
, 0 ≤ ρ ≤ a, t ≥ 0

under the conditions

@(0, t) is bounded, @(a, t) = 0, t ≥ 0 ,

@(ρ, 0) =
(

1 − ρ2/a2
)
,

∂@

∂t

∣∣∣∣
t=0

= 0, 0 ≤ ρ ≤ a

2.11 The generating function for Bessel function is given by

G(x, t) = exp

[
x

2

(
t − 1

t

)]
=

∞∑
n=−∞

tnJn(x)

(a) By taking the derivatives of both sides with respect to x, show that

d

dx
Jn(x) = 1

2

[
Jn−1(x) − Jn+1(x)

]
(b) By taking the derivatives of both sides with respect to t , show that

Jn+1(x) = x

2(n + 1)

[
Jn(x) + Jn+2(x)

]
2.12 (a) Prove that

e±jρ sin φ =
∞∑

n=−∞
(±1)nJn(ρ)e

jnφ

(b) Derive the Bessel’s integral formula

Jn(ρ) = 1

π

∫ π

0
cos(nθ − ρ sin θ) dθ
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2.13 Show that

cos x = Jo(x) + 2
∞∑
n=1

(−1)nJ2n(x)

and

sin x = 2
∞∑
n=1

(−1)n+1J2n+1(x)

which demonstrate the close tie between Bessel function and trigonometric
functions.

2.14 Prove that:

(a) J1/2(x) =
√

2
πx

sin x,

(b) J−1/2(x) =
√

2
πx

cos x,

(c) d
dx

[x−nJn(x)] = −xnJn+1(x).

(d) dn

dxn
Jn(x)

∣∣∣∣
x=0

= 1
2n ,

(e) d
dx

[xzn(x)] = −nzn(x) + xzn−1(x) = (n + 1)zn(x) + xzn+1(x)

2.15 Given that

Io =
∫ ∞

0
e−λaJo(λρ) dλ = 1

(ρ2 + a2)1/2

find

I1 =
∫ ∞

0
e−λaλJo(λρ) dλ

and

I2 =
∫ ∞

0
e−λaλ2Jo(λρ) dλ

2.16 Write a computer program that will evaluate the first five roots λnm of Bessel
function Jn(x) for n = 1, 2, . . . , 5, i.e., Jn(λnm) = 0.

2.17 Evaluate:

(a) ∫ 1

−1
P1(x)P2(x) dx ,

(b) ∫ 1

−1
[P4(x)]

2 dx ,

(c) ∫ 1

0
x2P3(x) dx
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2.18 In Legendre series of the form
∞∑
n=0

AnPn(x), expand:

(a) f (x) =
{

0, −1 < x < 0,

1, 0 < x < 1

(b) f (x) = x3, −1 < x < 1,

(c) f (x) =
{

0, −1 < x < 0,

x, 0 < x < 1

(d) f (x) =
{

1 + x, −1 < x < 0,

1 − x, 0 < x < 1

2.19 Solve Laplace’s equation:

(a) ∇2U = 0, 0 ≤ r ≤ a, U(a, θ) =
{

1, 0 < θ < π/2,

0, otherwise

(b) ∇2U = 0, r > a,
∂U

∂r

∣∣∣∣
r=a

= cos θ + 3 cos3 θ , 0 < θ < π ,

(c) ∇2U = 0, r < a, 0 < θ < π, 0 < φ < 2π ,
U(a, θ, φ) = sin2 θ

2.20 A hollow conducting sphere of radius a has its upper half charged to potential
Vo while its lower half is grounded. Find the potential distribution inside and
outside the sphere.

2.21 A circular disk of radius a carries charge of surface charge density ρo. Show
that the potential at point (0, 0, z) on its axis θ = 0 is

V = ρo

2ε

[(
z2 + a2

)1/2 − z

]

From this deduce the potential at any point (r, θ, φ).

2.22 (a) Verify the three-term recurrence relation

(2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x)

(b) Use the recurrence relation to find P6(x) and P1(x).

2.23 Verify the following identities:

(a)
∫ 1
−1 Pn(x)Pm(x) dx = 2

2n + 1
δnm,

(b)
∫ 1
−1 P

m
n (x)Pm

k (x) dx = 2

2n + 1

(n + m)!
(n − m)!δnk
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2.24 Rework the problem in Fig. 2.8 if the boundary conditions are now

V (r = a) = Vo, V (r → ∞) = Eor cos θ + Vo

Find V and E everywhere. Determine the maximum value of the field strength.

2.25 In a sphere of radius a, obtain the solution V (r, θ) of Laplace’s equation

∇2V (r, θ) = 0, r ≤ a

subject to
V (a, θ) = 3 cos2 θ + 3 cos θ + 1

2.26 Determine the solution to Laplace’s equation

∇2V = 0

outside a sphere r > a subject to the boundary condition

∂

∂r
V (a, θ) = cos θ + 3 cos3 θ

2.27 Find the potential distribution inside and outside a dielectric sphere of radius
a placed in a uniform electric field Eo.

Hint: The problem to be solved is ∇2V = 0 subject to

εr
∂V1

∂r
= ∂V2

∂r
on r = a, V1 = V2 on r = a ,

V2 = −Eor cos θ as r → ∞

2.28 (a) Derive the recurrence relation of the associated Legendre polynomials

Pm+1
n (x) = 2mx

(1 − x2)1/2
Pm
n (x) − [n(n + 1) − m(m − 1)]Pm−1

n (x)

(b) Using the recurrence relation on the formula for Pm
n , find P 2

3 , P
3
3 , P 1

4 ,
and P 2

4 .

2.29 Expand V = cos 2φ sin2 φ in terms of the spherical harmonics Pm
n (cos θ)

sinmφ and Pm
n (cos θ) cosmφ.

2.30 In the prolate spheroidal coordinates (ξ, η, φ), the equation

∇2@ + k2@ = 0

assumes the form

∂

∂ξ

[(
ξ2 − 1

) ∂@

∂ξ

]
+ ∂

∂η

[(
1 − η2

) ∂@

∂η

]
+

[
1

ξ2 − 1

+ 1

1 − η2

]
∂2@

∂φ2
+ k2d2

(
ξ2 − η2

)
@ = 0
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Show that the separated equations are

d

dξ

[(
ξ2 + 1

) dH1

dξ

]
+

[
k2d2ξ2 − m2

ξ2 − 1
− c

]
H1 = 0

d

dη

[(
1 − η2

) dH2

dη

]
−

[
k2d2η2 + m2

1 − η2
− c

]
H2 = 0

d2H3

dφ2
+ m2H3 = 0

where m and c are separation constants.

2.31 Solve Eq. (2.203) if a = b = c = π and:

(a) f (x, y, z) = e−x , (b) f (x, y, z) = sin2 x.

2.32 Solve the inhomogeneous PDE

∂2@

∂ρ2
+ 1

ρ

∂@

∂ρ
− ∂2@

∂t2
= −@o sinωt, 0 ≤ ρ ≤ a, t ≥ 0

subject to the conditions @(a, t) = 0,@(ρ, 0) = 0,@t (ρ, 0) = 0, @ is finite
for all 0 ≤ ρ ≤ a. Take @o as a constant and aω not being a zero of J0(x).

2.33 Infinitely long metal box has a rectangular cross section shown in Fig. 2.22. If
the box is filled with charge ρv = ρox/a, find V inside the box.

Figure 2.22
For problem 2.33.

2.34 In Section 2.7.2, find Eg and E�, the electric field intensities in gas and liquid,
respectively.

2.35 Consider the potential problem shown in Fig. 2.23. The potentials at
x = 0, x = a, and y = 0 sides are zero while the potential at y = b side is Vo.
Using the series expansion technique similar to that used in Section 2.7.2, find
the potential distribution in the solution region.
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Figure 2.23
Potential system for problem 2.35.

2.36 Consider a grounded rectangular pipe with the cross section shown in Fig. 2.24.
Assuming that the pipe is partially filled with hydrocarbons with charge density
ρo, apply the same series expansion technique used in Section 2.7.2 to find the
potential distribution in the pipe.

Figure 2.24
Earthed rectangular pipe partially filled with charged liquid—for problem 2.36.

2.37 Write a program to generate associated Legendre polynomial, with x = cos θ =
0.5. You may use either series expansion or recurrence relations. Take 0 ≤
n ≤ 15, 0 ≤ m ≤ n. Compare your results with those tabulated in standard
tables.

2.38 The FORTRAN program of Fig. 2.16 uses the series expansion method to gen-
erate jn(x). Write a subroutine for generating jn(x) using recurrence relations.
For x = 2.0 and 0 ≤ n ≤ 10, compare your result with that obtained using
the subroutine BESSEL of Fig. 2.16 and the values in standard tables. Which
result do you consider to be more accurate? Explain.
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2.39 Use the product generating function

G(x + y, t) = G(x, t)G(y, t)

to derive the addition theorem

Jn(x + y) =
∞∑

m=−∞
Jm(x)Jn−m(y)

Recall that

G(x, t) = exp

[
x

2

(
t − 1

t

)]
=

∞∑
n=−∞

tnJn(x)

2.40 Use the generating function to prove that:

1

R
= 1

ro

∞∑
n=0

(r/ro)
nPn(cos θ), r < ro ,

1

R
= 1

r

∞∑
n=0

(ro/r)
nPn(cos θ), r > ro, where R = |r − ro| =

[r2 − r2
o − 2rro cosα]1/2 and α is the angle between r and ro.

2.41 Show that ∫
T0(x) dx = T1(x)∫
T1(x) dx = 1

4
T2(x) + 1

4∫
Tn(x) dx = 1

2

(
Tn+1(x)

n + 1
− Tn−1(x)

n − 1

)
, n > 1

so that integration can be done directly in Chebyshev polynomials.

2.42 A function is defined by

f (x) =
{

1, −1 ≤ x ≤ 1

0, otherwise

(a) Expand f (x) in a series of Hermite functions,

(b) expand f (x) in a series of Laguerre functions.

2.43 By expressing Ei
θ and Ei

φ in terms of the spherical wave functions, show that
Eq. (2.235) is valid.
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2.44 By defining

ρn(x) = d

dx
ln

[
xh(2)n (x)

]
, σn(x) = d

dx
ln [xjn(x)] ,

show that the scattering amplitude coefficients can be written as

an = jn(α)

h
(2)
n (α)

[
σn(α) − mσn(mα)

ρn(α) − mσn(mα)

]

bn = jn(α)

h
(2)
n (α)

[
σn(mα) − mσn(α)

σn(mα) − mρn(α)

]

2.45 For the problem in Fig. 2.14, plot |Et
z|/|Ei

x | for −a < z < a along the axis of
the dielectric sphere of radius a = 9 cm in the x − z plane. Take Eo = 1, ω =
2π ×5 ×109 rad/s, ε1 = 4εo, µ1 = µo, σ1 = 0. You may modify the program
in Fig. 2.16 or write your own.

2.46 In analytical treatment of the radio-frequency radiation effect on the human
body, the human skull is frequently modeled as a lossy sphere. Of major
concern is the calculation of the normalized heating potential

@(r) = 1

2
σ

|Et(r)|2
|Eo|2 (J · m)−1 ,

where Et is the internal electric field strength and Eo is the peak incident field
strength. If the human skull can be represented by a homogeneous sphere of
radius a = 10 cm, plot@(r) against the radial distance −10 ≤ r = z ≤ 10 cm.
Assume an incident field as in Fig. 2.14 withf = 1 GHz,µr = 1, εr = 60, σ =
0.9 mhos/m, Eo = 1.

2.47 Instead of the homogeneous spherical model assumed in the previous problem,
consider the multilayered spherical model shown in Fig. 2.25 with each region
labeled by an integer p, such that p = 1 represents the central core region and
p = 4 represents air. At f = 2.45 GHz, plot the heating potential along the x
axis, y axis, and z axis. Assume the data given below.

Region p Tissue Radius (mm) εr σ (mho/m)

1 muscle 18.5 46 2.5
2 fat 19 6.95 0.29
3 skin 20 43 2.5
4 air 1 0

µr = 1
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Figure 2.25
For problem 2.47, a multilayered spherical model of the human skull.

Note that for each region p, the resultant field consists of the transmitted and
scattered fields and is in general given by

Ep(r, θ, φ) = Eoe
jωt

∞∑
n=1

(−j)n
2n + 1

n(n + 1)

[
anpM(4)

np (k)

+jbnpN(4)
np (k) + cnpM(1)

np (k1) + jdnpN(1)
np (k1)

]

2.48 The absorption characteristic of biological bodies is determined in terms of the
specific absorption rate (SAR) defined as the total power absorbed divided as
the power incident on the geometrical cross section. For an incident power
density of 1 mW/cm2 in a spherical model of the human head,

SAR = 2
Qabs

πa
mW/cm3

where a is in centimeters. Using the above relation, plot SAR against frequency
for 0.1 < f < 3 GHz, a = 10 cm assuming frequency-dependent and
dielectric properties of head as

εr = 5

(
12 + (f/fo)

2

1 + (f/fo)2

)

σ = 6

(
1 + 62(f/fo)2

1 + (f/fo)2

)

where f is in GHz and fo = 20 GHz.

2.49 For the previous problem, repeat the calculations of SAR assuming a six-layered
spherical model of the human skull (similar to that of Fig. 2.25) of outer radius
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a = 10 cm. Plot Pa/Pi vs. frequency for 0.1 < f < 3 GHz where

Pa

Pi
= 2

α2

∑
(2n + 1)

[
Re (an + bn) −

(
|an|2 + |bn|2

)]
,

Pa = absorbed power, Pi = incident power, α = 2πa/λ, λ is the wavelength
in the external medium. Use the dimensions and electrical properties shown
below.

Layer p Tissue Radius (mm) εr σo(mho/m)

1 brain 9 5∇(f ) 6K(f )
2 CSF 12 7∇(f ) 8K(f )
3 dura 13 4∇(f ) 8K(f )
4 bone 17.3 5 62
5 fat 18.5 6.95 0.29
6 skin 20 43 2.5

where µr = 1,

∇(f ) = 1 + 12(f/fo)2

1 + (f/fo)2
,

K(f ) = 1 + 62(f/fo)2

1 + (f/fo)2
,

f is in GHz, and fo = 20 GHz. Compare your result with that from the
previous problem.
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