
Chapter 1

Fundamental Concepts

“Science knows no country because knowledge belongs to humanity and is the
torch which illuminates the world. Science is the highest personification of the
nation because that nation will remain the first which carries the furthest the
works of thoughts and intelligence.” Louis Pasteur

1.1 Introduction

Scientists and engineers use several techniques in solving continuum or field prob-
lems. Loosely speaking, these techniques can be classified as experimental, analyti-
cal, or numerical. Experiments are expensive, time consuming, sometimes hazardous,
and usually do not allow much flexibility in parameter variation. However, every nu-
merical method, as we shall see, involves an analytic simplification to the point where
it is easy to apply the numerical method. Notwithstanding this fact, the following
methods are among the most commonly used in electromagnetics (EM).

A. Analytical methods (exact solutions)

(1) separation of variables

(2) series expansion

(3) conformal mapping

(4) integral solutions, e.g., Laplace and Fourier transforms

(5) perturbation methods

B. Numerical methods (approximate solutions)

(1) finite difference method

(2) method of weighted residuals

(3) moment method

(4) finite element method
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(5) transmission-line modeling

(6) Monte Carlo method

(7) method of lines

Application of these methods is not limited to EM-related problems; they find
applications in other continuum problems such as in fluid, heat transfer, and acous-
tics [1].

As we shall see, some of the numerical methods are related and they all generally
give approximate solutions of sufficient accuracy for engineering purposes. Since
our objective is to study these methods in detail in the subsequent chapters, it may be
premature to say more than this at this point.

The need for numerical solution of electromagnetic problems is best expressed in
the words of Paris and Hurd: “Most problems that can be solved formally (analyti-
cally) have been solved.”1 Until the 1940s, most EM problems were solved using the
classical methods of separation of variables and integral equation solutions. Besides
the fact that a high degree of ingenuity, experience, and effort were required to apply
those methods, only a narrow range of practical problems could be investigated due
to the complex geometries defining the problems.

Numerical solution of EM problems started in the mid-1960s with the availability
of modern high-speed digital computers. Since then, considerable effort has been
expended on solving practical, complex EM-related problems for which closed form
analytical solutions are either intractable or do not exist. The numerical approach has
the advantage of allowing the actual work to be carried out by operators without a
knowledge of higher mathematics or physics, with a resulting economy of labor on
the part of the highly trained personnel.

Before we set out to study the various techniques used in analyzing EM problems,
it is expedient to remind ourselves of the physical laws governing EM phenomena
in general. This will be done in Section 1.2. In Section 1.3, we shall be acquainted
with different ways EM problems are categorized. The principle of superposition and
uniqueness theorem will be covered in Section 1.4.

1.2 Review of Electromagnetic Theory

The whole subject of EM unfolds as a logical deduction from eight postulated
equations, namely, Maxwell’s four field equations and four medium-dependent equa-
tions [2]–[4]. Before we briefly review these equations, it may be helpful to state two
important theorems commonly used in EM. These are the divergence (or Gauss’s)

1Basic Electromagnetic Theory, D.T. Paris and F.K. Hurd, McGraw-Hill, New York, 1969, p. 166.
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theorem, ∮
S

F · dS =
∫
v

∇ · F dv (1.1)

and Stokes’s theorem ∮
L

F · dl =
∫
S

∇ × F · dS (1.2)

Perhaps the best way to review EM theory is by using the fundamental concept of
electric charge. EM theory can be regarded as the study of fields produced by electric
charges at rest and in motion. Electrostatic fields are usually produced by static
electric charges, whereas magnetostatic fields are due to motion of electric charges
with uniform velocity (direct current). Dynamic or time-varying fields are usually
due to accelerated charges or time-varying currents.

1.2.1 Electrostatic Fields

The two fundamental laws governing these electrostatic fields are Gauss’s law,∮
D · dS =

∫
ρv dv (1.3)

which is a direct consequence of Coulomb’s force law, and the law describing elec-
trostatic fields as conservative, ∮

E · dl = 0 (1.4)

In Eqs. (1.3) and (1.4), D is the electric flux density (in coulombs/meter2), ρv is the
volume charge density (in coulombs/meter3), and E is the electric field intensity (in
volts/meter). The integral form of the laws in Eqs. (1.3) and (1.4) can be expressed
in the differential form by applying Eq. (1.1) to Eq. (1.3) and Eq. (1.2) to Eq. (1.4).
We obtain

∇ · D = ρv (1.5)

and

∇ × E = 0 (1.6)

The vector fields D and E are related as

D = εE (1.7)

where ε is the dielectric permittivity (in farads/meter) of the medium. In terms of the
electric potential V (in volts), E is expressed as

E = −∇V (1.8)
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or

V = −
∫

E · dl (1.9)

Combining Eqs. (1.5), (1.7), and (1.8) gives Poisson’s equation:

∇ · ε∇V = −ρv (1.10a)

or, if ε is constant,

∇2V = −ρv

ε
(1.10b)

When ρv = 0, Eq. (1.10) becomes Laplace’s equation:

∇ · ε∇V = 0 (1.11a)

or for constant ε

∇2V = 0 (1.11b)

1.2.2 Magnetostatic Fields

The basic laws of magnetostatic fields are Ampere’s law∮
L

H · dl =
∫
S

J · dS (1.12)

which is related to Biot-Savart law, and the law of conservation of magnetic flux (also
called Gauss’s law for magnetostatics)∮

B · dS = 0 (1.13)

where H is the magnetic field intensity (in amperes/meter), Je is the electric cur-
rent density (in amperes/meter2), and B is the magnetic flux density (in tesla or
webers/meter2). Applying Eq. (1.2) to Eq. (1.12) and Eq. (1.1) to Eq. (1.13) yields
their differential form as

∇ × H = Je (1.14)

and

∇ · B = 0 (1.15)

The vector fields B and H are related through the permeability µ (in henries/meter)
of the medium as

B = µH (1.16)
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Also, J is related to E through the conductivity σ (in mhos/meter) of the medium as

J = σE (1.17)

This is usually referred to as point form of Ohm’s law. In terms of the magnetic vector
potential A (in Wb/meter)

B = ∇ × A (1.18)

Applying the vector identity

∇ × (∇ × F) = ∇(∇ · F)− ∇2F (1.19)

to Eqs. (1.14) and (1.18) and assuming Coulomb gauge condition (∇ · A = 0) leads
to Poisson’s equation for magnetostatic fields:

∇2A = −µJ (1.20)

When J = 0, Eq. (1.20) becomes Laplace’s equation

∇2A = 0 (1.21)

1.2.3 Time-varying Fields

In this case, electric and magnetic fields exist simultaneously. Equations (1.5)
and (1.15) remain the same whereas Eqs. (1.6) and (1.14) require some modification
for dynamic fields. Modification of Eq. (1.6) is necessary to incorporate Faraday’s
law of induction, and that of Eq. (1.14) is warranted to allow for displacement current.
The time-varying EM fields are governed by physical laws expressed mathematically
as

∇ · D = ρv (1.22a)

∇ · B = 0 (1.22b)

∇ × E = −∂B
∂t

− Jm (1.22c)

∇ × H = Je + ∂D
∂t

(1.22d)

where Jm = σ ∗H is the magnetic conductive current density (in volts/square meter)
and σ ∗ is the magnetic resistivity (in ohms/meter).

These equations are referred to as Maxwell’s equations in the generalized form.
They are first-order linear coupled differential equations relating the vector field quan-
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tities to each other. The equivalent integral form of Eq. (1.22) is∮
S

D · dS =
∫
v

ρvdv (1.23a)
∮
S

B · dS = 0 (1.23b)

∮
L

E · dl = −
∫
S

(
∂B
∂t

+ Jm

)
· dS (1.23c)

∮
L

H · dl =
∫
S

(
Je + ∂D

∂t

)
· dS (1.23d)

In addition to these four Maxwell’s equations, there are four medium-dependent
equations:

D = εE (1.24a)

B = µH (1.24b)

Je = σE (1.24c)

Jm = σ ∗M (1.24d)

These are called constitutive relations for the medium in which the fields exist. Equa-
tions (1.22) and (1.24) form the eight postulated equations on which EM theory un-
folds itself. We must note that in the region where Maxwellian fields exist, the fields
are assumed to be:

(1) single valued,

(2) bounded, and

(3) continuous functions of space and time with continuous derivatives.

It is worthwhile to mention two other fundamental equations that go hand-in-hand
with Maxwell’s equations. One is the Lorentz force equation

F = Q(E + u × B) (1.25)

where F is the force experienced by a particle with charge Q moving at velocity u in
an EM field; the Lorentz force equation constitutes a link between EM and mechanics.
The other is the continuity equation

∇ · J = −∂ρv

∂t
(1.26)

which expresses the conservation (or indestructibility) of electric charge. The conti-
nuity equation is implicit in Maxwell’s equations (see Example 1.2). Equation (1.26)
is not peculiar to EM. In fluid mechanics, where J corresponds with velocity and ρv
with mass, Eq. (1.26) expresses the law of conservation of mass.
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1.2.4 Boundary Conditions

The material medium in which an EM field exists is usually characterized by its
constitutive parameters σ, ε, and µ. The medium is said to be linear if σ, ε, and µ
are independent of E and H or nonlinear otherwise. It is homogeneous if σ, ε, and
µ are not functions of space variables or inhomogeneous otherwise. It is isotropic if
σ, ε, and µ are independent of direction (scalars) or anisotropic otherwise.

Figure 1.1
Interface between two media.

The boundary conditions at the interface separating two different media 1 and 2,
with parameters (σ1, ε1, µ1) and (σ2, ε2, µ2) as shown in Fig. 1.1, are easily derived
from the integral form of Maxwell’s equations. They are

E1t = E2t or (E1 − E2)× an12 = 0 (1.27a)

H1t −H21 = K or (H1 − H2)× an12 = K (1.27b)

D1n −D2n = ρS or (D1 − D2) · an12 = ρS (1.27c)

B1n − B2n = 0 or (B2 − B1) · an12 = 0 (1.27d)

where an12 is a unit normal vector directed from medium 1 to medium 2, subscripts
1 and 2 denote fields in regions 1 and 2, and subscripts t and n, respectively, denote
tangent and normal components of the fields. Equations (1.27a) and (1.27d) state
that the tangential components of E and the normal components of B are continuous
across the boundary. Equation (1.27b) states that the tangential component of H is
discontinuous by the surface current density K on the boundary. Equation (1.27c)
states that the discontinuity in the normal component of D is the same as the surface
charge density ρs on the boundary.

In practice, only two of Maxwell’s equations are used (Eqs. (1.22c) and (1.22d))
when a medium is source-free (J = 0, ρv = 0), since the other two are implied (see
Problem 1.3). Also, in practice, it is sufficient to make the tangential components
of the fields satisfy the necessary boundary conditions since the normal components
implicitly satisfy their corresponding boundary conditions.

1.2.5 Wave Equations

As mentioned earlier, Maxwell’s equations are coupled first-order differential equa-
tions which are difficult to apply when solving boundary-value problems. The diffi-
culty is overcome by decoupling the first-order equations, thereby obtaining the wave
equation, a second-order differential equation which is useful for solving problems.
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To obtain the wave equation for a linear, isotropic, homogeneous, source-free medium
(ρv = 0, J = 0) from Eq. (1.22), we take the curl of both sides of Eq. (1.22c). This
gives

∇ × ∇ × E = −µ ∂

∂t
(∇ × H) (1.28)

From (1.22d),

∇ × H = ε
∂E
∂t

since J = 0, so that Eq. (1.28) becomes

∇ × ∇ × E = −µε ∂
2E
∂t2

(1.29)

Applying the vector identity

∇ × ∇ × F = ∇(∇ · F)− ∇2F (1.30)

in Eq. (1.29),

∇(∇ · E)− ∇2E = −µε ∂
2E
∂t2

Since ρv = 0,∇ · E = 0 from Eq. (1.22a), and hence we obtain

∇2E − µε
∂2E
∂t2

= 0 (1.31)

which is the time-dependent vector Helmholtz equation or simply wave equation. If
we had started the derivation with Eq. (1.22d), we would obtain the wave equation
for H as

∇2H − µε
∂2H
∂t2

= 0 (1.32)

Equations (1.31) and (1.32) are the equations of motion of EM waves in the medium
under consideration. The velocity (in m/s) of wave propagation is

u = 1√
µε

(1.33)

where u = c ≈ 3 × 108 m/s in free space. It should be noted that each of the vector
equations in (1.31) and (1.32) has three scalar components, so that altogether we have
six scalar equations for Ex,Ey,Ez,Hx,Hy , and Hz. Thus each component of the
wave equations has the form

∇2� − 1

u2

∂2�

∂t2
= 0 (1.34)

which is the scalar wave equation.
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1.2.6 Time-varying Potentials

Although we are often interested in electric and magnetic field intensities (E and
H), which are physically measurable quantities, it is often convenient to use auxiliary
functions in analyzing an EM field. These auxiliary functions are the scalar electric
potential V and vector magnetic potential A. Although these potential functions are
arbitrary, they are required to satisfy Maxwell’s equations. Their derivation is based
on two fundamental vector identities (see Prob. 1.1),

∇ × ∇� = 0 (1.35)

and

∇ · ∇ × F = 0 (1.36)

which an arbitrary scalar field � and vector field F must satisfy. Maxwell’s equa-
tion (1.22b) along with Eq. (1.36) is satisfied if we define A such that

B = ∇ × A (1.37)

Substituting this into Eq. (1.22c) gives

−∇ ×
(

E + ∂A
∂t

)
= 0

Since this equation has to be compatible with Eq. (1.35), we can choose the scalar
field V such that

E + ∂A
∂t

= −∇V
or

E = −∇V − ∂A
∂t

(1.38)

Thus, if we knew the potential functions V and A, the fields E and B could be
obtained from Eqs. (1.37) and (1.38). However, we still need to find the solution
for the potential functions. Substituting Eqs. (1.37) and (1.38) into Eq. (1.22d) and
assuming a linear, homogeneous medium,

∇ × ∇ × A = µJ + εµ
∂

∂t

(
−∇V − ∂A

∂t

)

Applying the vector identity in Eq. (1.30) leads to

∇2A − ∇(∇ · A) = −µJ + µε∇ ∂2A
∂t2

+ µε∇ ∂V

∂t
(1.39)

Substituting Eq. (1.38) into Eq. (1.22a) gives

∇ · E = ρ

ε
= −∇2V − ∂(∇ · A)

∂t
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or

∇2V + ∂

∂t
∇ · A = −ρv

ε
(1.40)

According to the Helmholtz theorem of vector analysis, a vector is uniquely defined
if and only if both its curl and divergence are specified. We have only specified the
curl of A in Eq. (1.37); we may choose the divergence of A so that the differential
equations (1.39) and (1.40) have the simplest forms possible. We achieve this in the
so-called Lorentz condition:

∇ · A = −µε ∂V
∂t

(1.41)

Incorporating this condition into Eqs. (1.39) and (1.40) results in

∇2A − µε
∂2A
∂t2

= −µJ (1.42)

and

∇2V − µε
∂2V

∂t2
= −ρv

ε
(1.43)

which are inhomogeneous wave equations. Thus Maxwell’s equations in terms of
the potentials V and A reduce to the three equations (1.41) to (1.43). In other words,
the three equations are equivalent to the ordinary form of Maxwell’s equations in that
potentials satisfying these equations always lead to a solution of Maxwell’s equations
for E and B when used with Eqs. (1.37) and (1.38). Integral solutions to Eqs. (1.42)
and (1.43) are the so-called retarded potentials

A =
∫

µ[J] dv
4πR

(1.44)

and

V =
∫ [ρv] dv

4πεR
(1.45)

whereR is the distance from the source point to the field point, and the square brackets
denote ρv and J are specified at a time R(µε)1/2 earlier than for which A or V is
being determined.

1.2.7 Time-harmonic Fields

Up to this point, we have considered the general case of arbitrary time variation of
EM fields. In many practical situations, especially at low frequencies, it is sufficient to
deal with only the steady-state (or equilibrium) solution of EM fields when produced
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by sinusoidal currents. Such fields are said to be sinusoidal time-varying or time-
harmonic, that is, they vary at a sinusoidal frequency ω. An arbitrary time-dependent
field F(x, y, z, t) or F(r, t) can be expressed as

F(r, t) = Re
[
Fs(r)ejωt

]
(1.46)

where Fs(r) = Fs(x, y, z) is the phasor form of F(r, t) and is in general complex,
Re[] indicates “taking the real part of” quantity in brackets, and ω is the angular
frequency (in rad/s) of the sinusoidal excitation. The EM field quantities can be
represented in phasor notation as




E(r, t)
D(r, t)
H(r, t)
B(r, t)


 =




Es(r)
Ds(r)
Hs(r)
Bs(r)


 ejωt (1.47)

Using the phasor representation allows us to replace the time derivations ∂/∂t by jω
since

∂ejωt

∂t
= jωejωt

Thus Maxwell’s equations, in sinusoidal steady state, become

∇ · Ds = ρvs (1.48a)

∇ · Bs = 0 (1.48b)

∇ × Es = −jωBs − Jms (1.48c)

∇ × Hs = Jes + jωDs (1.48d)

We should observe that the effect of the time-harmonic assumption is to eliminate the
time dependence from Maxwell’s equations, thereby reducing the time-space depen-
dence to space dependence only. This simplification does not exclude more general
time-varying fields if we consider ω to be one element of an entire frequency spec-
trum, with all the Fourier components superposed. In other words, a nonsinusoidal
field can be represented as

F(r, t) = Re

[∫ ∞

−∞
Fs(r, ω)ejωtdω

]
(1.49)

Thus the solutions to Maxwell’s equations for a nonsinusoidal field can be obtained
by summing all the Fourier components Fs(r, ω) over ω. Henceforth, we drop the
subscript s denoting phasor quantity when no confusion results.

Replacing the time derivative in Eq. (1.34) by (jω)2 yields the scalar wave equation
in phasor representation as

∇2� + k2� = 0 (1.50)
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where k is the propagation constant (in rad/m), given by

k = ω

u
= 2πf

u
= 2π

λ
(1.51)

We recall that Eqs. (1.31) to (1.34) were obtained assuming that ρv = 0 = J. If
ρv 
= 0 
= J, Eq. (1.50) will have the general form (see Prob. 1.4)

∇2� + k2� = g (1.52)

We notice that this Helmholtz equation reduces to:

(1) Poisson’s equation

∇2� = g (1.53)

when k = 0 (i.e., ω = 0 for static case).

(2) Laplace’s equation

∇2� = 0 (1.54)

when k = 0 = g.

Thus Poisson’s and Laplace’s equations are special cases of the Helmholtz equation.
Note that function � is said to be harmonic if it satisfies Laplace’s equation.

Example 1.1
From the divergence theorem, derive Green’s theorem

∫
v

(
U∇2V − V∇2U

)
dv =

∮
S

(
U
∂V

∂n
− V

∂U

∂n

)
· dS

where ∂�
∂n

= ∇� · an is the directional derivation of � along the outward normal to

S.

Solution
In Eq. (1.1), let F = U∇V , then

∫
v

∇ · (U∇V ) dv =
∮
S

U∇V · dS (1.55)

But

∇ · (U∇V ) = U∇ · ∇V + ∇V · ∇U
= U∇2V + ∇U · ∇V
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Substituting this into Eq. (1.55) gives Green’s first identity:∫
v

(
U∇2V + ∇U · ∇V

)
dv =

∮
S

U∇V · dS (1.56)

By interchanging U and V in Eq. (1.56), we obtain∫
v

(
V∇2U + ∇V · ∇U

)
dv =

∮
S

V∇U · dS (1.57)

Subtracting Eq. (1.57) from Eq. (1.56) leads to Green’s second identity or Green’s
theorem: ∫

v

(
U∇2V − V∇2U

)
dv =

∮
S

(U∇V − V∇U) · dS

Example 1.2
Show that the continuity equation is implicit (or incorporated) in Maxwell’s equations.

Solution
According to Eq. (1.36), the divergence of the curl of any vector field is zero. Hence,
taking the divergence of Eq. (1.22d) gives

0 = ∇ · ∇ × H = ∇ · J + ∂

∂t
∇ · D

But ∇ · D = ρv from Eq. (1.22a). Thus,

0 = ∇ · J + ∂ρv

∂t

which is the continuity equation.

Example 1.3
Express:

(a) E = 10 sin(ωt − kz)ax + 20 cos(ωt − kz)ay in phasor form.

(b) Hs = (4 − j3) sin xax + ej10◦
x

az in instantaneous form.

Solution

(a) We can express sin θ as cos(θ − π/2). Hence,

E = 10 cos(ωt − kz− π/2)ax + 20 cos(ωt − kz)ay

= Re
[(

10e−jkze−jπ/2ax + 20e−jkzay
)
ejωt

]

= Re
[
Ese

jωt
]
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Thus,

Es = 10e−jkze−jπ/2ax + 20e−jkzay
= (−j10ax + 20ay

)
e−jkz

(b) Since

H = Re
[
Hse

jωt
]

= Re

[
5 sin xej (ωt−36.87◦)ax + 1

x
ej (ωt+10◦)az

]

=
[

5 sin x cos(ωt − 36.87◦)ax + 1

x
cos(ωt + 10◦)az

]

1.3 Classification of EM Problems

Classifying EM problems will help us later to answer the question of what method
is best for solving a given problem. Continuum problems are categorized differently
depending on the particular item of interest, which could be one of these:

(1) the solution region of the problem,

(2) the nature of the equation describing the problem, or

(3) the associated boundary conditions.

(In fact, the above three items define a problem uniquely.) It will soon become evident
that these classifications are sometimes not independent of each other.

1.3.1 Classification of Solution Regions

In terms of the solution region or problem domain, the problem could be an interior
problem, also variably called an inner, closed, or bounded problem, or an exterior
problem, also variably called an outer, open, or unbounded problem.

Consider the solution region R with boundary S, as shown in Fig. 1.2. If part or all
of S is at infinity, R is exterior/open, otherwise R is interior/closed. For example, wave
propagation in a waveguide is an interior problem, whereas while wave propagation
in free space — scattering of EM waves by raindrops, and radiation from a dipole
antenna — are exterior problems.

A problem can also be classified in terms of the electrical, constitutive properties
(σ, ε, µ) of the solution region. As mentioned in Section 1.2.4, the solution region
could be linear (or nonlinear), homogeneous (or inhomogeneous), and isotropic (or
anisotropic). We shall be concerned, for the most part, with linear, homogeneous,
isotropic media in this text.
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Figure 1.2
Solution region R with boundary S.

1.3.2 Classification of Differential Equations

EM problems are classified in terms of the equations describing them. The equa-
tions could be differential or integral or both. Most EM problems can be stated in
terms of an operator equation

L� = g (1.58)

where L is an operator (differential, integral, or integro-differential), g is the known
excitation or source, and � is the unknown function to be determined. A typical
example is the electrostatic problem involving Poisson’s equation. In differential
form, Eq. (1.58) becomes

−∇2V = ρv

ε
(1.59)

so that L = −∇2 is the Laplacian operator, g = ρv/ε is the source term, and � = V

is the electric potential. In integral form, Poisson’s equation is of the form

V =
∫

ρvdv

4πεr2
(1.60)

so that

L =
∫

dv

4πr2
, g = V, and � = ρv/ε

In this section, we shall limit our discussion to differential equations; integral equa-
tions will be considered in detail in Chapter 5.

As observed in Eqs. (1.52) to (1.54), EM problems involve linear, second-order
differential equations. In general, a second-order partial differential equation (PDE)
is given by

a
∂2�

∂x2
+ b

∂2�

∂x∂y
+ c

∂2�

∂y2
+ d

∂�

∂x
+ e

∂�

∂y
+ f� = g
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or simply

a�xx + b�xy + c�yy + d�x + e�y + f� = g (1.61)

The coefficients, a, b and c in general are functions of x and y; they may also depend
on� itself, in which case the PDE is said to be nonlinear. A PDE in which g(x, y) in
Eq. (1.61) equals zero is termed homogeneous; it is inhomogeneous if g(x, y) 
= 0.
Notice that Eq. (1.61) has the same form as Eq. (1.58), where L is now a differential
operator given by

L = a
∂2

∂x2
+ b

∂2

∂x∂y
+ c

∂2

∂y2
+ d

∂

∂x
+ e

∂

∂y
+ f (1.62)

A PDE in general can have both boundary values and initial values. PDEs whose
boundary conditions are specified are called steady-state equations. If only initial
values are specified, they are called transient equations.

Any linear second-order PDE can be classified as elliptic, hyperbolic, or parabolic
depending on the coefficients a, b, and c. Equation (1.61) is said to be:

elliptic if b2 − 4ac < 0
hyperbolic if b2 − 4ac > 0

parabolic if b2 − 4ac = 0
(1.63)

The terms hyperbolic, parabolic, and elliptic are derived from the fact that the
quadratic equation

ax2 + bxy + cy2 + dx + ey + f = 0

represents a hyperbola, parabola, or ellipse if b2 − 4ac is positive, zero, or negative,
respectively. In each of these categories, there are PDEs that model certain physical
phenomena. Such phenomena are not limited to EM but extend to almost all areas
of science and engineering. Thus the mathematical model specified in Eq. (1.61)
arises in problems involving heat transfer, boundary-layer flow, vibrations, elasticity,
electrostatic, wave propagation, and so on.

Elliptic PDEs are associated with steady-state phenomena, i.e., boundary-value
problems. Typical examples of this type of PDE include Laplace’s equation

∂2�

∂x2
+ ∂2�

∂y2
= 0 (1.64)

and Poisson’s equation

∂2�

∂x2
+ ∂2�

∂y2
= g(x, y) (1.65)

where in both cases a = c = 1, b = 0. An elliptic PDE usually models an interior
problem, and hence the solution region is usually closed or bounded as in Fig. 1.3 (a).
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Figure 1.3
(a) Elliptic, (b) parabolic, or hyperbolic problem.

Hyperbolic PDEs arise in propagation problems. The solution region is usually
open so that a solution advances outward indefinitely from initial conditions while
always satisfying specified boundary conditions. A typical example of hyperbolic
PDE is the wave equation in one dimension

∂2�

∂x2
= 1

u2

∂2�

∂t2
(1.66)

where a = u2, b = 0, c = −1. Notice that the wave equation in (1.50) is not hyper-
bolic but elliptic, since the time-dependence has been suppressed and the equation is
merely the steady-state solution of Eq. (1.34).

Parabolic PDEs are generally associated with problems in which the quantity of
interest varies slowly in comparison with the random motions which produce the
variations. The most common parabolic PDE is the diffusion (or heat) equation in
one dimension

∂2�

∂x2
= k

∂�

∂t
(1.67)

where a = 1, b = 0 = c. Like hyperbolic PDE, the solution region for parabolic
PDE is usually open, as in Fig. 1.3 (b). The initial and boundary conditions typically
associated with parabolic equations resemble those for hyperbolic problems except
that only one initial condition at t = 0 is necessary since Eq. (1.67) is only first order
in time. Also, parabolic and hyperbolic equations are solved using similar techniques,
whereas elliptic equations are usually more difficult and require different techniques.
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Note that: (1) since the coefficients a, b, and c are in general functions of x and y,
the classification of Eq. (1.61) may change from point to point in the solution region,
and (2) PDEs with more than two independent variables (x, y, z, t, . . . ) may not fit
as neatly into the classification above. A summary of our discussion so far in this
section is shown in Table 1.1.

Table 1.1 Classification of Partial Differential Equations
Type Sign of Example Solution region

b2 − 4ac

Elliptic − Laplace’s equation: Closed
�xx +�yy = 0

Hyperbolic + Wave equation: Open
u2�xx = �tt

Parabolic 0 Diffusion equation: Open
�xx = k�t

The type of problem represented by Eq. (1.58) is said to be deterministic, since the
quantity of interest can be determined directly. Another type of problem where the
quantity is found indirectly is called nondeterministic or eigenvalue. The standard
eigenproblem is of the form

L� = λ� (1.68)

where the source term in Eq. (1.58) has been replaced by λ�. A more general version
is the generalized eigenproblem having the form

L� = λM� (1.69)

where M , like L, is a linear operator for EM problems. In Eqs. (1.68) and (1.69),
only some particular values of λ called eigenvalues are permissible; associated with
these values are the corresponding solutions� called eigenfunctions. Eigenproblems
are usually encountered in vibration and waveguide problems where the eigenval-
ues λ correspond to physical quantities such as resonance and cutoff frequencies,
respectively.

1.3.3 Classification of Boundary Conditions

Our problem consists of finding the unknown function � of a partial differential
equation. In addition to the fact that� satisfies Eq. (1.58) within a prescribed solution
region R, � must satisfy certain conditions on S, the boundary of R. Usually these
boundary conditions are of the Dirichlet and Neumann types. Where a boundary has
both, a mixed boundary condition is said to exist.

(1) Dirichlet boundary condition:

�(r) = 0, r on S (1.70)
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(2) Neumann boundary condition:

∂�(r)
∂n

= 0, r on S , (1.71)

i.e., the normal derivative of � vanishes on S.

(3) Mixed boundary condition:

∂�(r)
∂n

+ h(r)�(r) = 0, r on S , (1.72)

where h(r) is a known function and ∂�
∂n

is the directional derivative of � along the
outward normal to the boundary S, i.e.,

∂�

∂n
= ∇� · an (1.73)

where an is a unit normal directed out of R, as shown in Fig. 1.2. Note that the
Neumann boundary condition is a special case of the mixed condition with h(r) = 0.

The conditions in Eq. (1.70) to (1.72) are called homogeneous boundary conditions.
The more general ones are the inhomogeneous:

Dirichlet:

�(r) = p(r), r on S (1.74)

Neumann:

∂�(r)
∂n

= q(r), r on S (1.75)

Mixed:

∂�(r)
∂n

+ h(r)�(r) = w(r), r on S (1.76)

where p(r), q(r), and w(r) are explicitly known functions on the boundary S. For
example, �(0) = 1 is an inhomogeneous Dirichlet boundary condition, and the
associated homogeneous counterpart is �(0) = 0. Also �′(1) = 2 and �′(1) = 0
are, respectively, inhomogeneous and homogeneous Neumann boundary conditions.
In electrostatics, for example, if the value of electric potential is specified on S, we
have Dirichlet boundary condition, whereas if the surface charge (ρs = Dn = ε ∂V

∂n
)

is specified, the boundary condition is Neumann. The problem of finding a function
� that is harmonic in a region is called Dirichlet problem (or Neumann problem) if
� (or ∂�

∂n
) is prescribed on the boundary of the region.

It is worth observing that the term “homogeneous” has been used to mean different
things. The solution region could be homogeneous meaning that σ, ε, and µ are
constant within R; the PDE could be homogeneous if g = 0 so that L� = 0; and the
boundary conditions are homogeneous when p(r) = q(r) = w(r) = 0.

Example 1.4
Classify these equations as elliptic, hyperbolic, or parabolic:
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(a) 4�xx + 2�x +�y + x + y = 0

(b) ex
∂2V

∂x2
+ cos y

∂2V

∂x∂y
− ∂2V

∂y2
= 0 .

State whether the equations are homogeneous or inhomogeneous.

Solution

(a) In this PDE, a = 4, b = 0 = c. Hence

b2 − 4ac = 0 ,

i.e., the PDE is parabolic. Since g = −x − y, the PDE is inhomogeneous.

(b) For this PDE, a = ex, b = cos y, c = −1. Hence

b2 − 4ac = cos2 y + 4ex > 0

and the PDE is hyperbolic. Since g = 0, the PDE is homogeneous.

1.4 Some Important Theorems

Two theorems are of fundamental importance in solving EM problems. These are
the principle of superposition and the uniqueness theorem.

1.4.1 Superposition Principle

The principle of superposition is applied in several ways. We shall consider two
of these.

If each member of a set of functions�n, n = 1, 2, . . . , N , is a solution to the PDE
L� = 0 with some prescribed boundary conditions, then a linear combination

�N = �0 +
N∑
n=1

an�n (1.77)

also satisfies L� = g.
Given a problem described by the PDE

L� = g (1.78)
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subject to the boundary conditions

M1(s) = h1

M2(s) = h2

...

MN(s) = hN , (1.79)

as long asL is linear, we may divide the problem into a series of problems as follows:

L�0 = g L�1 = 0 · · · L�N = 0

M1(s) = 0 M1(s) = h1 · · · M1(s) = 0

M2(s) = 0 M2(s) = 0 · · · M2(s) = 0

...
...

...

MN(s) = 0 MN(s) = 0 · · · MN(s) = hN (1.80)

where �0,�1, . . . , �N are the solutions to the reduced problems, which are easier
to solve than the original problem. The solution to the original problem is given by

� =
N∑
n=0

�n (1.81)

1.4.2 Uniqueness Theorem

This theorem guarantees that the solution obtained for a PDE with some prescribed
boundary conditions is the only one possible. For EM problems, the theorem may
be stated as follows: If in any way a set of fields (E,H) is found which satisfies
simultaneously Maxwell’s equations and the prescribed boundary conditions, this set
is unique. Therefore, a field is uniquely specified by the sources (ρv, J) within the
medium plus the tangential components of E or H over the boundary.

To prove the uniqueness theorem, suppose there exist two solutions (with subscripts
1 and 2) that satisfy Maxwell’s equations

∇ · εE1,2 = ρv (1.82a)

∇ · H1,2 = 0 (1.82b)

∇ × E1,2 = −µ∂H1,2

∂t
(1.82c)

∇ × H1,2 = J + σE1,2 + ε
∂E1,2

∂t
(1.82d)

If we denote the difference of the two fields as7E = E2 −E1 and7H = H2 −H1,
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7E and 7H must satisfy the source-free Maxwell’s equations, i.e.,

∇ · ε7E = 0 (1.83a)

∇ ·7H = 0 (1.83b)

∇ ×7E = −µ∂7H
∂t

(1.83c)

∇ ×7H = σ7E + ε
∂7E
∂t

(1.83d)

Dotting both sides of Eq. (1.83d) with 7E gives

7E · ∇ ×7H = σ |7E|2 + ε∇E · ∂7E
∂t

(1.84)

Using the vector identity

A · (∇ × B) = B · (∇ × A)− ∇ · (A × B)

and Eq. (1.83c), Eq. (1.84) becomes

∇ · (7E ×7H) = −1

2

∂

∂t

(
µ|7H|2 + ε|7E|2

)
− σ |7E|2

Integrating over volume v bounded by surface S and applying divergence theorem to
the left-hand side, we obtain

∮
S

(7E ×7H) · dS = − ∂

∂t

∫
v

[
1

2
ε|7E|2 + 1

2
µ|7H|2

]
dv

−
∫
v

σ |7E| dv (1.85)

showing that 7E and 7H satisfy the Poynting theorem just as E1,2 and H1,2. Only
the tangential components of7E and7H contribute to the surface integral on the left
side of Eq. (1.85). Therefore, if the tangential components of E1 and E2 or H1 and H2
are equal over S (thereby satisfying Eq. (1.27)), the tangential components of7E and
7H vanish on S. Consequently, the surface integral in Eq. (1.85) is identically zero,
and hence the right side of the equation must vanish also. It follows that 7E = 0
due to the second integral on the right side and hence also 7H = 0 throughout the
volume. Thus E1 = E2 and H1 = H2, confirming that the solution is unique.

The theorem just proved for time-varying fields also holds for static fields as a
special case. In terms of electrostatic potential V , the uniqueness theorem may be
stated as follows: A solution to ∇2V = 0 is uniquely determined by specifying
either the value of V or the normal component of ∇V at each point on the boundary
surface. For a magnetostatic field, the theorem becomes: A solution of ∇2A = 0
(and ∇ · A = 0) is uniquely determined by specifying the value of A or the tangential
component of B = (∇ × A) at each point on the boundary surface.
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Problems

1.1 In a coordinate system of your choice, prove that:

(a) ∇ × ∇� = 0,

(b) ∇ · ∇ × F = 0,

(c) ∇ × ∇ × F = ∇(∇ · F)− ∇2F,

where � and F are scalar and vector fields, respectively.

1.2 If U and V are scalar fields, show that
∮
L

U∇V · dl = −
∮
L

V∇U · dl

1.3 Show that in a source-free region (J = 0, ρv = 0), Maxwell’s equations can
be reduced to the two curl equations.

1.4 In deriving the wave equations (1.31) and (1.32), we assumed a source-free
medium (J = 0, ρv = 0). Show that if ρv 
= 0, J 
= 0, the equations become

∇2E − 1

c2

∂2E
∂t2

= ∇(ρv/ε)+ µ
∂J
∂t

,

∇2H − 1

c2

∂2H
∂t2

= −∇ × J

What assumptions have you made to arrive at these expressions?
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1.5 Determine whether the fields

E = 20 sin(ωt − kz)ax − 10 cos(ωt + kz)ay

H = k

ωµo

[−10 cos(ωt + kz)ax + 20 sin(ωt − kz)ay
]
,

where k = ω
√
µoεo, satisfy Maxwell’s equations.

1.6 In free space, the electric flux density is given by

D = D0 cos(ωt + βz)ax

Use Maxwell’s equation to find H.

1.7 In free space, a source radiates the magnetic field

Hs = H0
e−jβρ√

ρ
aφ

where β = ω
√
µ0ε0. Determine Es .

1.8 An electric dipole of lengthL in free space has a radical field given in spherical
system (r, θ, φ) as

Hs = IL

4πr
sin θ

(
1

r
+ jβ

)
e−jβraφ

Find Es using Maxwell’s equations.

1.9 Show that the electric field

Es = 20 sin(kxx) cos(kyy)az ,

where k2
x + k2

y = ω2µ0ε0, can be represented as the superposition of four
propagating plane waves. Find the corresponding Hs field.

1.10 (a) Express Is = e−jz sin πx cosπy in instantaneous form.

(b) Determine the phasor form of V = 20 sin(ωt − 2x)− 10 cos(ωt − 4x)

1.11 For each of the following phasors, determine the corresponding instantaneous
form:

(a) As = (ax + jay)e−2jz

(b) Bs = j10 sin xax + 5e−j12z−π/4az
(c) Cs = 2

j
e−j3x cos 2x + e3x−j4x

1.12 Show that a time-harmonic EM field in a conducting medium (σ >> ωε)

satisfies the diffusion equation

∇2Es − jωµσEs = 0
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1.13 Show that in an inhomogeneous medium, the wave equations become

∇ ×
(

1
jωµ

∇ × Es

)
+ jωεEs = 0 ,

∇ ×
(

1
jωε

∇ × Hs

)
+ jωµHs = 0

1.14 Show that the time-harmonic potential function Vs and As satisfy the following
inhomogeneous wave equation

∇2Vs + k2Vs = −ρvs

ε

∇2As + k2As = −µJs

where k2 = ω2µε.

1.15 Classify the following PDEs as elliptic, parabolic, or hyperbolic.

(a) �xx + 2�xy + 5�yy = 0

(b) (y2 + 1)�xx + (x2 + 1)�yy = 0

(c) �xx − 2 cos x�xy − (3 + sin2 x)�yy − y�y = 0

(d) x2�xx − 2xy�xy + y2�yy + x�x + y�y = 0

1.16 Repeat Prob. 1.15 for the following PDEs:

(a) α
∂2�

∂x2
= β

∂�

∂x
+ ∂�

∂t
(α, β = constant)

which is called convective heat equation.

(b) ∇2φ + λ� = 0

which is the Helmholtz equation.

(c) ∇2�+ [λ− ρ(x)]� = 0

which is the time-independent Schrodinger equation.
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