
Appendix D

Solution of Simultaneous Equations

Application of some numerical methods to EM problems often results in a set of
simultaneous equations



a11 a12 . . . a1n
a21 a22 . . . a2n
...

...

an1 an2 . . . ann





x1
x2
...

xn


 =



b1
b2
...

bn


 (D.1a)

or

[
A
][
X
] = [

B
]

(D.1b)

where [A] is the coefficient matrix, [X] is the column matrix of the unknowns to be
determined, and [B] is the column matrix of constants. Familiarity with the various
techniques for solving Eq. (D.1) is therefore vital. In this appendix, we provide a
brief coverage of direct and iterative procedures for solving Eq. (D.1); direct methods
are more versatile for linear problems, while iterative methods are suitable for non-
linear problems. We also consider various techniques for solving eigenvalue systems
[A][X] = λ[X].

D.1 Elimination Methods

Elimination methods constitute the simplest direct approach to the solution of a
set of simultaneous equations. They usually involve successive elimination of the
unknowns by combining equations. Such methods include Gauss’s method, Gauss-
Jordan, Cholesky’s or Crout’s method, and the square-root method. Only Gauss’s
and Cholesky’s methods will be discussed. The reader should consult [1]–[4] for the
treatment of other methods.

© 2001 by CRC PRESS LLC

D.1.1 Gauss’s Method

This simple method involves eliminating one unknown at a time and proceeding
with the remaining equations. This leads to a set of simultaneous equations in triangu-
lar form from which each unknown is determined by back-substitution. To describe
this method, consider Eq. (D.1b), i.e.,

a11x1 + a12x2 + · · · + a1nxn = b1 (D.2a)

a21x1 + a22x2 + · · · + a2nxn = b2 (D.2b)

...

an1x1 + an2x2 + · · · + annxn = bn (D.2c)

We divide Eq. (D.2a) by a11 to give

x1 + a′
12x2 + · · · + a′

1nxn = b′
1 (D.3)

where the primes denote that the coefficients are new. We multiply Eq. (D.3) by −ai1
for i = 2, 3, . . . , n and add Eq. (D.3) to the ith equation in (D.2) to eliminate x1 from
other equations so that Eq. (D.2) becomes

x1 + a′
12x2 + · · · + a′

1nxn = b′
1 (D.4a)

a′
22x2 + · · · + a′

2nxn = b′
2 (D.4b)

...

a′
n2x2 + · · · + a′

nnxn = b′
n (D.4c)

Equation (D.2a) used to eliminate x1 from other equations is called the pivot equation
and a11 is called the pivot coefficient. We now use Eq. (D.4b) as the pivot equation and
we take similar steps to eliminate x2 from all equations following the pivot equation.
Continuing this reduction procedure eventually leads to an equivalent triangular set
of equations:

x1 + u12x2 + u13x3 + · · · + u1nxn = c1

x2 + u23x2 + · · · + u2nxn = c2

x3 + · · · + u3nxn = c3 (D.5)
...

xn = cn

This completes the first phase known as forward elimination in the Gauss algorithm,
and the system in Eq. (D.5) is said to be in upper triangular form. The second phase
known as back substitution involves solving for the unknowns in Eq. (D.5) by starting

© 2001 by CRC PRESS LLC

at the bottom. That is,

xn = cn
xn−1 = cn−1 − un−1,nxn (D.6)

...

x1 = c1 − u12x2 − · · · − u1nxn

In summary, this algorithm can be stated as:

Forward elimination

a′
kj = akj /akk, b′

k = bk/akk, j = k, k + 1, . . . , n

a′
ij = aij − aika′

kj , i = k + 1, . . . , n (D.7a)

b′
i = bi − aikb′

k, i = k + 1, . . . , n

Backward substitution

xn = bn, for the last row

xi = bi −
n∑

j=i+1

aij xj , i = n− 1, . . . , 1 (D.7b)

Based on the idea outlined above, a general FORTRAN subroutine for solving a
set of simultaneous equations by Gaussian elimination is shown in Fig. D.1.

D.1.2 Cholesky’s Method

This method, also known as Crout’s method or the method of matrix decomposition,
involves determining a lower triangular matrix that will reduce the original system in
Eq. (D.1) to a unit upper triangular matrix. If the original system[

A
][
X
] = [

B
]

(D.1a)

or 

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...

an1 an2 . . . ann





x1
x2
...

xn


 =



b1
b2
...

bn


 (D.1b)

can be redefined in the upper unit triangular matrix [T] such that[
T
][
X
] = [

C
]

(D.8a)

© 2001 by CRC PRESS LLC

Figure D.1
Gauss elimination method of solving [A][X] = [B].

or




1 T12 . . . T1n
0 1 . . . T2n
...

...

0 0 . . . 1





x1
x2
...

xn


 =



c1
c2
...

cn


 (D.8b)

the unknown xi can be obtained by back substitution. Let [A] be a product of an
upper unit triangular matrix [T] and a lower triangular matrix [L], i.e.,[

L
][
T
] = [

A
]

(D.9)

Since [
L
][
TX − C] = 0 = [

AX − B] , (D.10)

© 2001 by CRC PRESS LLC

it follows that [
L
][
C
] = [

B
]

(D.11)

For computational reasons, it is convenient to work with the augmented form of the
matrices. The augmented matrix is obtained by adding the column vector of constants
to the square coefficient matrix. Equations (D.8) and (D.11) may be combined to give




a11 a12 . . . a1n
... b1

a21 a22 . . . a2n
... b2

...
...

an1 an2 . . . ann
... bn




=



L11 0 . . . 0
L21 L22 . . . 0
...

Ln1 Ln2 . . . Lnn







1 T12 . . . T1n
... c1

0 1 . . . T2n
... c2

...

0 0 . . . 1
... cn




(D.12a)

or

[
A
... B
] = [

L
][
T
... C
]

(D.12b)

The elements of [L], [T], and [C] can be defined in terms of [A] and [B] as follows [1,
2, 5]:

Lij = aij −
j−1∑
k=1

LikTkj , i ≥ j, i = 1, 2, . . . , n

Lij = ai1, j = 1

Tij = 1

Lii

(
aij −

i−1∑
k=1

LikTkj

)
, i < j, j = 2, 3, . . . , n (D.13)

Tij = aij /a11, i = 1

ci = 1

Lii

(
bi −

i−1∑
k=1

Likck

)
, i = 2, 3, . . . , n

c1 = b1/L11

The unknown xi are obtained by back substitution as follows:

xn = cn
xi = ci −

n∑
j=i+1

Tij xj , i = 1, 2, . . . , n− 1 (D.14)

© 2001 by CRC PRESS LLC

Cholesky’s method can easily be applied in calculating the determinant of [A].
Since

det
[
A
] = det

[
L
]

det
[
T
]

(D.15)

and det[T] = 1 due to the fact that Tii = 1, it follows that

det
[
A
] = det

[
L
] = L11L22 . . . Lnn

or

det
[
A
] =

n∏
i=1

Lii (D.16)

Figure D.2 shows a subroutine based on Cholesky’s method of solving a set of simul-
taneous equations.

D.2 Iterative Methods

The direct or elimination method for solving a system of simultaneous equations
can be used for n = 25 to 60. This number can be greater if the system is well
conditioned or the matrix is sparse. For very large systems, say n = 100 or even
1000, elimination methods become time-consuming and prove inadequate due to
roundoff error. For these types of problems, indirect or iterative methods provide an
alternative.

D.2.1 Jacobi’s Method

This is the simplest iterative method. If the system in Eq. (D.1) is rearranged so
that the ith equation is explicit in xi , we obtain

x1 = 1

a11
[b1 − a12x2 − a13x3 − · · · − a1nxn] (D.16a)

x2 = 1

a22
[b2 − a21x1 − a23x3 − · · · − a2nxn] (D.16b)

...

xn = 1

ann

[
bn − an1x1 − an2x2 − · · · − an,n−1xn−1

]
(D.16c)

assuming that the diagonal elements are all nonzero. We start the solution process
by using guesses for the x’s, say x1 = x2 = · · · = xn = 0. The first equation can
be solved for x1, the second for x2, and so on. If we denote the estimates after the

© 2001 by CRC PRESS LLC

Figure D.2
Cholesky’s elimination method of solving [A][X] = [B].

© 2001 by CRC PRESS LLC

kth iteration as xk1 , x
k
2 , . . . , x

k
n , the estimates after (k+ 1)th iteration can be obtained

from Eq. (D.16) as

xk+1
i = 1

aii


bi − n∑

j=1,j 	=1

aij x
k
j


 , i = 1, 2, . . . , n (D.17)

The iteration process is continued until values of xi at two successive iterations are
within an allowable prescribed deviation.

Convergence is measured in terms of the change in xi from the kth iteration to the
next. If we compute

di =
∣∣∣∣∣x
k+1
i − xki
xk+1
i

∣∣∣∣∣ · 100% (D.18)

for each xi , convergence can be checked using the criterion

di < εs (D.19)

where εs is a specified small quantity. A better test would be to compute

d =

n∑
i=1

∣∣∣xk+1
i − xki

∣∣∣
n∑
i=1

∣∣∣xk+1
i

∣∣∣
· 100% (D.20)

and require that d < εs .

D.2.2 Gauss-Seidel Method

This is the most commonly used iterative method. In Jacobi’s method the entire
set of xi from the kth iteration is used in calculating the new set during the (k + 1)th
iteration, whereas the most recently calculated value of each variable is used at each
step in the Gauss-Seidel method. This makes the Gauss-Seidel method converge
more rapidly than (about twice as) Jacobi’s method and is always used in preference
to it. Instead of Eq. (D.17), we use

xk+1
i = 1

aii


bi − i−1∑

j=1

aij x
k+1
j −

n∑
j=i+1

aij x
k
j


 , i = 1, 2, . . . , n (D.21)

A computer program based on this method is displayed in Fig. D.3.

D.2.3 Relaxation Method

This is a slight modification of the Gauss-Seidel method and is designed to enhance
convergence. If xki is added to the right-hand side of Eq. (D.21) and (aiixki)/aii is

© 2001 by CRC PRESS LLC

Figure D.3
Gauss-Seidel iterative method of solving [A][X] = [B].

subtracted from it, we obtain

xk+1
i = xki + 1

aii


bi − i−1∑

j=1

aij x
k+1
j −

n∑
j=i
aij x

k
j


 , i = 1, 2, . . . , n (D.22)

The second term on the right-hand side can be regarded as a correction term. The
correction term tends to zero as convergence is approached. If this term is multiplied
by ω, Eq. (D.22) becomes

xk+1
i = xki + ω

aii


bi − i−1∑

j=1

aij x
k+1
j −

n∑
j=i
aij x

k
j


 , i = 1, 2, . . . , n (D.23)

© 2001 by CRC PRESS LLC

The relaxation factor ω is selected such that 1 < ω < 2. The choice of a proper
value ofω is problem dependent and is often determined by trial and error. The added
weight ofω is intended to improve the estimate by pushing it closer to the exact value.

D.2.4 Gradient Methods

The iterative methods considered above may be broadly classified as stationary
while the ones to be presented now are gradient (or nonstationary) methods. The
two common gradient methods are the steepest method and conjugate gradients
method [6]–[8]. A major advantage gradient methods have over stationary meth-
ods is that convergence is faster; hence gradient methods are particularly useful when
the number of simultaneous equations is very large.

A set of n simultaneous equations may be solved by finding the position of the
minimum of an error function defined over an n-dimensional space. In each step of
a gradient method, a trial set of values for the variables is used to generate a new set
corresponding to a lower value of the error function. If
X is the trial vector, the vector
residual is

R = B − A
X (D.24)

where A is real, symmetric, and positive definite. If we define the error function as

e = RtA−1R , (D.25)

then

e =
XtA
X − 2Bt
X + BtA−1B (D.26)

showing that e is quadratic in
X.
Starting from an arbitrary point Xo, we locate a sequence of points

Xk+1 = Xk + αkDk (D.27)

which are successively closer toX, whereXminimizes e in Eq. (D.26). The parameter
αk is proportional to the distance betweenXi andXi+1 along the direction vectorDk .
Substituting Eq. (D.27) into Eq. (D.26) and setting ∂e/∂αk equal to zero gives

αk = DtkRk

DtkADk
(D.28)

Both the methods of steepest descent and conjugate gradients use Eq. (D.28) but differ
in the choice of Dk .

In the method of descent,Dk is taken as the direction of maximum gradient of e at
Xk . This direction is proportional to Xk so that the iterative algorithm has the form:

(i) select an arbitrary X0

(ii) compute R0 = B − AX0

© 2001 by CRC PRESS LLC

(iii) determine successively

Uk = ARk
αk = RtkRk

RtkUk
(D.29)

Xk+1 = Xk + αkRk
Rk+1 = Rk − αkUk

(iv) repeat step (iii) until residual vector (RT R) becomes sufficiently small.

In the method of conjugate gradients, Dk are selected as n vectors Pk which are
mutually conjugate. The vectors Pk are conjugate or orthogonal to A, i.e.,

P tkAPk = 0, i 	= j
	= 0, i = j (D.30)

Thus the conjugate gradients algorithm is as follows:

(i) select an arbitrary X0

(ii) set P0 = R0 = B − AX0

(iii) determine successively

Uk = ARk
αk = P tkRk

P tkUk

Xk+1 = Xk + αkRk (D.31)

Rk+1 = Rk − αkUk
βk = −R

t
k+1Uk

P tkUk

Pk+1 = Rk + βkPk

(iv) repeat step (iii) until k = n − 1 or the residual vector (RT R) becomes suffi-
ciently small.

This algorithm is guaranteed to yield the true solution in no more than n iterations—a
condition known as quadratic convergence. Because of this, the conjugate gradients
method has the advantage of an iterative scheme in that the roundoff error is limited
only to the final step of the solution and also the advantage of a direct method in that
it converges to the exact solution in a finite number of steps.

The subroutine in Fig. D.4 applies the conjugate gradients method to solve a given
set of simultaneous equations. Typical areas where the conjugate gradient methods
have been applied in EM can be found in [9]–[12].

© 2001 by CRC PRESS LLC

Figure D.4
This subroutine applies the conjugate gradients method to solve [A][X] = [B]
(Continued).

© 2001 by CRC PRESS LLC

D.3 Matrix Inversion

If [A] is a square matrix, there is another matrix [A]−1, called the inverse of [A],
such that [

A
][
A
]−1 = [

A
]−1[

A
] = [

I
]

(D.32)

where I is the identity or unit matrix. Matrix inversion can be used to solve a set of
simultaneous equations in Eq. (D.1) as

[
X
] = [

A
]−1[

B
]

(D.33)

The solution of a system of simultaneous equations by matrix inversion and multi-
plication is most valuable when several systems are to be solved, all of which have
the same coefficient matrix but different column matrices of constants. This situation
requires calculating the inverse matrix only once and using it as a premultiplier of
each of the column matrices of constants [2, 13].

The inversion of matrices is closely related to the solution of sets of simultaneous
equations. The inverse of [A] can be determined from Eq. (D.32). If we let [C] =
[A]−1, then [

A
][
C
] = [

I
]

(D.34a)

or 

a11 a12 . . . a1n
a21 a22 . . . a2n
...

an1 an2 . . . ann





c11 c12 . . . c1n
c21 c22 . . . c2n
...

cn1 cn2 . . . cnn


 =




1 0 . . . 0
0 1 . . . 0
...

0 0 . . . 1


 (D.34b)

This may be regarded as n sets of n simultaneous equations with identical coefficient
matrix. The ith set of n simultaneous equations, for example, is



a11 a12 . . . a1n
a21 a22 . . . a2n
...

ani ani . . . ani
...

an1 an2 . . . ann







c1i
c2i
...

cii
...

cni




=




0
0
...

1
...

0




(D.35)

Thus, the inversion of [A] may be accomplished by solving n sets of equations like
Eq. (D.35). A common approach for matrix inversion is applying elimination method,
with or without pivotal compensation. This implies that any elimination technique

© 2001 by CRC PRESS LLC

(Gauss, Gauss-Jordan, or Cholesky’s method) can be modified to calculate an inverse
matrix. Here we apply the Gauss-Jordan elimination method.

To apply the Gauss-Jordan method, we first augment the coefficient matrix by the
identity matrix to obtain

[
A
... I
] =




a11 a12 . . . a1n
... 1 0 . . . 0

a21 a22 . . . a2n
... 0 1 . . . 0

...
...
...

an1 an2 . . . ann
... 0 0 . . . 1




(D.36)

The goal is to transform this augmented matrix to another augmented matrix of the
form

[
I
... C
] =




1 0 . . . 0
... c11 c12 . . . c1n

0 1 . . . 0
... c21 c22 . . . c2n

...
...
...

0 0 . . . 1
... cn1 cn2 . . . cnn




(D.37)

where [C] is the inverse of [A]. The transformation is achieved using the Gauss-Jordan
method, which involves applying the following equations in the order listed [2]:

a′
kj = akj /akk, j = 1, 2, . . . , n, j 	= k
a′
kk = 1/akk,

a′
ij = aij − aika′

kj , i = 1, 2, . . . , n, i 	= k (D.38)

j = 1, 2, . . . , n, j 	= k
a′
ik = −aika′

kk, i = 1, 2, . . . , n, i 	= k
We apply Eq. (D.38) for k = 1, 2, . . . , n. A computer program applying Eq. (D.38)
is presented in Fig. D.5. An iterative method of correcting the elements of the inverse
matrix is available in [14].

D.4 Eigenvalue Problems

The nature of these problems is discussed in Section 1.3. Here we are concerned
with the so-called standard eigenproblems

[A− λI][X] = 0 (D.39)

© 2001 by CRC PRESS LLC

Figure D.5
Matrix inversion using Gauss-Jordan elimination method.

or the generalized eigenproblem

[A− λB][X] = 0 (D.40)

To show that Eqs. (D.39) and (D.40) are solved in the same way, we premultiply
Eq. (D.40) by B−1 to obtain

[B−1A− λI][X] = 0 (D.41)

Assuming C = B−1A gives

[C − λI][X] = 0 (D.42)

© 2001 by CRC PRESS LLC

showing that Eq. (D.39) is a special case of Eq. (D.40) in which B = I . Thus, the
procedure for solving Eq. (D.39) applies to Eq. (D.40) or (D.42).

The eigenvalue problems of Eqs. (D.39) and (D.40) are solved by either direct or
indirect methods. In direct methods, such as Jacobi’s method, the relevant matrix
elements are stored in the computer, and an explicit procedure is used to obtain some
or all of the eigenvalues λ1, λ2, . . . , λn and eigenvalues X1, X2, . . . , Xn. Indirect
methods are basically iterative, and the matrix elements are usually generated rather
than stored.

D.4.1 Iteration (or Power) Method

The most commonly used iterative method is the power method. The method is
suitable in situations where either the greatest or the least eigenvalue is required.
Suppose that one of the eigenvalues of A, say λ1, satisfies the condition

|λ1| > |λi | , i 	= 1 , (D.43)

then |λ1| is said to be the dominant eigenvalue of A. In many applications, the
dominant eigenvalue is the most important and is probably the only eigenvalue we
are interested in. The iteration method is specifically used for finding the dominant
eigenvalues.

The iterative procedure is essentially based on the condition that should a trial vector
[X]i be assumed, an approximate eigenvalue and a new trial eigenvector [X]i+1 can
be determined from Eq. (D.39) or Eq. (D.40). To find the largest eigenvalue |λ1|, we
rewrite Eq. (D.39) as

[A][X] = λ[X] (D.44)

and follow these steps [2]:

(1) Assume a trial vector [X]0 = (x1, x2, . . . , xn), e.g., [X]0 = (1, 1, . . . , 1). Sub-
stituting [X]0 to the left-hand side of Eq. (D.44) gives the first approximation
to the corresponding eigenvector, i.e.,

λ[X]1 = (λx1, λx2, . . . , λxn)

(2) Normalize the new vector λ[X] by dividing it by the magnitude of its first com-
ponent or by dividing the vector [X] by the magnitude of the first component.

(3) Substitute the normalized vector into the left-hand side of Eq. (D.44) and obtain
a new approximate eigenvector.

(4) Repeat steps (2) and (3) until the components of the new and previous eigen-
vectors differ by some prescribed tolerance. The normalizing factor will be the
largest eigenvalue λ1 while [X] is the associated eigenvector.

© 2001 by CRC PRESS LLC

To find the smallest eigenvalue, we first premultiply Eq. (D.44) by the inverse of
[A] to obtain

[X] = λ[A]−1[X]
or

[A]−1[X] = 1

λ
[X] (D.45)

Thus the iteration formula becomes

[A]−1[X]i = 1

λ
[X]i+1 (D.46)

In this form, the iteration converges to the largest value 1/λ, which corresponds to
the smallest eigenvalue λ of [A].

Once the largest eigenvalue is found, the method can be used to obtain the next
largest eigenvalue by transforming [A] to another matrix possessing only the remain-
ing eigenvalues [2]. This so-called matrix deflation procedure assumes that [A] is
symmetric. The matrix deflation is continued until all the eigenvalues have been
extracted. Error propagation from one stage of the deflation to the next leads to in-
accurate results, specially for large eigenproblems. Jacobi’s method, to be discussed
in the next section, is recommended for large eigenproblems.

The subroutine in Fig. D.6 is useful for finding the largest eigenvalues of a matrix.

D.4.2 Jacobi’s Method

Jacobi’s method is perhaps the most reliable method for solving eigenvalue prob-
lems. Its major advantage is that it finds all eigenvalues and eigenvectors simultane-
ously with excellent accuracy.

The method transforms a symmetric matrix [A] into a diagonal matrix having the
same eigenvalues as [A]. This is achieved by eliminating one pair of off-diagonal
elements of [A] at a time. Given

[A][X] = λ[X] , (D.47)

let λ1, λ2, . . . , λn be the eigenvalues and [V1], [V2], . . . , [Vn] the corresponding
eigenvectors. Then, [

A
][
V1
] = λ1

[
V1
][

A
][
V2
] = λ2

[
V2
]

...[
A
][
Vn
] = λ1

[
Vn
]

(D.48)

or simply

[A][V] = [V][λ] (D.49)

© 2001 by CRC PRESS LLC

Figure D.6
Subroutine for finding the largest eigenvalue of equation [A][X] = LAMBDA[X]
(Continued).

© 2001 by CRC PRESS LLC

Figure D.6
(Cont.) Subroutine for finding the largest eigenvalue of equation [A][X] =
LAMBDA[X].

where

[V] = [[
V1
]
,
[
V2
]
, . . . ,

[
Vn
]]

(D.50a)

[λ] =



λ1 0 . . . 0
0 λ2 . . . 0
...
...

...

0 0 . . . λn


 (D.50b)

From the theory of matrices, if [A] is symmetric, [V] is orthogonal, i.e.,

[V]t = [V]−1 (D.51)

hence, premultiplying Eq. (D.49) by [V]t leads to

[V]t [A][V] = [λ] (D.52)

signifying that the eigenvalues of [V]t [A][V], which is known as the orthogonal
transformation of [A], are the same as those of [A]. Thus the problem of finding the
eigenvalues is reduced to finding the [V] matrix.

The [V] matrix is constructed iteratively by using unitary matrix (or plane rotation
matrix) [R]. If we let[

A1
] = [

A
]

[
A2
] = [

R1
]t [
A1
][
R1
]

[
A3
] = [

R2
]t [
A2
][
R2
] = [

R2
]t [
R1
]t [
A
][
R1
][
R2
]

...[
Ak
] = [

Rk−1
]t
. . .
[
R1
]t [
A
][
R1
]
. . .
[
Rk−1

]
, (D.53)

then as k → ∞ [
Ak
] → [

λ
][

R1
][
R2
]
. . .
[
Rk−1

] → [
V
]

(D.54)

© 2001 by CRC PRESS LLC

The unitary transformation matrix [R] eliminates the pair of equal elements apq and
aqp. It is given by [1, 2, 7]

p q

[
Rk
] =




1
1

cos θ − sin θ
1

sin θ cos θ
1



p

q

(D.55a)

i.e.,

Rqq = Rpp = cos θ

−Rpq = Rqp = sin θ

Rii = 1, i 	= p, q
Rij = 0, elsewhere (D.55b)

The choice of θ in the transformation matrix must be such that new elements a′
pq =

a′
qp = 0, i.e.,

a′
pq = (−app + aqq

)
cos θ sin θ + apq

(
cos2 θ − sin2 θ

)
= 0 (D.56)

Hence

tan 2θ = 2apq
app − aqq , −45◦ < θ < 45◦ (D.57)

An alternative manipulation of Eq. (D.56) gives

cos θ =


√
(app − aqq)2 + 4a2

pq + (app − aqq)
2
√
(app − aqq)2 + 4a2

pq




1/2

(D.58a)

sin θ = apq√
(app − aqq)2 + 4a2

pq cos θ
(D.58b)

Notice that Eq. (D.53) requires an infinite number of transformations because the
elimination of elements apq and aqp in one step will in general undo the elimination of
previously treated elements in the same row or column. However, the transformation
converges rapidly and ceases when all the off-diagonal elements become negligible
in magnitude.

The program in Fig. D.7 determines all the eigenvalues and eigenvectors of sym-
metric matrices employing Jacobi’s method.

© 2001 by CRC PRESS LLC

Figure D.7
Subroutine for finding all the eigenvalues and eigenvectors of equation [A][X] =
LAMBDA[x] (Continued.)

© 2001 by CRC PRESS LLC

Figure D.7
(Cont.) Subroutine for finding all the eigenvalues and eigenvectors of equation
[A][X] = LAMBDA[x].

© 2001 by CRC PRESS LLC

References

[1] A.W. Al-Khafaji and J.R. Tooley, Numerical Methods in Engineering Practice.
New York: Rinehart and Winston, 1986, pp. 84–159, 203–270.

[2] M.L. James et al., Applied Numerical Methods for Digital Computation. 3rd
ed., New York: Harper & Row, 1985, pp. 146–298.

[3] S.A. Hovanessian and L.A. Pipes, Digital Computer Methods in Engineering.
New York: McGraw-Hill, 1969, pp. 1–48.

[4] W. Cheney and D. Kincaid, Numerical Mathematics and Computing, 2nd ed.,
Monterey, CA: Brooks/Cole, 1985, pp. 201–257.

[5] R.L. Ketter and S.P. Prawel, Modern Methods of Engineering Computation.
New York: MacGraw-Hill, 1969, pp. 66–117.

[6] A. Ralston and H.S. Wilf (eds.), Mathematical Methods for Digital Computers.
New York: John Wiley, 1960, pp. 62–72.

[7] A. Jennings, Matrix Computation for Engineers and Scientists. New York: John
Wiley, 1977, pp. 182–222, 250–254.

[8] J.C. Nash, Compact Numerical Methods for Computers: Linear Algebra and
Function Minimization. New York: John Wiley, 1979, pp. 195–199.

[9] T.K. Sarkar, et al., “A limited survey of various conjugate gradient methods for
solving complex matrix equations arising in electromagnetic wave interaction,”
Wave Motion, vol. 10, no. 6, 1988, pp. 527–546.

[10] A.F. Peterson and R. Mittra, “Method of conjugate gradients for the numerical
solution of large-body electromagnetic scattering problems,” J. Opt. Soc. Am.,
Pt. A, vol. 2, no. 6, June 1985, pp. 971–977.

[11] T.K. Sarkar, “Application of the Fast Fourier transform and the conjugate gradi-
ent method for efficient solution of electromagnetic scattering from both elec-
trically large and small conducting bodies,” Electromagnetics, vol. 5, 1985,
pp. 99–122.

[12] D.T. Borup and O.P. Gandhi, “Calculation of high-resolution SAR distributions
in biological bodies using the FFT algorithm and conjugate gradient method,”
IEEE Trans. Micro. Theo. Tech., vol. MTT-33, no. 5, May 1985, pp. 417–419.

[13] R.W. Southworth and S.L. Deleeuw, Digital Computation and Numerical Meth-
ods. New York: MacGraw-Hill, 1965, pp. 247–251.

[14] S. Hovanessian, Computational Mathematics in Engineering. Lexington, MA:
Lexington Books, 1976, p. 25.

© 2001 by CRC PRESS LLC

	Numerical Techniques in Electromagnetics
	Contents
	Appendix D
	D.1 Elimination Methods
	D.1.1 Gauss’s Method
	D.1.2 Cholesky’s Method

	D.2 Iterative Methods
	D.2.1 Jacobi’s Method
	D.2.2 Gauss-Seidel Method
	D.2.3 Relaxation Method
	D.2.4 Gradient Methods

	D.3 Matrix Inversion
	D.4 Eigenvalue Problems
	D.4.1 Iteration (or Power) Method
	D.4.2 Jacobi’s Method

	References

