
Chapter 9

Method of Lines

“Prejudice is the child of ignorance.” William Hazlitt

9.1 Introduction

The method of lines (MOL) is a well-established numerical technique (or rather a
semianalytical method) for the analysis of transmission lines, waveguide structures,
and scattering problems. The method was originally developed by mathematicians
and used for boundary value problems in physics and mathematics (e.g., [1]–[5]).
A review of these earlier uses (1930–1965) of MOL is found in Liskovets [6]. The
method was introduced into the EM community around 1980 and further developed
by Pregla et al. [7]–[14] and other researchers. Although the formulation of this
modern application is different from the earlier approach, the basic principles are the
same.

The method of lines is regarded as a special finite difference method but more
effective with respect to accuracy and computational time than the regular finite
difference method. It basically involves discretizing a given differential equation in
one or two dimensions while using analytical solution in the remaining direction.
MOL has the merits of both the finite difference method and analytical method; it
does not yield spurious modes nor does it have the problem of “relative convergence.”

Besides, the method of lines has the following properties that justify its use:

(a) Computational efficiency: the semianalytical character of the formulation leads
to a simple and compact algorithm, which yields accurate results with less
computational effort than other techniques.

(b) Numerical stability: by separating discretization of space and time, it is easy
to establish stability and convergence for a wide range of problems.

(c) Reduced programming effort: by making use of the state-of-the-art well doc-
umented and reliable ordinary differential equations (ODE) solvers, program-
ming effort can be substantially reduced.
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(d) Reduced computational time: since only a small amount of discretization lines
are necessary in the computation, there is no need to solve a large system of
equations; hence computing time is small.

To apply MOL usually involves the following five basic steps:

• partitioning the solution region into layers

• discretization of the differential equation in one coordinate direction

• transformation to obtain decouple ordinary differential equations

• inverse transformation and introduction of the boundary conditions

• solution of the equations

We begin to apply these steps to the problem of solving Laplace’s equation. Since
MOL involves many matrix manipulations, it is expedient that all computer codes in
chapters are written in Matlab.

9.2 Solution of Laplace’s Equation

Although the method of lines is commonly used in the EM community for solving
hyperbolic (wave equation), it can be used to solve parabolic and elliptic equations [1],
[15]–[18]. In this section, we consider the application of MOL to solve Laplace’s
equation (elliptic problem) involving two-dimensional rectangular and cylindrical
regions.

9.2.1 Rectangular Coordinates

Laplace’s equation in Cartesian system is

∂2V

∂x2
+ ∂2V

∂y2
= 0 (9.1)

Consider a two-dimensional solution shown in Fig. 9.1. The first step is discretization
of the x-variable. The region is divided into strips by N dividing straight lines (hence
the name method of lines) parallel to the y-axis. Since we are discretizing along x,
we replace the second derivative with respect to x with its finite difference equivalent.
We apply the three-point central difference scheme,

∂2Vi

∂x2
= Vi+1 − 2Vi + Vi−1

h2
(9.2)
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Figure 9.1
Illustration of discretization in the x-direction.

where h is the spacing between discretized lines, i.e.,

h = �x = a

N + 1
(9.3)

Replacing the derivative with respect to x by its finite difference equivalent, Eq. (9.1)
becomes

∂2Vi

∂y2
+ 1

h2

[
Vi+1(y) − 2Vi(y) + Vi−1(y)

] = 0 (9.4)

Thus the potential V in Eq. (9.1) can be replaced by a vector of size N , namely

[V ] = [V1, V2, . . . , VN ]t (9.5a)

where t denotes the transpose,

Vi(y) = V (xi, y), i = 1.2, . . . , N (9.5b)

and xi = i�x. Substituting Eqs. (9.4) and (9.5) into Eq. (9.1) yields

∂2 [V (y)]

∂y2
− 1

h2 [P ] [V (y)] = [0] (9.6)
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where [0] is a zero column vector and [P ] is an N×N tridiagonal matrix representing
the discretized form of the second derivative with respect to x.

[P ] =




p� −1 0 . . . 0
−1 2 −1 . . . 0

. . .
. . .

. . .

0 . . . −1 2 −1
0 . . . 0 −1 pr


 (9.7)

All the elements of matrix [P ] are zeros except the tridiagonal terms; the elements
of the first and the last row of [P ] depend on the boundary conditions at x = 0 and
x = a. p� = 2 for Dirichlet boundary condition and p� = 1 for Neumann boundary
condition. The same is true of pr .

The next step is to analytically solve the resulting equations along the y coordinate.
To solve Eq. (9.6) analytically, we need to obtain a system of uncoupled ordinary
differential equations from the coupled equations (9.6). To achieve this, we define
the transformed potential [�V ] by letting[

V
] = [

T
][�V ]

(9.8)

and requiring that [
T

]t [
P

][
T

] = [
λ2] (9.9)

where [λ2] is a diagonal matrix and [T ]t is the transpose of [T ]. [λ2] and [T ] are
eigenvalue and eigenvector matrices belonging to [P ]. The transformation matrix
[T ] and the eigenvalue matrix [λ2] depend on the boundary conditions and are given
in Table 9.1 for various combinations of boundaries. It should be noted that the

Table 9.1 Elements of Transformation Matrix [T ] and Eigenvalues

Left Right
boundary boundary Tij λi

Dirichlet Dirichlet
√

2
N+1 sin ijπ

N+1 , [TDD] 2 sin iπ
2(N+1)

Dirichlet Neumann
√

2
N+0.5 sin i(j−0.5)π

N+0.5 , [TDN ] 2 sin (i−0.5)π
2N+1

Neumann Dirichlet
√

2
N+0.5 cos (i−0.5)(j−0.5)π

N+0.5 , [TND] 2 sin (i−0.5)π
2N+1

Neumann Neumann
√

2
N

cos (i−0.5)(j−1)π
N

, j > 1 , [TNN ] 2 sin (i−1)π
2N

1√
N

, j = 1

Note: where i, j = 1, 2, . . . , N and subscripts D and N are for Dirichlet and
Neumann conditions, respectively.
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eigenvector matrix [T ] has the following properties:

[T ]−1 = [T ]t

[T ] [T ]t = [T ]t [T ] = [I ] (9.10)

where [I ] is an identity matrix. Substituting Eq. (9.8) into Eq. (9.6) gives

∂2
[
T

][�V ]
∂y2

− 1

h2

[
P

][
T

][�V ] = [
0
]

Multiplying through by [T ]−1 = [T ]t yields(
∂2

∂y2
− 1

h2

[
λ2]) [�V ] = [

0
]

(9.11)

This is an ordinary differential equation with solution

�Vi = Ai cosh αiy + Bi sinh αiy (9.12)

where αi = λi/h.
Thus, Laplace’s equation is solved numerically using a finite difference scheme in

the x-direction and analytically in the y-direction. However, we have only demon-
strated three out of the five basic steps for applying MOL. There remain two more
steps to complete the solution: imposing the boundary conditions and solving the
resulting equations. Imposing the boundary conditions is problem dependent and
will be illustrated in Example 9.1. The resulting equations can be solved using the
existing packages for solving ODE or developing our own codes in Fortran, Matlab,
C, or any programming language. We will take the latter approach in Example 9.1.

Example 9.1
For the rectangular region in Fig. 9.1, let

V (0, y) = V (a, y) = V (x, 0) = 0 , V (x, b) = 100

and a = b = 1. Find the potential at (0.25, 0.75), (0.5, 0.5), (0.75, 0.25).

Solution
In this case, we have Dirichlet boundaries at x = 0 and x = 1, which are already
indirectly taken care of in the solution in Eq. (9.12). Hence, from Table 9.1,

λi = 2 sin
iπ

2(N + 1)
(9.13)

and

Tij =
√

2

N + 1
sin

ijπ

N + 1
(9.14)
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Let N = 15 so that h = �x = 1/16 and x = 0.25, 0.5, 0.75 will correspond to
i = 4, 8, 12, respectively.

By combining Eqs. (9.8) and (9.12), we obtain the required solution. To get con-
stants Ai and Bi , we apply boundary conditions at y = 0 and y = b to V and perform
inverse transformation. Imposing V (x, y = 0) = 0 to the combination of Eqs. (9.8)
and (9.12), we obtain


V1
V2
...

VN


 = [0] =



T11 T12 . . . T1N
T21 T22 . . . T2N
... . . .

...

TN1 TN2 . . . TNN






A1
A2
...

AN




which implies that

[A] = 0 or Ai = 0 (9.15)

Imposing V (x, y = b) = 100 yields


100
100
...

100


 = [T ]




B1 sinh α1b

B2 sinh α2b
...

BN sinh αNb




If we let

[C] =




B1 sinh α1b

B2 sinh α2b
...

BN sinh αNb


 = [T ]−1




100
100
...

100




then

Bi = Ci/ sinh αib (9.16)

With Ai and Bi found in Eqs. (9.15) and (9.16), the potential V (x, y) is determined
as

Vi(y) =
N∑

j=1

TijBj sinh(αjy) (9.17)

By applying Eqs. (9.13) to (9.17), the Matlab code in Fig. 9.2 was developed to
obtain

V (0.25, 0.75) = 43.1 , V (0.5, 0.5) = 24.96 , V (0.75, 0.25) = 6.798

The result compares well with the exact solution:

V (0.25, 0.75) = 43.2 , V (0.5, 0.5) = 25.0 , V (0.75, 0.25) = 6.797
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Figure 9.2
Matlab code for Example 9.1.

Notice that it is not necessary to invert the transformation matrix [T ] in view of
Eq. (9.10).

Example 9.2

For Dirichlet–Neumann conditions, derive the transformation matrix [TDN ] and the
corresponding eigenvalues [λ2].

Solution

Let λ2
k be the elements of eigenvalue matrix [λ2] and [tk] be the column vectors of

the transformation matrix [TDN ] corresponding to matrix [P ]. Then, by definition,

([
P

] − λ2
k

[
I
]) [

tk
] = [

0
]

(9.18)

Substituting [P ] for Dirichlet–Neumann condition in Eq. (9.7) into Eq. (9.18) gives
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a second-order difference equation

−t
(k)
i−1 +

(
2 − λ2

k

)
t
(k)
i − t

(k)
i+1 = 0 (9.19)

except the first and last equations in (9.18). If we let

t
(k)
i = Ake

jiφk + Bke
−jiφk (9.20)

and substitute this into Eq. (9.19), we obtain

0 =
(
Ake

jiφk + Bke
−jiφk

) (
−2 cosφk + 2 − λ2

k

)
from which we obtain the characteristic equation

λ2
k = 2 (1 − cosφk) = 4 sin2 φk

2
(9.21)

or

λk = 2 sin
φk

2
(9.22)

This is valid for all types of boundary combinations butφk will depend on the boundary
conditions. To determine φk , Ak , and Bk , we use the first and the last equations in
Eq. (9.18). For DN conditions,

t
(k)
0 = 0 (9.23a)

−t
(k)
N + t

(k)
N+1 = 0 (9.23b)

Substituting this into Eq. (9.20), we obtain[
1 1

ejNφk (ejφk − 1) e−jNφk (e−jφk − 1)

] [
Ak

Bk

]
=

[
0
]

(9.24)

For nontrivial solutions,

φk = k − 0.5

N + 0.5
π , k = 1, 2, . . . , N (9.25)

Also from Eqs. (9.23a) and (9.20), Ak = −Bk so that

t
(k)
i = Ak sin (iφk) (9.26)

Thus, for Dirichlet–Neumann conditions, we obtain

λk = 2 sin

(
0.5π

k − 0.5

N + 0.5

)
(9.27a)

Tij =
√

2

N + 0.5
sin

(
0.5π

i(k − 0.5)

N + 0.5

)
(9.27b)
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9.2.2 Cylindrical Coordinates

Although MOL is not applicable to problems with complex geometry, the method
can be used to analyze homogeneous and inhomogeneous cylindrical problems. The
principal steps in applying MOL in cylindrical coordinates are the same as in Cartesian
coordinates.

Here, we illustrate with the use of MOL to solve Laplace’s equation in cylindrical
coordinates [18]. We apply discretization procedure in the angular direction. The
resulting coupled ordinary differential equations are decoupled by matrix transfor-
mation and solved analytically.

Assume that we are interested in finding the potential distribution in a cylindrical
transmission line with a uniform but arbitrary cross section. We assume that the inner
conductor is grounded while the outer conductor is maintained at constant potential
Vo, as shown in Fig. 9.3. In cylindrical coordinates (ρ, φ), Laplace’s equation can be

Figure 9.3
Discretization along ϕ-direction.

expressed as

ρ2 ∂
2V

∂ρ2
+ ρ2 ∂V

∂ρ
+ ∂2V

∂φ2
= 0 (9.28)

subject to

V (ρ) = 0 , ρ ∈ &1 (9.29a)

V (ρ) = Vo , ρ ∈ &2 (9.29b)
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We discretize in the φ-direction by using N radial lines, as shown in Fig. 9.3, such
that

Vi(ρ) = V (ρ, φi) , i = 1.2, . . . , N (9.30)

where

φi = ih = 2πi

N
, h = �φ = 2π

N
(9.31)

and h is the angular spacing between the lines. We have subdivided the solution
region into N subregions with boundaries at &1 and &2. In each subregion, V (ρ, φ)

is approximated by Vi = V (ρ, φi), with φi being constant.
Applying the three-point central finite difference scheme yields

∂2[V ]
∂φ2

= −[P ]
h2

[V ] (9.32)

where

[V ] = [V1, V2, . . . , VN ]t (9.33)

and

[P ] =




2 −1 0 0 . . . 0 0 −1
−1 2 −1 0 . . . 0 0 0
0 −1 2 −1 . . . 0 0 0
...

...
...

... . . .
...

...
...

0 0 0 0 . . . −1 2 −1
−1 0 0 0 . . . 0 −1 2




(9.34)

Notice that [P ] contains an element −1 in the lower left and upper right corners
due to its angular periodicity. Also, notice that [P ] is a quasi-three-band symmetric
matrix which is independent of the arbitrariness of the cross section as a result of the
discretization over a finite interval [0, 2π ].

Introducing Eq. (9.32) into Eq. (9.28) leads to the following set of coupled differ-
ential equations

ρ2 ∂
2[V ]
∂ρ2

+ ρ
∂[V ]
∂ρ

− [P ]
h2

[V ] = 0 (9.35)

To decouple Eq. (9.35), we must diagonalize [P ] by an orthogonal matrix [T ] such
that [

λ2] = [
T

]t [
P

][
T

]
(9.36)

with

[T ]t = [T ] = [T ]−1 (9.37)
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where [λ2] is a diagonal matrix of the eigenvalues λ2
n of [P ]. The diagonalization is

achieved using [19]

Tij = cosαij + sin αij√
N

, λ2
n = 2(1 − cosαn) (9.38)

where

αij = h · i · j , αn = h · n , i, j, n = 1, 2, . . . , N (9.39)

If we introduce the transformed potential U that satisfies

[U ] = [T ][V ] (9.40)

Equation (9.35) becomes

ρ2 ∂
2[U ]
∂ρ2

+ ρ
∂[U ]
∂ρ

−
[
µ2

][
U

]
= 0 (9.41)

where

[
U

] = [
U1, U2, . . . , UN

]t (9.42)

is a vector containing the transformed potential function and

µn = λn

h
= 2

h
sin(αn/2) (9.43)

Equation (9.41) is the Euler-type and has the analytical solution (see Section 2.4.1)

Un =
{
An + Bn ln ρ , µn = 0

Anρ
µn + Bnρ

−µn , µn �= 0
(9.44)

This is applied to each subregion. By taking the inverse transform using Eq. (9.40),
we obtain the potential Vi(ρ) as

Vi(ρ) =
N∑

j=1

TijUj (9.45)

where Tij are the elements of matrix [T ].
We now impose the boundary conditions in Eq. (9.29), which can be rewritten as

V (ρ = ri) = 0 , ri ∈ &1 (9.46a)

V (ρ = Ri) = Vo , Ri ∈ &2 (9.46b)
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Applying these to Eqs. (9.44) and (9.45),

Tij
[
Aj + Bj ln ri

] ∣∣∣
µj=0

+
N∑

j=1

Tij

[
Ajr

µj

i + Bjr
−µj

i

] ∣∣∣
µj �=0

= 0 ,

i = 1, 2, . . . , N (9.47a)

Tij
[
Aj + Bj ln Ri

] ∣∣∣
µj=0

+
N∑

j=1

Tij

[
AjR

µj

i + BjR
−µj

i

] ∣∣∣
µj �=0

= Vo ,

i = 1, 2, . . . , N (9.47b)

Equation (9.47) is solved to determine the unknown coefficients Ai and Bi . The
potential distribution is finally obtained from Eqs. (9.44) and (9.45).

Example 9.3
Consider a coaxial cable with inner radius a and outer radius b. Let b = 2a = 2 cm
and Vo = 100 V. This simple example is selected to be able to compare MOL solution
with the exact solution

Solution
From Eq. (9.43), it is evident that µn = 0 only when n = N . Hence, we may write
U as

Un =
{
Anρ

µn + Bnρ
−µn , n = 1, 2, . . . , N − 1

An + Bn ln ρ , n = N
(9.48)

Equation (9.47) can be written as

N−1∑
j=1

Tij

[
Aja

µj

i + Bja
−µj

i

]
+ TiN [AN + BN ln a] = 0 ,

i = 1, 2, . . . , N (9.49a)

for ρ = a, and

N−1∑
j=1

Tij

[
Ajb

µj

i + Bjb
−µj

i

]
+ TiN [AN + BN ln b] = Vo ,

i = 1, 2, . . . , N (9.49b)

for ρ = b. These 2N equations will enable us to find the 2N unknown coefficients
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Ai and Bi . They can be cast into a matrix form as




T11A1a
µ1 . . . T1NAN T11B1a

−µ1 . . . BN ln a
...

...

TN1A1a
µ1 . . . TNNAN TN1B1a

−µ1 . . . BN ln a

T11A1b
µ1 . . . T1NAN T11B1b

−µ1 . . . BN ln b
...

...

TN1A1b
µ1 . . . TNNAN TN1B1b

−µ1 . . . BN ln b







A1
A2
...

AN

B1
B2
...

BN




=




0
0
...

0
100
100
...

100




(9.50)

This can be written as

[D][C] = [F ] (9.51)

from which we obtain

[C] = [D]−1[F ] (9.52)

where Cj corresponds to Aj when j = 1, 2, . . . , N and Cj corresponds to Bj when
j = N + 1, . . . , 2N .

Once Aj and Bj are known, we substitute them into Eq. (9.48) to find Uj . We
finally apply Eq. (9.45) to find V . The exact analytical solution of the problem is

V (ρ) = Vo

ln ρ
a

ln b
a

(9.53)

For a < ρ < b, we obtain V for both exact and MOL solutions using the Matlab
codes in Fig. 9.4. The results of the two solutions are shown in Fig. 9.5. The two
solutions agree perfectly.

9.3 Solution of Wave Equation

The method of lines is particularly suitable for modeling a wide range of transmis-
sion lines and planar waveguide structures with multiple layers [8, 11, 19]–[29]. This
involves discretizing the Helmholtz wave equation in one direction while the other
direction is treated analytically. Here we consider the general problem of two-layer
structures covered on the top and bottom with perfectly conducting planes. The con-
ducting strips are assumed to be thin. We will illustrate with two-layer planar and
cylindrical microstrip structures.
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Figure 9.4
Matlab code for Example 9.3 (Continued.)
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Figure 9.4
(Cont.) Matlab code for Example 9.3.
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Figure 9.5
Comparison of exact and method of lines solutions.

Figure 9.6
Typical planar structures.

9.3.1 Planar Microstrip Structures

Typical planar structures are shown in Fig. 9.6. The two independent field compo-
nentsEz andHz in each separate layer must satisfy the Helmholtz equation. Assuming
the time factor ej (ωt−βz) and that wave propagates along z,

∂2ψ

∂x
+ ∂2ψ

∂y
+

(
k2 − β2

)
ψ = 0 (9.54)

where ψ represents either Ez or Hz and

k2 = εrk
2
o , ko = ω

√
µoεo = 2π/λo (9.55)

Applying the method of lines, we discretize the fields along the x direction by laying
a family of straight lines parallel to the y axis and evaluating on the e-lines for Ez and
h-lines for Hz, as shown in Fig. 9.7. The lines are evenly spaced although this is not
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Figure 9.7
Cross section of planar microstrip structure with discretization lines; —— lines
for Ez and - - - - for Hz.

necessary. If h is the spacing between adjacent lines, it is expedient to shift the e-lines
and the h-lines by h/2 in order to guarantee a simple fitting of the literal boundary
conditions. The potential in Eq. (9.54) can now be replaced by a set [ψ1, ψ2, . . . , ψN ]
at lines

xi = x0 + ih , i = 1, 2, . . . , N (9.56)

and ∂ψi/∂x can be replaced by their finite difference equivalents. Thus, Eq. (9.54)
becomes

∂2ψi

∂y2
+ 1

h2

[
ψi+1(y) − 2ψi(y) + ψi−1(y)

] + k2
cψi(y) = 0 .

i = 1, 2, . . . , N (9.57)

where

k2
c = k2 − β2 (9.58)

This is a system of N coupled ordinary differential equations. We cannot solve them
in their present form because the equations are coupled due to the tridiagonal nature of
[P ]. We can decouple the equations by several suitable mathematical transformations
and then analytically solve along the y direction.

If we let

[
ψ

] = [
ψ1, ψ2, . . . , ψN

]t (9.59)
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where t denotes the transpose and

[P ] =




p� −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 pr


 (9.60)

which is the same as Eq. (9.7) where p� and pr are defined. Introducing the column
vector [ψ] and the matrix [P ] into Eq. (9.57) leads to

h2 ∂
2[ψ]
∂y2

−
(
[P ] − h2k2

c [I ]
)

[ψ] = [0] (9.61)

where [I ] is the identity matrix and [0] is a zero column vector. Since [P ] is a real
symmetric matrix, we can find an orthogonal matrix [T ] such that[

T
]t [

P
][
T

] = [
λ2] (9.62)

where the elements λ2
i of the diagonal matrix [λ2] are the eigenvalues of [P ]. With

the orthogonal matrix [T ], we now introduce a transformed vector [U ] such that

[T ]t [ψ] = [U ] (9.63)

We can rewrite Eq. (9.61) in terms of [U ] and obtain

h2 ∂
2Ui

∂y2
−

(
λ2
i − h2k2

c

)
Ui = 0 , i = 1, 2, . . . , N (9.64)

Since Eq. (9.64) is uncoupled, it can be solved analytically for each homogeneous
region. The solution is similar in form to the telegraph equation. It may be expressed
as a relation between Ui and its normal derivative in a homogeneous dielectric layer
from y = y1 to y = y2, i.e.,[

Ui(y1)

h
∂Ui(y1)

dy

]
=

[
cosh αi(y1 − y2)

1
ki

sinh αi(y1 − y2)

ki sinh αi(y1 − y2) cosh αi(y1 − y2)

] [
Ui(y2)

h
∂Ui(y2)

dy

]
(9.65)

where

ki =
(
λ2
i − h2k2

c

)1/2

αi = ki

h
, i = 1, 2, . . . , N (9.66)

Equation (9.65) can be applied repeatedly to find the transformed potential [U ] from
one homogeneous layer y1 < y < y2 to another. Keep in mind that each iteration
will require that we recalculate the transformation matrix [T ] and its eigenvalues λi ,
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which are given in Table 9.1. The field components Ez and Hz are derivable from the
scalar potentials ψ(e) and ψ(h) as

Ez = kc

jωε
ψ(e) (9.67a)

Hz = kc

jωµ
ψ(h) (9.67b)

To be concrete, consider the shielded microstrip line shown in Fig. 9.8. Because of

Figure 9.8
Half cross section of a shielded microstrip line.

the symmetry, only half of the solution region needs to be considered. At the interface
y = d , the continuity conditions with Eq. (9.67) require that

β

ωεo

∂

∂x

(
ψ

(e)
I − 1

εr
ψ

(e)
II

)
= ∂ψ

(h)
II

∂y
− ∂ψ

(h)
I

∂y
(9.68)

(
k2
o − β2

)
ψ

(e)
I = 1

εr

(
εrk

2
o − β2

)
ψ

(e)
II (9.69)

∂ψ
(h)
I

∂y
− ∂ψ

(h)
II

∂y
= β

ωµ

∂

∂x

(
ψ

(h)
I − ψ

(h)
II

)
− Jz (9.70)(

k2
o − β2

)
ψ

(h)
I =

(
εrk

2
o − β2

)
ψ

(h)
II − jωµJx (9.71)

where the superscripts I and II refer to dielectric regions 1 and 2 and Jx and Jz are
the current densities at the interface y = d.

We replace the partial derivative operator ∂/∂x with the difference operator [D],
where

[D] =




1 −1 0 . . . 0
0 1 −1 . . . 0
...
. . .

. . .
. . .

...

0 0 . . . 1 −1


 (9.72)
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so that

∂ψ(e)

∂x
→ 1

h

[
D

][
ψ(e)

]
∂ψ(h)

∂x
→ − 1

h

[
D

]t [
ψ(h)

]
(9.73)

We replace the normal derivatives of ∂ψ/∂n at the interface y = d with following
matrix operators.

∂ψ
(e)
k

∂n
→ 1

h

[
G

(e)
k

] [
ψ

(e)
k

]
, k = I, II

∂ψ
(h)
k

∂n
→ 1

h

[
G

(h)
k

] [
ψ

(h)
k

]
, k = I, II (9.74)

We can transform this into the diagonal form

h
∂

[
U

(e)
k

]
∂n

=
[
γ
(e)
k

] [
U

(e)
k

]
, k = I, II

h
∂

[
U

(h)
k

]
∂n

=
[
γ
(h)
k

] [
U

(h)
k

]
, k = I, II (9.75)

With the aid of Eq. (9.65) and the boundary conditions at y = 0 and y = b + d, the
diagonal matrices [γk] are determined analytically as[

γ
(e)
I

]
= diag [χi coth (χib/h)][

γ
(h)
I

]
= diag [χi tanh (χib/h)][

γ
(e)
II

]
= diag [ηi coth (ηid/h)][

γ
(h)
II

]
= diag [ηi tanh (ηid/h)] (9.76)

where

χi =
[

4 sin2
(
i − 0.5

2N + 1
π

)
− h2

(
k2
o − β2

)]1/2

(9.77)

and

ηi =
[

4 sin2
(
i − 0.5

2N + 1
π

)
− h2

(
εrk

2
o − β2

)]1/2

(9.78)

We can discretize Eqs. (9.68) to (9.71) and eliminate ψ
(e)
II and ψ

(h)
II using [T (e)]

and [T (h)] matrices. Equations (9.68) and (9.70) become

β

ωεo
(1 − τ)

[
δ
] [

U
(e)
I

]
=

([
γ
(h)
I

]
+ τ

[
γ
(h)
II

]) [
U

(h)
I

]
(9.79)

([
γ
(e)
I

]
+ εrτ

[
γ
(e)
II

]) [
U

(e)
I

]
= β

ωµ
(1 − τ)

[
δ
]t [

U
(h)
I

]
−

[
T (e)

]t [
Jz

]
(9.80)
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where

τ = 1 − εeff

εr − εeff
(9.81)

εeff = β2

k2
o

(9.82)

[
δ
]

=
[
T (h)

]t [
D

] [
T (e)

]
(9.83)

and [T (e)] = [TND] and [T (h)] = [TDN ] as given in Table 9.1. Notice that [δ] is a
diagonal matrix and is analytically determined as

δi = diag

[
2 sin

(
i − 0.5

2N + 1
π

)]
(9.84)

Since Jx is negligibly small compared with Jz, we solve Eqs. (9.79) and (9.80) to
obtain [

U
(e)
I

]
=

[
ρ
] [

T (e)
]t [

Jz

]
(9.85)

where

[
ρ
]

=
[[

γ
(e)
I

]
+ εrτ

[
γ
(e)
II

]
− εeff(1 − τ)2

[
δ
]t ([

γ
(h)
I

]
+ τ

[
γ
(h)
II

])−1 [
δ
]]−1

(9.86)

which is a diagonal matrix. Using Eq. (9.63), we now take the inverse transform of
Eq. (9.85) to obtain

[
ψ

(e)
I

]
=

[
T (e)

] [
ρ
] [

T (e)
]t [

Jz

]
(9.87)

We finally impose the boundary condition on the strip, namely[
ψ

(e)
I

]
=

[
0
]

on the strip (9.88)

which leads to a reduced matrix equation

[
Jz

] =
{[

Jz
]

red on the strip

0 elsewhere
(9.89)

and the corresponding characteristic equation([
T (e)

] [
ρ
] [

T (e)
]t)

red

[
Jz

]
red

=
[
0
]

(9.90)
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It is known from mathematics that a homogeneous linear matrix equation shows
nontrivial solutions only when the determinant of the matrix is equal to zero. Thus
the propagation constant is determined by solving the determinant equation

det

([
T (e)

] [
ρ(β, ω)

] [
T (e)f

]t)
red

=
[
0
]

(9.91)

The effective dielectric constant εeff is obtained from Eq. (9.82). Notice that only the
number of points on the strip determines the size of the matrix and that Eq. (9.91)
applies to a microstrip with more than one strip. We solve Eq. (9.91) using a root-
finding algorithm [28] in Fortran, Maple, or Matlab. Although a microstrip example
is considered here, the formulation is generally valid for any two-layer structures.

Once we solve Eq. (9.91) to determine the effective dielectric constant, the current
distribution on the strip, the potential functions ψe and ψh, the electric field Ez, and
magnetic field Hz can be computed. Finally, the characteristic impedance is obtained
from

Zo = 2P

I 2
(9.92)

where P is the average power transport along the line

P = 1

2

∫
(E × H∗) · dx dy az (9.93)

and I is the total current flowing on the strip

I =
∫

Jz dx dy (9.94)

Since the above analysis applies to multiple strips, the characteristic impedance to
the mth strip is

Zom = 2Pm

I 2
m

(9.95)

Example 9.4
Consider the shielded microstrip line shown in Fig. 9.8. Using the method of lines,

find the effective dielectric constant of the line when εr = 9, w/d = 2, a/d =
7, b/d = 3 and d = 1 mm.

Solution
The number of lines along the x-axis is selected as N = 18 and the number of lines
crossing the strip is M = 6. These numbers are for only one potential, say [ψe].
Since only one half of the structure is considered due to symmetry, only three points
on the strip are necessary. Hence, the size of the matrix associated with Eq. (9.91) is
3 × 3.
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Figure 9.9 shows the three Matlab codes for solving Eq. (9.91). The main program
varies the values of d from 0.01 to 0.15, assuming that λo = 1, the wavelength in
free space, since β or εeff are frequency-dependent. (Alternatively, we could keep d

fixed and vary frequency, from say 1 to 50 GHz.) The program plots εeff with d/λo
as shown in Fig. 9.10.

Figure 9.9
For Example 9.4: (a) Main Matlab code, (Continued).

The M-file fun.m does the actual computation of the matrices involved using Eq. (9.76)
to (9.91). It eventually finds the determinant of matrix [F ], where[

F
] =

([
Te

][
ρ(β, ω)

][
Te

]t)
red

(9.96)

The third M-file root.m is a root-finding algorithm based on the secant method [28]
and is used to determine the value of εeff that will satisfy

det[F ] = 0 (9.97)

9.3.2 Cylindrical Microstrip Structures

The method of lines can be used to analyze homogeneous and inhomogeneous
cylindrical transmission structures [19, 29]–[36] and circular and elliptic waveg-
uides [37]. The principal steps involved in applying MOL in cylindrical coordinates
are the same as in Cartesian coordinates. Here, we illustrate with the use of MOL to
analyze the dispersion characteristics of the cylindrical microstrip transmission line
using full-wave analysis.

We introduce the scalar potentials B(e) and B(h) to represent the electric and mag-
netic field components. In cylindrical coordinates (ρ, φ), the two scalar functions
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Figure 9.9
For Example 9.4: (b) fun M-file for calculating F and its determinant, (Contin-
ued).
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Figure 9.9
For Example 9.4: (Cont.) (b) fun M-file for calculating F and its determinant,
(Continued).

Figure 9.9
For Example 9.4: (Cont.) (c) root M-file for finding the roots of fun (x) = 0.

can be expressed as

C(e,h) = B(e,h)(ρ, φ)e−jβz (9.98)

where β is the phase constant and the time harmonic dependence has been suppressed.
Substituting Eq. (9.98) into the Helmholtz equation for the scalar potential functions
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Figure 9.10
For Example 9.4: Effective dielectric constant of the microstrip line.

yields

ρ2 ∂
2B

∂ρ2
+ ρ

∂B

∂ρ
+ ∂2B

∂φ2
+ ρ2

(
k2 − β2

)
B = 0 (9.99)

where k2 = ω2µε. Discretizing in the φ-direction by using N radial lines, as shown
in Fig. 9.11, such that

φi = φo + (i − 1)h = 2πi

N
, i = 1, 2, . . . , N (9.100)

where h = �φ = 2π/N is the angular spacing between the lines. The discretization
lines for the electric potential function B(e) are shifted from the magnetic potential
function B(h) by h/2. Applying the central finite difference scheme yields

∂2[B]
∂φ2

= [P ]
h2

[B] (9.101)

where

[B] = [B1,B2, . . . , BN ]t (9.102)
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Figure 9.11
Discretization in the φ-direction.

and [P ] is given in Eq. (9.34). Introducing Eq. (9.101) into Eq. (9.99) leads to N

coupled differential equations:

ρ2 ∂
2[B]
∂ρ2

+ ρ
∂[B]
∂ρ

+ ρ2k2
c [B] − [P ]

h2
[B] = 0 (9.103)

where k2
c = k2 − β2 and [P ] is the same as in Eq. (9.34) if φ goes from 0 to 2π

otherwise [P ] is as in Eq. (9.7). Here we will assume [P ] in Eq. (9.7). To decouple
Eq. (9.103), we must diagonalize [P ] by an orthogonal matrix [T ] given in Eq. (9.38)
and introduce the transformed potential U that satisfies

[U ] = [T ][B] (9.104)

Thus Eq. (9.103) becomes

ρ2 ∂
2[U ]
∂ρ2

+ ρ
∂[U ]
∂ρ

+
[
k2
c ρ

2 − µ2
i

]
[U ] = 0 (9.105)

where

[U ] = [U1, U2, . . . , UN ]t (9.106)

is a vector containing the transformed potential function and

µi = λi

h
(9.107)

We notice that Eq. (9.105) is essentially a Bessel equation and can be solved for every
homogeneous region to produce Bessel function of order µn. The solution is

Ui(ρ) = AiJµi(kcρ) + BiYµi(kcρ) , i = 1, 2, . . . , N (9.108)
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Figure 9.12
The cross section of a shielded cylindrical microstrip line.

where J and Y are Bessel functions of the first and second kind, respectively.

To be concrete, consider the cross section of a shield cylindrical microstrip line
shown in Fig. 9.12. Due to the symmetry of the structure, we need only consider half
the cross section as in Fig. 9.13. We have regions I and II and we apply Eq. (9.108)
to each region. On the boundaries ρ = d and ρ = b (electric walls), we have the
boundaries conditions

U
(e)
I i (ρ = d) = 0

U
(e)
II i(ρ = b) = 0 (9.109)

Enforcing Eq. (9.109) on Eq. (9.108), we obtain

0 = AiJµi (kcd) + BiYµi (kcd) ,

0 = CiJµi

(
k′
cb

) + DiYµi

(
k′
cb

)
(9.110)

where kc = √
k2
o − β2 and k′

c = √
εrk2

o − β2, ko = 2π/λo, and λo is the wavelength
in free space. From Eq. (9.110),

Bi

Ai

= −Jµi
(kcd)

Yµi
(kcd)

Di

Ci

= −Jµi
(k′

cb)

Yµi
(k′

cb)
(9.111)
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Figure 9.13
Half the cross section of the microstrip in Fig. 9.12 ( — electric wall; - - -
magnetic wall).

For B(h), the boundary conditions are

∂U
(h)
I i

∂ρ

∣∣∣
ρ=d

= 0

∂U
(h)
II i

∂ρ

∣∣∣
ρ=b

= 0 (9.112)

Enforcing this on Eq. (9.108) yields

0 = EiJ
′
µi

(kcd) + FiY
′
µi

(kcd) ,

0 = GiJ
′
µi
(k′

cρ) + HiY
′
µi

(
k′
cb

)
, (9.113)

which leads to

Fi

Ei

= −J ′
µi
(kcd)

Y ′
µi
(kcd)

Hi

Gi

= −J ′
µi
(k′

cb)

Y ′
µi
(k′

cb)
(9.114)

At the interface ρ = t , both B(e) and B(h) are related by the continuity conditions of
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the tangential components of the electric and magnetic fields. Since

B(e) = jωεoεr

k2
oεr − β2

Ez

B(h) = jωµr

k2
oεr − β2

Hz (9.115)

the continuity conditions are

1

t

β

ωεo

∂

∂φ

(
B

(e)
I − 1

εr
B

(e)
II

)
= ∂B

(h)
II

∂ρ
− ∂ψ

(h)
I

∂ρ
(9.116)

(
k2
o − β2

)
ψ

(e)
I = 1

εr

(
εrk

2
o − β2

)
ψ

(e)
II (9.117)

∂B
(h)
I

∂ρ
− ∂B

(h)
II

∂ρ
= β

ωµot

∂

∂φ

(
B

(h)
I − B

(h)
II

)
− Jz (9.118)(

k2
o − β2

)
ψ

(h)
I =

(
εrk

2
o − β2

)
ψ

(h)
II − jωµJφ (9.119)

As we did in Section 9.3.1, we replace the derivative operator ∂/∂φ with the difference
operator [D] and transform the resulting equations into the diagonal matrices. We
obtain the elements of the diagonal matrices as [30]

γ
(e)
I i = Soh

[
J ′
µi
(So) + (Bi/Ai)Y

′
µi
(So)

Jµi
(So) + (Bi/Ai)Yµi

(So)

]
(9.120a)

γ
(e)
II i = −S′

oh

[
J ′
µi
(S′

o) + (Di/Ci)Y
′
µi
(S′

o)

Jµi
(S′

o) + (Di/Ci)Yµi
(S′

o)

]
(9.120b)

γ
(h)
I i = Soh

[
J ′
µi
(So) + (Fi/Ei)Y

′
µi
(So)

Jµi
(So) + (Fi/Ei)Yµi

(So)

]
(9.120c)

γ
(h)
II i = −S′

oh

[
J ′
µi
(S′

o) + (Hi/Gi)Y
′
µi
(S′

o)

Jµi
(S′

o) + (Hi/Gi)Yµi
(S′

o)

]
(9.120d)

where h = �φ and

So = t

√
k2
o − β2 , S′

o = t

√
k2
oε − β2 (9.121)

By ignoring Jφ and reducing Jz to what we have in Eq. (9.89), we finally obtain the
characteristic equation

([
T (e)

] [
ρ
] [

T (e)
]t)

red

[
Jz

]
red

= [0] (9.122)
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where

[
ρ
]

=
[[

γ
(e)
I

]
+ εrτ

[
γ
(e)
II

]
− εeff(1 − τ)2

[
δ
]t ([

γ
(h)
I

]
+ τ

[
γ
(h)
II

])−1 [
δ
]]−1

(9.123)

τ = 1 − εeff

εr − εeff
, εeff = β2

k2
o

,
[
δ
]

=
[
T (h)

]t [
D

] [
T (e)

]
(9.124)

With a root-finding algorithm, Eq. (9.122) can be solved to obtainβ or εeff . Notice that
Eq. (9.122) is of the same form as Eq. (9.90) and only the number of points on the strip
determines the size of the matrix. However, the expressions for [γ (e)

I ], [γ (e)
II ], [γ (h)

I ]
and [γ (h)

II ] are given in Eq. (9.120).

9.4 Time-Domain Solution

The frequency-domain version of the method of lines covered in Section 9.3 can
be extended to the time-domain [38]–[43]. In fact, MOL can also be used to solve
parabolic equations [1, 44, 45]. However, in this section, we will use MOL to solve
hyperbolic Maxwell’s equations in the time-domain. Essentially, the MOL proceeds
by leaving the derivatives along one selected axis untouched (usually in time), while
all other partial derivatives (usually in space) are discretized using well-known tech-
niques such as finite difference and finite element. The partial differential equation is
reduced to a system of ordinary differential equations that can be solved numerically
using standard methods.

Consider an empty rectangular waveguide which is infinite in the z-direction [38]
and with cross-section 0 < x < a, 0 < y < b. We assume that the waveguide
is excited by a uniform electric field Ez. The problem becomes a two-dimensional
one. It corresponds to calculating the cutoff frequencies of various modes in the
frequency-domain. Such information can be obtained from the time-domain data.

Due to the excitation, only Ez,Hx , and Hy exist and ∂/∂z = 0. Maxwell’s
equations become

−µ
∂Hx

∂t
= ∂Ez

∂y

µ
∂Hy

∂t
= ∂Ez

∂x

ε
∂Ez

∂t
= ∂Hy

∂x
− ∂Hx

∂y
(9.125)

which can be manipulated to yield the wave equation

∂2Ez

∂2x
+ ∂2Ez

∂2y
− µε

∂2Ez

∂2t
= 0 (9.126)
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Discretizing in the x-direction only leads to

−µ
∂
[
Hx

]
∂t

= ∂
[
Ez

]
∂y

(9.127a)

µ
∂
[
Hy

]
∂t

=
[
D

(e)
x

][
Ez

]
�x

(9.127b)

ε
∂
[
Ez

]
∂t

=
[
�

(h)
x

][
Hy

]
�x

− ∂
[
Hx

]
∂y

(9.127c)

[
D

(e)
xx

][
Ez

]
(�x)2

+ ∂2
[
Ez

]
∂2y

− µε
∂2

[
Ez

]
∂2t

= 0 (9.127d)

where [Ez], [Hx], and [Hy] are column vectors representing the fields along each line

and are functions of y and t . As given in Section 9.3.1, matrices [D(e)
x ], [D(h)

x ], and
[D(e)

xx ] represent difference operators in which the boundary conditions at the side
walls are incorporated.

Due to the fact that [D(e)
xx ] is a real symmetric matrix, there exists a real orthogonal

matrix [T (e)
x ] that transforms [D(e)

xx ] into a diagonal matrix [λ2]. We can transform
[Ez] into a transform [�Ez

]
=

[
T (e)
x

][
Ez

]
(9.128)

(and similarly [Hx] and [Hy]) so that Eq. (9.127d) becomes[
λ2

][
Ez

]
(�x)2

+ ∂2
[�Ez

]
∂2y

− µε
∂2

[�Ez

]
∂2t

= 0 (9.129)

This is a set of uncoupled partial differential equations. The solution for the ith line
is

�Ezi(y, t) =
∑
n

(Ani cosωnit + Bni sin ωnit) sin αny (9.130)

where

ωni = u√
(nπ/b)2 − λ2

i /(�x)2

αn = nπ/b (9.131)

and u = 1/
√
µε is the wave velocity. Given the initial conditions for �Ez and its time

derivative, we can find Ani and Bni . The solution at any point at any time can be
extracted from Eqs. (9.130) and (9.127a), (9.127b), and (9.127c) and the subsequent
inverse transforms such as [

Ez(y, t)
]

=
[
T (e)
x

][�Ez

]
(9.132)

This completes the solution process.
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9.5 Concluding Remarks

The method of lines (MOL) is a differential-difference approach of solving elliptic,
parabolic, and hyperbolic PDEs. It involves a judicious combination of analysis and
computation. Given a partial differential equation, all but one of the independent
variables are discretized to obtain a system of ordinary differential equations.

MOL requires that the structures be at least piecewise uniform in one dimension.
Also, the eigenmatrices and eigenvalues depend on the boundaries of the solution
region. These requirements have limited the applications of the method. Although
not applicable to problems with complex geometries, the method of lines has been
efficient for the analysis of compatible planar structures. Applications of the method
include but are not limited to the following EM-related problems:

• waveguides including optical types [46]–[65],

• planar and cylindrical microstrip transmission lines [19]–[27, 66, 67],

• scattering from discontinuities in planar structures [39, 40, 68],

• antennas [32],

• electro-optic modulator structures [17, 69, 70], and

• other areas [71]–[75]

Originally, MOL was developed for problems with closed solution domain. Re-
cently, absorbing boundary conditions appropriate for MOL have been introduced [51,
76]–[78]. With these conditions, it is now possible to simulate and model unbounded
electromagnetic structures. The equivalence between the method of lines and varia-
tional method is given in [79].
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Problems

9.1 In Eq. (9.7), show that p� = 2 for Dirichlet condition and p� = 1 for Neumann
condition.

9.2 If the first-order finite difference scheme can be written as

h
∂[V ]
∂x

� − [Dx]t [V ]

where the equidistance difference matrix [Dx] is an (N − 1)×N matrix given
by

[Dx] =



1 −1
. . .

. . .

1 −1




show that the central finite difference scheme for second-order partial differ-
ential operator yields

h2 ∂
2[V ]
∂x2

� [Dxx] [V ]
where [Dxx] = −[Dx]t [Dx] = −[Dx][Dx]t . Assume Neumann conditions at
both side walls and obtain Dxx .

9.3 Obtain the transformation matrix [T ] and its corresponding eigenvalue matrix
[λ2] for Neumann-Dirichlet boundary conditions. Assume that t (k)0 − t

(k)
1 = 0

and t
(k)
N+1 = 0 on the boundaries.
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9.4 Using MOL, solve Laplace’s equation

∇2B = 0

in a rectangular domain 0 ≤ x ≤ 1, −1 ≤ y ≤ 1 with the following Dirichlet
boundary conditions:

B(0, y) = B(1, y) = 0

B(x, 1) = B(x,−1) = sin πx

Obtain B at (0, 0.5), (0.5, 0.25), (0.5, 0.5), (0.5, 0.75). Compare your solu-
tion with the exact solution

B(x, y) = cosh(πy) sin(πx)

cosh(πb)

9.5 Obtain the solution of Prob. 2.4(a) using MOL.

9.6 Consider the coaxial cable of elliptical cylindrical cross section shown in
Fig. 9.14. Take A = 2 cm, B = 2 cm, a = 1 cm, and b = 2 cm. For

Figure 9.14
For Prob. 9.6.

the inner ellipse, for example,

r = a√
sin2 φ + ν2 cos2 φ

, ν = a

b

By modifying the MOL codes used in Example 9.3, plot the potential for
φ = 0, a < ρ < b.
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9.7 Solve Prob. 2.8 using MOL and compare your result with the exact solution

V (ρ, z) = 4Vo

π

∑
n=odd

I0(nπρ/L)

nI0(nπa/L)
sin

(nπz

L

)

Take L = 2a = 1 m and Vo = 10 V.

9.8 Rework Example 9.4 for a pair of coupled microstrips shown in Fig. 9.15. Let
εr = 10.2, w = 1.5, s/d = 1.5, a/d = 20, h/d = 19, and d = 1 cm. Plot
the effective dielectric constant versus d/λo.

Figure 9.15
For Prob. 9.8.

9.9 Given the difference operator

[P ] =




2 −s∗2 . . . −s2

−s2 2 −s∗2 . . .

. . .
. . .

. . .

−s∗2

−s∗2 . . . −s2 2




which is Hermitian, i.e., [P ] = [P ∗]. Show that [P ] has the following eigen-
values

λ2
k = 4 sin2 φkβh

2
, φk = 2πk

N
, k = 1, 2, . . . , N

and the eigenvector matrices

T
(e)
ik = 1√

N
ejiφk , T

(h)
ik = 1√

N
ej(i+0.5)φk

where s = ejβh/2, s∗ is the complex conjugate of s, β is the propagation con-
stant, and h is the step size.
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9.10 Show that for

[P ] =




2 −1/s . . . −s

−s 2 −1/s . . .

. . .
. . .

. . .

−1/s
−1/s . . . −s 2




the eigenvalue matrices remain the same as in the previous problem.
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