
Chapter 7

Transmission-line-matrix Method

“Those who are quite satisfied sit still and do nothing; those who are not quite
satisfied are the sole benefactors of the world.” Walter S. Landor

7.1 Introduction

The link between field theory and circuit theory has been exploited in developing
numerical techniques to solve certain types of partial differential equations arising
in field problems with the aid of equivalent electrical networks [1]. There are three
ranges in the frequency spectrum for which numerical techniques for field problems
in general have been developed. In terms of the wavelength λ and the approximate
dimension � of the apparatus, these ranges are [2]:

λ >> �

λ ≈ �

λ << �

In the first range, the special analysis techniques are known as circuit theory; in the
second, as microwave theory; and in the third, as geometric optics (frequency indepen-
dent). Hence the fundamental laws of circuit theory can be obtained from Maxwell’s
equations by applying an approximation valid when λ >> �. However, it should be
noted that circuit theory was not developed by approximating Maxwell’s equations,
but rather was developed independently from experimentally obtained laws. The con-
nection between circuit theory and Maxwell equations (summarizing field theory) is
important; it adds to the comprehension of the fundamentals of electromagnetics.
According to Silvester and Ferrari, circuits are mathematical abstractions of physi-
cally real fields; nevertheless, electrical engineers at times feel they understand circuit
theory more clearly than fields [3].

The idea of replacing a complicated electrical system by a simple equivalent circuit
goes back to Kirchhoff and Helmholtz. As a result of Park’s [4], Kron’s [5, 6] and
Schwinger’s [7, 8] works, the power and flexibility of equivalent circuits become more
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Figure 7.1
(a) One-dimensional conducting system, (b) discretized equivalent.

obvious to engineers. The recent applications of this idea to scattering problems,
originally due to Johns [9], has made the method more popular and attractive.

Transmission-line modeling (TLM), otherwise known as the transmission-line-
matrix method, is a numerical technique for solving field problems using circuit
equivalent. It is based on the equivalence between Maxwell’s equations and the equa-
tions for voltages and currents on a mesh of continuous two-wire transmission lines.
The main feature of this method is the simplicity of formulation and programming for
a wide range of applications [10, 11]. As compared with the lumped network model,
the transmission-line model is more general and performs better at high frequencies
where the transmission and reflection properties of geometrical discontinuities cannot
be regarded as lumped [7].

Like other numerical techniques, the TLM method is a discretization process.
Unlike other methods such as finite difference and finite element methods, which
are mathematical discretization approaches, the TLM is a physical discretization
approach. In the TLM, the discretization of a field involves replacing a continuous
system by a network or array of lumped elements. For example, consider the one-
dimensional system (a conducting wire) with no energy storage as in Fig. 7.1(a).
The wire can be replaced by a number of lumped resistors providing a discretized
equivalent in Fig. 7.1(b). The discretization of the two-dimensional, distributed field
is show in Fig. 7.2. More general systems containing energy-reservoir elements as
well as dissipative elements will be considered later.

The TLM method involves dividing the solution region into a rectangular mesh of
transmission lines. Junctions are formed where the lines cross forming impedance dis-
continuities. A comparison between the transmission-line equations and Maxwell’s
equations allows equivalences to be drawn between voltages and currents on the lines
and electromagnetic fields in the solution region. Thus, the TLM method involves
two basic steps [12]:

• Replacing the field problem by the equivalent network and deriving analogy
between the field and network quantities.

• Solving the equivalent network by iterative methods.
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Figure 7.2
(a) Two-dimensional conductive sheet, (b) partially discretized equivalent,
(c) fully discretized equivalent.

Before we apply the method, it seems fit to briefly review the basic concepts of
transmission lines and then show how the TLM method can be applied to a wide range
of EM-related problems.

7.2 Transmission-line Equations

Consider an elemental portion of length �� of a two-conductor transmission line.
We intend to find an equivalent circuit for this line and derive the line equations.
An equivalent circuit of a portion of the line is shown in Fig. 7.3, where the line
parameters, R,L,G, and C are resistance per unit length, inductance per unit length,
conductance per unit length, and capacitance per unit length of the line, respectively.
The model in Fig. 7.3 may represent any two-conductor line. The model is called the
T-type equivalent circuit; other types of equivalent circuits are possible, but we end
up with the same set of equations. In the model of Fig. 7.3, we assume without loss
of generality that wave propagates in the +z direction, from the generator to the load.

By applying Kirchhoff’s voltage law to the left loop of the circuit in Fig 7.3, we
obtain

V (z, t) = R
��

2
I (z, t)+ L

��

2

∂I

∂t
(z, t)+ V (z+��/2, t)
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Figure 7.3
T-type equivalent circuit model of a differential length of a two conductor trans-
mission line.

or

−V (z+��/2, t)− V (z, t)

��/2
= RI (z, t)+ L

∂I

∂t
(z, t) (7.1)

Taking the limit of Eq. (7.1) as �� → 0 leads to

−∂V (z, t)
∂z

= R I (z, t)+ L
∂I

∂t
(z, t) (7.2)

Similarly, applying Kirchhoff’s current law to the main node of the circuit in Fig. 7.3
gives

I (z, t) = I (z+��, t)+�I

= I (z+��, t)+G��V (z+��/2, t)+ C��
∂V

∂t
(z+��/2, t)

or

−I (z+��, t)− I (z, t)

��
= GV (z+��/2, t)+ C

∂V

∂t
(z+��/2, t) (7.3)

As �� → 0, Eq. (7.3) becomes

−∂I
∂z
(z, t) = GV (z, t)+ C

∂V

∂t
(z, t) (7.4)

Differentiating Eq. (7.2) with respect to z and Eq. (7.4) with respect to t , the two
equations become

−∂
2V

∂z2
= R

∂I

∂z
+L ∂

2I

∂z∂t
(7.2a)

and

− ∂2I

∂t∂z
= G

∂V

∂t
+ C

∂2V

∂t2
(7.4a)
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Substituting Eqs. (7.4) and (7.4a) into Eq. (7.2a) gives

∂2V

∂z2
= LC

∂2V

∂t2
+ (RC +GL)

∂V

∂t
+ RGV (7.5)

Similarly, we obtain the equation for current I as

∂2I

∂z2
= LC

∂2I

∂t2
+ (RC +GL)

∂I

∂t
+ RGI (7.6)

Equations (7.5) and (7.6) have the same mathematical form, which in general may be
written as

∂2�

∂z2
= LC

∂2�

∂t2
+ (RC +GL)

∂�

∂t
+ RG� (7.7)

where �(z, t) has replaced either V (z, t) or I (z, t).
Ignoring certain transmission-line parameters in Eq. (7.7) leads to the following

special cases [13]:

(a) L = C = 0 yields

∂2�

∂z2
= k1� (7.8)

where k1 = RG. Equation (7.8) is the one-dimensional elliptic partial differ-
ential equation called Poisson’s equation.

(b) R = C = 0 or G = L = 0 yields

∂2�

∂z2
= k2

∂�

∂t
(7.9)

where k2 = GL orRC. Equation (7.9) is the one-dimensional parabolic partial
differential equation called the diffusion equation.

(c) R = G = 0 (lossless line) yields

∂2�

∂z2
= k3

∂2�

∂t2
(7.10)

where k3 = LC. This is the one-dimensional hyperbolic partial differential
equation called the Helmholtz equation, or simply the wave equation. Thus,
under certain conditions, the one-dimensional transmission line can be used
to model problems involving an elliptic, parabolic, or hyperbolic partial dif-
ferential equation (PDE). The transmission line of Fig. 7.3 reduces to those in
Fig. 7.4 for these three special cases.
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Figure 7.4
Transmission-line equivalent models for: (a) elliptic PDE, Poisson’s equation,
(b) parabolic PDE, diffusion equation, (c) hyperbolic PDE, wave equation.

Apart from the equivalent models, other transmission-line parameters are of inter-
est. A detailed explanation of these parameters can be found in standard field theory
texts, e.g., [14]. We briefly present these important parameters. For the lossless line
in Fig. 7.4(c), the characteristic resistance

Ro =
√
L

C
, (7.11a)

the wave velocity

u = 1√
LC

, (7.11b)

and the reflection coefficient at the load

� = RL − Ro

RL + Ro
, (7.11c)

where RL is the load resistance.
The generality of the TLM method has been demonstrated in this section. In the

following sections, the method is applied specifically to diffusion [15, 16] and wave
propagation problems [10]–[13], [17, 18].
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7.3 Solution of Diffusion Equation

We now apply the TLM method to the diffusion problem arising from current
density distribution within a wire [15]. If the wire has a circular cross section with
radius a and is infinitely long, then the problem becomes one-dimensional. We will
assume sinusoidal source or harmonic fields (with time factor ejωt ).

The analytical solution of the problem has been treated in Example 2.3. For the
TLM solution, consider the equivalent network of the cylindrical problem in Fig. 7.5,
where�� is the distance between nodes or the mesh size. Applying Kirchhoff’s laws
to the network in Fig. 7.5 gives

∂Iρ

∂ρ
= −jωCVφ (7.12a)

∂Vφ

∂ρ
= −RIρ (7.12b)

where R and C are the resistance and capacitance per unit length.

Figure 7.5
RC equivalent network.

Within the conductor, Maxwell’s curl equations (σ >> ωε) are

∇ × E = −jωµH (7.13a)

∇ × H = σE (7.13b)

where E and H are assumed to be in phasor forms. In cylindrical coordinates,
Eq. (7.13) becomes

−∂Ez
∂ρ

= −jωµHφ
1

ρ

∂

∂ρ
(ρHφ) = σEz
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These equations can be written as

∂Ez

∂ρ
= jω(µ/ρ)

(
ρHφ

)
(7.14a)

∂

∂ρ

(
ρHφ

) = (σρ)Ez (7.14b)

Comparing Eq. (7.12) with Eq. (7.14) leads to the following analogy between the
network and field quantities:

Iρ ≡ −Ez (7.15a)

Vφ ≡ ρHφ (7.15b)

C ≡ µ/ρ (7.15c)

R ≡ σρ (7.15d)

Therefore, solving the impedance network is equivalent to solving Maxwell’s equa-
tions.

Figure 7.6
The overall equivalent network.

We can solve the overall impedance network in Fig. 7.6 by an iterative method.
Since the network in Fig. 7.6 is in the form of a ladder, we apply the ladder method.
By applying Kirchhoff’s current law, the N th nodal voltage (N > 2) is related to
(N − 1)th and (N − 2)th voltages according to

V (N) = r(N − 1)

r(N − 2)
[V (N − 1)− V (N − 2)]

+ jB(N − 1)r(N − 1)V (N − 1)+ V (N − 1) (7.16)

where the resistance r and susceptance B are given by

r(N) = R�� = σ(N − 0.5)(��)2 , (7.17a)

B(N) = ωC�� = ωµ��

(N − 1)��
= ωµ

N − 1
(7.17b)
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We note that V (1) = 0 because the magnetic field at the center of the conductor
(ρ = 0) is zero. Also V (2) = I (1) · r(1), where I (1) can be arbitrarily chosen, say
I (1) = 1. Once V (1) and V (2) are known, we can use Eq. (7.16) to scan all nodes in
Fig. 7.6 once from left to right to determine all nodal voltages (≡ ρHφ) and currents
(≡ Ez = Jz/σ ).

Example 7.1
Develop a computer program to determine the relative (or normalized) current density
Jz(ρ)/Jz(a) in a round copper wire operated at 1 GHz. Plot the relative current density
against the radical position ρ/a for cases a/δ = 1, 2, and 4. Take ��/δ = 0.1,
µ = µ0, σ = 5.8 × 107 mhos/m.

Solution
The computer program is presented in Fig. 7.7. It calculates the voltage at each node
using Eqs. (7.16) and (7.17). The current on each r(N)  is found from Fig. 7.6 as

I (N − 1) = V (N)− V (N − 1)

r(N − 1)

Since J = σE, we obtain Jz(ρ)/Jz(a) as the ratio of I (N) and I (N MAX), where
I (N MAX) is the current at ρ = a.

To verify the accuracy of the TLM solution, we also calculate the exact Jz(ρ)/Jz(a)
using Eq. (2.120). (For further details, see Example 2.3.) Table 7.1 shows a compar-
ison between TLM results and exact results for the case a/δ = 4.0. It is noticed that
the percentage error is maximum (about 8%) at the center of the wire and diminishes
to zero as we approach the surface of the wire. Figure 7.8 portrays the plot of the
relative current density versus the radial position for cases a/δ = 1, 2, and 4.

Table 7.1 Comparison of Relative Current
Density Obtained from TLM and Exact
Solutions (a/δ = 4.0)

Radial position (ρ/a) TLM result Exact result

0.1 0.11581 0.10768
0.2 0.11765 0.11023
0.3 0.12644 0.12077
0.4 0.14953 0.14612
0.5 0.19301 0.19138
0.6 0.26150 0.26082
0.7 0.36147 0.36115
0.8 0.50423 0.50403
0.9 0.70796 0.70786
1.0 1.0 1.0
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Figure 7.7
Computer program for Example 7.1 (Continued).
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Figure 7.7
(Cont.) Computer program for Example 7.1.

7.4 Solution of Wave Equations

In order to show how Maxwell’s equations may be represented by the transmission-
line equations, the differential length of the lossless transmission line between two
nodes of the mesh is represented by lumped inductors and capacitors as shown in
Fig. 7.9 for two-dimensional wave propagation problems [17, 18]. At the nodes,
pairs of transmission lines form impedance discontinuity. The complete network
of transmission-line-matrix is made up of a large number of such building blocks
as depicted in Fig. 7.10. Notice that in Fig. 7.10 single lines are used to represent a
transmission-line pair. Also, a uniform internodal distance of�� is assumed through-
out the matrix (i.e., �� = �x = �z). We shall first derive equivalences between
network and field quantities.

7.4.1 Equivalence Between Network and Field Parameters

We refer to Fig. 7.9 and apply Kirchhoff’s current law at node O to obtain

Ix(x −��/2)− Ix(x +��/2)+ Iz(z−��/2)− Iz(z+��/2) = 2C��
∂Vy

∂t

Dividing through by �� gives

Ix(x −��/2)− Ix(x +��/2)

��
+ Iz(z−��/2)− Iz(z+��/2)

��
= 2C

∂Vy

∂t
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Figure 7.8
Relative current density versus radial position.

Figure 7.9
Equivalent network of a two-dimensional TLM shunt node.
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Figure 7.10
Transmission-line matrix and boundaries.

Taking the limit as �� → 0 results in

−∂Iz
∂z

− ∂Ix

∂x
= 2C

∂Vy

∂t
(7.18a)

Applying Kirchhoff’s voltage law around the loop in the x − y plane gives

Vy(x −��/2)− L��/2
∂Ix(x −��/2)

∂t

−L��/2∂Ix(x +��/2)

∂t
− Vy(x +��/2) = 0

Upon rearranging and dividing by ��, we have

Vy(x −��/2)− Vy(x +��/2)

��
= L

2

∂Ix(x −��/2)

∂t
+ L

2

∂Ix(x +��/2)

∂t

Again, taking the limit as �� → 0 gives

∂Vy

∂x
= −L∂Ix

∂t
(7.18b)

Taking similar steps on the loop in the y − z plane yields

∂Vy

∂z
= −L∂Iz

∂t
(7.18c)

These equations will now be combined to form a wave equation. Differentiating
Eq. (7.18a) with respect to t , Eq. (7.18b) with respect to x, and Eq. (7.18c) with
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respect to z, we have

− ∂2Iz

∂z∂t
− ∂2Ix

∂x∂t
= 2C

∂2Vy

∂t2
(7.19a)

∂2Vy

∂x2
= −L ∂

2Ix

∂t∂x
(7.19b)

∂2Vy

∂z2
= −L ∂

2Iz

∂t∂z
(7.19c)

Substituting Eqs. (7.19b) and (7.19c) into Eq. (7.19a) leads to

∂2Vy

∂x2
+ ∂2Vy

∂z2
= 2LC

∂2Vy

∂t2
(7.20)

Equation (7.20) is the Helmholtz wave equation in two-dimensional space.
In order to show the field theory equivalence of Eqs. (7.19) and (7.20), consider

Maxwell’s equations

∇ × E = −µ∂H
∂t

(7.21a)

and

∇ × H = ε
∂E
∂t

(7.21b)

Expansion of Eq. (7.21) in the rectangular coordinate system yields

∂Ez

∂y
− ∂Ey

∂z
= −µ∂Hx

∂t
, (7.22a)

∂Ex

∂z
− ∂Ez

∂x
= −µ∂Hy

∂t
, (7.22b)

∂Ey

∂x
− ∂Ex

∂y
= −µ∂Hz

∂t
, (7.22c)

∂Hz

∂y
− ∂Hy

∂z
= ε

∂Ex

∂t
, (7.22d)

∂Hx

∂z
− ∂Hz

∂x
= ε

∂Ey

∂t
, (7.22e)

∂Hy

∂x
− ∂Hx

∂y
= ε

∂Ez

∂t
(7.22f)

Consider the situation for which Ex = Ez = Hy = 0,
∂

∂y
= 0. It is noticed at

once that this mode is a transverse electric (TE) mode with respect to the z-axis but
a transverse magnetic (TM) mode with respect to the y-axis. Thus by the principle
of duality, the network in Fig. 7.9 can be used for Ey,Hx,Hz fields as well as for
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Ex,Ez,Hy fields. A network capable of reproducing TE waves is also capable of
reproducing TM waves. For TE waves, Eq. (7.22) reduces to

∂Hx

∂z
− ∂Hz

∂x
= ε

∂Ey

∂t
, (7.23a)

∂Ey

∂x
= −µ∂Hz

∂t
, (7.23b)

∂Ey

∂z
= µ

∂Hx

∂t
(7.23c)

Taking similar steps on Eqs. (7.23a)–(7.23c) as were taken for Eqs. (7.18a)–(7.18c)
results in another Helmholtz equation

∂2Ey

∂x2
+ ∂2Ey

∂z2
= µε

∂2Ey

∂t2
(7.24)

Comparing Eqs. (7.23) and (7.24) with Eqs. 7.18 and (7.20) yields the following
equivalence between the parameters

Ey ≡ Vy
Hx ≡ −Iz
Hz ≡ Ix
µ ≡ L

ε ≡ 2C

(7.25)

Thus in the equivalent circuit:

• the voltage at shunt node is Ey ,

• the current in the z direction is −Hx ,

• the current in the x direction is Hz,

• the inductance per unit length represents the permeability of the medium,

• twice the capacitance per unit length represents the permittivity of the medium.

7.4.2 Dispersion Relation of Propagation Velocity

For the basic transmission line in the TLM which has µr = εr = 1, the inductance
and capacitance per unit length are related by [8]

1√
(LC)

= 1√
(µ0ε0)

= c (7.26)

where c = 3 × 108 m/s is the speed of light in vacuum. Notice from Eq. (7.26)
that for the equivalence made in Eq. (7.25), if voltage and current waves on each
transmission line component propagate at the speed of light c, the complete network
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of intersecting transmission lines represents a medium of relative permittivity twice
that of free space. This implies that as long as the equivalent circuit in Fig. 7.9 is
valid, the propagation velocity in the TLM mesh is 1/

√
2 of the velocity of light. The

manner in which wave propagates on the mesh is now derived.
If the ratio of the length of the transmission-line element to the free-space wave-

length of the wave is θ/2π = ��/λ (θ is called the electrical length of the line), the
voltage and current at node i are related to those at node i + 1 by the transfer-matrix
equation (see Prob. 7.2) given as [19] [

Vi
Ii

]
= (7.27)[

(cos θ/2) (j sin θ/2)
(j sin θ/2) (cos θ/2)

] [
1 0

(2j tan θ/2) 1

] [
(cos θ/2) (j sin θ/2)
(j sin θ/2) (cos θ/2)

] [
Vi+1
Ii+1

]

If the waves on the periodic structure have a propagation constant γn = αn + jβn,
then [

Vi
Ii

]
=

[
eγn�� 0

0 eγn��

] [
Vi+1
Ii+1

]
(7.28)

Solution of Eqs. (7.27) and (7.28) gives

cosh (γn��) = cos(θ)− tan(θ/2) sin(θ) (7.29)

This equation describes the range of frequencies over which propagation can take
place (passbands), i.e.,

| cos(θ)− tan(θ/2) sin(θ)| < 1 , (7.30a)

and the range of frequencies over which propagation cannot occur (stop-bands), i.e.,

| cos(θ)− tan(θ/2) sin(θ)| > 1 (7.30b)

For the lowest frequency propagation region,

γn = jβn (7.31a)

and

θ = 2π��

λ
= ω

c
�� (7.31b)

Introducing Eq. (7.31) in Eq. (7.29), we obtain

cos (βn��) = cos

(
ω��

c

)
− tan

(
ω��

2c

)
sin

(
ω��

c

)
(7.32)
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Applying trigonometric identities

sin(2A) = 2 sin(A) cos(A)

and
cos(2A) = 1 − 2 sin2(A)

to Eq. (7.32) results in

sin

(
βn��

2

)
= √

2 sin

(
ω��

2c

)
(7.33)

which is a transcendental equation. If we let r be the ratio of the velocity un of the
waves on the network to the free-space wave velocity c, then

r = un/c = ω

βnc
= 2π

λβn
(7.34a)

or

βn = 2π

λr
(7.34b)

Substituting Eqs. (7.34) into Eq. (7.33), the transcendental equation becomes

sin

(
π

r
· ��
λ

)
= √

2 sin

(
π��

λ

)
(7.35)

By selecting different values of ��/λ, the corresponding values of r = un/c can be
obtained numerically as in Fig. 7.11 for two-dimensional problems. From Fig. 7.11,
we conclude that the TLM can only represent Maxwell’s equations over the range of
frequencies from zero to the first network cutoff frequency, which occurs atω��/c =
π/2 or��/λ = 1/4. Over this range, the velocity of the waves behaves according to
the characteristic of Fig. 7.11. For frequencies much smaller than the network cutoff
frequency, the propagation velocity approximates to 1/

√
2 of the free-space velocity.

Following the same procedure, the dispersion relation for three-dimensional prob-
lems can be derived as

sin

(
π

r
· ��
λ

)
= 2 sin

(
π
��

λ

)
(7.36)

Thus for low frequencies (��/λ < 0.1), the network propagation velocity in three-
dimensional space may be considered constant and equal to c/2.

7.4.3 Scattering Matrix

If kV in and kV rn are the voltage impulses incident upon and reflected from terminal n
of a node at time t = k��/c, we derive the relationship between the two quantities as
follows. Let us assume that a voltage impulse function of unit magnitude is launched
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Figure 7.11
Dispersion of the velocity of waves in a two-dimensional TLM network.

into terminal 1 of a node, as shown in Fig. 7.12(a), and that the characteristic resistance
of the line is normalized. A unit-magnitude delta function of voltage and current will
then travel towards the junction with unit energy (Si = 1). Since line 1 has three
other lines joined to it, its effective terminal resistance is 1/3. With the knowledge of
its reflection coefficient, both the reflected and transmitted voltage impulses can be
calculated. The reflection coefficient is

� = RL − Ro

RL + Ro
= 1/3 − 1

1/3 + 1
= −1

2
(7.37)

so that the reflected and transmitted energies are

Sr = Si�
2 = 1

4
(7.38a)

St = Si

(
1 − �2

)
= 3

4
(7.38b)

where subscripts i, r , and t indicate incident, reflected, and transmitted quantities,
respectively. Thus a voltage impulse of −1/2 is reflected back in terminal 1, while
a voltage impulse of 1/2 = [ 3

4 ÷ 3]1/2 will be launched into each of the other three
terminals as shown in Fig. 7.12(b).

The more general case of four impulses being incident on four branches of a node
can be obtained by applying the superposition principle to the previous case of a
single pulse. Hence, if at time t = k��/c, voltage impulses kV i1 , kV i2 , kV i3 , and kV

i
4

are incident on lines 1 to 4, respectively, at any node as in Fig. 7.12(c), the combined
voltage reflected along line 1 at time t = (k + 1)��/c will be [9, 10]

k+1V
r
1 = 1

2

〈
kV

i
2 + kV

i
3 + kV

i
4 − kV

i
1

〉
(7.39)
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Figure 7.12
The impulse response of a node in a matrix.

In general, the total voltage impulse reflected along line n at time t = (k + 1)��/c
will be

k+1V
r
n = 1

2

[
4∑

m=1

kV
i
m

]
− kV

i
n, n = 1, 2, 3, 4 (7.40)

This idea is conveniently described by a scattering matrix equation relating the re-
flected voltages at time (k+ 1)��/c to the incident voltages at the previous time step
k��/c:

k+1



V1
V2
V3
V4



r

= 1

2




−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1




k



V1
V2
V3
V4



i

(7.41)

Also an impulse emerging from a node at position (z, x) in the mesh (reflected im-
pulse) becomes automatically an incident impulse at the neighboring node. Hence

k+1V
i
1 (z, x +��) = k+1V

r
3 (z, x)

k+1V
i
2 (z+��, x) = k+1V

r
4 (z, x)

k+1V
i
3 (z, x −��) = k+1V

r
1 (z, x)

k+1V
i
4 (z−��, x) = k+1V

r
2 (z, x)

(7.42)

Thus by applying Eqs. (7.41) and (7.42), the magnitudes, positions, and directions
of all impulses at time (k + 1)��/c can be obtained at each node in the network
provided that their corresponding values at time k��/c are known. The impulse
response may, therefore, be found by initially fixing the magnitude, position, and
direction of travel of impulse voltages at time t = 0, and then calculating the state
of the network at successive time intervals. The scattering process forms the basic
algorithm of the TLM method [10, 17].

The propagating of pulses in the TLM model is illustrated in Fig. 7.13, where the
first two iterations following an initial excitation pulse in a two-dimensional shunt-
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Figure 7.13
Scattering in a two-dimensional TLM network excited by a Dirac impulse.

connected TLM are shown. We have assumed free-space propagation for the sake of
simplicity.

7.4.4 Boundary Representation

Boundaries are usually placed halfway between two nodes in order to ensure syn-
chronism. In practice, this is achieved by making the mesh size�� an integer fraction
of the structure’s dimensions.

Any resistive load at boundary C (see Fig. 7.10) may be simulated by introducing
a reflection coefficient �

k+1V
i
4 (p, q) = kV

r
2 (p + 1, q) = �

[
kV

r
4 (p, q)

]
(7.43)

where

� = Rs − 1

Rs + 1
(7.44)

and Rs is the surface resistance of the boundary normalized by the line characteristic
impedance. If, for example, a perfectly conducting wall (Rs = 0) is to be simulated
along boundary C, Eq. (7.44) gives � = −1, which represents a short circuit, and

k+1V
i
4 (p, q) = − kV

r
4 (p, q) (7.45)

is used in the simulation. For waves striking the boundary at arbitrary angles of
incidence, a method for modeling free-space boundaries is discussed in [20].

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



7.4.5 Computation of Fields and Frequency Response

We continue with the TE mode of Eq. (7.23) as our example and calculate Ey,Hx ,
andHz. Ey at any point corresponds to the node voltage at the point,Hz corresponds
to the net current entering the node in the x direction (see Eq. (7.25)), whileHx is the
net current in the negative z direction. For any point (z = m, x = n) on the grid of
Fig. 7.10, we have for each kth transient time

kEy(m, n) = 1

2

[
kV

i
1 (m, n)+ kV

i
2 (m, n)+ kV

i
3 (m, n)+ kV

i
4 (m, n)

]
(7.46)

− kHx(m, n) = kV
i
2 (m, n)− kV

i
4 (m, n) , (7.47)

and

kHz(m, n) = kV
i
3 (m, n)− kV

i
1 (m, n) (7.48)

Thus, a series of discrete delta-function of magnitudes Ey,Hx , and Hz correspond-
ing to time intervals of ��/c are obtained by the iteration of Eqs. (7.41) and (7.42).
(Notice that reflections at the boundaries A and B in Fig. 7.10 will cancel out, thus
Hz = 0.) Any point in the mesh can serve as an output or observation point. Equa-
tions (7.46) to (7.48) provide the output-impulse functions for the point representing
the response of the system to an impulsive excitation. These output functions may be
used to obtain the output waveform. For example, the output waveform correspond-
ing to a pulse input may be obtained by convolving the output-impulse function with
the shape of the input pulse.

Sometimes we are interested in the response to a sinusoidal excitation. This is
obtained by taking the Fourier transform of the impulse response. Since the response
is a series of delta functions, the Fourier transform integral becomes a summation,
and the real and imaginary parts of the output spectrum are given by [9, 10]

Re [F(��/λ)] =
N∑
k=1

kI cos

(
2πk��

λ

)
(7.49a)

Im [F(��/λ)] =
N∑
k=1

kI sin

(
2πk��

λ

)
(7.49b)

where F(��/λ) is the frequency response, kI is the value of the output impulse
response at time t = k��/c, andN is the total number of time intervals for which the
calculation is made. Henceforth, N will be referred to as the number of iterations.

7.4.6 Output Response and Accuracy of Results

The output impulse function, in terms of voltage or current, may be taken from any
point in the TLM mesh. It consists of a train of impulses of varying magnitude in the
time domain separated by a time interval��/c. Thus, the frequency response obtained
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by taking the Fourier transform of the output response consists of series of delta
functions in the frequency domain corresponding to the discrete modal frequencies
for which a solution exists. For practical reasons, the output response has to be
truncated, and this results in a spreading of the solution delta function sin x/x type
of curves.

To investigate the accuracy of the result, let the output response be truncated afterN
iterations. Let Vout (t) be the output impulse function taken within 0 < t < N��/c.
We may regard Vout (t) as an impulse function V∞(t), taken within 0 < t < ∞,
multiplied by a unit pulse function Vp(t) of width N��/c, i.e.,

Vout (t) = V∞(t)× Vp(t) (7.50)

where

Vp =
{

1, 0 ≤ t ≤ N��/c

0, elsewhere
(7.51)

LetSout (f ), S∞(f ), andSp(f )be the Fourier transform ofVout (t), V∞(t), andVp(t),
respectively. The Fourier transform of Eq. (7.50) is the convolution of S∞(f ) and
Sp(f ). Hence

Sout (f ) =
∫ ∞

−∞
S∞(α)Sp(f − α) dα (7.52)

where

Sp(f ) = N��

c

sin
πN��f

c
πN��f

c

e−(πN��f )/c (7.53)

which is of the form sin x/x. Equations (7.52) and (7.53) show that Sp(f ) is placed
in each of the positions of the exact response S∞(f ). Since the greater the number
of iterationsN the sharper the maximum peak of the curve, the accuracy of the result
depends on N . Thus the solution of a wave equation by TLM method involves the
following four steps [21]:

1. Space discretization: The solution region is divided into a number of blocks
to fit the geometrical and frequency requirements. Each block is replaced by a
network of transmission lines interconnected to form a “node.” Transmission
lines from adjacent nodes are connected to form a mesh describing the entire
solution region.

2. Excitation: This involves imposing the initial conditions and source terms.

3. Scattering: With the use of the scattering matrix, pulses propagate along trans-
mission lines toward each node. At each new time step, a multiple of propa-
gation time δt , scattered pulses from each node become incident on adjacent
nodes. The scattering and connection processes may be repeated to simulate
propagation for any desired length of time.
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4. Output: At any time step, voltages and currents on transmission lines are avail-
able. These represent the electric and magnetic fields corresponding to the
particular problem and excitation. The quantities available at each time step
are the solution in the time domain — there is no need for an iterative solution
procedure. If desired, frequency-domain information may be obtained by using
Fourier transform techniques.

The following examples are taken from Johns’s work [9, 18].

Example 7.2
The FORTRAN program in Fig. 7.14 is for the numerical calculations of one-

dimensional TEM wave problems. It should be mentioned that the computer program
in this example and the following ones are modified versions of those in Agba [22].
The calculations were carried out on a 25 by 11 rectangular matrix. TEM field-
continuation boundaries were fixed along x = 2 and x = 10, producing boundaries,
in effect, along the lines x = 1.5 and x = 10.5. The initial impulse excitation was
on all points along the line z = 4, and the field along this line was set to zero at all
subsequent time intervals. In this way, interference from boundaries to the left of
the excitation line was avoided. Calculations in the z direction were terminated at
z = 24, so that no reflections were received from points at z = 25 in the matrix, and
the boundary C in Fig. 7.10, situated at z = 24.5, was therefore matched to free space.
The output-impulse response for Ey and Hx was taken at the point z = 14, x = 6,
which is 10.5 mesh points away from the boundary C, for 100, 150, and 200 iterations.

Since the velocity of waves on the matrix is less than that in free space by a factor
un/c (see Fig. 7.11), the effective intrinsic impedance presented by the network matrix
is less by the same factor. The magnitude of the wave impedance on the matrix,
normalized to the intrinsic impedance of free space, is given by Z = |Ey |/|Hx | and
is tabulated in Table 7.2, together with Arg(Z), for the various numbers of iterations
made. A comparison is made with the exact impedance values [14].

Table 7.2 Normalized Impedance of a TEM Wave with Free-Space Discontinuity
TLM results Exact results

��/λ |Z| Arg(Z) |Z| Arg(Z) |Z| Arg(Z) |Z| Arg(Z)
Number of
iterations 100 150 200
0.002 0.9789 −0.1368 0.9730 −0.1396 0.9781 −0.1253 0.9747 −0.1282
0.004 0.9028 −0.2432 0.8980 −0.2322 0.9072 −0.2400 0.9077 −0.2356
0.006 0.8114 −0.3068 0.8229 −0.2979 0.8170 −0.3046 0.8185 −0.3081
0.008 0.7238 −0.3307 0.7328 −0.3457 0.7287 −0.3404 0.7256 −0.3390
0.010 0.6455 −0.3201 0.6367 −0.3350 0.6396 −0.3281 0.6414 −0.3263
0.012 0.5783 −0.2730 0.5694 −0.2619 0.5742 −0.2680 0.5731 −0.2707
0.014 0.5272 −0.1850 0.5313 −0.1712 0.5266 −0.1797 0.5255 −0.1765
0.016 0.4993 −0.0609 0.5043 −0.0657 0.5009 −0.0538 0.5018 −0.0545
0.018 0.5002 −0.0790 0.4987 −0.0748 0.5057 −0.0785 0.5057 0.0768
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Figure 7.14
Computer program for Example 7.2 (Continued).
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Figure 7.14
(Cont.) Computer program for Example 7.2 (Continued).
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Figure 7.14
(Cont.) Computer program for Example 7.2.

Example 7.3
The second example is on a rectangular waveguide with a simple load. The FOR-

TRAN program used for the numerical analysis is basically similar to that of one-
dimensional simulation. A 25 × 11 matrix was used for the numerical analysis of
the waveguide. Short-circuit boundaries were placed at x = 2 and x = 10, the
width between the waveguide walls thus being 9 mesh points. The system was ex-
cited at all points along the line z = 2, and the impulse function of the output was
taken from the point (x = 6, z = 12). The C boundary at z = 24 represented an
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abrupt change to the intrinsic impedance of free space. The minor changes in the
program of Fig. 7.14 are shown in Fig. 7.15. The cutoff frequency for the waveg-
uide occurs [19] at ��/λn = 1/18, λn is the network-matrix wavelength, which
corresponds to ��/λ = √

2/18 since

λn

λ
= un

c
=

√
µoεo√
µnεn

=
√
LC√

2LC
= 1√

2

A comparison between the results for the normalized guide impedance using this
method is made with exact results in Table 7.3.

Table 7.3 Normalized Impedance of a
Rectangular Waveguide with Simple Load

TLM results Exact results
��/λ |Z| Arg(Z) |Z| Arg(Z)
0.020 1.9391 0.8936 1.9325 0.9131
0.021 2.0594 0.6175 2.0964 0.6415
0.022 1.9697 0.3553 2.0250 0.3603
0.023 1.7556 0.1530 1.7800 0.1438
0.024 1.5173 0.0189 1.5132 0.0163
0.025 1.3036 −0.0518 1.2989 −0.0388
0.026 1.1370 −0.0648 1.1471 −0.0457
0.027 1.0297 −0.0350 1.0482 −0.0249
0.028 0.9776 0.0088 0.9900 0.0075
0.029 0.9620 0.0416 0.9622 0.0396
0.030 0.9623 0.0554 0.9556 0.0632

7.5 Inhomogeneous and Lossy Media in TLM

In our discussion on the transmission-line-matrix (TLM) method in the last section,
it was assumed that the medium in which wave propagates was homogeneous and
lossless. In this section, we consider media that are inhomogeneous or lossy or
both. This necessitates that we modify the equivalent network of Fig. 7.9 and the
corresponding transmission line matrix of Fig. 7.10. Also, we need to draw the
corresponding equivalence between the network and Maxwell’s equations and derive
the scattering matrix. We will finally consider how lossy boundaries are represented.
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Figure 7.15
Modification in the program in Fig. 7.14 for simulating waveguide problem in
Example 7.3.

7.5.1 General Two-Dimensional Shunt Node

To account for the inhomogeneity of a medium (where ε is not constant), we
introduce additional capacitance at nodes to represent an increase in permittivity [17],
[23]–[25]. We achieve this by introducing an additional length of line or stub to the
node as shown in Fig. 7.16 (a). The stub of length ��/2 is open circuited at the
end and is of variable characteristic admittance Yo relative to the unity characteristic
admittance assumed for the main transmission line. At low frequencies, the effect
of the stub is to add to each node an additional lumped shunt capacitance CYo��/2,
where C is the shunt capacitance per unit length of the main lines that are of unity
characteristic admittance. Thus at each node, the total shunt capacitance becomes

C′ = 2C��+ CYo��/2

or

C′ = 2C�� (1 + Yo/4) (7.54)

To account for the loss in the medium, we introduce a power-absorbing line at each
node, lumped into a single resistor, and this is simulated by an infinite or matched
line of characteristic admittance Go normalized to the characteristic impedance of
the main lines as illustrated in Fig. 7.16 (b).

Due to these additional lines, the equivalent network now becomes that shown in
Fig. 7.17. (Compare Fig. 7.17 with Fig. 7.9). Applying Kirchhoff’s current law to
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Figure 7.16
A two-dimensional node with: (a) Permittivity stub, (b) permittivity and loss
stub.

Figure 7.17
General two-dimensional shunt node.

shunt node O in the x-z plane in Fig. 7.17 and taking limits as �� → 0 results in

−∂Iz
∂z

− ∂Ix

∂x
= GoVy

Zo��
+ 2C (1 + Yo/4)

∂Vy

∂t
(7.55)

Expanding Maxwell’s equations ∇ × E = −µ∂H
∂t

and ∇ × H = σE + ε
∂E
∂t

for

∂/∂y ≡ 0 leads to

∂Hx

∂z
− ∂Hz

∂x
= σEy + εoεr

∂Ey

∂t
(7.56)

This may be considered as denoting TEm0 modes with field components Hz,Hx ,
and Ey . From Eqs. (7.55) and (7.56), the following equivalence between the TLM
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equations and Maxwell’s equations can be drawn:

Ey ≡ Vy
Hx ≡ −Iz
Hz ≡ Ix
εo ≡ 2C
εr ≡ 4+Yo

4

σ ≡ Go
Zo��

(7.57)

where Zo = √
L/C. From Eq. (7.57), the normalized characteristic admittance Go

of the loss stub is related to the conductivity of the medium by

Go = σ��Zo (7.58)

Thus losses on the matrix can be varied by altering the value of Go. Also from
Eq. (7.57), the variable characteristic admittance Yo of the permittivity stub is related
to the relative permittivity of the medium as

Yo = 4 (εr − 1) (7.59)

7.5.2 Scattering Matrix

We now derive the impulse response of the network comprising of the intercon-
nection of many generalized nodes such as that in Fig. 7.17. As in the previous
section, if kVn(z, x) is unit voltage impulse reflected from the node at (z, x) into the
nth coordinate direction (n = 1, 2, . . . , 5) at time k��/c, then at node (z, x),

k+1



V1(z, x)

V2(z, x)

V3(z, x)

V4(z, x)

V5(z, x)




r

= [S]

k



V3(z, x −��)

V4(z−��, x)

V1(z, x +��)

V2(z+��, x)

V5(z, x +��)




i

(7.60)

where [S] is the scattering matrix given by

[S] = 2

Y




1 1 1 1 Yo
1 1 1 1 Yo
1 1 1 1 Yo
1 1 1 1 Yo
1 1 1 1 Yo


 − [I ] (7.61)

[I ] is a unit matrix and Y = 4 + Yo + Go. The coordinate directions 1, 2, 3, and 4
correspond to −x,−z,+x, and +z, respectively (as in the last section), and 5 refers
to the permittivity stub. Notice that the voltage V6 (see Fig. 7.16) scattered into the
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loss stub is dropped across Go and not returned to the matrix. We apply Eq. (7.60)
just as Eq. (7.41).

As in the last section, the output impulse function at a particular node in the mesh
can be obtained by recording the amplitude and the time of the stream of pulses as
they pass through the node. By taking the Fourier transform of the output impulse
function using Eq. (7.49), the required information can be extracted.

The dispersion relation can be derived in the same manner as in the last section. If
γn = αn+jβn is the network propagation constant and γ = α+jβ is the propagation
constant of the medium, the two propagation constants are related as

β

βn
= θ/2

sin−1 [√
2(1 + Yo/4) sin θ/2

] (7.62a)

α

αn
=

√
1 − 2(1 + Yo/4) sin2 θ/2√

2(1 + Yo/4) cos θ/2
(7.62b)

where θ = 2π��/λ and

α = Go

8��(1 + Yo/4)
(7.63)

In arriving at Eq. (7.62), we have assumed that αn�� << 1. For low frequencies,
the attenuation constant αn and phase constant βn of the network are fairly constant
so that Eq. (7.62) reduces to

γn = √
2(1 + Yo/4)γ (7.64)

From this, the network velocity un(= ω/βn = βc/βn) of waves on the matrix is
readily obtained as

u2
n = c2

2(1 + Yo/4)
(7.65)

where c is the free-space velocity of waves.

7.5.3 Representation of Lossy Boundaries

The above analysis has incorporated conductivity σ of the medium in the TLM
formulation. To account for a lossy boundary [25]–[27], we define the reflection
coefficient

� = Zs − Zo

Zs + Zo
(7.66)

where Zo = √
µo/εo is the characteristic impedance of the main lines and Zs is the

surface impedance of the lossy boundary given by

Zs =
√
µω

2σc
(1 + j) (7.67)
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where µ and σc are the permeability and conductivity of the boundary. It is evident
from Eqs. (7.66) and (7.67) that the reflection coefficient � is in general complex.
However, complex � implies that the shape of the pulse functions is altered on re-
flection at the conducting boundary, and this cannot be accounted for in the TLM
method [22]. Therefore, assuming that Zs is small compared with Zo and that the
imaginary part of � is negligible,

� � −1 +
√

2εoω

σc
(7.68)

where µ = µo is assumed. We notice that � is slightly less than −1. Also, we
notice that � depends on the frequency ω and hence calculations involving lossy
boundaries are only accurate for the specific frequency; calculations must be repeated
for a different value of ��/λ. The following example is taken from Akhtarzad and
Johns [24].

Example 7.4
Consider the lossy homogeneous filled waveguide shown in Fig. 7.18. The guide is

6 cm wide and 13 cm long. It is filled with a dielectric of relative permittivity εr = 4.9
and conductivity σ = 0.05 mhos/m and terminated in an open circuit discontinuity.
Calculate the normalized wave impedance.

Figure 7.18
A lossy homogeneously filled waveguide.

Solution
The computer program for this problem is in Fig. 7.19. It is an extension of the
program in Fig. 7.14 with the incorporation of new concepts developed in this section.
Enough comments are added to make it self-explanatory. The program is suitable for
a two-dimensional TEm0 mode.
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The waveguide geometry shown in Fig. 7.18 is simulated on a matrix of 12 × 26
nodes. The matrix is excited at all points along line z = 1 with impulses corre-
sponding to Ey . The impulse function of the output at point (z, x) = (6, 6) is taken
after 700 iterations. Table 7.4 presents both the TLM and theoretical values of the
normalized wave impedance and shows a good agreement between the two.

Table 7.4 Impedance of a Homogeneously
Filled Waveguide with Losses

TLM results Exact results
��/λ |Z| Arg(Z) |Z| Arg(Z)
0.003 0.0725 1.5591 0.0729 1.5575
0.006 0.1511 1.5446 0.1518 1.5420
0.009 0.2446 1.5243 0.2453 1.5205
0.012 0.3706 1.4890 0.3712 1.4840
0.015 0.5803 1.4032 0.5792 1.3977
0.018 1.0000 1.0056 0.9979 1.0065
0.021 1.1735 0.5156 1.1676 0.5121
0.024 0.5032 −0.1901 0.5093 −0.2141
0.027 0.6766 0.6917 0.6609 0.6853
0.030 0.8921 −0.3869 0.8921 −0.4185

7.6 Three-Dimensional TLM Mesh

The TLM mesh considered in Sections 7.4 and 7.5 is two-dimensional. The choice
of shunt-connected nodes to represent the two-dimensional wave propagation was
quite arbitrary; the TLM mesh could have equally been made up of series-connected
nodes. To represent a three-dimensional space, however, we must apply a hybrid TLM
mesh consisting of three shunt and three series nodes to simultaneously describe all
the six field components. First of all, we need to understand what a series-connected
node is.

7.6.1 Series Nodes

Figure 7.20 portrays a lossless series-connected node that is equipped with a short-
circuited stub called the permeability stub. The corresponding network representation
is illustrated in Fig. 7.21. The input impedance of the short-circuited stub is

Zin = jZo

√
L

C
tan

(
ω��

2c

)
� jωLZo��/2 (7.69)
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Figure 7.19
Computer program for Example 7.4 (Continued).
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Figure 7.19
(Cont.) Computer program for Example 7.4 (Continued).

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



Figure 7.19
(Cont.) Computer program for Example 7.4.

Figure 7.20
A lossless series connected node with permeability stub.

where Eq. (7.26) has been applied. This represents an impedance with inductance

L′ = L
��

2
Zo (7.70)

Hence the total inductance on the side in which the stub is inserted is L��(1+Zo)/2
as in Fig. 7.21. We now apply Kirchhoff’s voltage law around the series node of
Fig. 7.21 and obtain

Vz +L
��

2
(1 + Zo)

∂Ix

∂t
+Vy + ∂Vy

∂z
��−

(
Vz + ∂Vz

∂y
��

)
+ 3L

��

2

∂Ix

∂t
−Vy = 0
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Figure 7.21
Network representation of a series node.

Dividing through by �� and rearranging terms leads to

∂Vz

∂y
− ∂Vy

∂z
= 2L (1 + Zo/4)

∂Ix

∂t
(7.71)

Note that the series node is oriented in the y-z plane. Equations for series nodes in
the x-y and x-z planes can be obtained in a similar manner as

∂Vy

∂x
− ∂Vx

∂y
= 2L (1 + Zo/4)

∂Iz

∂t
(7.72)

and

∂Vx

∂z
− ∂Vz

∂x
= 2L (1 + Zo/4)

∂Iy

∂t
, (7.73)

respectively.
Comparing Eqs. (7.71) to (7.73) with Maxwell’s equations in Eq. (7.22), the fol-

lowing equivalences can be identified:

Ex ≡ Vx

Ez ≡ Vz

µo ≡ 2L

µr ≡ 4 + Zo

4

(7.74)

A series-connected two-dimensional TLM mesh is shown in Fig. 7.22 (a). while the
equivalent one-dimensional mesh is in Fig. 7.22 (b). A voltage impulse incident on
a series node is scattered in accordance with Eq. (7.60), where the scattering matrix
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Figure 7.22
(a) A two-dimensional series-connected TLM mesh. (b) A one-dimensional
series-connected TLM mesh.

is now

[S] = 2

Z




−1 1 1 −1 −1
1 −1 −1 1 1
1 −1 −1 1 1

−1 1 1 −1 −1
−Zo Zo Zo −Zo −Zo


 + [I ] (7.75)

Z = 4 + Zo, and [I ] is the unit matrix. The velocity characteristic for the two-
dimensional series matrix is the same as for the shunt node [24]. For low frequencies
(��/λ < 0.1) the velocity of the waves on the matrix is approximately 1/

√
2 of the

free-space velocity. This is due to the fact that the stubs have twice the inductance
per unit length, while the capacitance per unit length remains unchanged. This is the
dual of the two-dimensional shunt case in which the capacitance was doubled and the
inductance was unchanged.

7.6.2 Three-Dimensional Node

A three-dimensional TLM node [27] consists of three shunt nodes in conjunction
with three series nodes. The voltages at the three shunt nodes represent the three
components of the E field, while the currents of the series nodes represent the three
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components of the H field. In thex-z plane, for example, the voltage-current equations
for the shunt node are

∂Ix

∂z
− ∂Iz

∂x
= 2C

∂Vy

∂t
(7.76a)

∂Vy

∂x
= −L

∂Ix

∂t
(7.76b)

∂Vy

∂z
= −L

∂Iz

∂t
(7.76c)

and for the series node in the x-z plane, the equations are

∂Vx

∂z
− ∂Vz

∂x
= 2L

∂Iy

∂t
(7.77a)

∂Iy

∂x
= −C

∂Vz

∂t
(7.77b)

∂Iy

∂z
= −C

∂Vx

∂t
(7.77c)

Maxwell’s equations ∇ × E = ∂B
∂t

and ∇ × H = ε
∂E
∂t

for
∂

∂y
≡ 0 give

∂Hx

∂z
− ∂Hz

∂x
= ε

∂Ey

∂t
(7.78a)

∂Ey

∂x
= µ

∂Hx

∂t
(7.78b)

∂Ey

∂z
= −µ

∂Hz

∂t
(7.78c)

and

∂Ex

∂z
− ∂Ez

∂x
= −µ

∂Hy

∂t
(7.79a)

∂Hy

∂x
= −ε

∂Ex

∂t
(7.79b)

∂Hy

∂z
= −ε

∂Ez

∂t
(7.79c)

A similar analysis for shunt and series nodes in the x-y and y-z planes will yield the
voltage-current equations and the corresponding Maxwell’s equations. The three sets
of two-dimensional shunt and series nodes oriented in the x-y, y-z, and z-x planes
form a three-dimensional model. The two-dimensional nodes must be connected in
such a way as to correctly describe Maxwell’s equations at each three-dimensional
node. Each of the shunt and series nodes has a spacing of ��/2 so that like nodes are
spaced �� apart.
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Figure 7.23 illustrates a three-dimensional node representing a cubical volume of
space ��/2 long in each direction. A close examination shows that if the voltage

Figure 7.23
A three-dimensional node consisting of three shunt nodes and three series nodes.

between lines represents the E field and the current in the lines represents the H field,
then the following Maxwell’s equations are satisfied:

∂Hx

∂z
− ∂Hz

∂x
= ε

∂Ey

∂t
(7.80a)

∂Ez

∂y
− ∂Ey

∂z
= −µ

∂Hx

∂t
(7.80b)

∂Ey

∂x
− ∂Ex

∂y
= −µ

∂Hz

∂t
(7.80c)

∂Ex

∂z
− ∂Ez

∂x
= −µ

∂Hy

∂t
(7.80d)

∂Hz

∂y
− ∂Hy

∂z
= ε

∂Ex

∂t
(7.80e)

∂Hy

∂x
− ∂Hx

∂y
= ε

∂Ez

∂t
(7.80f)

In the upper half of the node in Fig. 7.23, we have a shunt node in the x-z plane
(representing Eq. (7.80a)) connected to a series node in the y-z plane (representing
Eq. (7.80b)) and a series node in the x-y plane (representing Eq. (7.80c)). In the
lower half of the node, a series node in the x-z plane (representing Eq. (7.80d)) is
connected to a shunt node in the y-z plane (representing Eq. (7.80e)) and a shunt node
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in the x-y plane (representing Eq. (7.80f)). Thus Maxwell’s equations are completely
satisfied at the three-dimensional node. A three-dimensional TLM mesh is obtained
by stacking similar nodes in x, y, and z directions (see Fig. 7.25, for example).

The wave characteristics of the three-dimensional mesh are similar to those of the
two-dimensional mesh with the difference that low-frequency velocity is now c/2
instead of c/

√
2.

Figure 7.24 illustrates a schematic diagram of a three-dimensional node using single
lines to represent pairs of transmission lines. It is more general than the representation
in Fig. 7.23 in that it includes the permittivity, permeability, and loss stubs. Note that
the dotted lines making up the corners of the cube are guidelines and do not represent
transmission lines or stubs. It can be shown that for the general node the following
equivalences apply [28]:

Ex ≡ the common voltage at shunt node Ex

Ey ≡ the common voltage at shunt node Ey

Ez ≡ the common voltage at shunt node Ez

Hx ≡ the common current at series node Hx

Hy ≡ the common current at series node Hy

Hz ≡ the common current at series node Hz

εo ≡ C (the capacitance per unit length of lines)
εr ≡ 2 (1 + Yo/4)
µo ≡ L (the inductance per unit length of lines)
µr ≡ 2 (1 + Zo/4)

σ ≡ Go

��L
C

(7.81)

where Yo, Zo, and Go remain as defined in Sections 7.4 and 7.5. Interconnection
of many of such three-dimensional nodes forms a TLM mesh representing any in-
homogeneous media. The TLM method for three-dimensional problems is therefore
concerned with applying Eq. (7.60) in conjunction with Eqs. (7.61) and (7.75) and
obtaining the impulse response. Any of the field components may be excited initially
by specifying initial impulses at the appropriate nodes. Also, the response at any
node may be monitored by recording the pulses that pass through the node.

7.6.3 Boundary Conditions

Boundary conditions are simulated by short-circuiting shunt nodes (electric wall)
or open-circuiting series nodes (magnetic wall) situated on a boundary. The tangential
components of E must vanish in the plane of an electric wall, while the tangential
components of H must be zero in the plane of a magnetic wall. For example, to set
Ex and Ey equal to zero in a particular plane, all shunt nodes Ex and Ey lying in that
plane are shorted. Similarly, to set Hy and Hz equal to zero in some plane, the series
nodes Hy and Hz in that plane are simply open-circuited.

The continuity of the tangential components of E and H fields across a dielec-
tric/dielectric boundary is automatically satisfied in the TLM mesh. For example,
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Figure 7.24
A general three-dimensional node.

for a dielectric/dielectric boundary in the x-z plane such as shown in Fig. 7.25, the
following equations valid for a transmission-line element joining the nodes on either
side of the boundaries are applicable:

Ez1 = Ez2 + ∂Ez2

∂y
��

Ex1 = Ex2 + ∂Ex2

∂y
��

Hx1 = Hx2 + ∂Hx2

∂y
��

Hz1 = Hz2 + ∂Hz2

∂y
�� (7.82)

Finally, wall losses are included by introducing imperfect reflection coefficients as
discussed in Section 7.5. The three-dimensional TLM mesh will be applied in solving
the three-dimensional problems of resonant cavities in the following examples, taken
from Akhtarzad and Johns [27].
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Figure 7.25
A dielectric/dielectric boundary in TLM mesh.

Example 7.5
Determine the resonant frequency of an a × b × d empty rectangular cavity using

the TLM method. Take a = 12��, b = 8��, and d = 6��.

Solution
The exact solution [13, 14] for TEmnp or TMmnp mode is

fr = c

2

√
(m/a)2 + (n/b)2 + (p/d)2

from which we readily obtain

kc = wr

c
= 2πfr

c
= π

√
(m/a)2 + (n/b)2 + (p/d)2

The TLM program, the modified version of the program in [22], is shown in
Fig. 7.26. The program initializes all field components by setting them equal to
zero at all nodes in the 12��×8��×8�� TLM mesh and exciting one field compo-
nent. With subroutine COMPUTE, it applies Eq. (7.60) in conjunction with Eq. (7.61)
and (7.75) to calculate the reflected E and H field components at all nodes. It applies
the boundary conditions and calculates the impulse response at a particular node in
the mesh.

The results of the computation along with the exact analytical values for the first
few modes in the cavity are shown in Table 7.5.
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Figure 7.26
Computer program for Example 7.5 (Continued).
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Figure 7.26
(Cont.) Computer program for Example 7.5 (Continued).
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Figure 7.26
(Cont.) Computer program for Example 7.5 (Continued).

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



Figure 7.26
(Cont.) Computer program for Example 7.5 (Continued).
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Figure 7.26
(Cont.) Computer program for Example 7.5 (Continued).
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Figure 7.26
(Cont.) Computer program for Example 7.5.

Table 7.5 Resonant Wavenumber (kca) of an
Empty Rectangular Cavity, where kca = 4πa/c and
λ is the Free-space Wavelength

Modes Exact results TLM results Error %
TM110 5.6636 5.6400 0.42
TE101 7.0249 6.9819 0.61

TM210, TE011 7.8540 7.8112 0.54

Example 7.6

Modify the TLM program in Fig. 7.26 to calculate the resonant wavenumber kca of
the inhomogeneous cavities in Fig. 7.27. Take εr = 16, a = ��, b = 3a/10, d =
4a/10, s = 7a/12.

Solution

The main program in Fig. 7.26 is applicable to this example. Only the subroutine
COMPUTE requires slight modification to take care of the inhomogeneity of the
cavity. The modifications in the subprogram for the cavities in Fig. 7.27 (a) and (b)
are shown in Fig. 7.28 (a) and (b), respectively. For each modification, the few lines
in Fig. 7.28 are inserted in between lines 15 and 17 in subroutine COMPUTE of
Fig. 7.26. The results are shown in Table 7.6 for TE101 mode.
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Figure 7.27
Rectangular cavity loaded with dielectric slab.

Figure 7.28
(a) Modification in subroutine COMPUTE for the inhomogeneous cavity of
Fig. 7.27 (a) (Continued).
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Figure 7.28
(Cont.) (b) Modification in subroutine COMPUTE for the inhomogeneous cavity
of Fig. 7.27 (b).

Table 7.6 Resonant Wavenumber (kca) for
TE101 Mode of Inhomogeneous Rectangular
Cavities, where kca = 4πa/c, and λ is the
Free-space Wavelength

Modes Exact results TLM results Error %
Fig. 7.27 (a) 2.589 2.5761 0.26
Fig. 7.27 (b) (none) 3.5387

7.7 Error Sources and Correction

As in all approximate solutions such as the TLM technique, it is important that the
error in the final result be minimal. In the TLM method, four principal sources of
error can be identified [10, 28, 29]:

• truncation error,

• coarseness error,
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• velocity error,

• misalignment error.

Each of these sources of error and ways of minimizing it will be discussed.

7.7.1 Truncation Error

The truncation error is due to the need to truncate the impulse response in time.
As a result of the finite duration of the impulse response, its Fourier transform is not
a line spectrum but rather a superposition of sin x/x functions, which may interfere
with each other and cause a slight shift in their maxima. The maximum truncation
error is given by

eT = �S

��/λc
= 3λc

SN2π2��
(7.83)

whereλc is the cutoff wavelength to be calculated,�S is the absolute error in��/λc, S

is the frequency separation (expressed in terms of ��/λc, λc being the free-space
wavelength) between two neighboring peaks as shown in Fig. 7.29, and N is the
number of iterations. Equation (7.83) indicates that eT decreases with increasing N

and increasing S. It is therefore desirable to make N large and suppress all unwanted
modes close to the desired mode by carefully selecting the input and output points
in the TLM mesh. An alternative way of reducing the truncation error is to use a
Hanning window in the Fourier transform. For further details on this, one should
consult [10, 31].

Figure 7.29
Source of truncation error: (a) Truncated output impulse, (b) resulting trunca-
tion error in the frequency domain.

7.7.2 Coarseness Error

This occurs when the TLM mesh is too coarse to resolve highly nonuniform fields
as can be found at corners and edges. An obvious solution is to use a finer mesh
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(�� → 0), but this would lead to large memory requirements and there are limits
to this refinement. A better approach is to use variable mesh size so that a higher
resolution can be obtained in the nonuniform field region [71]. This approach requires
more complicated programming.

7.7.3 Velocity Error

This stems from the assumption that propagation velocity in the TLM mesh is the
same in all directions and equal to un = u/

√
2, where u is the propagation velocity

in the medium filling the structure. The assumption is only valid if the wavelength
λn in the TLM mesh is large compared with the mesh size ��(��/λn < 0.1). Thus
the cutoff frequency fcn in the TLM mesh is related to the cutoff frequency fc of the
real structure according to fc = fcn

√
2. If �� is comparable with λn, the velocity of

propagation depends on the direction and the assumption of constant velocity results
in a velocity error in fc. Fortunately, a measure to reduce the coarseness error takes
care of the velocity error as well.

7.7.4 Misalignment Error

This error occurs in dielectric interfaces in three-dimensional inhomogeneous struc-
tures such as microstrip or fin line. It is due to the manner in which boundaries are
simulated in a three-dimensional TLM mesh; dielectric interfaces appear halfway
between nodes, while electric and magnetic boundaries appear across such nodes.
If the resulting error is not acceptable, one must make two computations, one with
recessed and one with protruding dielectric, and take the average of the results.

7.8 Absorbing Boundary Conditions

Just like FDTD and FEM, the TLM method requires absorbing boundary conditions
(ABCs) at the limit of the solution region. Several ABCs have proposed for TLM
simulations [32]–[37]. It has been recognized that the perfectly matched-layer (PML)
technique, discussed for FDTD in Section 3.9, has excellent absorbing performances
that are significantly superior to other techniques. So only PML will be discussed
here.

Consider the PML region and the governing Maxwell’s equations. Each field
component is split into two. For example, Ex = Exy + Exz. In 3-D, Maxwell’s
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equations become twelve [38]:

µo

Hxy

∂t
+ σ ∗

y Hxy = −∂(Ezx + Ezy)

∂y
(7.84a)

µo

Hxz

∂t
+ σ ∗

z Hxz = ∂(Eyx + Eyz)

∂z
(7.84b)

µo

Hyz

∂t
+ σ ∗

z Hyz = −∂(Exy + Exz)

∂z
(7.84c)

µo

Hyx

∂t
+ σ ∗

x Hyx = ∂(Ezx + Ezy)

∂x
(7.84d)

µo

Hzx

∂t
+ σ ∗

x Hzx = −∂(Eyx + Eyz)

∂x
(7.84e)

µo

Hzy

∂t
+ σ ∗

y Hzy = ∂(Exy + Exz)

∂y
(7.84f)

εo
Exy

∂t
+ σyExy = ∂(Hzx + Hzy)

∂y
(7.84g)

εo
Exz

∂t
+ σzExz = −∂(Hyx + Hyz)

∂z
(7.84h)

εo
Eyz

∂t
+ σzEyz = ∂(Hxy + Hxz)

∂z
(7.84i)

εo
Eyx

∂t
+ σxEyx = −∂(Hzx + Hzy)

∂x
(7.84j)

εo
Ezx

∂t
+ σxEzx = ∂(Hyx + Hyz)

∂x
(7.84k)

εo
Ezy

∂t
+ σyEzy = −∂(Hxy + Hxz)

∂y
(7.84l)

in which (σi, σ
∗
i ) where i ∈ {x, y, z} are, respectively, the electric and magnetic

conductivities of the PML region and they satisfy

σi

εo
= σ ∗

i

µo

(7.85)

Using the usual Yees’s notation, the field samples are expressed as

En
x (i, j, k) = Ex[(i + 1/2)δ, jδ, kδ, (n + 1/2)δt]

En
y (i, j, k) = Ey[iδ, (j + 1/2)δ, kδ, (n + 1/2)δt]

En
z (i, j, k) = Ez[iδ, jδ, (k + 1/2)δ, (n + 1/2)δt]

Hn
x (i, j, k) = Hx[iδ, (j + 1/2)δ, (k + 1/2)δ, nδt]

Hn
y (i, j, k) = Hy[(i + 1/2)δ, jδ, (k + 1/2)δ, nδt]

Hn
z (i, j, k) = Hz[(i + 1/2)δ, (j + 1/2)δ, kδ, nδt] (7.86)

where δ = �x = �y = �z = ��. Without loss of generality, we set δt = δ/2c.
Since we want to interface the FDTD algorithm with the TLM, we express the fields
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in terms of voltages. For a cubic cell,

V n
ers(i, j, k) = δEn

rs(i, j, k) with r ∈ {x, y}, s ∈ {x, z} (7.87a)

V n
ms(i, j, k) =

√
µo

εo
δHn

s (i, j, k) with s ∈ {y, z} (7.87b)

where the subscripts e and m denote electric and magnetic, respectively. By ap-
plying the central-difference scheme to Eq. (7.84), we obtain after some algebraic
manipulations

V n
exy(i, j, k) =

(
4 − Gey

4 + Gey

)
V n−1
exy (i, j, k)

+
(

2

4 + Gey

) (
V n
mz(i, j, k) − V n

mz(i, j − 1, k)
)

(7.88a)

V n
exz(i, j, k) =

(
4 − Gez

4 + Gez

)
V n−1
exz (i, j, k)

−
(

2

4 + Gez

) (
V n
my(i, j, k) − V n

my(i, j, k − 1)
)

(7.88b)

V n
ex(i, j, k) = V n

exy(i, j, k) + V n
exz(i, j, k) (7.88c)

where Ges = δσs(i, j, k)
√
µoεo with s ∈ {y, z}. Applying this TLM FDTD-PML

algorithm has been found to yield excellent performance with reflection level below
−55 dB [37].

7.9 Concluding Remarks

This chapter has described the transmission-line-matrix (TLM) method which is
a modeling process rather than a numerical method for solving differential or equa-
tions. The flexibility, versatility, and generality of the time-domain method have
been demonstrated. Our discussion in this chapter has been introductory, and one
is advised to consult [10], [39]–[41] for a more in-depth treatment. A generalized
treatment of TLM in the curvilinear coordinate system is presented in [42], while a
theoretical basics of TLM is derived in [43]. Further developments in TLM can be
found in [44]–[50].

Although the application of the TLM method in this chapter has been limited to dif-
fusion and wave propagation problems, the method has a wide range of applications.
The technique has been applied to other problems such as:

• cutoff frequencies in fin lines [29, 30],

• transient analysis of striplines [51, 52],
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• linear and nonlinear lumped networks [53]–[58],

• microstrip lines and resonators [17, 59, 60],

• diffusion problems [61]–[63],

• electromagnetic compatibility problems [21], [64]–[67],

• antenna problems [43, 53, 68, 69],

• induced currents in biological bodies exposed to EM fields [70],

• cylindrical and spherical waves [53, 71, 72], and

• others [73]–[78].

A major advantage of the TLM method, as compared with other numerical tech-
niques, is the ease with which even the most complicated structures can be analyzed.
The great flexibility and versatility of the method reside in the fact that the TLM mesh
incorporates the properties of EM fields and their interaction with the boundaries and
material media. Hence, the EM problem need not be formulated for every new struc-
ture. Thus a general-purpose program such as in [79] can be developed such that
only the parameters of the structure need be entered for computation. Another ad-
vantage of using the TLM method is that certain stability properties can be deduced
by inspection of the circuit. There are no problems with convergence, stability or
spurious solutions. The method is limited only by the amount of memory storage
required, which depends on the complexity of the TLM mesh. Also, being an explicit
numerical solutions, the TLM method is suitable for nonlinear or inhomogeneous
problems since any variation of material properties may be updated at each time step.

Perhaps the best way to conclude this chapter is to compare the TLM method with
the finite difference method, especially FDTD [80]–[86]. While TLM is a physi-
cal model based on Huygens’ principle using interconnected transmission lines, the
FDTD is an approximate mathematical model directly based on Maxwell’s equations.
In the two-dimensional TLM, the magnetic and electric field components are located
at the same position with respect to space and time, whereas in the corresponding
two-dimensional FDTD cell, the magnetic field components are shifted by half an
interval in space and time with respect to the electric field components. Due to this
displacement between electric and magnetic field components in Yee’s FDTD, Chen
et al. [83] derived a new FDTD and demonstrated that the new FDTD formulation is
exactly equivalent to the symmetric condensed node model used in the TLM method.
This implies that the TLM algorithm can be formulated in FDTD form and vice versa.
However, both algorithms retain their unique advantages. For example, the FDTD
model has a simpler algorithm where constitutive parameters are directly introduced,
while the TLM has certain advantages in the modeling of boundaries and the partition-
ing of the solution region. Furthermore, the FDTD requires less than one-half of the
CPU time spent by the equivalent TLM program under identical conditions. While
the TLM scheme requires 22 real memory stores per node, the FDTD method requires
only seven real memory stores per 3-D node in an isotropic dielectric medium [81].
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Although both are time-domain schemes, the quantities available at each time step
are the solution in TLM model and there is no need for an iterative procedure. The
dispersion relations for TLM and FDTD are identical for 2-D but are different for
3-D problems. The comparison is summarized in Table 7.7. According to Johns, the
two methods complement each other rather than compete with each other [80].

Table 7.7 A Comparison of TLM and FDTD Methods
FDTD TLM
A mathematical model based A physical model based

on Maxwell’s equations on Huygen’s principle
E and H are shifted with E and H are calculated

respect to space and time at the same time and position
Requires less memory Needs more memory and more CPU time

and one-half the CPU time
Provides solution at each time step Requires some iterative procedure
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Problems

7.1 Verify Eq. (7.16).

7.2 For the two-port network in Fig. 7.30 (a), the relation between the input and
output variables can be written in matrix form as

[
V1
I1

]
=

[
A B

C D

] [
V2
−I2

]

For the lossy line in Fig. 7.30 (b), show that the ABCD matrix (also called the
cascaded matrix) is [

cosh γ � Zo sinh γ �
1
Z0

sinh γ � cosh γ �

]

7.3 The circuit in Fig. 7.31 is used to model diffusion processes and presents a �z

section of a lossy transmission line. Show that

∂2V

∂z2
= −Ri + RC

∂V

∂t
− L

∂i

∂t
+ LC

∂2V

∂t2

where i = Im/�z, the current density.
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Figure 7.30
For Problem 7.2.

Figure 7.31
For Problem 7.3.

7.4 Consider an EM wave propagation in a lossless medium in TEM mode (Ey =
0 = Ez = Hz = Hx) along the z direction. Using one-dimensional TLM
mesh, derive the equivalencies between network and field quantities.

7.5 Modify the program in Fig. 7.14 to calculate the cutoff frequency (expressed
in terms of ��/λ) in a square section waveguide of size 10��. Perform the
calculation for the TM11 mode by using open-circuit symmetry boundaries to
suppress even-order modes and by taking the excitation and output points as in
Fig. 7.32 to suppress the TM13, TM33, and TM15 modes. Use N = 500.

7.6 Repeat Prob. 7.5 of higher-order modes but take excitation and output points
as in Fig. 7.33.

7.7 For the waveguide with a free space discontinuity considered in Example 7.2,
plot the variation of the magnitude of the normalized impedance of the guide
with ��/λ. The plot should be for frequencies above and below the cutoff
frequency, i.e., including both evanescent and propagating modes.

7.8 Rework Example 7.5, but take the output point at (x = 6, z = 13).

7.9 Verify Eq. (7.62).

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



Figure 7.32
Square cross section waveguide of Problem 7.4.

Figure 7.33
Square cross section waveguide of Problem 7.6.

7.10 For transverse waves on a stub-loaded transmission-line matrix, the dispersion
relation is given by

sin2
(
βn��

2

)
= 2 (1 + Yo/4) sin2

(
ω��

2c

)

Plot the velocity characteristic similar to that in Fig. 7.11 for Yo = 0, 1, 2, 10,
20, 100.

7.11 Verify Eq. (7.68).
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7.12 The transmission equation for one cell in a stub-loaded three-dimensional TLM
network is[
Vi

Ii

]
= T ·

[
1 j (2 + zo) tan θ/2
0 1

]
·T ·T ·

[
1 0

go + j (2 + yo) tan θ/2 1

]
·T ·

[
Vi+1
Ii+1

]

where

T =
[

cos θ/4 j sin θ/4
j sin θ/4 cos θ/4

]

θ = 2π��/λ, yo = 4(εr − 1), zo = 4(µr − 1), and go = σ��
√
L/C.

Assuming small losses αn�� << 1, show that the transmission equation can
be reduced to [

Vi

Ii

]
=

[
eγn�� 0

0 eγn��

] [
Vi+1
Ii+1

]

where γn = αn + jβn is the propagation constant and

cos (βn��) = 1 − 8 (1 + yo/4) (1 + zo/4) sin2 θ/2

αn�� sin (βn��) = go

2
(4 + zo) sin θ/2 cos θ/2

7.13 In the y-z plane of a symmetric condensed node of the TLM mesh, the normal-
ized characteristic impedance of the inductive stub is

Zx = 2µr

uo�t
· �y�z

�x
− 4

Assuming that �x = �y = �z = 0.1 m, determine the stubs required to
model a medium with εr = 4, µr = 1, uo = c, and the value of �t for
stability.

7.14 Consider the 61×8 rectangular matrix with boundaries at x = 0.5 and x = 8.5
as in Fig. 7.34. By making one of the boundaries, say x = 8.5, an open circuit, a
waveguide of twice the width can be simulated. For the TEm0 family of modes,
excite the system at all points on line z = 1 with impulses corresponding to Ey

and take the impulse function of the output at point x = 7, z = 6. Calculate
the normalized wave impedance Z = Ey/Hx for frequencies above cutoff, i.e.,
��/λ = 0.023, 0.025, 0.027, . . . , 0.041. Take σ = 0, εr = 2, µr = 1.

7.15 Repeat Prob. 7.14 for a lossy waveguide with σ = 278 mhos/m, εr = 1, µr =
1.

7.16 Using the TLM method, determine the cutoff frequency (expressed in terms of
��/λ) of the lowest order TE and TM modes for the square waveguide with
cross section shown in Fig. 7.35. Take εr = 2.45.

7.17 For the dielectric ridge waveguide of Fig. 7.36, use the TLM method to calcu-
lated the cutoff wavenumber kc of the dominant mode. Express the result in
terms of kca(= ωa/c) and try εr = 2 and εr = 8. Take a = 10��.
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Figure 7.34
The 61 × 8 TLM mesh of Problem 7.14.

Figure 7.35
For Problem 7.16.

Figure 7.36
For Problem 7.17.
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7.18 Rework Example 7.6 for the inhomogeneous cavity of Fig. 7.37. Take εr =
16, a = 12��, b = 3a/10, d = 4a/10, s = 7a/12, u = 3d/8.

Figure 7.37
The inhomogeneous cavity of Problem 7.18.

7.19 Consider a single microstrip line whose cross section is shown in Fig. 7.38.
Dispersion analysis of the line by the TLM method involves resonating a section

Figure 7.38
The microstrip line of Problem 7.19.

of the transmission line by placing shorting planes along the axis of propagation
(the z-axis in this case). Write a TLM computer program and specify the input
data as:

Ex = 0 = Ez along y = 0, y = b,

Ex = 0 = Ez along x = 2a,

Ex = 0 = Ez for y = H, −W ≤ x ≤ W,

Hy = 0 = Hz along x = 0

Plot the dispersion curves depicting the phase constant β as a function of fre-
quency f for cases when the line is air-filled and dielectric-filled. The distance
L(= π/β) between the shorting planes is the variable. Assume the dielectric
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substrate and the walls of the enclosure are lossless. Take εr = 4.0, a = 2
mm, H = 1.0 mm, W = 1.0 mm, b = 2 mm, �� = a/8.

7.20 For the cubical cavity of Fig. 7.39, use the TLM technique to calculate the
time taken for the total power in the lossy dielectric cavity to decay to 1/e of
its original value. Consider cases when the cavity is completely filled with
dielectric material and half-filled. Take εr = 2.45, σ = 0.884 mhos/m, µr =
1, �� = 0.3 cm, 2a = 7��.

Figure 7.39
The lossy cavity of Problem 7.20.
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