Chapter 8

Monte Carlo Methods

“Chance favors the prepared mind.” Anonymous

8.1 Introduction

Unlike the deterministic numerical methods covered in the foregoing chapters,
Monte Carlo methods are nondeterministic (probabilistic or stochastic) numerical
methods employed in solving mathematical and physical problems. The Monte Carlo
method (MCM), also known as the method of statistical trials, is the marriage of two
major branches of theoretical physics: the probabilistic theory of random process
dealing with Brownian motion or random-walk experiments and potential theory,
which studies the equilibrium states of a homogeneous medium [1]. It is a method of
approximately solving problems using sequences of random numbers. Itis a means of
treating mathematical problems by finding a probabilistic analog and then obtaining
approximate answers to this analog by some experimental sampling procedure. The
solution of a problem by this method is closer in spirit to physical experiments than
to classical numerical techniques.

It is generally accepted that the development of Monte Carlo techniques as we
presently use them dates from about 1944, although there are anumber of undeveloped
instances on much earlier occasions. Credit for the development of MCM goes to a
group of scientists, particularly von Neumann and Ulam, at Los Alamos during the
early work on nuclear weapons. The groundwork of the Los Alamos group stimulated
a vast outpouring of literature on the subject and encouraged the use of MCM for a
variety of problems [2]-[4]. The name “Monte Carlo” comes from the city in Monaco,
famous for its gambling casinos.

Monte Carlo methods are applied in two ways: simulation and sampling. Sim-
ulation refers to methods of providing mathematical imitation of real random phe-
nomena. A typical example is the simulation of a neutron’s motion into a reactor
wall, its zigzag path being imitated by a random walk. Sampling refers to methods
of deducing properties of a large set of elements by studying only a small, random
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subset. For example, the average value of f(x) over a < x < b can be estimated
from its average over a finite number of points selected randomly in the interval. This
amounts to a Monte Carlo method of numerical integration. MCMs have been applied
successfully for solving differential and integral equations, for finding eigenvalues,
for inverting matrices, and particularly for evaluating multiple integrals.

The simulation of any process or system in which there are inherently random
components requires a method of generating or obtaining numbers that are random.
Examples of such simulation occur in random collisions of neutrons, in statistics, in
queueing models, in games of strategy, and in other competitive enterprises. Monte
Carlo calculations require having available sequences of numbers which appear to be
drawn at random from particular probability distributions.

8.2 Generation of Random Numbers and Variables

Various techniques for generating random numbers are discussed fully in [5]-[10].
The almost universally used method of generating random numbers is to select a
function g(x) that maps integers into random numbers. Select xo somehow, and
generate the next random number as x;4+; = g(xx). The commonest function g(x)
takes the form

g(x) = (ax +¢) mod m (8.1)
where

Xxo = starting value or a seed (xo > 0) ,
a = multiplier (@ > 0)
¢ = increment (¢ > 0) ,

m = the modulus

The modulus m is usually 27 for z-digit binary integers. For a 31-bit computer machine,
for example, m may be 231~!. Here x, a, and ¢ are integers in the same range as
m > a,m > c,m > xo. The desired sequence of random numbers {x,} is obtained
from

Xn41 = (ax, 4+ ¢) mod m (8.2)

This is called a linear congruential sequence. For example, if xo = a = ¢ = 7 and
m = 10, the sequence is

7,6,9,0,7,6,9,0,... (8.3)

It is evident that congruential sequences always get into a loop; i.e., there is ultimately
a cycle of numbers that is repeated endlessly. The sequence in Eq. (8.3) has a period
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of length 4. A useful sequence will of course have a relatively long period. The terms
multiplicative congruential method and mixed congruential method are used by many
authors to denote linear congruential methods with ¢ = 0 and ¢ # 0, respectively.
Rules for selecting x¢, a, ¢, and m can be found in [6, 10].

Here we are interested in generating random numbers from the uniform distribution
in the interval (0,1). These numbers will be designated by the letter U and are obtained
from Eq. (8.2) as

y = ! (8.4)
m
Thus U can only assume values from the set {0, 1/m,2/m, ..., (m — 1)/m}. (For

random numbers in the interval (0,1), a quick test of the randomness is that the mean is
0.5. Other tests can be found in [3, 6].) For generating random numbers X uniformly
distributed in the interval (a, b), we use

X=a+b-a)U| (8.5)

Random numbers produced by a computer code (using Egs. (8.2) and (8.4)) are
not truly random; in fact, given the seed of the sequence, all numbers U of the
sequence are completely predictable. Some authors emphasize this point by calling
such computer-generated sequences pseudorandom numbers. However, with a good
choice of a, ¢, and m, the sequences of U appear to be sufficiently random in that
they pass a series of statistical tests of randomness. They have the advantage over
truly random numbers of being generated in a fast way and of being reproducible,
when desired, especially for program debugging.

It is usually necessary in a Monte Carlo procedure to generate random variable X
from a given probability distribution F'(x). This can be accomplished using several
techniques [6], [13]-[15] including the direct method and rejection method.

The direct method, otherwise known as inversion or transform method, entails
inverting the cumulative probability function F(x) = Prob(X < x) associated with
the random variable X. The fact that 0 < F(x) < 1 intuitively suggests that by
generating random number U uniformly distributed over (0,1), we can produce a
random sample X from the distribution of F'(x) by inversion. Thus to generate
random X with probability distribution F(x), we set U = F(x) and obtain

X =FYU) (8.6)

where X has the distribution function F'(x). For example, if X is a random variable
that is exponentially distributed with mean ., then

Fx)=1—e¢ " 0<x<o0 (8.7)
Solving for X in U = F(X) gives

X=—uln(l-0U) (8.8)
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Since (1 — U) is itself a random number in the interval (0,1), we simply write
X=—ulnU (8.9)

Sometimes the inverse F~!(x) required in Eq. (8.6) does not exist or is difficult to
dF(x)

obtain. This situation can be handled using the rejection method. Let f(x) =

be the probability density function of the random variable X. Let f(x) = O for
a > x > b,and f(x) is bounded by M (i.e., f(x) < M) as shown in Fig. 8.1. We
generate two random numbers (U, U») in the interval (0,1). Then

Xi=a+(b—a)U and f; = UM (8.10)

are two random numbers with uniform distributions in (a, b) and (0, M), respectively.
If

fi < (X)) (8.11)

then X is accepted as choice of X, otherwise X is rejected and a new pair (U1, Uy) is
tried again. Thus in the rejection technique all points falling above f (x) are rejected,
while those points falling on or below f(x) are utilized to generate X; through
Xi=a+ (b—a)l,.

f(x)

Figure 8.1

The rejection method of generating a random variable with probability density
function f(x).

Example 8.1

Develop a subroutine for generating random number U uniformly distributed be-
tween 0 and 1. Using this subroutine, generate random variable ® with probability
distribution given by

1
T®)=5(1-cosh), 0<6<x I
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Solution

The subroutine for generating U is shown in Fig. 8.2. In this subroutine, m =
221 — 1 = 2147483647,¢c = 0, and a = 7° = 16807. By supplying a seed (e.g.,
1234), the subroutine provides one random number U per call in the main program.
The seed is selected as any integer between 1 and m.

0001 L L L T T T
0002 C PROGRAM FOR GENERATING RANDOM VARIABLES WITH A GIVEN
0003 C PROBABILITY DISTRIBUTION

0004 CEEEREBE XA EREERRRBRERE IR R AR O RRES AR R A AP SO R RA AR AR R R E TR R N
0005

0006 DOUBLE PRECISION ISEED

0007

0008 ISEED = 1234.DO

0009 DO 10 I=1,100

0010 CALL RANKDOM (ISEED,R)

0011 THETA = ACOSD(1.0 ~ 2.0#R)

0012 WRITE(6,*) I,THETA

0013 10 CONTINUE

0014 STOP

0015 ERD

0001, CHttttttttttdtttsbtttttttsdtttttttstttsbbtsttts

0002 ¢ SUBROUTINE FOR GENERATING RANDOM NUMBERS IN
0003 C THE INTERVAL (0,1)

0004 I o S O S S o O o T o T A S A S A o o
0005
0006 SUBROUTINE RANDOM (ISEED,R)
0007 DOUBLE PRECISION ISEED, DEL, A
0008 DATA DEL,A/2147483647.DO, 16807 .D0/
0009
0010 ISEED = DMOD( AsISEED, DEL )
0011 R = ISEED/DEL
0012 RETURK
0013 END
Figure 8.2

Random number generator; for Example 8.1.

The subroutine in Fig. 8.2 is meant to illustrate the concepts explained in this
section. Most computers have routines for generating random numbers.

To generate the random variable ©, set
1
U=T(©®) = 5(1 —cos0),

then

®©=T""U)=cos"'(1 -20)

Using this, a sequence of random numbers ® with the given distribution is generated
in the main program of Fig. 8.2. |

© 2001 by CRCPRESSLLC



8.3 Evaluation of Error

Monte Carlo procedures give solutions which are averages over a number of tests.
For this reason, the solutions contain fluctuations about a mean value, and it is impos-
sible to ascribe a 100% confidence in the results. To evaluate the statistical uncertainty
in Monte Carlo calculations, we must resort to various statistical techniques associ-
ated with random variables. We briefly introduce the concepts of expected value and
variance, and utilize the central limit theorem to arrive at an error estimate [13, 16].

Suppose that X is a random variable. The expected value or mean value x of X is
defined as

)E:/OO xf(x)dx (8.12)

where f(x) is the probability density distribution of X. If we draw random and
independent samples, x1, x2, ..., xy from f(x), our estimate of x would take the
form of the mean of N samples, namely,

1
x=N2xn (8.13)

While x is the true mean value of X, x is the unbiased estimator of x, an unbiased
estimator being one with the correct expectation value. Although the expected value
of X is equal to X, x # x. Therefore, we need a measure of the spread in the values
of X about X.

To estimate the spread of values of X, and eventually of x about i, we introduce
the variance of X defined as the expected value of the square of the deviation of X
from x, i.e.,

Var(x) =02 = (x —x)% = / (x — %)% f(x)dx (8.14)
But (x — )2 = x%2 — 2xX + ¥2. Hence

o2(x) =/oo X2 f(x)dx — 2% /Oo xf(x)dx+)?2/oo f(x)dx (8.15)

—0o0 —00

or

o?(x) =x2—x° (8.16)

The square root of the variance is called the standard deviation, i.e.,

o(x) = (E - 322)1/2 (8.17)
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The standard deviation provides a measure of the spread of x about the mean value x;
it yields the order of magnitude of the error. The relationship between the variance
of x and the variance of x is

o o)
o(X)=— (8.18)
W=
This shows that if we use x constructed from N values of x, according to Eq. (8.13)
to estimate X, then the spread in our results of X about X is proportional to o (x) and
falls off as the number of N of samples increases.
In order to estimate the spread in X, we define the sample variance
[ 2
§? = ~ 7 2 b = %) (8.19)
n=1
Again, it can be shown that the expected value of $2is equal to o2(x). Therefore the
sample variance is an unbiased estimator of o2(x). Multiplying out the square term
in Eq. (8.19), it is readily shown that the sample standard deviation is

N 121 XN: 172
S = <—) [— X2 — 22} (8.20)
N -1 N~

For large N, the factor N/(N — 1) is set equal to one.
As away of arriving at the central limit theorem, a fundamental result in probability
theory, consider the binomial function

B(M) = pMg" M (8.21)

N!
M!(N — M)!
which is the probability of M successes in N independent trials. In Eq. (8.21), p is
the probability of success in a trial, and g = 1 — p. If M and N — M are large, we
may use Stirling’s formula

"V2mn (8.22)

n! ~ne”

so that Eq. (8.21) is approximated [17] as the normal distribution:

B(M)Nf()?)—;ex —()?_—)2)2 (8.23)
TSV TP T 20t () '

where ¥ = N, and 0(¥) = +/Npq. Thus as N — oo, the central limit theorem
states that the probability density function which describes the distribution of X that
results from N Monte Carlo calculations is the normal distribution f(x) in Eq. (8.23).
In other words, the sum of a large number of random variables tends to be normally
distributed. Inserting Eq. (8.18) into Eq. (8.23) gives

N [N 1 N (2 —x)
f (x) = EO‘(}C) exXp [_T(x)} (824)
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The normal (or Gaussian) distribution is very useful in various problems in engineer-
ing, physics, and statistics. The remarkable versatility of the Gaussian model stems
from the central limit theorem. For this reason, the Gaussian model often applies
to situations in which the quantity of interest results from the summation of many
irregular and fluctuating components. In Example 8.2, we present an algorithm based
on central limit theorem for generating Gaussian random variables.

Since the number of samples N is finite, absolute certainty in Monte Carlo calcu-
lations is unattainable. We try to estimate some limit or interval around x such that
we can predict with some confidence that x falls within that limit. Suppose we want
the probability that x lies between X — § and x + &. By definition,

X+0
Prob{)z—5<)2<x+a}=/ f(%)dz (8.25)

x—38

By letting A =

2 WN/2)(@/o) 2
Prob{i—8<)2<)f+8}=ff e d
7 Jo

:erf<\/N/2 ) ) (8.26a)

o(x)

or

o o
Problx —zgpn— <% < X+z 2—}=l—ot (8.26b)
{ “PIN “rIN
where erf(x) is the error function and zy /2 is the upper /2 x 100 percentile of
the standard normal deviation. Equation (8.26) may be interpreted as follows: if
the Monte Carlo procedure of taking random and independent observations and con-
structing the associated random interval x + § is repeated for large N, approximately

N
erf < = T x 100 percent of these random intervals will contain x. The random
o(x

interval x = § is called a confidence interval and erf <\/§ %) is the confidence
level. Most Monte Carlo calculations use error § = o (x)/+/N, which implies that £
is within one standard deviation of x, the true mean. From Eq. (8.26), it means that
the probability that the sample mean £ lies within the interval £ o (x)/+/N is 0.6826
or 68.3%. If higher confidence levels are desired, two or three standard deviations
may be used. For example,

0.6826, M =
£ - o(x)

X <x+M—) = 10.954,

p b(' w7 M
rob [ x — M — < =
VN VN 0997. M=

1
2 (8.27)
3
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where M is the number of standard deviations.

In Egs. (8.26) and (8.27), it is assumed that the population standard deviation o
is known. Since this is rarely the case, o must be estimated by the sample standard
deviation § calculated from Eq. (8.20) so that the normal distribution is replaced by
the student’s t-distribution. It is well known that the t-distribution approaches the
normal distribution as N becomes large, say N > 30. Equation (8.26) is equivalent
to

Styn-N— Sty N
Prob{i—Mfifi—i—M}:l—a (8.28)

VN VN

where t, /2, y 1 is the upper 100 x «/2 percentage point of the student’s t-distribution
with (N — 1) degrees of freedom; and its values are listed in any standard statistics
text. Thus the upper and lower limits of a confidence interval are given by

. StaN-1
upper limit = x + —/——— (8.29)
PP JN
Jower limit = § — S/ @/ZN=1 (8.30)
VN '

For further discussion on error estimates in Monte Carlo computations, consult [18,
19].

Example 8.2

A random variable X with Gaussian (or normal) distribution is generated using the
central limit theorem. According to the central limit theorem, the sum of a large
number of independent random variables about a mean value approaches a Gaussian
distribution regardless of the distribution of the individual variables. In other words,

for any random numbers, Y;,i = 1,2, ..., N with mean Y and variance Var(Y),
N
Z Y, — NY
i=1
= — (8.31)
/N Var(Y)

converges asymptotically with N to a normal distribution with zero mean and a
standird deviation of unity. If ¥; are uniformly distributed variables (i.e., ¥; = Uj;),
then Y = 1/2, Var(Y) = 1/+/12, and

N
Y Ui —N/2
g_= 8.32
VN/12 ( )
and the variable
X=0Z+pu (8.33)
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approximates the normal variable with mean y and variance 2. A value of N
as low as 3 provides a close approximation to the familiar bell-shaped Gaussian
distribution. To ease computation, it is a common practice to set N = 12 since
this choice eliminates the square root term in Eq. (8.32). However, this value of N
truncates the distribution at £6¢ limits and is unable to generate values beyond 3o.
For simulations in which the tail of the distribution is important, other schemes for
generating Gaussian distribution must be used [20]-[22].

Thus, to generate a Gaussian variable X with mean p and standard deviation o,
we follow these steps:

(1) Generate 12 uniformly distributed random numbers Uy, Us, ..., Ujs.

12
(2) Obtain Z = Y " U; — 6.

i=1

3)SetX=0Z+u. [

8.4 Numerical Integration

For one-dimensional integration, several quadrature formulas, such as presented
in Section 3.10, exist. The numbers of such formulas are relatively few for multidi-
mensional integration. It is for such multidimensional integrals that a Monte Carlo
technique becomes valuable for at least two reasons. The quadrature formulas be-
come very complex for multiple integrals, while the MCM remains almost unchanged.
The convergence of Monte Carlo integration is independent of dimensionality, which
is not true for quadrature formulas. The statistical method of integration has been
found to be an efficient way to evaluate two- or three-dimensional integrals in an-
tenna problems, particularly those involving very large structures [23]. Two types of
Monte Carlo integration procedures, the crude MCM and the MCM with antithetic
variates, will be discussed. For other types, such as hit-or-miss and control variates,
see [24]-[26]. Application of MCM to improper integrals will be covered briefly.

8.4.1 Crude Monte Carlo Integration

Suppose we wish to evaluate the integral

I = / ¥ (8.34)
R

where R is an n-dimensional space. Let X = (X x2 X ™) be arandom variable
that is uniformly distributed in R. Then f(X) is a random variable whose mean value
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is given by [27, 28]

N 1 1
X) = — = — 8.35
% = /R = (8.35)
and the variance by
Var(f (X)) = — / fz—(L / f)2 (8.36)
IRl Jr IR Jr '
where
|R| =de (8.37)
R

If we take N independent samples of X, i.e., X, X, ... Xy, all having the same
distribution as X and form the average

X X X 1 N
F X))+ f(X2) + + f( N)_—Zf(xi) (8.38)

N N “
i=1
we might expect this average to be close to the mean of f(X). Thus, from Egs. (8.35)
and (8.38),

_ B Zf(X) (8.39)

This Monte Carlo formula applies to any integration over a finite region R. For
the purpose of illustration, we now apply Eq. (8.39) to one- and two-dimensional
integrals.

For a one-dimensional integral, suppose

b
I=/ fx)dx (8.40)

Applying Eq. (8.39) yields

(8.41)

where X; is a random number in the interval (a, b), i.e.,
Xi=a+b—-a)U, 0<U<1 (8.42)

For a two-dimensional integral

1—/ / x1 x2 dx'ax?, (8.43)
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the corresponding Monte Carlo formula is

N

N
] — (b—a)d-o) Zf (Xil’ Xlz) (8.44)
i=1

where

X'=a+b-a)U', 0<U'<1

1

X}=c+d-c)U? 0<U*<1 (8.45)

The convergence behavior of the unbiased estimator / in Eq. (8.39) is slow since the
variance of the estimator is of the order 1/N. Accuracy and convergence is increased
by reducing the variance of the estimator using an improved method, the method of
antithetic variates.

8.4.2 Monte Carlo Integration with Antithetic Variates

The term antithetic variates [29, 30] is used to describe any set of estimators which
mutually compensate each other’s variations. For convenience, we assume that the
integral is over the interval (0,1). Suppose we want an estimator for the single integral

1
1=/ ¢(U)dU (8.46)
0

1
We expect the quantity E[g(U ) + g(1 — U)] to have smaller variance than g(U).

If g(U) is too small, then g(1 — U) will have a good chance of being too large and
conversely. Therefore, we define the estimator

N

1 1
I= Ngzlgwiwg(l—w)] (8.47)

where U; are random numbers between 0 and 1. The variance of the estimator is

1
of the order —;, a tremendous improvement over Eq. (8.39). For two-dimensional

N4’
integral,
1 pl
I =/ / g(Ul,Uz) dU'du?, (8.48)
0 Jo
and the corresponding estimator is
11
=y (et (- )
i=1
1 772 1 2
+e(1-vhuF)+e(1-Ul1-07)] (8.49)
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Following similar lines, the idea can be extended to higher order integrals. For
intervals other than (0,1), transformations such as in Egs. (8.41) to (8.45) should be
applied. For example,

b 1
/f(x)dx=(b—a>f () dU
a 0

b—a N 1
~ )5 le W) g (1= U] (8.50)
i=1

where g(U) = f(X)and X = a+(b—a)U. Itisobserved from Eqs. (8.47) and (8.49)
that as the number of dimensions increases, the minimum number of antithetic variates
per dimension required to obtain an increase in efficiency over crude Monte Carlo
also increases. Thus the crude Monte Carlo method becomes preferable in many
dimensions.

8.4.3 Improper Integrals

The integral

I = /Oog(x)dx (8.51)
0

may be evaluated using Monte Carlo simulations [31]. For arandom variable X having
probability density function f(x), where f(x) integrates to 1 on interval (0, c0),

]

g(x) /°°
dx = d 8.52
o JSX) ! 0 g(x)dx (8:32)

Hence, to compute / in Eq. (8.51), we generate N independent random variables
distributed according to a probability density function f(x) integrating to 1 on the
interval (0, 0o). The sample mean

S P )
g0 = ; (8.53)

S (xi)

gives an estimate for /.

Example 8.3
Evaluate the integral

1 p27
I:/ / ejapcos¢pdpd¢
0 JO

using the Monte Carlo method. I
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Solution

This integral represents radiation from a circular aperture-antenna with a constant
amplitude and phase distribution. It is selected because it forms at least part of every
radiation integral. The solution is available in the closed form, which can be used to
assess the accuracy of the Monte Carlo results. In closed form,

I(Ol) _ 27[]1(0()

where J; () is Bessel function of the first order.

A simple program for evaluating the integral employing Eqgs. (8.44) and (8.45),
where a = 0,b = 1,c = 0, and d = 27, is shown in Fig. 8.3. The program calls
the routine RANDU in Vax 11/780 to generate random numbers U' and U?. For
different values of N, both the crude and antithetic variate Monte Carlo methods are
used in evaluating the radiation integral, and the results are compared with the exact
value in Table 8.1 for @ = 5. In applying Eq. (8.49), the following correspondences

are used:
Ul=x" 02=x%1-U"'=b— X! =(b—a)<1—U1) ,
1-0=d-X'=@-o(1-v?) 1
Table 8.1 Results of Example 8.3 on Monte Carlo
Integration of Radiation Integral
N Crude MCM Antihetic variates MCM
500 —0.2892 —j0.0742  —0.2887 — j0.0585
1000 —0.5737 +;0.0808  —0.4982 — j0.0080
2000 —0.4922 —j0.0040  —0.4682 — j0.0082
4000 —0.3999 —j0.0345 —0.4216 —j0.0323
6000 —0.3608 —j0.0270 —0.3787 —j0.0440
8000 —0.4327 —;j0.0378 —0.4139 —j0.0241
10,000 —0.4229 —;0.0237 —0.4121 —j0.0240
Exact: —0.4116 +j0
——

8.5 Solution of Potential Problems

The connection between potential theory and Brownian motion (or random walk)
was first shown in 1944 by Kakutani [32]. Since then the resulting so-called prob-
abilistic potential theory has been applied to problems in many disciplines such as
heat conduction [33]-[38], electrostatics [39]-[46], and electrical power engineer-
ing [47, 48]. An underlying concept of the probabilistic or Monte Carlo solution of
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0001 CHEERERRREREEERBRANEE R B SRR AR SRR AR R R RN A &N
0002 C INTEGRATION USING CRUDE MONTE CARLO

0003 C AND ANTITHETIC METHODS

0004 C

0005 C ONLY FEW LINES NEED BE CHANGED TO USE THIS
0006 C PROGRAM FOR ANY MULTI-DIMENSIONAL INTEGRATION

0007 CEEXRERR AR AR AR RAEBE AR R R R R R R R KRR AR SR K
0008
0009 DATA 1S1,152,1S3,154/1234,5678,9012,3456/
0010 DATA 4,B,C/0.0,1.0,0.0/
0011 ' LIMITS OF INTEGRATION
0012 COMPLEX F,SUM1, SUM2, J, AREA1, AREA2
0013
0014 C
0015  C  SPECIFY THE INTEGRAND
0016 C
0017 F(RHO,PEI) = RHO*CEXP(J+ALPHA*RHO*COS(PHI))
0018
0019 J=(0.0,1.0)
0020 ALPHA = §.0
0021 PIE = 3.1415927
0022 D = 2.0PIE
0023 DO 30 NRUF = 500,10000,500 ! NO. OF RUNS
0024 SUM1 = (0.0,0.0)
0025 SUM2 = (0.0,0.0)
0026 DO 10 I=1,KRUN
0027 CALL RANDU(IS1,IS2,U1)
0028 CALL RAEDU(IS3,154,U2)
0029 X1 = A+ (B - A)sU1
0030 X2 = C + (D - C)*U2
0031 X3 = (B - A)*(1.0 - UL)
0032 X4 = (D - C)*(1.0 - U2)
0033 SUM1 = SUM1 + F(X1,X2)
0034 SUM2 = SUM2 + F(X1,X2) + F(X1,X4) + F(X3,X2)
0035 1 + F(X3,X4)
0036 10  CONTINUE
0037 AREA1 = (B-A)*(D-C)*SUM1/FLOAT (ERUN)
0038 AREA2 = (B-A)#(D-C)+SUM2/(4.0%FLOAT(NRUK))
0039 PRINT *,BRUN, AREA1, AREA2
0040 WRITE(6,+) NRUN, AREA1,AREA2
0041 WRITE(6,20) NRUN,AREA1,AREA2
0042 20  FORMAT(2X,’NRUN =’,I5,3X,’AREA1 = ’,F12.6,3X,F12.6, AREA2 = °,
0043 1 F12.6,3X,F12.6,/)
0044 30  CONTINUE
0045 STOP
0046 END
Figure 8.3

Program for Monte Carlo evaluation of two-dimensional integral; for Exam-
ple 8.3.
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differential equations is the random walk. Different types of random walk lead to dif-
ferent Monte Carlo methods. The most popular types are the fixed-random walk and
floating random walk. Other types that are less popular include the Exodus method,
shrinking boundary method, inscribed figure method, and the surface density method.

8.5.1 Fixed Random Walk

Suppose, for concreteness, that the MCM with fixed random walk is to be applied
to solve Laplace’s equation

V2V =0 in region R (8.54a)
subject to Dirichlet boundary condition

V =V, on boundary B (8.54b)

We begin by dividing R into mesh and replacing V? by its finite difference equivalent.
The finite difference representation of Eq. (8.54a) in two-dimensional R is given by
Eq. (3.26), namely,

V(xvy):px+V(X+A7y)+Px—V(x_A,)’) (855&)
+pyVx,y+A)+py_Vix,y — A) )
where
1
Pt = Px— = Pyt = Py- =7 (8.55b)

In Eq. (8.55), a square grid of mesh size A, such as in Fig. 8.4, is assumed. The
equation may be given a probabilistic interpretation. If a random walking particle is
instantaneously at the point (x, y), it has probabilities py, px—, py+, and py_ of
moving from (x, y)to (x+A, y), (x—A, y), (x, y+A),and (x, y—A), respectively.
A means of determining which way the particle should move is to generate a random
number U, 0 < U < 1 and instruct the particle to walk as follows:

(x,y) > (x+A,y) if0<U<025
x,y)—> (x—A,y) if025<U <05
(x,y) = (x,y +A) if 0.5<U <0.75
(x,y) = (x,y — A) if 075 <U < 1

(8.56)

If a rectangular grid rather than a square grid is employed, then p,+ = p,_ and
Dy+ = Py—, but py # p,. Also for a three-dimensional problem in which cubical

1
cells are used, pyy = px— = Py+ = Py— = Pz = pz— = 3 In both cases, the
interval 0 < U < 1 is subdivided according to the probabilities.
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Figure 8.4
Configuration for fixed random walks.

To calculate the potential at (x, y), a random-walking particle is instructed to start
at that point. The particle proceeds to wander from node to node in the grid until
it reaches the boundary. When it does, the walk is terminated and the prescribed
potential V), at that boundary pointisrecorded. Let the value of V), at the end of the first
walk be denoted by V), (1), as illustrated in Fig. 8.4. Then a second particle is released
from (x, y) and allowed to wander until it reaches a boundary point, where the walk
is terminated and the corresponding value of V), is recorded as V,(2). This procedure

is repeated for the third, fourth, ...., and Nth particle released from (x, y), and the
corresponding prescribed potential V,,(3), V,(4), ...., V,(N) are noted. According
to Kakutani [32], the expected value of V,(1), Vp(2), ...., V,(N) is the solution of

the Dirichlet problem at (x, y), i.e.,

1 N
Vi y) = > V() (8.57)
i=1

where N, the total number of walks, is large. The rate of convergence varies as /N
so that many random walks are required to ensure accurate results.
If it is desired to solve Poisson’s equation

V2V = —g(x,y) in R (8.58a)
subject to
V=V, onB, (8.58b)
then the finite difference representation is in Eq. (8.25), namely,
Vi, y) =pet Ve + A, 9) + pa-V(x = A, y)
A%g (8.59)

+pyVx,y+A)+py_Vx,y—A) + e
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where the probabilities remain as stated in Eq. (8.55b). The probabilistic interpretation
of Eq. (8.59) is similar to that for Eq. (8.55). However, the term A%g /4 in Eq. (8.59)
must be recorded at each step of the random walk. If m; steps are required for the ith
random walk originating at (x, y) to reach the boundary, then one records

2 m,-—l

A
Vo) + > g (x.y)) (8.60)

j=1

Thus the Monte Carlo result for V (x, y) is

N mi—1

1 & A2
V(xv)’)zﬁzvp(i)‘i‘mz Z g(xj,yj) (8.61)
i=1

i=1| j=1

Aninteresting analogy to the MCM just described is the walking drunk problem [15,
35]. We regard the random-walking particle as a “drunk,” the squares of the mesh as
the “blocks in a city,” the nodes as “crossroads,” the boundary B as the “city limits,”
and the terminus on B as the “policeman.” Though the drunk is trying to walk home,
he is so intoxicated that he wanders randomly throughout the city. The job of the
policeman is to seize the drunk in his first appearance at the city limits and ask him
to pay a fine V,,. What is the expected fine the drunk will receive? The answer to this
problem is in Eq. (8.57).

On the dielectric boundary, the boundary condition Dy, = D>, is imposed. Con-
sider the interface along y = constant plane as shown in Fig. 8.5. According to
Eq. 3.46, the finite difference equivalent of the boundary condition at the interface is

Vo =px+Vi+px-Va+ pysVs+py-Va (8.62a)
where
1 €1 €
= = -, 2 = —Q, = 862b
Px+ = DPx 2 Py+ 2(e + ) Py 2(e + &) ( )

An interface along x = constant plane can be treated in a similar manner.

On a line of symmetry, the condition — = 0 must be imposed. If the line of

n
symmetry is along the y-axis as in Fig. 8.6(a), according to Eq. 3.48.

Vo = px+Vi+ py+ V3 + py-Vs (8.63a)
where
1 1
px+ = E py+ = py_ = Z (863b)

The line of symmetry along the x-axis, shown in Fig. 8.6(b), is treated similarly
following Eq. 3.49.
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Figure 8.5
Interface between media of dielectric permittivities €; and e;.

y

A
v, v, y
v, V3
L J_ .
X
(@)

Figure 8.6
Satisfying symmetry conditions: (a) 0V /dx =0, (b) dV /9y = 0.

For an axisymmetric solution region such as shown in Fig. 8.7, V = V(p, 7). The
finite difference equivalent of Eq. (8.54a) for p # 0 is obtained in Section 3.10 as

V(p,2) = pp+Vp+A,2)+ pp-V(p— A, 2)

+ 4V, 2+ A)+p_Vip,z—A) (8.64)
where Ap = Az = A and the random walk probabilities are given by
B 1
P+ = Pz— = 4
1 n A
Po+ = 4" 8p
_ ! A (8.65)
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For p = 0, the finite difference equivalent of Eq. (8.54a) is Eq. 3.120, namely

V(0,2) = ppt V(A,2) + p+ V0, 2+ A) + p. V(0,2 — A) (8.66)
so that
4 1
Dp+ = 6 Pp—-=0, p4= 6 Pz~ (8.67)

The random-walking particle is instructed to begin walk at (p,, z,). It wanders
through the mesh according to the probabilities in Egs. (8.65) and (8.67) until it reaches
the boundary where it is absorbed and the prescribed potential V(1) is recorded. By
sending out N particles from (p,, z,) and recording the potential at the end of each
walk, we obtain the potential at (p,, z,) as [49]

1 N
V (por20) = 5 2 Vi) (8.68)
i=1

o

Figure 8.7
Typical axisymmetric solution region.

This MCM is called fixed random walk type since the step size A is fixed and
the steps of the walks are constrained to lie parallel to the coordinate axes. Unlike
in the finite difference method (FDM), where the potential at all mesh points are
determined simultaneously, MCM is able to solve for the potential at one point at a
time. One disadvantage of this MCM is that it is slow if potential at many points is
required and is therefore recommended for solving problems for which only a few
potentials are required. It shares a common difficulty with FDM in connection with
irregularly shaped bodies having Neumann boundary conditions. This drawback is
fully removed by employing MCM with floating random walk.
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8.5.2 Floating Random Walk

The mathematical basis of the floating random walk method is the mean value
theorem of potential theory. If S is a sphere of radius r, centered at (x, y, z), which
lies wholly within region R, then

1
Vix,y,2) = 4M2/SV(r/)dS/ (8.69)

That is, the potential at the center of any sphere within R is equal to the average value
of the potential taken over its surface. When the potential varies in two dimensions,
V(x, y) is given by

1
Vix,y) = E}é vV (p)al (8.70)

where the integration is around a circle of radius p centered at (x, y). It can be
shown that Egs. (8.69) and (8.70) follow from Laplace’s equation. Also, Egs. (8.69)
and (8.70) can be written as

1 pl
V(x,y,z):/ / V(a,0,9)dFdT (8.71)
o Jo
1
Vix,y) :/ V(a,p)dF (8.72)
0
where
F = ¢ T—1 1 6 8.73
=5 —5( — cos0) (8.73)

and 0 and ¢ are regular spherical coordinate variables. The functions F' and T may be
interpreted as the probability distributions corresponding to ¢ and 6. While dF/d¢ =

1
constant, dT/d0 = 3 sin#; i.e., all angles ¢ are equally probable, but the same is

not true for 6.

The floating random walk MCM depends on the application of Egs. (8.69) and
(8.70) in a statistical sense. For a two-dimensional problem, suppose that a random-
walking particle is at some point (x;, y;) after j steps in the ith walk. The next (j +
D)th step is taken as follows. First, a circle is constructed with center at (x;, y;) and
radius p;, which is equal to the shortest distance between (x;, y;) and the boundary.
The ¢ coordinate is generated as a random variable uniformly distributed over (0, 277),
ie., ¢ =2nU, where 0 < U < 1. Thus the location of the random-walking particle
after the (j + 1)th step is illustrated in Fig. 8.8 and given as

Xj+1 =Xxj + pj cos¢; (8.74a)
Vi1 =Yj + pj sing; (8.74b)

The next random walk is executed by constructing a circle centered at (x 41, ¥j41)
and of radius p;;1, which is the shortest distance between (x;11, y;4+1) and the
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Figure 8.8
Configuration for floating random walks.

boundary. This procedure is repeated several times, and the walk is terminated when
the walk approaches some prescribed small distance 7 of the boundary. The potential
V) (i) at the end of this ith walk is recorded as in fixed random walk MCM and the
potential at (x, y) is eventually determined after N walks using Eq. (8.57).

The floating random walk MCM can be applied to a three-dimensional Laplace
problem by proceeding along lines similar to those outlined above. A random-walking
particle at (x;, y;, z;) will step to a new location on the surface of a sphere whose
radius r; is equal to the shortest distance between point (x, y;, z ;) and the boundary.
The ¢ coordinate is selected as a random number U between 0 and 1, multiplied by
27. The coordinate 6 is determined by selecting another random number U between O
and 1, and solving for § = cos~ (1 = 2U) as in Example 8.1. Thus the location of
the particle after its (j + 1)th step in the ith walk is

Xjy1 =Xxj+rjcosg;sind; (8.75a)
Yj+1 =Yj +rj sing;sinb; (8.75b)
Zj+1 =2j+r; COSQJ' (8.75¢)
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Finally, we apply Eq. (8.57).

Solving Poisson’s equation (8.58) for a two-dimensional problem requires only
a slight modification. For a three-dimensional problem, V (a, 6, ¢) in Eq. (8.71) is
replaced by [V (a, 6, ¢) +r?g/6]. This requires that the term gr]z /6 atevery jth step
of the ith random walk be recorded.

An approach for handling a discretely inhomogeneous medium is presented in [39,
43, 44, 50].

It is evident that in the floating random walk MCM, neither the step sizes nor
the directions of the walk are fixed in advance. The quantities may be regarded as
“floating” and hence the designation floating random walk. A floating random walk
bypasses many intermediate steps of a fixed random walk in favor of a long jump.
Fewer steps are needed to reach the boundary, and so computation is much more rapid
than in fixed random walk.

8.5.3 Exodus Method

The Exodus method, first suggested in [51] and developed for electromagnetics
in [52, 53], does not employ random numbers and is generally faster and more accurate
than the fixed random walk. It basically consists of dispatching numerous walkers
(say 10°) simultaneously in directions controlled by the random walk probabilities
of going from one node to its neighbors. As these walkers arrive at new nodes, they
are dispatched according to the probabilities until a set number (say 99.999%) have
reached the boundaries. The advantage of the Exodus method is its independence of
the random number generator.

To implement the Exodus method, we first divide the solution region R into mesh,
such as in Fig. 8.4. Suppose py is the probability that a random walk starting from
point (x, y) ends at node k on the boundary with prescribed potential V), (k). For M
boundary nodes (excluding the corner points since a random walk never terminates
at those points), the potential at the starting point (x, y) of the random walks is

M
Vi y) =Y prVpk) (8.76)
k=1

If m is the number of different boundary potentials (m = 4 in Fig. 8.4), Eq. (8.76)
can be simplified to

Ve, y) =Y peVpk) (8.77)
k=1

where py in this case is the probability that a random walk terminates on boundary k.
Since V), (k) is specified, our problem is reduced to finding py. We find py using the
Exodus method in a manner similar to the iterative process applied in Section 3.5.
Let P(i, j) be the number of particles at point (i, j) in R. We begin by setting
P (i, j) = 0 at all points (both fixed and free) except at point (x, y), where P (i, j) as-
sumes a large number N (say, N = 10° or more). By a scanning process, we dispatch
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the particles at each free node to its neighboring nodes according to the probabili-
ties pxy, px—, Py+, and p,_ as illustrated in Fig. 8.9. Note that in Fig. 8.9(b), new
P (i, j) = 0 at that node, while old P (i, j) is shared among the neighboring nodes.
When all the free nodes in R are scanned as illustrated in Fig. 8.9, we record the
number of particles that have reached the boundary (i.e., the fixed nodes). We keep
scanning the mesh until a set number of particles (say 99.99% of N) have reached
the boundary, where the particles are absorbed. If Nj is the number of particles that
reached side k, we calculate
Ny

= — 8.78
Pe= (8.78)

P(ij+1)

P(i-1.) P@i,j) P(i+1.))

P(i,j-1)
(a)

P(@i,j+1) + py+P(i,j)

P(i,j)=0
P(i-1,)) +p, PG| PG+1j)+p, PG

P(ij-1) + p, P(i,))
(b)
Figure 8.9

(a) Before the particles at (i, j) are dispatched, (b) after the particles at (i, j) are
dispatched.

Hence Eq. (8.77) can be written as

M
PRAAG)

Vix,y) = "ZIT (8.79)

Thus the problem is reduced to just finding Ny using the Exodus method, given N
and V), (k). We notice that if N — 00, A — 0, and all the particles were allowed
to reach the boundary points, the values of p; and consequently V (x, y) would be
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exact. It is easier to approach this exact solution using the Exodus method than any
other MCMs or any other numerical techniques such as difference and finite element
methods.

We now apply the Exodus method to Poisson’s equation. To compute the solution
of the problem defined in Eq. (8.58), for example, at a specific point (x,, y,), we
need the transition probability py and the transient probability q,. The transition
probability py is already defined as the probability that a random walk starting at the
point of interest (x,, y,) in R ends at a boundary point (xx, yx), where potential V,, (k)
is prescribed, i.e.,

Pr = Prob (x4, Yo — X, Yi) (3.80)

The transient probability g is the probability that a random walk starting at point
(X0, ¥o) passes through point (x¢, y;) on the way to the boundary, i.e.,

pe = Prob (x(,, Yo _rer boundary B) (8.81)

If there are m boundary (or fixed) nodes (excluding the corner points since a random
walk never terminates at those points) and M ¢ free nodes in the mesh, the potential
at the starting point (x,, y,) of the random walks is

m Mf
V (xo,y0) = Y pkVp) + Y G, (8.82)
k=1 (=1

where
Gy = A%g (xe, o) /4

If M}, is the number of different boundary potentials, the first term in Eq. (8.82) can
be simplified so that

My, My
V (X0, ¥0) = Y ok V) + Y qeGe (8.83)
k=1 =1

where py in this case is the probability that a random walk terminates on boundary
k. Since V), (k) is specified and the source term G is known, our problem is reduced
to finding the probabilities p; and g,. We notice from Eq. (8.83) that the value
of V(x,, y,) would be “exact” if the transition probabilities p; and the transient
probabilities g; were known exactly. These probabilities can be obtained in one
of two ways: either analytically or numerically. The analytical approach involves
using an expansion technique described in [54]. But this approach is limited to
homogeneous rectangular solution regions. For inhomogeneous or non-rectangular
regions, we must resort to some numerical simulation. The Exodus method offers a
numerical means of finding pi and g¢. The fixed random walk can also be used to
compute the transient and transition probabilities.

To apply the Exodus method, let P (i, j) be the number of particles at point (i, j) in
R, while Q (i, j) is the number of particles passing through the same point. We begin
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the application of the Exodus method by setting P (i, j) = 0 = Q(, j) at all nodes
(both fixed and free) except at free node (x,y,) where both P (i, j) and Q(i, j) are set
equal to a large number N, (say, N, = 10% or more). In other words, we inject a large
number of particles at (x,, y,) to start with. By scanning the mesh iteratively as is
usually done in finite difference analysis, we dispatch the particles at each free node to
its neighboring nodes according to the random walk probabilities pyy, px—, py+,and
py— as illustrated in Fig. 8.9. Note that in Fig. 8.9(b), new P (i, j) = 0 at that node,
while old P (i, j) is shared among the neighboring nodes. As shown in Fig. 8.10,
the value of Q(i, j) does not change at that node, while Q at the neighboring nodes
is increased by the old P (i, j) that is shared by those nodes. While P (i, j) keeps
records of the number of particles at point (i, j) during each iteration, Q (i, j) tallies
the number of particles passing through that point.

At the end of each iteration (i.e., scanning of the free nodes in R as illustrated in
Figs. 8.9 and 8.10), we record the number of particles that have reached the boundary
(i.e., the fixed nodes) where the particles are absorbed. We keep scanning the mesh
in a manner similar to the iterative process applied in finite difference solution until a
set number of particles (say 99.99% of N,) have reached the boundary. If Ny is the
number of particles that reached boundary k, we calculate

Ni

=_= 8.84
Dk N, (8.84)

Also, at each free node, we calculate

Q

= 2t 8.85
N, (8.85)

qe

where Q¢ = Q(, j) is now the total number of particles that have passed through
that node on their way to the boundary. Hence (8.83) can be written as

M, My
D NV Y Gy
(=1

k=1
V (X0, ¥o) = + (8.86)
NP NP

Thus the problem is reduced to just finding Ny and Q, using the Exodus method,
given Ny, V,(k), and G¢. If N, — 0o, A — 0, and all the particles were allowed to
reach the boundary points, the values of p; and g¢ and consequently V (x,, y,) would
be exact. It is interesting to note that the accuracy of the Exodus method does not
really depend on the number of particle N,. The accuracy depends on the step size A
and the number of iteration or the tolerance, the number of particles (say 0.001% of
Np), which are yet to reach the boundary before the iteration is terminated. However,
a large value of N, reduces the truncation error in the computation.

Example 8.4
Give a probabilistic interpretation using the finite difference form of the energy
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QG,j+1)

o Q’j)
Qa.j)

QGij+1)
(a)

QUj+1)* py,Paij)

Q(-1,j)" p, P(i.j) QG,j+1)" p,,P(A.j)

X QG.)

Q-1 p, PG
(b

Figure 8.10

Number of particles passing through node (i, j) and its neighboring nodes:
(a) before the particles at the node are dispatched, (b) after the particles at
the node are dispatched.

equation
or T 9T N 3T
u—+v—=ol|l—+—
0x dy ax2  9y?
Assume a square grid of size A. I
Solution

Applying a backward difference to the left-hand side and a central difference to the
right-hand side, we obtain

Tx,y)=Tx—A,y) Tx,y)—Tx,y—A)
u +v

A A
T+ Ay)=2T(x,y)+Tx —A,y)
T(x.y+A) —2T(x.y) + T(x.y — A

4o &y +A) ZczyH .y =4 (8.87)
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Rearranging terms leads to

T, ) =ptsTx+ A, )+ peTx —A,y)

+ Pyt TG,y + A) + py-T(x, y — A) (8.88)
where
1
Px+ = Py+ = % + % +4 (8893)
(1+ %)
Px— = 7x A (8.89b)
oty T4
(1+%)
Py— = (8.89¢)
Ty nhiy

Equation (8.88) is given probabilistic interpretation as follows: a walker at point
(x, y) has probabilities py+, px—, py+,and py_ of moving to point (x + A, y), (x —
A,y), (x,y+ A),and (x, y — A), respectively. With this interpretation, Eq. (8.88)
can be used to solve the differential equation with fixed random MCM.

Example 8.5

Consider a conducting trough of infinite length with square cross section shown in
Fig. 8.11. The trough wall at y = 1 is connected to 100 V, while the other walls are
grounded as shown. We intend to find the potential within the trough using the fixed
random walk MCM. I

y 100 V

0OV—> =0V

Figure 8.11
For Example 8.5.
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Solution
The problem is solving Laplace’s equation subject to

VO,y)=V({,y)=V(x,0)=0,V(x, 1) =100 (8.90)

The exact solution obtained by the method of separation of variables is given in
Eq (2.31), namely,

Vi y) 400 < sin kmx sinh ky
X,y) = — B
Y b4 k sinh km

n=»

, k=2n+1 (8.91)

Applying the fixed random MCM, the flowchart in Fig. 8.12 was developed. Based
on the flowchart, the program of Fig. 8.13 was developed. A built-in standard subrou-
tine RANDU in VAX 750 (also in VAX 780) was used to generate random numbers
U uniformly distributed between 0 and 1. The step size A was selected as 0.05. The
results of the potential computation are listed in Table 8.2 for three different locations.
The average number of random steps 7 taken to reach the boundary is also shown.
It is observed from Table 8.2 that it takes a large number of random steps for small
step size and that the error in MCM results can be less than 1%.

Read prescribed
potential Vp

Set initial point
of random walk
i Record potential

at the boundary
Call subroutine
for random no.

!

Perform next step completed?
in the random walk
Yes

Calculate the
mean potential

Figure 8.12
Flowchart for random walk of Example 8.5.

Rather than using Eq. (8.57), an alternative approach of determining V (x, y) is to
calculate the probability of a random walk terminating at a grid point located on the
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0001

0058
0059
0060

Figure 8.13
Program for Example 8.5 (Continued).
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(o P T P e T T T T T )
C MONTE CARLO SOLUTION OF POTERTIAL PROBLEM

C INVOLVING LAPLACE’S EQUATION
o e T T
c

C SPECIFY INPUT PARAMETERS

c
DATA V1,V2,V3,V4/0.0,0.0,100.0,0.0/
DATA 1IS1,1S2/1234,5678/
DATA P1,P2,P3/0.25,0.5,0.75/
DATA A,B/1.0,1.0/
NRUN = 1000 ' EO. OF RUKS
DELTA = 0.05 ' STEP SIZE
c
C INITIALIZE VARIABLES
c
X0 = 0.25
YO = 0.75
10 = XO/DELTA
JO = YO/DELTA
IMAX = A/DELTA
JMAX = B/DELTA
SUM = 0.0
ES = 0 ! MO. OF WALKS BEFORE REACHING BOUNDARY
M1 = 0 ' NO. OF WALKS TERMINATING AT Vi
M2 = 0
M3 =0
M4 = 0 ! EO. OF WALKS TERMINATING AT V4
[
C  START RUNNING MOETE CARLO SIMULATION
c
DO 70 K=1,NRUN
1=I0
J=J0
10 CALL RANDU(IS1,IS2,R)
§S = NS + 1
IF( R.GE.O.O.AND. R.LT.P1) I =1+ 1
IF( R.GE.P1. AND. R.LT.P2) J =1J + 1
IF( R.GE.P2. AND. R.LT.P3) I =1 -1
IF( R.GE.P3) J=J-1
C
C  CBECK IF (I,J) IS ON THE BOUNDARY
c
IF( I.EQ.0) THEN
SUM = SUM + V4
M4 = M4 +1
GO TO 60
ELSE
ENDIF
IF( IMAX - I) 20,20,30
20 SUM = SUM + V2
M2 = M2 +1
GO TO 60
30 IF( J.EQ.0) TREN
SUM = SUM + Vi
Mi = M1 + 1
GO TO 60
ELSE
ENDIF



0061 IF( JMAX - J) 40,40,50

0062 40 SUM = SUM + V3
0063 M3 = M3 + 1
0064 G0 TO 60
0065 50 G0 TO 10
0066 60 IF( MOD(K,250) .BE.0.0 ) GO TO 70
0067 V = SUM/FLOAT(K)
0068 STEPS = FLOAT(NS)/FLOAT(K) ! AVERAGE NO. OF WALKS
0069 PRINT *,X0,Y0,K,V,STEPS
0070 70 CONTIRUE
0071 PRINT #, V
0072 WRITE(6,80) NRUK,V,M1,M2,M3 M4
0073 80 FORMAT(2X, *NRUN=’,16,3X,’V=",F12.6,3X, ’Ms =,416,/)
0074 STOP
0075 END
Figure 8.13

(Cont.) Program for Example 8.5.

boundary. The information is easily extracted from the program used for obtaining
the results in Table 8.2. To illustrate the validity of this approach, the potential at
(0.25, 0.75) was calculated. For N = 1000 random walks, the number of walks
terminatingatx = 0,x = 1,y =0and y = 1 are 461, 62, 66, and 411, respectively.
Hence, according to Eq. (8.79)

vy =20l 0 2 0+ L 0+ 2 ooy =411 892
Y= 1000 1000 1000 1000 = :

The statistical error in the simulation can be found. In this case, the potential on
the boundary takes values O or V,, = 100 so that V (x, y) has a binomial distribution
with mean V (x, y) and variance

ol — Vix,y)[Vo—Vix, y)l
B N

(8.93)

Atpoint (0.5, 0.5), forexample, N = 1000 gives 0 = 1.384 so that at 68% confidence
interval, the error is 8§ = o /+/N = 0.04375. 1

Example 8.6

Use the floating random walk MCM to determine the potential at points (1.5, 0.5),
(1.0, 1.5), and (1.5, 2.0) in the two-dimensional potential system in Fig. 8.14. [

Solution

To apply the floating random walk, we use the flowchart in Fig. 8.12 except that we
apply Eq. (8.74) instead of Eq. (8.56) at every step in the random walk. A program
based on the modified flowchart was developed. The shortest distance p from (x, y)
to the boundary was found by dividing the solution region in Fig. 8.14 into three
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Table 8.2 Results of Example 8.5

Monte Carlo Exact
b y N m solution solution

025 075 250 66.20 42.80 43.20
500  69.65 41.80
750  73.19 41.60
1000 73.95 41.10
1250  73.67 42.48
1500  73.39 42.48
1750  74.08 42.67
2000  74.54 43.35
05 05 250 118.62 21.60 25.00
500 120.00 23.60
750 120.27 25.89
1000 120.92 25.80
1250 120.92 25.92
1500 120.78 25.27
1750 121.50 25.26
2000 121.74 25.10

075 025 250 64.82 7.60 6.797

500  68.52 6.60

750  68.56 6.93

1000 70.17 7.50
1250  72.12 8.00
1500  71.78 7.60
1750 72.40 7.43
2000  72.40 7.30

rectangles and checking

if {(x,y):1<x<2,0<y<1},p=minimum{x —1,2 —x, y}
if {(x,y):0<x<1,1<y<2.5},0=minimum{x,y—1,2.5—y}
if {(x,y):1<x<2,1<y<2.5},

p = minimum{Z—x,Z.S - y,\/(x -2+ (y— 1)2}

A prescribed tolerance T = 0.05 was selected so that if the distance between a new
point in the random walk and the boundary is less than 7, it is assumed that the
boundary is reached and the potential at the closest boundary point is recorded.
Table 8.3 presents the Monte Carlo result with the average number of random steps
m. It should be observed that it takes fewer walks to reach the boundary in floating
random walk than in fixed random walk. Since no analytic solution exists, we compare
Monte Carlo results with those obtained using finite difference with A = 0.05 and
500 iterations. As evident in Table 8.3, the Monte Carlo results agree well with the
finite difference results even with 1000 walks. Also, by dividing the solution region
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Figure 8.14
For Example 8.6.

into 32 elements, the finite element results [58] at points (1.5, 0.5), (1.0, 1.5), and
(1.5,2.0) are 11.265, 9.788, and 21.05 V, respectively.

Unlike the program in Fig. 8.13, where the error estimates are not provided for the
sake of simplicity, the program in Fig. 8.15 incorporates evaluation of error estimates
in the Monte Carlo calculations. Using Eq. (8.29), the error is calculated as

5 = Stot/2;n—1
Jn

In the program in Fig. 8.15, the number of trials n (the same of N in Section 8.3), with
different seed values, is taken as 5 so that #y/2,,—1 = 2.776. The sample variance S
is calculated using Eq. (8.19). The values of § are also listed in Table 8.3. Notice
that unlike in Table 8.2, where m and V are the mean values after N walks, m and
V in Table 8.3 are the mean values of # trials, each of which involves N walks, i.e.,
the “mean of the mean” values. Hence the results in Table 8.3 should be regarded as
more accurate than those in Table 8.2. |

Example 8.7

Apply the Exodus method to solve the potential problem shown in Fig. 8.16. The
potentials at x = 0, x = a, and y = 0 sides are zero while the potential at y = b
sides is V,,. Typically, let

V, =100, € =¢€,, € =225, a=30b=20c=10 [

Solution
The analytic solution to this problem using series expansion technique discussed in
Section 2.7 is:
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0001 R L T T Y
0002 C MONTE CARLO (FLOATIEG RANDOM WALK) SOLUTION OF
0003 C POTENTIAL PROBLEM INVOLVING LAPLACE’S EQUATION
0004 C ERROR ESTIMATES ARE ALSO EVALUATED

0005 CorEEe s a R AR AR RE S SRR E R R KR KA SRS R AR A AN R E R B Rk &
0006
0007 DATA  PIE/3.1415/
0008 DIMENSIOF T(10),V(10),STEPS(10)
0009 DATA ( T(I), I=2,10 )/12.706, 4.303, 3.182, 2.776,
0010 1 2.571, 2.447, 2.365, 2.306, 2.262/
0011 ' T(I) ARE THE T-DISTRIBUTION PARAMETERS
0012
0013 c
0014 C IFITIALIZE VARIABLES
0015 c
0016 NTRIALS = 5 ! NO. OF TRIALS
0017 X0 = 1.5 ' STARTING POINT, WHERE POTENTIAL IS
0018 YO = 0.5 ¢ REQUIRED
0019 TOL = 0.005 ! TOLERANCE
0020 c
0021 C  START RUNNIEG MONTE CARLO SIMULATION
0022 C
0023 DO 120 BRUN=250,2000,250 ! NO. OF RUNS
0024 DO 80 J=1,NTRIALS
0025 IS1 = 1000+#FLOAT(J)
0026 IS2 = 2000+FLOAT(J)
0027 SUM = 0.0
0028 M =0 ! NO. OF STEPS TAKEN TO REACH BOUNDARY
0029 DO 60 I=1,NRUN
0030 X = X0
0031 Y = YO
0032 10 CALL RANDU(IS1,IS2,RE)
0033 PHI = 2.0%PIE*RN
0034 c FIND THE SHORTEST DISTANCE
0035 RC = SQRT( (X-1.0)*%2 + (Y-1.0)#%2 )
0036 IF(Y.GT.1.0) GO TO 20
0037 R=X-1.0
0038 IF( R.GT.(2.0-X) ) R = 2.0 - X
0039 IF(R.GT.Y) R = Y
0040 GO TO 40
0041 20 IF(X.GT.1.0) GO TO 30
0042 R=1X
0043 IFC R.GT.(Y-1.0) ) R=Y - 1.0
0044 IF( R.GT.(2.5-Y) ) R = 2.5 - Y
0045 GO TO 40
0046 30 R=20-X
0047 IF(R.GT.RC) R = RC
0048 IF( R.GT.(2.5-Y) ) R = 2.5 - Y
0049 40 X = X + R+COS(PHI)
0050 Y = Y + R+SIN(PHI)
0051 M=M+1
0052 C
0053 C CHECK IF (X,Y) IS ON THE BOUNDARY
0054 C
0055 IF( (X.LT.(1.0+TOL)).AND.(Y.LT.(1.0+4TOL)) ) GO TO
0056 * FOR THE CORNER POINT
0057 IF( X.GE.(2.0-TOL) ) THER
0058 SUM = SUM + 30.0
0059 G0 TO 50
Figure 8.15
Applying floating random walk to solve the problem in Fig. 8.14; for Example 8.6
(Continued).
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0060 ELSE

0061 ENDIF
0062 IF( Y.GE.(2.5-TOL) ) THEN
0063 SUM = SUM + 20.0
0064 GO TO SO
0065 ELSE
0066 EBDIF
0067 IF(Y.GT.1.0. AND. X.LT.TOL) GO TO 50
0068 IF(Y.LT.1.0.AND.X.LT.(1.0-TOL)) GO TO 50
0069 IF(Y.LE.TOL.AND.X.GE.1.0) GO TO 50
0070 IF(Y.LE.(1.0+TOL) .AND.X.LT.1.0) GO TO 50
0071 GO TO 10
0072 50 COBTINUVE
0073 60 CONTINUE
0074 V(J) = SUM/FLOAT(NRUN)
0075 STEPS(J) = FLOAT(M)/FLOAT(NRUN) ' AVERAGE NO. OF WALKS
0076 PRINT +,X0,Y0,V(J),STEPS(J)
0077 WRITE(6,*) X0,Y0,V(J),STEPS(J)
0078 WRITE(6,70) X0,Y0,NRUN,V(J),STEPS(J)
0079 70 FORMAT(2X,’X = ’ ,F5.2,3X,’Y=’,F5.2,3X,
0080 1 ’BRUN=’,16,3X,’V=’ ,F12.6,3X, STEPS=’,F10.3,/)
0081 80 CONTINUE
0082 c
0083 C  FIKD THE MEAN VALUE OF V AND MEAX NO. OF STEP
0084 C
0085 SUX = 0.0
0086 SUM1 = 0.0
0087 DO 90 I=1,NTRIALS
0088 SUM = SUM + V(I)
0089 SUM1 = SUM1 + STEPS(I)
0090 90 CONTINUE
0091 VMEAN = SUM/FLOAT(NTRIALS)
0092 STEPM = SUM1/FLOAT(NTRIALS)
0093 c
0094 C CALCULATE ERROR
0095 c
0096 SUM = 0.0
0097 DO 100 I=1,NTRIALS
0098 SUM = SUM + ( V(I) - VMEAN )e+2
0099 100 CONTINUE
0100 STD = SQRT( SUM/FLOAT (ETRIALS-1) )
0101 ERROR = STD#T(NTRIALS)/SQRT( FLOAT(NTRIALS) )
0102 PRINT * NTRIALS,VMEAN ,STEPM ,ERROR
0103 WRITE(6,110) NTRIALS,VMEAN,STEPM,ERROR
0104 110 FORMAT(2X,’N0. OF TRIALS’,16,3X,’MEAN V =’ F12.6,3X,
0105 1 'MEAN M = ’,F12.6,3X,’ERROR=’,F12.6,//)
0106 120 CONTINUE
0107 STOP
0108 EED
Figure 8.15

(Cont.) Applying floating random walk to solve the problem in Fig. 8.13; for
Example 8.6.
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where

© 2001 by CRCPRESSLLC

Table 8.3 Results of Example 8.6

by y N m Monte Carlo Finite Difference
solution (V = §) solution (V)
1.5 05 250 6.738 11.5240.8973 11.44
500 6.668 11.80 &£ 0.9378
750 6.535 11.83 £ 0.4092
1000 6.476 11.82 £ 0.6205
1250 6.483 11.85 4 0.6683
1500 6.465 11.72 4+ 0.7973
1750 6.468 11.70 &= 0.6894
2000 6.460 11.55 &+ 0.5956
1.0 1.5 250 8.902 10.74 4 0.8365 10.44
500 8.984 10.82 £ 0.3709
750 8937 10.75 £ 0.5032
1000 8.928 10.90 £ 0.7231
1250 8.836  10.84 £ 0.7255
1500 8.791 10.93 £ 0.5983
1750 8.788  10.87 £ 0.4803
2000 8.811 10.84 £ 0.3646
1.5 2.0 250 7.242 21.66 %+ 0.7509 21.07
500 7.293 21.57 £0.5162
750 7.278  21.53 £ 0.3505
1000 7.316  21.53 £0.2601
1250 7.322  21.53 £0.3298
1500 7.348 21.51 4 0.3083
1750 7.372  21.5540.2592
2000 7.371 21.45+£0.2521

o
Zsinﬁx [a, sinh By + b, cosh By], O0<y<c

V = k=1

o
Z ¢y sin Bx sinh By,

k=1

ni

p="",

a

n=2k-—1

a, = 4V, [ tanh Bc — €3 coth Bc] /d, ,
b, =4V, (e — E1)/dn ,

cn = 4V, [e1 tanh Bc — €; coth B¢ + (e — €1) coth Bc] /d, ,
d,, = nm sinh Bb [€1 tanh B¢ — €3 coth B¢ + (€2 — €1) coth Bb]

c<y=<bh

(24)

(25)



Figure 8.16
Potential system for Example 8.7.

The potentials were calculated at five typical points using the Exodus method, the
fixed random walk Monte Carlo method, and the analytic solution. The number of
particles, N, was taken as 107 for the Exodus method and the step size A = 0.05 was
used. For the fixed random walk method, A = 0.05 and 2000 walks were used. It
was noted that 2000 walks were sufficient for the random walk solutions to converge.
The results are displayed in Table 8.4. In the table, ¢ is the error estimate, which
is obtained by repeating each calculation five times and using statistical formulas
provided in [13]. It should be noted from the table that the results of the Exodus
method agree to four significant places with the exact solution. Thus the Exodus
method is more accurate than the random walk technique. It should also be noted
that the Exodus method does not require the use of a random number routine and also
the need of calculating the error estimate. The Exodus method, therefore, takes less

computation time than the random walk method. |

Table 8.4 Results of Example 8.7
X y  Exodus Method Fixed Random  Finite Difference Exact Solution

V. Walk (V £ 9) Vv Vv
05 1.0 1341 1340+ 1.113 13.16 13.41
1.0 1.0 21.13  20.85 £ 1.612 20.74 21.13
1.5 1.0 2343 2358 £1.2129 22.99 23.43
1.5 05 10.52  10.13 £0.8789 10.21 10.52
1.5 1.5 59.36  58.89 £2.1382 59.06 59.34
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8.6 Regional Monte Carlo Methods

A major limitation inherent with the standard Monte Carlo methods discussed
above is that they only permit single point calculations. In view of this limitation,
several techniques have been proposed for using Monte Carlo for whole field com-
putation. The popular ones are the shrinking boundary method [37] and inscribed
figure method [38].

The shrinking boundary method is similar to the regular fixed random walk except
that once the potential at an interior point is calculated, that point is treated as a
boundary or absorbing point. This way, the random walking particles will have more
points to terminate their walks and the walking time is reduced.

The inscribed figure method is based on the concept of subregion calculation. It in-
volves dividing the solution region into standard shapes or inscribing standard shapes
into the region. (By standard shapes is meant circles, squares, triangles, rectangles,
etc. for which Green’s function can be obtained analytically or numerically.) Then, a
Monte Carlo method is used in computing potential along the dividing lines between
the shapes and the regions that have nonstandard shapes. Standard analytical methods
are used to compute the potential in the subregions.

Both the shrinking boundary method and the inscribed figure method do not make
Monte Carlo methods efficient for whole field calculation. They still require point-
by-point calculations and a number large of tests as standard Monte Carlo techniques.
Therefore, they offer no significant advantage over the standard Monte Carlo methods.
Using Markov chains for whole field calculations has been found to be more efficient
than the shrinking boundary method and the inscribed figure method. The technique
basically calculates the transition probabilities using absorbing Markov chains [55,
56].

A Markov chain is a sequence of random variables X © xM . where the
probability distribution for X ™ is determined entirely by the probability distribution
of X"~ A Markov process is a type of random process that is characterized by the
memoryless property [57]-[60]. It is a process evolving in time that remembers only
the most recent past and whose conditional distributions are time invariant. Markov
chains are mathematical models of this kind of process. The Markov chain of interest
to us are discrete-state, discrete-time Markov chains. In our case, the Markov chain
is the random walk and the states are the grid nodes. The transition probability P;;
is the probability that a random-walking particle at node i moves to node j. It is
expressed by the Markov property

Pij = P()Cn+1 = j|x0axlv ~-~,xn)
= P (Xn41 = Jlxn) jeX,n=0,1,2,... (8.94)
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The Markov chain is characterized by its transition probability matrix P, defined by

Poo Poir Py2 ---
Py Py Ppo---
P= Py Py Py --- (8.95)

P is a stochastic matrix, meaning that the sum of the elements in each row is unity,
ie.,

dYopj=1 ieX (8.96)
jeX

We may also use the state transition diagram as a way of representing the evolution
of a Markov chain. An example is shown in Fig. 8.17 for a three-state Markov chain.

Figure 8.17
State Transition diagram for a three-state Markov Chain.

If we assume that there are n ¢ free (or nonabsorbing) nodes and 2, fixed (prescribed
or absorbing) nodes, the size of the transition matrix P is n, where

n=nys+np (8.97)

If the absorbing nodes are numbered first and the nonabsorbing states are numbered
last, the n x n transition matrix becomes

I 0
p:[R Q} (8.98)

where the n s x n, matrix R represents the probabilities of moving from nonabsorb-
ing nodes to absorbing ones; the n s x ny matrix Q represents the probabilities of
moving from one nonabsorbing node to another; I is the identity matrix representing
transitions between the absorbing nodes (P;; = 1 and P;; = 0); and 0 is the null
matrix showing that there are no transitions from absorbing to nonabsorbing nodes.
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For the solution of Laplace’s equation, we obtain the elements of Q from Eq. (8.55b)
as

,  if i is directly connected to j,

FNg-

Qij = (8.99)

0, if i = j ori is not directly connected to j

The same applies to R;; except that j is an absorbing node.
For any absorbing Markov chain, I — Q has an inverse. This is usually referred as
the fundamental matrix

N=1-Q)! (8.100)

where N;; is the average number of times the random-walking particle starting from
node i passes through node j before being absorbed. The absorption probability
matrix B is

B = NR (8.101)

where B;; is the probability that a random-walking particle originating from a non-
absorbing node i will end up at the absorbing node j. Bis anny x n, matrix and is
stochastic like the transition probability matrix, i.e.,

np
Y Bij=1, i=1,2,...,ny (8.102)
j=1

If V and V, contain potentials at the free and fixed nodes, respectively, then

w03

In terms of the prescribed potentials Vi, Vo, ..., V, e Eq. (8.103) becomes

np

j=1

where V; the potential at any free node i. Unlike Eq. (8.57), Eq. (8.103) or (8.104)
provides the solution at all the free nodes at once.

An alternative way to obtain the solution in Eq. (8.103) is to exploit a property of
the transition probability matrix P. When P is multiplied by itself repeatedly for a
large number of times, we obtain

. 10
Tim P _[B o] (8.105)
Thus
vV, on[V,] 1 01V,
[Vf]_P [Vf}_[B 0] [Vf} (8100
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Either Eq. (8.103) or (8.106) can be used to find V ¢ but it is evident that Eq. (8.103)
will be more efficient and accurate. From Eq. (8.103) or (8.104), it should be noticed
that if N is calculated accurately, the solution is “exact.”

There are several other procedures for whole field computation [37, 38], [61]-[64].
One technique involves using Green’s function in the floating random walk [42].

The random walk MCMs and the Markov chain MCM applied to elliptic PDEs in
this chapter can be applied to parabolic PDEs as well [65, 66].

The following two examples will corroborate Markov chain Monte Carlo method.
The first example requires no computer programming and can be done by hand, while
the second one needs computer programming.

Example 8.8

Rework Example 8.5 using Markov chain. The problem is shown in Fig. 8.11. We
wish to determine the potential at points (a/3, a/3), (a/3,2a/3), 2a/3,a/3), and
(2a/3,2a/3). Although we may assume that a = 1, that is not necessary.

Solution

In this case, there are four free nodes (n s = 4) and eight fixed nodes (n, = 8) as
shown in Fig. 8.18. The transition probability matrix is obtained by inspection as

1 23 45 6 7 8 9 10 11 12

1 [1 ]
2 1
3 1
4 1
5 1
6 1

P:7 1
8 1

1 1 1 1

O 11 i1 07 70
0o 1 1 100 1
1mjo o 0 I 1
12 )0 1 000 7 7 0

Other entries in P shown vacant are zeros.
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Figure 8.18
For Example 8.8.
From P, we obtain
1 2 3 4 5 6 7 8
94 000000 }
1 1
R_1010 37 3700000
11{000007% ;0
1 1
2100014 roo0o
9 10 11 12
9ofo 4 1 ©
1 1
Q_lo 7 0 0 3
- 1 1
1Imf;y o0 0 3
1 1
210 7 7 0

The fundamental matrix N is obtained as
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or

7221
1{2 712
Nzgz 17 2
1227

The absorption probability matrix B is obtained as

,_‘
()
w
N
W
o)
<
o

o [Z L 1 1 1 1 1 7
24 12 12 24 24 12 12 24
o | L oz oz 1 o1 o111
12 24 24 12 12 24 24 12
B=NR =
T T s T T T A A S
12 24 24 12 12 24 24 12
2 |1 1 7 7 1 1 1
24 12 12 24 24 12 12 24

Notice that Eq. (8.102) is satisfied. We now use Eq. (8.104) to obtain the potentials
at he free nodes. For example,

7 1 1 1 1 1 1 7
Vo=—Vi+—WVo+—V3+—Vy+—Vs+—Vog+ —V74+ —V;
9 241+122+12 3+244+245+126+127+248

Since Vi =V, =100while V3 = V4 =... = Vg =0,

7 1
Vo (24+12) 00 =375

By symmetry, Vig = Vo = 37.5. Similarly,

1 1
Vii="Vip <24+12> 00 5

Table 8.5 compares these results with the finite difference solution (with 10 iterations)
and the exact solution using Eq. (2.31b) or (8.91). It is evident that the Markov chain
solution compares well.

Table 8.5 Results of Example 8.8
Node Finite Difference Markov Chain  Exact

Solution Solution Solution
9 37.499 37.5 38.074
10 37.499 37.5 38.074
11 12.499 12.5 11.926
12 12.499 12.5 11.926

© 2001 by CRCPRESSLLC



Example 8.9
Consider the potential problem shown in Fig. 8.19. Let

V, =100, €1 =¢,, € =3¢,
a=b=05 h=w=10 [

X(V:V0

Figure 8.19
Potential system for Example 8.9.

Solution

The Markov chain solution was implemented using MATLAB. The approach involved
writing code that generated the transition probability matrices using the random walk
probabilities, computing the appropriate inverse, and manipulating the solution ma-
trix. The use of MATLAB significantly reduced the programming complexity by
the way the software internally handles matrices. The Q—matrix was selected as a
timing index since the absorbing Markov chain algorithm involves inverting it. In
this example, the Q—matrix is 361 x 361 and the running time was 90 and 34 seconds
on 486DX?2 and Pentium, respectively. A = 0.05 was assumed. At the corner point
(x, y) = (a, b), the random walk probabilities are

€1 €]+ €

Px+=Py+=m, Px— = Py— = m

The plot of the potential distribution is portrayed in Fig. 8.20. Since the problem
has no exact solution, the results at five typical points are compared with those from
the Exodus method and finite difference in Table 8.6. It should be observed that the
Markov chain approach provides a solution that is close to that by the Exodus method.

© 2001 by CRCPRESSLLC



100

80

60+

40

Potential (V)

x-axis (m)

Figure 8.20
Potential distribution obtained by Markov chains; for Example 8.9.

Table 8.6 Results of Example 8.9

Node Markov Chain Exodus Method Finite Difference
X Yy

025 0.5 10.2688 10.269 10.166

0.5 0.5 16.6667 16.667 16.576

075 0.5 15.9311 15.931 15.887

0.5 0.75 51.0987 51.931 50.928

0.5 0.25 6.2163 6.2163 6.1772

8.7 Concluding Remarks

The Monte Carlo technique is essentially a means of estimating expected values
and hence is a form of numerical quadrature. Although the technique can be ap-
plied to simple processes and estimating multidimensional integrals, the power of the
technique rests in the fact that [66]:

« it is often more efficient than other quadrature formulas for estimating multi-
dimensional integrals,

« itis adaptable in the sense that variance reduction techniques can be tailored to
the specific problem, and

* it can be applied to highly complex problems for which the definite integral
formulation is not obvious and standard analytic techniques are ineffective.
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For rigorous mathematical justification for the methods employed in Monte Carlo
simulations, one is urged to read [32, 67]. As is typical with current MCMs, other
numerical methods of solutions appear to be preferable when they may be used. Monte
Carlo techniques often yield numerical answers of limited accuracy and are therefore
employed as a last resort. However, there are problems for which the solution is
not feasible using other methods. Problems that are probabilistic and continuous in
nature (e.g., neutron absorption, charge transport in semiconductors, and scattering
of waves by random media) are ideally suited to these methods and represent the most
logical and efficient use of the stochastic methods. Since the recent appearance of
vector machines, the importance of the Monte Carlo methods is growing.

It should be emphasized that in any Monte Carlo simulation, it is important to
indicate the degree of confidence of the estimates or insert error bars in graphs illus-
trating Monte Carlo estimates. Without such information, Monte Carlo results are of
questionable significance.

Applications of MCMs to other branches of science and engineering are summa-
rized in [14, 15, 25, 68]. EM-related problems, besides those covered in this chapter,
to which Monte Carlo procedures have been applied include:

« diffusion problems [62, 64, 70]

* strip transmission lines [40]

 random periodic arrays [71]

» waveguide structures [72]-[77]

« scattering of waves by random media [78]-[84]
* noise in magnetic recording [85, 86]

« induced currents in biological bodies [87].

We conclude this chapter by referring to two new Monte Carlo methods. One
new MCM, known as the equilateral triangular mesh fixed random walk, has been
proposed to handle Neumann problems [88]. Another new MCM, known as Neuro-
Monte Carlo solution, is an attempt at whole field computation [89]. It combines an
artificial neural network and a Monte Carlo method as a training data source. For
further exposition on Monte Carlo techniques, one should consult [25, 26, 61, 90, 91].
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Problems

8.1

8.2

8.3

Write a program to generate 1000 pseudorandom numbers U uniformly dis-
tributed between 0 and 1. Calculate their mean and compare the calculated
mean with the expected mean (0.5) as a test of randomness.

Generate 10,000 random numbers uniformly distributed between 0 and 1. Find
the percentage of numbers between 0 and 0.1, between 0.1 and 0.2, etc., and
compare your results with the expected distribution of 10% in each interval.

(a) Using the linear congruential scheme, generate 10 pseudorandom num-
bers with a = 1573, ¢ = 19, m = 103, and seed value Xo = 89.

(b) Repeat the generation with ¢ = 0.
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8.4

8.5

8.6

8.7

8.8

8.9

8.10

Fora = 13,m = 2% = 64, and Xo = 1,2,3, and 4, find the period of the
random number generator using the multiplicative congruential method.

Develop a subroutine that uses the inverse transformation method to generate
a random number from a distribution with the probability density function

0.25, 0<x<l1

FOY=1 075, 1<x<1

It is not easy to apply the inverse transform method to generate normal distri-
bution. However, by making use of the approximation

—kx
—X2/2 ~ 26

_m,x>0

e

/8
where k = ,/ —, the inverse transform method can be applied. Develop a
b4

subroutine to generate normal deviates using inverse transform method.

Using the rejection method, generate a random variable from f(x) = 5x2, 0 <
x <1.

Use the rejection method to generate Gaussian (or normal) deviates in the
truncated region —a < X < a.

Use sample mean Monte Carlo integration to evaluate:
1
(a) / 41 — x2 dx,
0

1
(b) / sin x dx,
0

1
(c) /exdx,
0

LS|
(d) /Oﬁdx

Evaluate the following four-dimensional integrals:

1,1 p1 opl
(a) / / / / exp(x1 K23t — 1) dx'dx?dx3 dx4,
o Jo Jo JO

1,1 p1 opl
(b) / / / / sin(x1 +x2+x3 +x4) dx'dx? dx3 dx*
o Jo Jo JO
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8.11 The radiation from a rectangular aperture with constant amplitude and phase
distribution may be represented by the integral

12 p12
(. p) = / / @Y gy
—12J-1p2

Evaluate this integral using a Monte Carlo procedure and compare your result
for « = f = m with the exact solution

sin(e/2) sin(8/2)
ap/4

I(a,p) =

8.12 Consider the differential equation

82W+82W+k8W —o
9x2 ay2 oy ady

where k = constant. By finding its finite difference form, give a probabilistic
interpretation to the equation.

8.13 Given the one-dimensional differential equation
y' =0, 0<x<1

subject to y(0) = 0, y(1) = 10, use an MCM to find y(0.25) assuming Ax =
0.25 and the following 20 random numbers:

0.1306, 0.0422, 0.6597, 0.7905, 0.7695, 0.5106, 0.2961, 0.1428, 0.3666,
0.6543,0.9975, 0.4866, 0.8239, 0.8722, 0.1330, 0.2296, 0.3582, 0.5872,
0.1134, 0.1403.

8.14 Consider N equal resistors connected in series as in Fig. 8.21. By making
V(0) = 0and V(N) = 10 volts, find V (k) using the fixed random walk for the
following cases: (a) N =5, k=2,(b) N =10, k =7,(c) N =20, k = 11.

0 1 2 k-1 k k+1 N-1 N

Figure 8.21
For Problem 8.14.

8.15 Use a Monte Carlo method to solve Laplace’s equation in the triangular region
x >0, y >0, x4y < 1 with the boundary condition V (x, y) = x +y +0.5.
Determine V at (0.4, 0.2), (0.35, 0.2), (0.4, 0.15), (0.45, 0.2), and (0.4, 0.25).
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Figure 8.22
For Problem 8.16.

8.16 Use a Monte Carlo procedure to determine the potential at points (2,2), (3,3),
and (4,4) in the problem shown in Fig. 8.22(a). By virtue of double symmetry, it
is sufficient to consider a quarter of the solution region as shown in Fig. 8.22(b).

8.17 In the solution region of Fig. 8.23, p; = x(y — 1) nC/m?. Find the potential
at the center of the region using a Monte Carlo method.

y 20V

'

1

—10 V> l— 10V

oV

Figure 8.23
For Problem 8.17.
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8.18 Consider the potential system shown in Fig. 8.24. Determine the potential at
the center of the solution region. Take €, = 2.25.

y
10V
2.0 '
81 = 80
1.0
82 = £0£r
0 L 3.0 X
Figure 8.24
For Problem 8.18.

8.19 Apply an MCM to solve Laplace’s equation in the three-dimensional region
x| <1, |yl=05, |z2]=0.5
subject to the boundary condition
Vix,v,2) =x+y+2z+0.5
Find the solution at (0.5, 0.1, 0.1).

8.20 Consider the interface separating two homogeneous media in Fig. 8.25. By

applying Gauss’s law
av
‘(ﬁ e—dS=0
S on

show that
V(p,2) = po+ V(P +A,2) + pp-V(p—A,2)
+pV(p, 2+ D)+ p.-V(p,z2—A)
where
_ €1 _ €
Pt =@ +ay T2 te)
1

Pp+ = Pp— = 4
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V(p,z+A)
®

& V(p-Az) Vipz) | V(p+A2)

®
V(p,z-A)

Figure 8.25
For Problem 8.20.

8.21 Consider the finite cylindrical conductor held at V = 100 enclosed in a larger
grounded cylinder. The axial symmetric problem is portrayed in Fig. 8.26
for your convenience. Using a Monte Carlo technique, write a program to
determine the potential at points (p, z) = (2,10), (5,10), (8,10), (5,2), and

(5,18).
!
18—
: — ov
! L 100V
2|
0 0 p
Figure 8.26
For Problem 8.21.

8.22 Figure 8.27 shows a prototype of an electrostatic particle focusing system em-
ployed in a recoil-mass time-of-flight spectometer. It is essentially a finite
cylindrical conductor that abruptly expands radius by a factor of 2. Write a
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program based on an MCM to calculate the potential at points (p, z) = (5,18),
(5,10), (5,2), (10,2), and (15,2).

N
201

18—

/OV

100 V

2

0 1 10 20 p

Figure 8.27
For Problem 8.22.

8.23 Consider the square region shown in Fig. 8.28. The transition probability
p(Q, S;) is defined as the probability that a randomly walking particle leaving
point Q will arrive at side S; of the square boundary. Using the Exodus method,
write a program to determine:

(@ pQ1,8), i=12734
®) p(Q2,8), i=12734

Q

Figure 8.28
For Problem 8.23.
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8.24

Given the one-dimensional differential equation

d*o
— =0 0=<x<I
dx?

subject to ®(0) = 0, ®(1) = 10, use the Exodus method to find $(0.25)
by injecting 256 particles at x = 0.25. You can solve this problem by hand
calculation.

8.25 Use the Exodus method to find the potential at node 4 in Fig. 8.29. Inject 256
particles at node 4 and scan nodes in the order 1, 2, 3, 4. You can solve this
problem by hand calculation.

yA 100V
'
1 2
3 4
4 X
ov

Figure 8.29

For Problem 8.25

8.26 Using the Exodus method, write a program to calculate V (0.25, 0.75) in Ex-
ample 8.5.

8.27 Write a program to calculate V (1.0, 1.5) in Example 8.6 using the Exodus
method.

8.28 Write a program that will apply the Exodus method to determine the potential
at point (0.2, 0.4) in the system shown in Fig. 8.30.

8.29 Use Markov chain MCM to determine the potential at node 5 in Fig. 8.31.

8.30 Rework Problem 8.18 using Markov chain.

8.31 Rework Problem 8.22 using Markov chain.
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y
1.0
100V
oV—> /
0 A 1.0 X
ov
Figure 8.30
For Problem 8.28.
100V
1
0OV—> =0V
4 5 2
3 X
ov
Figure 8.31
For Problem 8.29.
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