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Framework: ICF Simulations of the hohlraum when plasma interpenetration occurs

Standard hydrodynamics simulations lead to very high unphysical densities (not in agreement with experimental
emissivity).

Aim : Modi�cation radiative two-temperature
hydrodynamics system.

When the temperature is very high, ion mean free paths are not small enough. Pure hydro is no more valid.



Outline:

A. The mixing model

B. Implementation (in a Lagrange/ALE code)

C. Numerical results



A. THE MIXING MODEL

Theoretical starting system

Six equations (+equation for electron temperature Te). Two �uids ( q = g and l)

�g; �l; ug;ul; "g; "l

Assumption: The �uids �ll the same volume when mixing occurs; Pq = (
 � 1)�q"q.
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where Ce;q is a coupling term with electron temperature, 
g = �
l and the drag term may reads as

�g = ��l = �0�g�l(ul � ug);
Principle of derivation: 1. a �ve-equations model / 2. Di¤usion approximation



1. Intermediate model (5-equations):

Density, concentration, mean velocity, mean internal energy, relative velocity

� = �g + �l; c =
�g

�
; u = cug + (1� c)ul; " = c"g + (1� c)"l; V = ug � ul;

Standard calculus. Set P� = (
 � 1)�" and Pb = �VVc(1� c) mixing pressure

�Dt�
�1 �r:u = 0; Dt = @=@t+ ur

�Dtu+rP� +r:Pb = 0;
�Dtc+r (�c(1� c)V) = 0;
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�DtE +r:(P�u) +r:(Pbu) +r: (Vc(1� c):::) = Ce;i:

This is closed to the "mix model" of Scannapieco-Cheng (2002) [hyperbolic system for jVj small enough].



2. Di¤usion approximation

Second Closure: (1) is replaced by

V = �1
�
	0"rc � �Drc:

Then, one gets a di¤usion eq.

�Dtc�r: (�c(1� c)Drc) = 0;

Mixing kinetic energy

K =
1

2
c(1� c)jVj2 , Then mixing pressure Pb = 2�K or 2�K

rcrc
jrcj2

�DtK + Pb:ru+ 2��K = :::

Since " = E � 1
2
juj2 �K, one gets a simple equation for �Dt" = :::.



3. Final system.

Besides the eq. for the electron temperature Te;

�Dt�
�1 �r:u = 0; (2)

�Dtu+rP� +r:Pb = 0 (3)
�Dtc�r:(c(1� c)Drc) = 0; (4)
�Dt"+ P�r:u� 2��K = Ce;i +	r:(�"c(1� c)Drc); (5)

�DtK + Pb:ru+ 2��K = ��c(1� c)jDj2jrcj2 �r ((2c� 1)�KDrc) : (6)

It is conservative. Classical form.

Without the terms at the right hand side, it is the same than the simplest compressible turbulence model,

see Wilcox (1998), Gavrilyuk-Saurel (2006).



B. IMPLEMENTATION.

.

� Remark : the Heaviside function is a trivial solution to (4), (no mixing occurs).

� It is unstable: one has to give an initialization time for the mixing (for instance by setting c = :9999999
in only one cell, instead of c = 1)

� Due to the expression of the friction coef. the di¤usion coe¢ cient D reads as
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For the corrector term V 2r ; we have choosen

Vr
2 = T 5� (Cv=L��)

2

the constant L is a characteristic mean free path at the begining of the mixing process.

One checks that the in�uence of L on the results is small.



Arbitrary-Lagrangian-Eulerian hydro code.

�; c; ";K are evaluated in the center of the cells ; u at the nodes

At each time step

� Move the nodes of the mesh

� Solve non-linear di¤usion equation for c: iterative method (due to the non-linearity)

� Solve the internal energy equations for ions and electrons

Electron thermal conduction is taken into account by using the classical Spitzer-Härm formula.

� Solve the mixing energy equation (localy with respect to the spatial variable).

� Mesh rezoning. Remapping all the quantities.



C. Numerical Results

1. Toy problem in a 1D con�guration

Initially, two Gold sheets with opposite velocity Vr = 108cm=s which are separated by a vacuum.

Gold
GoldVr ­Vr

The initial density of both plates is equal to 3: 10�3 g/cm3:

The initial ion and electron temperatures are equal to 1 keV and 2 keV.

The spatial domain is 1000 �m long.



Pro�les of the concentration (from 0 up to 300 ps). Pro�les of density with/without mixing (at 300 ps)

spatial variable. spatial variable.

. Results with di¤erent values of the corrector parameter L.

One checks that the behavior of c is characteristic of a non linear di¤usion eq.

Notice that with the mixing model, there is a strong descreasing of the density where the two �uids collide.



2. A 2D con�guration

2D axisymmetric simulation : collision of two Titanium plasma disks; the relative velocity is obtained by a
laser ablation.

Map of the concentration (at di¤erent times: 0:2; 0:8; 1:8; 2:5 ns).



On the symmetry axis

Pro�le of concentration at di¤erent times. Pro�le of density at di¤erent times

. Simulation with (dotted lines) and without the mixing

. model (plain lines)

Notice, as request, smaller density in the center of the simulation domain.

Since the modi�cation of Te is very moderated, the radiative emission (which is roughly speaking proportionnal
to �2) is weakened.



Conclusions

� The model may be implemented in a classical 2D hydro-radiative code wich uses a ALE technique.

� One has to introduce a di¤usion eq. for the concentration c:

and a supplementary eq. for the mixing kinetic energy K (which is of the same type of the turbulence
one).

� For accurate results, the mesh size has to be �ne enough.

It is necessary to give an initialization criterion for the mixing model.

But in any case, when compared to the classical simulation (without the mixing model) the pro�les of
the density are modi�ed : its maximum is lower.


