The Application of Multi-Phase Flow Models in Simulations of Fluid Structure Interaction

Presented by:
Jaroslaw Knap and David Stevens
September 2007
Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
Fluid-structure interaction problem arises in numerous engineering applications:

- Aerospace (e.g. airplane design, bird strike scenarios, engine blade containment).
- Automotive (e.g. airbag design, tire performance and hydroplaning).
- Medical equipment design (e.g. artificial heart valves, lithotryptors).
- Military and defense (e.g. weapons design, armor design, personnel protection, underwater shock explosion, blast resistance).
- Failure analysis of structures (e.g. blast loading due to pressure vessel rupture).
Motivation

- Examples of simulation techniques for fluid-structure interaction:
 - Coupled Lagrangian-Eulerian methods.
 - Eulerian methods.
 - ALE methods.
 - Particle methods (e.g. SPH).
 - ...

- In the context of Eulerian methods:
 - Need to deal effectively with different materials-interface tracking difficult.
 - Materials include solids, fluids or gases.
 - Chemical reactions or phase transitions may also be involved.

- Finite volume Godunov methods well suited for handling multiple materials - **Discrete Equation Method** (Chinnayya et al., 2004).

Cirak and Radovitzky (2005)

Chinnayya et al. (2004)
Key idea (Abgrall and Saurel, 2003):
- Discretize Euler equations at the microscopic level for all pure phases via a Godunov scheme.
- Average the discretization over the set of all possible realizations to obtain a scheme for the averaged multiphase flow equations.

- Treatment of each phase is Eulerian.
- The original DEM formulation allowed for the treatment of fluids.
- Extended to reactive fluid flows by Chinnayya *et al.* (2003).
- Would like to model materials with strength (solids): need to extend the treatment of the mechanical response to include the deviatoric stress component.
Conservation Equations

mass:
\[\frac{\partial \rho}{\partial t} + \text{div}(\rho \mathbf{v}) = 0 \]

momentum:
\[\frac{\partial \rho \mathbf{v}}{\partial t} + \text{div}(\rho \mathbf{v} \otimes \mathbf{v} - \mathbf{\sigma}) = 0 \]

energy:
\[\frac{\partial \rho(e + \frac{1}{2} \mathbf{v}^2)}{\partial t} + \text{div}[\rho(e + \frac{1}{2} \mathbf{v}^2)\mathbf{v} - \mathbf{\sigma} \mathbf{v}] = 0 \]

or
\[\rho \dot{e} = \mathbf{\sigma} \cdot \text{grad}(\mathbf{v}) \equiv \mathbf{\sigma} \cdot \mathbf{L} \]

Need closure: material constitutive relations
Material Constitutive Equations

- Relate the stress to some measure of deformation and temperature.
- Must satisfy certain constraints imposed by
 - Thermodynamics (e.g. Clausius-Duhem inequality).
 - Locality.
 - Material frame indifference.
- May also depend on a number of internal (history) variables to track micro-structure development-inelastic material response.
- Existence of a Helmholtz free energy functional from which the material response derives is often assumed.
- Commonly the material response split into volumetric (EOS) and isochoric (strength) components.
- Example: \(\sigma^{VJ} = C \cdot \frac{1}{2}[L + L^T] \) - hypoelastic constitutive relation.
- Need a solution of the Riemann problem to evaluate fluxes of conserved variables.
- Use conservation equations for a solid with linear elastic material constitutive relation:

\[\sigma = \lambda \text{tr}(\varepsilon) + 2\mu \varepsilon \]

where: \(\lambda, \mu \)-elastic constants and \(\varepsilon \)-the infinitesimal strain tensor.
- Non-linear (geometric) effects due to finite kinematics neglected.
- Riemann solvers taking into account finite kinematics available (e.g. Garaizar, 1991; Miller and Colella, 2001).
Acoustic Riemann Solver

\[
\begin{align*}
c_L &= \sqrt{\frac{\lambda + 2\mu}{\rho}} \\
c_T &= \sqrt{\frac{\mu}{\rho}}
\end{align*}
\]

- Two elastic waves: longitudinal \((c_L)\) and tangential \((c_T)\).
- Treatment of tangential waves analogous to longitudinal waves.
- Quantities discontinuous across shear waves: \((\sigma_{12}, v_2)\) and \((\sigma_{13}, v_3)\).
- Rod: $l = 10$ cm and $h = 1$ cm.
- Discretization: 1 zone per h and 100 zones per l.
- Periodic boundary conditions in y,z-directions.
- Outflow boundary conditions at both ends.
- Initial conditions: velocity of 1 m/s in both x and y-directions applied to left half of the rod ($x < 0$).
- Material: linear elastic steel $\lambda = 87$ GPa and $\mu = 80$ GPa.
- Elastic wave velocities: $c_L = 0.563$ cm/μs and $c_T = 0.320$ cm/μs.
- Velocity solutions at 10 μs.
- Two-elastic-wave structure present in the solution.
- Elastic wave velocities match exactly those computed from the elastic constants.
Taylor Impact Test

- Fundamental test for characterizing the inelastic mechanical response of structural materials (plastic deformation, shear band formation and fracture).
- Experimental data: House et al. (1995).
- Material: 4340 low strength steel.
- Sample dimensions: $d = 7.595$ mm, $h = 11.39$ mm.
- Impact velocity: 285 m/s.
- Final length: 9.3 mm.
- Mushroom diameter: 10.9 mm.

Wang et al. (2003)
- 4340 steel material model:
 - EOS: 7-term polynomial.
 - Strength: conventional J_2-plasticity, no strain hardening.
- Air material model: γ-law gas EOS. No strength.
- Quarter configuration modeled (3D).
- 139,194 total number of zones.
Final simulated cylinder length: 7.02 mm (experiment: 9.3 mm).
Mushroom diameter: 12.1 mm (experiment: 10.9 mm).
Very good agreement with the experimental data.
Need to include strain hardening effects to obtain a better match!
- Investigate interaction of a shock wave with a solid body.
- $d = 20\ \text{mm}, \ h = 5\ \text{mm}$.
- 5 Mach shock.
- Steel modeled as:
 - EOS: 7-term polynomial.
 - Strength: J_2-plasticity, no strain-hardening.
- Air modeled as:
 - EOS: γ-law gas.
 - No strength.
- Quarter configuration modeled (3D).
- Discretization: 31,164 zones.
Summary

- Extended the DEM-based multi-phase flow approach of Chinnayya *et al.* to materials with strength.
- The necessary changes confined to an acoustic Riemann solver.
- The validity of our multi-phase flow model for solids verified on a simple 1D dimensional problem.
- Multi-phase flow model applied to a Taylor problem involving a steel cylinder impacting a rigid anvil. Good agreement with experimental measurements.
- The effort on modeling an interaction of a shockwave with a steel plate ongoing.
- Future work: ballistic impact and penetration, modeling of the effects of blast-waves on solids and structures.