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Motivation

• The purpose of this work is to contrast the non-equilibrium grey diffusion

approximations in the Eulerian and comoving frames in the limit of

non-relativistic material flow.

• We define the non-relativistic regime as v/c < .01.

• It has been suggested to us that any diffusion approximation in the

Eulerian frame must be inherently flawed because “there is no diffusion in

the Eulerian frame”.

• Our results indicate that this is not the case in the nonrelativistic limit.

• Indeed, the Eulerian-frame equation further justifies the approximate

manner in which the comoving-frame diffusion approximation is usually

used in the nonrelativistic limit.
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Overview

• The fluid equations with grey radiation coupling to O(v/c).

• The Eulerian-frame radiation energy and momentum equations, the P1

equations, and the diffusion equation, to O(v/c).

• The comoving-frame radiation energy and momentum equations, the P1

equations, and the diffusion equation, to O(v/c).

• The asymptotic equilibrium-diffusion limit.

• A simplified Eulerian-frame equation.

• Summary of results.
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Fluid Equations with Radiation Coupling

• Conservation of fluid mass:

∂tρ + ∂i (ρvi) = 0 , (1)

• Conservation of fluid momentum:

∂t (ρvi) + ∂j (ρvivj) + ∂ip =
σt

c
F0,i −

vi

c
σa

(

aT 4
− E0

)

, (2)

• Conservation of total fluid energy:

∂t

(

1

2
ρv2 + ρe

)

+ ∂i

[(

1

2
ρv2 + ρe + p

)

vi

]

=

−cσa

(

aT 4
− E0

)

+
σt

c
viF0,i , (3)

• where the radiation coupling is most naturally given in terms of

comoving-frame quantities.
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Fluid Equations with Radiation Coupling

• The Eulerian-to-comoving transformations to O(v/c) are given by:

E0 = E −

2

c2
vi (Fi − viE − vjPij) , (4)

F0,i = Fi − viE − vjPij , (5)

P0,i,j = Pi,j −
1

c2
(viFj + Fivj) . (6)

• These relationships can be used to express the fluid-radiation coupling in

terms of Eulerian-frame quantities.

Presentation at the Conference on Numerical Methods for Multimaterial Fluid Flows, September 10-14, 2007, Prague, CZ Slide 5/24



The Eulerian-Frame Radiation Equations

• Conservation of radiation momentum:

1

c2
∂tFi + ∂jPij = −

σt

c
F0,i +

vi

c
σa

(

aT 4
− E0

)

, (7)

• Conservation of radiation energy:

∂tE + ∂iFi = cσa

(

aT 4
− E0

)

−

σt

c
viF0,i , (8)

• To obtain the P1 equations, we need only set Pij = 1

3
δijE in the

radiation momentum equation.
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The Eulerian-Frame P 1 Equations

• Conservation of radiation momentum:

1

c2
∂tFi +

1

3
∂iE = −

σt

c
F0,i +

vi

c
σa

(

aT 4
− E0

)

, (9)

• Conservation of radiation energy:

∂tE + ∂iFi = cσa

(

aT 4
− E0

)

−

σt

c
viF0,i , (10)

where

F0,i = Fi − vi

4

3
E . (11)

• To obtain the diffusion approximation, we need only set the time-derivative

of the flux to zero in the radiation momentum equation.
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The Eulerian-Frame Diffusion Equation

• This causes momentum conservation to be lost, but energy is still

conserved.

• Solving for the flux, we get

Fi = −

c

3σt

∂iE + vi

4

3
E + vi

σa

σt

(

aT 4
− E0

)

. (12)

• Substituting from Eq.(12) into Eq.(10), we obtain the Eulerian-frame grey

diffusion equation:

∂tE − ∂i

c

3σt

∂iE + ∂i

{

vi

[

4

3
E +

σa

σt

(

aT 4
− E0

)

]}

=

cσa

(

aT 4
− E0

)

−

σt

c
viF0,i . (13)
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The Comoving-Frame Radiation Equations

• The Radiation Momentum Equation:

1

c2
∂tF0,i +

1

c2
vj∂tP0,ij + ∂jP0,ij+

1

c2
F0,j∂jvi +

1

c2
∂j (F0,ivj) = −

σt

c
F0,i . (14)

• The Radiation Energy Equation:

∂tE0 +
1

c2
vi∂tF0,i + ∂iF0,i + ∂i (E0vi) +

∂i (P0,ijvj) − vi∂jP0,ij = cσa

(

aT 4
− E0

)

. (15)

• To obtain the comoving-frame P1 equations, we need simply assume that

P0,ij =
1

3
δijE0 . (16)
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The Comoving-Frame P 1 Equations

• The Radiation Momentum Equation:

1

c2
∂tF0,i +

1

3c2
vi∂tE0 +

1

3
∂iE0+

1

c2
F0,j∂jvi +

1

c2
∂j (F0,ivj) = −

σt

c
F0,i . (17)

• The Radiation Energy Equation:

∂tE0 +
1

c2
vi∂tF0,i + ∂iF0,i + ∂i (viE0) +

1

3
E0∂ivi = cσa

(

aT 4
− E0

)

. (18)

• Since the comoving frame is not inertial, we must transform these

equations to the Eulerian frame to determine if they are conservative.
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The Comoving-Frame P 1 Equations

• Making this transformation, we obtain the following momentum and energy

equations:

1

c2
∂tFi + ∂jP

e
ij = −

σt

c
F0,i +

vi

c
σa

(

aT 4
− E0

)

, (19)

where

P e
ij =

1

3
Eδij −

1

c2

[

2

3
(vkFk) δij − viFj − Fivj

]

. (20)

∂tE + ∂iFi = cσa

(

aT 4
− E0

)

−

σt

c
viF0,i . (21)

• These equations are conservative, and the energy equation is actually

identical to that of the Eulerian-frame P1 equation.
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The Comoving-Frame Diffusion Approximation

• To obtain the grey diffusion approximation, we must set all velocity

dependent terms to zero in Eq.(17), and we must set the time derivative of

the flux to zero in both Eqs. (17) and (18).

1

3
∂iE0 = −

σt

c
F0,i , (22)

and

∂tE0 + ∂iF0,i + ∂i (viE0) +
1

3
E0∂ivi = cσa

(

aT 4
− E0

)

. (23)

• Solving Eq.(22) for the flux, we get Fick’s law:

F0,i = −

c

3σt

∂iE0 . (24)
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The Comoving-Frame Diffusion Approximation

• Substituting from Eq.(24) into Eq.(23), we get the following diffusion

equation for the radiation energy density:

∂tE0 − ∂i

(

c

3σt

∂iE0

)

+ ∂i (viE0)+

1

3
E0∂ivi = cσa

(

aT 4
− E0

)

. (25)

• To investigate conservation, we must transform these equations to the

Eulerian frame.

• Of course, we know that momentum cannot be preseved.

• Our purpose is to determine if energy is conserved.
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The Comoving-Frame Diffusion Approximation

• The effective energy equation can be expressed as follows:

∂tE −

2

c2
vi∂tFi + ∂iF

e
i = cσa

(

aT 4
− E0

)

−

σt

c
viF0,i , (26)

F e
i = −

c

3σt

∂iE +

[

2

3σtc
∂i (vkFk)

]

+
4

3
viE , (27)

where F e
i denotes the “effective” Eulerian-frame radiation energy flux.

• Equations (26) and (27) do not represent a conservative system because

of the time-derivative of the flux in Eq.(26).

• This term is of the same type as terms that were set zero, but that does

not mean that it is always negligible in highly non-equilibrium problems.
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The Equilibrium-Diffusion Limit

• The diffusion-limit equations are derived from the radiation-hydrodynamic

equations as follows.

• Non-dimensionalize the equations.

• Identify appropriate non-dimensional physical parameters.

• Scale each physical parameter by an appropriate power of ǫ.

• Return the scaled equations to dimensional form.

• Expand each unknown as a power series in ǫ.

• Expand all explicit functions of the unknowns in a power series in ǫ.

• Substitute these series into the radiation-hydrodynamic equations.

• Create a heirarchical system of equations for the unknown expansion

coefficients by successively equating all terms multiplied by each power

of ǫ.

• Determine the equations solved by the leading-order coefficients.
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The Equilibrium-Diffusion Limit

• The equilibrium-diffusion limit equations to leading order are as follows:

∂tρ + ∂i (ρvi) = 0 , (28)

∂t (ρvi) + ∂j (ρvivj) + ∂i

(

p +
1

3
aT 4

)

= 0 , (29)

∂t

(

1

2
ρv2 + ρe + aT 4

)

+

∂i

[(

1

2
ρv2 + ρe + p

)

vi −
c

3σt

∂iaT 4 +
4

3
viaT 4

]

= 0 . (30)
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The Equilibrium-Diffusion Limit

• Continuing:

E = E0 = aT 4 , (31)

Fi = −

c

3σt

∂iaT 4 +
4

3
viaT 4 , (32)

Fi,0 = −

c

3σt

∂iaT 4 . (33)

Pij = P0,ij =
1

3
δijaT 4 , (34)

• Note that all radiation variables are explicit functions of the material

temperature.
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The Equilibrium-Diffusion Limit

• An equilibrium-diffusion limit expansion can be performed for any transport

approximation.

• When such an expansion is performed for the Eulerian-frame and

comoving-frame non-equilibrium grey diffusion equations, it is found that

both of them preserve this limit through O(ǫ).

• This means that this limit is preserved with full accuracy by both

approximations.

• This clearly indicates that there is nothing “inherently wrong” with the

Eulerian-frame non-equilibrium grey diffusion approximation.

• The term that causes the lack of conservation in the comoving-frame

diffusion equation disappears in the equilibrium-diffusion limit.
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A Simplified Eulerian-Frame Approximation

• The comoving-frame grey diffusion equation is considerably simpler than

the Eulerian-frame grey diffusion equation, but formally suffers from a lack

of conservation.

• We now describe a simplification of the Eulerian-frame radiation

momentum and energy sources that results in an Eulerian-frame diffusion

equation with the same form as the comoving-frame equation.

• Let us begin by denoting the Eulerian-frame radiation momentum source

by, Sm,i,

Sm,i = −

σt

c
F0,i +

vi

c
σa

(

aT 4
− E0

)

, (35)

and the Eulerian-frame radiation energy source by, Se,

Se = σa

(

aT 4
− E0

)

−

σt

c
viF0,i . (36)
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A Simplified Eulerian-Frame Approximation

• We simplfy these sources as follows:

Sm,i = −

σt

c
F0,i , (37)

Se = σa

(

aT 4
− E

)

−

σt

c
viF0,i (38)

• This results in the following simplified Eulerian-frame diffusion equation:

∂tE−∂i

(

c

3σt

∂iE

)

+∂i (viE)+
1

3
E∂ivi = cσa

(

aT 4
− E

)

, (39)

• Note that the simplified diffusion equation has exactly the same form as

the comoving-frame diffusion equation but with E replacing E0.

Presentation at the Conference on Numerical Methods for Multimaterial Fluid Flows, September 10-14, 2007, Prague, CZ Slide 20/24



A Simplified Eulerian-Frame Approximation

• This simplified equation is not correct to O(v/c), but it nonetheless

preserves equlibrium solutions, preserves the equilibrium-diffusion limit

through first order, and is conservative.

• Using this equation is equivalent to using the comoving-frame diffusion

equation, making a conservation statement with that equation (without

transformation), and ignoring the difference between E0 and E.

• This is the usual manner in which the comoving-frame equation is used.

• The derivation of the simplified equation adds justification to this standard

but approximate approach in the sense that the consequences of the

approximation are easier to understand.
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Summary

• To obtain the grey diffusion approximation from the grey P1 approximation,

more terms must be neglected in the comoving frame than in the lab

frame.

• The comoving-frame grey diffusion equation does not rigorously conserve

the Eulerian-frame radiation energy to O(v/c) when transformed to the

Eulerian frame, but the error disappears in the asymptotic equilibrium

diffusion limit.

• Because the comoving-frame P1 equations conserve the Eulerian-frame

radiation energy and the Eulerian-frame radiation momentum to O(v/c)

when transformed to the Eulerian frame, the lack of conservation in the

diffusion approximation arises from terms that are dropped from the P1

equations to obtain the diffusion approximation.
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Summary

• Both the Eulerian-frame and comoving-frame grey diffusion

approximations preserve the asymptotic equilibrium-diffusion limit through

first order, and thus both yield full accuracy in this limit.

• The comoving-frame grey diffusion equation is considerably simpler than

the Eulerian-frame diffusion equation.

• A simplification to the Eulerian-frame radiation energy and momentum

source terms results in an Eulerian-frame grey diffusion equation that is

equivalent to the comoving-frame equation with the Eulerian-frame

radiation energy density replacing the comoving-frame radiation energy

density.

• This simplified equation is not correct to O(v/c), but it nonetheless

preserves equlibrium solutions, preserves the equilibrium-diffusion limit

through first order, and is conservative.

Presentation at the Conference on Numerical Methods for Multimaterial Fluid Flows, September 10-14, 2007, Prague, CZ Slide 23/24



Summary

• This equation adds justification to the usual approximate use of the

comoving-frame diffusion equation in that the consequences are easier to

understand.
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