Centroid Approximation by use of Bernstein Polynomials for Multi-material Cell Interface Reconstruction

Raphaël LOUBERE

Marianne M. FRANCOIS Rao V. GARIMELLA Samuel P. SCHOFIELD

loubere@mip.ups-tlse.fr, {mmfran,rao,sams}@lanl.gov

\(^a\)CNRS and Math. Industr. Phys. (MIP)
Univ. of Toulouse, France

\(^b\)CCS-2 and T-7, Los Alamos National Laboratory, USA
Introduction — Context

1. Fluid flow within Lagrangian, Eulerian, ALE context + complex meshes ⇒ multi-material cells ⇒ complex interfaces to reconstr.

2. Bad interfaces ⇒ Bad material advection

\(N_{\text{mat}} = 2: \) Youngs, VOF, PLIC → fine
Introduction — Context

1. Fluid flow within Lagrangian, Eulerian, ALE context + complex meshes ⇒ multi-material cells ⇒ complex interfaces to reconstr.

2. Bad interfaces ⇒ Bad material advection

$N_{mat} > 2$: partial solutions but...

- **Known:** Onion-skin, Nested-dissect., Youngs, Mosso and Clancy, Benson → problem with T-junction, material order-dependency

- **New:** MOF, Power-Diagram → Approx. of material centroids must be good enough
Good Volume Fractions

(Youngs, Mosso & Benson, ND...)

Good Interfaces
Outline

Introduction
- Volume Fraction
- Volume Fraction Function
- Material Centroid Approx.
- via Particle System
- via Smooth Function
- Why so? Better
- Bernstein basis
 - Bernstein basis: basics
 - Bernstein basis: control pts
 - Bernstein basis: properties
- Bernstein basis: Function
 - B-coeff: Node
 - B-coeff: Edge
 - B-coeff: Int.
- Final Centroid
- Numerical result
 - Line
 - Node
 - Edge
 - Int.
 - Final centroid
- Good Volume Fractions
 - Good Interfaces
 - (MOF, PowerDia)
- Good Centroids
- Conclusion
 - Perspectives
Outline
• Volume Fraction
 • Volume Fraction Function
• Material Centroid Approx.
 • via Particle System
 • via Smooth Function
• Why so? Better
 • Bernstein basis
 • Bernstein basis: basics
 • Bernstein basis: control pts
 • Bernstein basis: properties
 • Bernstein Pn Function
 • B-coeff: Node
 • B-coeff: Edge
 • B-coeff: Int.
• Final Centroid
• Numerical result
 • Line
 • T junction
 • X junction
 • Disks
• Conclusion
• Perspectives

Good Volume Fractions

Good Centroids

(MOF, PowerDia)

Good Interfaces
Introduction

Our goal is to develop methods to **reconstruct material centroids** within multi-material cells knowing

- Volumes fractions at \(t_n \)
- Mesh topology at \(t_n \)

Such that

- Independent of number of material, of the order, of the dimensionality, of the cell type, but…
- “High-order accurate”
Volume fractions in cell Ω

Ω_m: vol. occupied by material m

Volume fraction of material m:

$$\alpha_m = \frac{|\Omega_m|}{|\Omega|}$$

Properties: $\forall m$

$$\sum_m \alpha_m = 1, \text{ and, } 0 \leq \alpha_m \leq 1$$
Volume fraction function $\chi_m(x)$

Characteristic function

$$\chi_m(x) = \begin{cases} 1 & \text{if } x \in \Omega_m \\ 0 & \text{if } x \notin \Omega_m \end{cases}$$

Properties:

$$\int_{\Omega} \chi_m(x) \, dx = \int_{\Omega_m} \, dx = |\Omega_m|$$

$$\forall x \in \Omega, \quad \sum_m \chi_m(x) = 1$$
Material Centroid Approx.

- Center of mass of material m

\[\tilde{x}_m = \frac{\int_{\Omega_m} x \, dx}{\int_{\Omega_m} dx} = \frac{\int_{\Omega} \chi_m(x) x \, dx}{\int_{\Omega} \chi_m(x) \, dx} \]

1. \tilde{x}_m approx. via attract/repel Particle System with ad hoc BCs

2. \tilde{x}_m approx. via f_m smooth approx. of $f_m \simeq \chi_m$

\[\tilde{x}_m = \frac{\int_{\Omega} f_m(x) x \, dx}{\int_{\Omega} f_m(x) \, dx} = \left\{ \begin{array}{l} \text{Exact int.} \\ \text{Numer.int.} \end{array} \right\} \simeq \tilde{x}_m \]
Material Centroid Approx

• Center of mass of material m

\[
\tilde{x}_m = \frac{\int_{\Omega_m} x \, dx}{\int_{\Omega_m} dx} = \frac{\int_{\Omega} \chi_m(x) x \, dx}{\int_{\Omega} \chi_m(x) \, dx}
\]

1. \tilde{x}_m approx. via attract/repel Particle System with ad hoc BCs

2. \hat{x}_m approx. via f_m smooth approx. of $f_m(x) \approx \chi_m$

\[
\hat{x}_m = \frac{\int_{\Omega} f_m(x) x \, dx}{\int_{\Omega} f_m(x) \, dx} = \left\{ \begin{array}{ll} \text{Exact int.} & \\
\text{Numer. int.} & \end{array} \right\} \sim \tilde{x}_m
\]
Centroids via Particle system

- Particles of diff. nature attract/repel each others
- System cools down, N_m part. of nature m gather

$$\bar{x}_m = \frac{1}{N_m} \sum_{p=1}^{N_m} x_m^p \approx \tilde{x}_m$$
Centroids via Particle system

- Particles of diff. nature attract/repel each others
- System cools down, N_m part. of nature m gather

\[
\bar{x}_m = \frac{1}{N_m} \sum_{p=1}^{N_m} x^m_p \approx \tilde{x}_m
\]
Centroids via Particle system

- Particles of diff. nature attract/repel each others
- System cools down, N_m part. of nature m gather

\[
\bar{x}_m = \frac{1}{N_m} \sum_{p=1}^{N_m} x^m_p \sim \tilde{x}_m
\]
Centroids via Particle system

- Particles of diff. nature attract/repel each others
- System cools down, N_m part. of nature m gather

$$
\bar{x}_m = \frac{1}{N_m} \sum_{p=1}^{N_m} x^m_p \approx \tilde{x}_m
$$
Centroids via Particle system

- Particles of diff. nature attract/repel each others
- System cools down, N_m part. of nature m gather

$$\overline{x}_m = \frac{1}{N_m} \sum_{p=1}^{N_m} x_m^p \approx \tilde{x}_m$$

Properties: 2D/3D, order-indep, // easy, indep. m

BUT
- \overline{x}_m approximates location of fluid m in Ω but is not per se an approximation of \tilde{x}_m
- Particle syst. is expensive
Centroid approx. via $f_m \in P_1$

Assume f_m is a piecewise linear polynomial

- Green-Gauss or Least-Square to get ∇f

$$\forall \mathbf{x} \in \Omega \quad f_m(\mathbf{x}) = \alpha_m + \nabla f \cdot (\mathbf{x} - \tilde{\mathbf{x}}_\Omega)$$

- Barth-Jeperson limitation of ∇f to ensure

$$\forall \mathbf{x} \in \Omega \quad 0 \leq f_m(\mathbf{x}) \leq 1$$
Centroid approx. via \(f_m \in \mathbb{P}_1 \)

Assume \(f_m \) is a piecewise linear polynomial

- Green-Gauss or Least-Square to get \(\nabla f \)

\[
\forall \mathbf{x} \in \Omega \quad f_m(\mathbf{x}) = \alpha_m + \nabla f \cdot (\mathbf{x} - \tilde{x}_\Omega)
\]

- Barth-Jeperson limitation of \(\nabla f \)

- Approximate center of mass of material \(m \) by integrating over \(\Omega \)

\[
\hat{x}_m = \frac{\int_{\Omega} f_m(\mathbf{x}) \mathbf{x} d\mathbf{x}}{\int_{\Omega} f_m(\mathbf{x}) d\mathbf{x}} \simeq \tilde{x}_m
\]
Centroid approx. via $f_m \in \mathbb{P}_1$
Centroid approx. via $f_m \in \mathbb{P}_1$

T-junction

Zoom
Centroid approx. via $f_m \in \mathbb{P}_1$
Centroid approx. \(\text{via } f_m \in \mathbb{P}_1 \)
Why is it so? How to do better?

Outline
- Introduction
- Volume Fraction
- Volume Fraction Function
- Material Centroid Approx.
 - via Particle System
 - via Smooth Function
- Why so? Better?
 - Bernstein basis
 - Bernstein basis: basics
 - Bernstein basis: control pts
 - Bernstein basis: properties
 - Bernstein βₜ Function
 - B-coeff: Node
 - B-coeff: Edge
 - B-coeff: Int.
- Exact Centroid
- Numerical result
 - Line
 - T junction
 - X junction
 - Disks
- Conclusion
- Perspectives

Linear app.
Interface

Exact centroid
Approx. centroid
Why is it so? How to do better?

Outline
• Introduction
• Volume Fraction
• Volume Fraction Function via Particle System
• Volume Fraction Function via Smooth Function
→ Why so? Better?
• Bernstein basis
 • Bernstein basis: basics
 • Bernstein basis: control pts
 • Bernstein basis: properties
• Bernstein ##function
 • B-coeff: Node
 • B-coeff: Edge
 • B-coeff: Int.
• Exact Centroid
• Numerical result
 • Line
 • T-junction
 • X-junction
 • Disks
• Conclusion
• Perspectives

Why is it so? How to do better?

Linear app.
Interface
Spline 4 pts:
Why is it so? How to do better?

Outline
- Introduction
- Volume Fraction
- Volume Fraction Function
- Material Centroid Approx.
 - via Particle System
 - via Smooth Function
- Why so? Better?
 - Bernstein basis
 - Bernstein basis: basics
 - Bernstein basis: control pts
 - Bernstein basis: properties
 - Bernstein Function
 - B-coeff: Node
 - B-coeff: Edge
 - B-coeff: Int.
- Final Centroid
- Numerical result
 - Line
 - T junction
 - X junction
 - Disks
- Conclusion
- Perspectives

Linear app.
Interface
Spline 13 pts
Bernstein polynomial basis

- \(\forall p \in \mathbb{P}_n(\Omega) \) polynomial of deg. \(n \)

\[
p(x) = \sum_{i,j,k \geq 0, i+j+k=n} p_{i,j,k} B_{i,j,k}^{(n)}(x)
\]

\[
B_{i,j,k}^{(n)}(x) = \binom{n!}{i!j!k!} \lambda_1^i(x) \lambda_2^j(x) \lambda_3^k(x)
\]

- \(B_{i,j,k}^{(n)} \leftarrow \) expansion \((\lambda_1(x) + \lambda_2(x) + \lambda_3(x))^n = 1 \)
- \(\lambda_1, \lambda_2, \lambda_3 \) barycentric coordinates of \(x \in \Omega \)
- Limited to Triangles so far
Bernstein basis: Control pts

Control point: \[z \backslash B_{i,j,k}^{(n)}(z) = \max_x \left(B_{i,j,k}^{(n)}(x) \right) \]

\[z = \frac{1}{n} (ix_i + jx_j + kx_k) \]
Bernstein basis: Properties

The Bernstein basis functions of degree \((n) > 0\) verify

1. **Positivity:** \(0 \leq B_{i,j,k}^{(n)}(\mathbf{x}) \leq 1 \ \forall \mathbf{x} \in \Omega\)

2. **Partition of unity:**

\[
\sum_{i,j,k} B_{i,j,k}^{(n)}(\mathbf{x}) = 1 \ \forall \mathbf{x} \in \Omega
\]

3. **Integral weight:**

\[
\int_{\Omega} B_{i,j,k}^{(n)}(\mathbf{x}) d\mathbf{x} = |\Omega| / N_n
\]

4. **Convex hull:** If \(q \in \mathbb{P}_n(\Omega)\)

\[
\min(q_{i,j,k}) \leq q(\mathbf{x}) \leq \max(q_{i,j,k})
\]
Bernstein basis: Properties

The Bernstein basis functions of degree \((n) > 0\) verify

1. Positivity: \(0 \leq B_{i,j,k}^{(n)}(x) \leq 1 \quad \forall x \in \Omega\)

2. Partition of unity:

 \[\sum_{i,j,k} B_{i,j,k}^{(n)}(x) = 1 \quad \forall x \in \Omega\]

3. Integral weight:

 \[\int_{\Omega} B_{i,j,k}^{(n)}(x) dx = |\Omega|/N_n\]

4. Convex hull: If \(q \in \mathbb{P}_n(\Omega)\)

 \[0 \leq \min(q_{i,j,k}) \leq q(x) \leq \max(q_{i,j,k}) \leq 1\]
Approx. of \tilde{x}_m via $f_m \in \mathbb{P}_n(\Omega)$

- Def. $f_m \in \mathbb{P}_n(\Omega) \iff$ Def. $0 \leq f_{i,j,k} \leq 1$ such that

$$f_m(x) = \sum_{i,j,k} f_{i,j,k} B_{i,j,k}^{(n)}(x)$$

- Approximate centroid

$$\hat{x}_m = \frac{\int_{\Omega} f_m(x) x \, dx}{\int_{\Omega} f_m(x) \, dx} \equiv \sum_{i,j,k} f_{i,j,k} \gamma_{i,j,k} \approx \tilde{x}_m$$

Convex combination

where

$$\gamma_{i,j,k} = \frac{N_n}{\sum_{i,j,k} f_{i,j,k}} \frac{\int_{\Omega} B_{i,j,k}^{(n)}(x) x \, dx}{|\Omega|} \geq 0$$
Approx. of \tilde{x}_m via $f_m \in \mathbb{P}_n(\Omega)$

- Def. $f_m \in \mathbb{P}_n(\Omega) \iff$ Def. $0 \leq f_{i,j,k} \leq 1$ such that

$$f_m(x) = \sum_{i,j,k} f_{i,j,k} B_{i,j,k}^{(n)}(x)$$

- Approximate centroid

$$\tilde{x}_m = \frac{\int_{\Omega} f_m(x) x \, dx}{\int_{\Omega} f_m(x) \, dx} \equiv \sum_{i,j,k} f_{i,j,k} \gamma_{i,j,k} \approx \tilde{x}_m$$

Unknowns:

$f_{i,j,k}$ \iff "value of $\chi_m(z_{i,j,k})$"
Approx. of $f_m \in \mathbb{P}_n(\Omega)$
Approx. of $f_m \in \mathbb{P}_n(\Omega)$

Volume Fractions

- Outline
 - Introduction
 - Volume Fraction
 - Volume Fraction Function
 - Approximation
 - via Particle System
 - via Smooth Function
 - Why so? Better
 - Bernstein basis
 - Bernstein basis: basics
 - Bernstein basis: control pts
 - Bernstein basis: properties
 - Bernstein \times Function
 - B-coeff: Node
 - B-coeff: Edge
 - B-coeff: Int.
 - Final Centroid
 - Numerical result
 - Line
 - T junction
 - X junction
 - Disks
 - Conclusion
 - Perspectives
Approx. of $f_m \in \mathbb{P}_n(\Omega)$

Volume Fractions for blue fluid
Approx. of $f_m \in \mathbb{P}_n(\Omega)$

“Pure” nodes: Nodal B-coeff. $\Rightarrow f_{n,0,0} = 1$ or 0
Approx. of $f_m \in \mathbb{P}_n(\Omega)$

Ambiguous nodal B-coeff $\Rightarrow f_{n,0,0} = 1/2$
Approx. of $f_m \in \mathbb{P}_n(\Omega)$: Nodes

- Min/Max

$$\alpha^+ = \max_{j \in \text{Neighb}(\Omega)} (\alpha^j) \quad \alpha^- = \min_j (\alpha^j)$$

- Mean value

$$\overline{\alpha} = \frac{\sum_j |\Omega_j| \alpha^j}{\sum_j |\Omega_j|}$$

$$g = \begin{cases}
1 & \text{if } \overline{\alpha} > 1/2 \\
0 & \text{if } \overline{\alpha} < 1/2 \\
1/2 & \text{if } \overline{\alpha} = 1/2
\end{cases}$$

<table>
<thead>
<tr>
<th>α^+</th>
<th>$\alpha^- = 0$</th>
<th>$\alpha^- > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha^+ = 1$</td>
<td>$f_{n,0,0} = 1/2$</td>
<td>$f_{n,0,0} = 1$</td>
</tr>
<tr>
<td>$\alpha^+ < 1$</td>
<td>$f_{n,0,0} = 0$</td>
<td>$f_{n,0,0} = g$</td>
</tr>
</tbody>
</table>
Approx. of $f_m \in \mathbb{P}_n(\Omega)$

“Pure” edge: Edge B-coeff. $f_{n,0,0} \leq f_{i,j,0} \leq f_{0,n,0}$
Approx. of $f_m \in \mathbb{P}_n(\Omega)$

“Mixed” edge: Edge B-coeff. $f_{0,0,n} \leq f_{i,0,j} \leq f_{n,0,0}$
Approx. of $f_m \in \mathbb{P}_n(\Omega)$

“Mixed” edge: Edge B-coeff. $f_{0,0,n} \leq f_{0,i,j} \leq f_{0,n,0}$
Approx. of $f_m \in \mathbb{P}_n(\Omega)$

Ambiguous edge B-coeff $\Rightarrow f_{i,j,0} = 0$ or 1
Approx. of $f_m \in \mathbb{P}_n(\Omega)$: Edge

Command 1: If a pure or empty cell is in contact with the current edge \implies assoc. 1 or 0 to all B-coeff.

Command 2: Apply 9 rules

<table>
<thead>
<tr>
<th>$[n^-;n^+]$</th>
<th>$f_{n^-} = 0$</th>
<th>$f_{n^-} = \frac{1}{2}$</th>
<th>$f_{n^-} = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{n^+} = 0$</td>
<td>$f_e = 0$</td>
<td>$f_e = \frac{1}{2} \rightarrow 0$</td>
<td>$f_e = 1 \rightarrow 0$</td>
</tr>
<tr>
<td>$f_{n^+} = \frac{1}{2}$</td>
<td>$f_e = 0 \rightarrow \frac{1}{2}$</td>
<td>$f_e = \beta$</td>
<td>$f_e = \frac{1}{2} \rightarrow 1$</td>
</tr>
<tr>
<td>$f_{n^+} = 1$</td>
<td>$f_e = 0 \rightarrow 1$</td>
<td>$f_e = \frac{1}{2} \rightarrow 1$</td>
<td>$f_e = 1$</td>
</tr>
</tbody>
</table>
Approx. of $f_m \in \mathbb{P}_n(\Omega)$: Edge

Command 1: If a pure or empty cell is in contact with the current edge \rightarrow assoc. 1 or 0 to all B-coeff.

Command 2: Apply 9 rules

<table>
<thead>
<tr>
<th>$[n^-; n^+]$</th>
<th>$f_{n^-} = 0$</th>
<th>$f_{n^-} = \frac{1}{2}$</th>
<th>$f_{n^-} = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{n^+} = 0$</td>
<td>Obvious</td>
<td>Simple</td>
<td>$f_e = 1 \rightarrow 0$</td>
</tr>
<tr>
<td>$f_{n^+} = \frac{1}{2}$</td>
<td>Simple</td>
<td>Obvious</td>
<td>Simple</td>
</tr>
<tr>
<td>$f_{n^+} = 1$</td>
<td>$f_e = 0 \rightarrow 1$</td>
<td>Simple</td>
<td>Obvious</td>
</tr>
</tbody>
</table>
Approx. of $f_m \in \mathbb{P}_n(\Omega)$: Edge

Case: $f_e = 0 \rightarrow 1$?

K control points z_k unif. distrib. along edge $[n^-, n^+]$

$$0 < \alpha_e = \frac{\alpha |\Omega| + \alpha' |\Omega'|}{|\Omega| + |\Omega'|} < 1$$

$$\left\{ \begin{array}{l}
 f_{ek} = 1 \text{ up to } z_k / \frac{k}{K} \leq \alpha_e \\
 f_{ek} = 0 \text{ beyond }
\end{array} \right.$$

ex: $\alpha = 1/4$, $\alpha' = 1/12 \Rightarrow 2/8 < \alpha_e = 1/6 < 3/8$
Approx. of $f_m \in \mathbb{P}_n(\Omega)$

Inside B-coeff: Weight.aver. $f_{\text{node}}, f_{\text{edge}}$: local
Approx. of $f_m \in \mathbb{P}_n(\Omega)$: Internal

Inside B-coeff: Weight.aver. f_{node}, f_{edge}: local

$$f_D = \frac{1}{11} \left(1f_A + 2f_B + 2f_{B'} + 3f_C + 3f_{C'} \right)$$

- Same type of formula for degree $n > 4$
Centroid Approximation formula

For all fluid $m = 1, \cdots M$ in Ω, $\chi_m \simeq f_m$ and the approximate centroid

\[
\tilde{X}_m \simeq \begin{cases}
\hat{X}_m = \frac{\int_\Omega f_m(x) x \, dx}{\int_\Omega f_m(x) \, dx} & \text{if } \alpha_m \geq \frac{1}{M} \quad \text{Dominant} \\
\hat{\hat{X}}_m = \frac{\sum f_{i,j,k} z_{i,j,k}}{\sum f_{i,j,k}} & \text{if } \alpha_m < \frac{1}{M} \quad \text{Subordinate}
\end{cases}
\]

- For small α_m, $\hat{\hat{X}}_m$: sharper approximation than \hat{X}_m
- $n = 4, 5$ is usually used
Results: Line

Current method

\[P_1 \text{ approximation} \]
Results: Line — Comparison

- Comparison of different methods for calculating the centroid of a line segment.

- Four methods are compared:
 - \mathbb{P}_1 (polynomial of degree 1)
 - Current method
 - Exact solution

- The graph shows the comparison for different line segments.

- T junction, X junction, and disks are used as test cases.

- Conclusion and perspectives are outlined.
Results: T junction

Current

\(P_1 \) approximation
Results: T junction

Current: zoom

\[P_1: \text{Zoom} \]
Results: X Junction

Current method

P_1 approximation

Numerical result

Perspectives
Results: X Junction — Comparison

- : P_1
- : current
+ : exact
Results: X Junction unstruct.

Current method

Zoom
Results: Disks

- Introduction
- Volume Fraction
- Volume Fraction Function
- Material Centroid Approx.
 - via Particle System
 - via Smooth Function
- Why so? Better
 - Bernstein basis
 - Bernstein basis: basics
 - Bernstein basis: control pts
 - Bernstein basis: properties
 - Bernstein F. Function
 - B-coeff: Node
 - B-coeff: Edge
 - B-coeff: Int.
- Final Centroid
- Numerical result
 - Line
 - T junction
 - X junction
 - Disks
- Conclusion
- Perspectives

- : current
- + : exact
Results: Disks

1st triple point

2nd triple point

Numerical results:
- Line
- T-junction
- X-junction

Conclusion
Perspectives
Conclusion

What have you seen/heard?

- Approximate material centroids with Particle or linear approx. of the vol. frac. function may not be accurate enough.
- To get higher-order of accuracy on triangles:
 - Approx. vol.frac.function \(\text{via } \mathbb{P}_4/\mathbb{P}_5 \) Bernstein polynomial
 - According to neighborhood define Node \(\rightarrow \) Edge \(\rightarrow \) Intern. Bernstein coefficients
 - Integrate to get the centroids (pick best approximant)
Perspectives

What haven’t you seen/heard?

- *Tricky*: How to deal with “pathology” like fragment, filament
- *Obvious*: How to extend to 3D tetrahedral
- Reconstruct. Interfaces (see Rao’s next talk)

What will you see/hear next time? (maybe)

- Extend to polygonal cells using Generalized Barycentric Coordinates
- Real context (hydro + advection + interface reconstruction)
- New ideas: automate, segregation,
Bibliography:

- Centroid approximation by Bspline in multi-material cells, R.L *et al*, *LAUR* (2007)