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VOF/PLIC Interface Reconstruction

• VOF or Volume of fluid methods track the movement of
different fluids in a mesh as part of the flow solution.

• Interface Reconstruction computes the volumes occupied by
different materials and the interfaces between them

• PLIC methods create piecewise linear interfaces in cells such
that material volume fractions are matched exactly

• Subsequently, an advection step moves materials into
downstream cells as dictated by the flow

• Interface reconstruction is well-developed for two-material
interfaces
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Multiple Material (≥ 3) Interface Reconstruction

• Common to process materials in user specified order

• Remove relevant part of cell once material has been processed

• Reconstruction of next material interface in remaining part

• Highly dependent on ordering of materials

• Poor quality reconstruction with wrong ordering

• Advects material into cells prematurely or incorrectly

• Aggravates the problem of “flotsam” and “jetsam”
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Interface Reconstruction using Different Material Orderings
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Order Dependence in Advection of Multi-Material Disc



Multi-material Interface Reconstruction
How can we make the reconstruction material order independent ?

Determine approximate location of
materials in the cell

(c)

Subdivide cell using a weighted
Voronoi (power) diagram

(d)
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Material Location



Material Location Strategies

• Particle attraction-repulsion [Garimella, et. al.]
Can capture filaments but slow, unstable,

• Low order quadrature [Mosso, et. al.]
Fast, not very accurate

• Linear reconstruction [Garimella et. al.]
Fast, accuracy ≈ Gradient-based method

• Higher order reconstructions, cellular automata
Under investigation



Material Location by Linear Reconstruction

• View volume fraction of material f m
i as cell-centered value of

pseudo-density function ξm(x)

• Compute linear reconstruction of pseudo-density function in
cell

ξm(x) = f m
i + δ(x− x̄i )

• δ is either Green-Gauss or Least Squares Gradient of ξm

• Gradient is limited so that no new extrema are created
(Barth-Jesperson type limiter, limits [0.0,1.0])

• Approximate material centroid in the cell is computed by

x̄m
i =

∫
Ω ξm(x)xdx∫
Ω ξm(x)dx

=

∫
Ω ξm(x)xdx

‖Ω‖f m
i



Material Location by Linear Reconstruction

• View volume fraction of material f m
i as cell-centered value of

pseudo-density function ξm(x)

• Compute linear reconstruction of pseudo-density function in
cell

ξm(x) = f m
i + δ(x− x̄i )

• δ is either Green-Gauss or Least Squares Gradient of ξm

• Gradient is limited so that no new extrema are created
(Barth-Jesperson type limiter, limits [0.0,1.0])

• Approximate material centroid in the cell is computed by

x̄m
i =

∫
Ω ξm(x)xdx∫
Ω ξm(x)dx

=

∫
Ω ξm(x)xdx

‖Ω‖f m
i



Material Location by Linear Reconstruction

• View volume fraction of material f m
i as cell-centered value of

pseudo-density function ξm(x)

• Compute linear reconstruction of pseudo-density function in
cell

ξm(x) = f m
i + δ(x− x̄i )

• δ is either Green-Gauss or Least Squares Gradient of ξm

• Gradient is limited so that no new extrema are created
(Barth-Jesperson type limiter, limits [0.0,1.0])

• Approximate material centroid in the cell is computed by

x̄m
i =

∫
Ω ξm(x)xdx∫
Ω ξm(x)dx

=

∫
Ω ξm(x)xdx

‖Ω‖f m
i



Material Location by Linear Reconstruction

• View volume fraction of material f m
i as cell-centered value of

pseudo-density function ξm(x)

• Compute linear reconstruction of pseudo-density function in
cell

ξm(x) = f m
i + δ(x− x̄i )

• δ is either Green-Gauss or Least Squares Gradient of ξm

• Gradient is limited so that no new extrema are created
(Barth-Jesperson type limiter, limits [0.0,1.0])

• Approximate material centroid in the cell is computed by

x̄m
i =

∫
Ω ξm(x)xdx∫
Ω ξm(x)dx

=

∫
Ω ξm(x)xdx

‖Ω‖f m
i



Material Location by Linear Reconstruction

• View volume fraction of material f m
i as cell-centered value of

pseudo-density function ξm(x)

• Compute linear reconstruction of pseudo-density function in
cell

ξm(x) = f m
i + δ(x− x̄i )

• δ is either Green-Gauss or Least Squares Gradient of ξm

• Gradient is limited so that no new extrema are created
(Barth-Jesperson type limiter, limits [0.0,1.0])

• Approximate material centroid in the cell is computed by

x̄m
i =

∫
Ω ξm(x)xdx∫
Ω ξm(x)dx

=

∫
Ω ξm(x)xdx

‖Ω‖f m
i



Domain of Integration for Computing Centroid

• Integrating around cell boundary

- good results for rectangular cells
- strong grid effects for general cells

• Use a square around cell with the same
center as the cell center

• For 2 materials, identical to gradient-
based reconstruction Dark line: Path for centroid

Dashed line: Path for gradient
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Power Diagrams



Partitioning of a Cell

• Have relative locations (approximate centroids) of each
material

• Need to partition cell using these relative locations

• Must match volume fractions of materials in cell exactly

• Partition by Weighted Voronoi Diagram (Power Diagram) of
approximate centroids

• Power diagram truncated by cell boundary

• Power diagram adjusted to match volume fractions exactly
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What are Power Diagrams?

Power of point x w.r.t. site xi with weight wi

pow(x, xi) = ||x− xi ||2 − w2
i

Can be interpreted as tangential distance from x to a circle of
radius wi centered at xi

Power Cell of site xi with weight wi

{x | pow(x, xi ) < pow(x, xj), j = 1,N, i 6= j}

Power Diagram is the union of power cells for all sites
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Truncated Power Diagram in Cell
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Properties of Power Diagrams

• A power line of two sites is perpendicular to the line
connecting the two sites

• Power lines for three non-collinear sites intersect at a point

• Power cells are convex

• The site corresponding to a power cell may lie outside the cell

• Like Voronoi diagrams, power diagrams partition a space into
convex polyhedra (some of which may be open)

• Power diagrams are the closest analogues of Voronoi diagrams



Matching Volume Fractions with Power Diagrams

We are given N sites xi in a cell corresponding to M materials

Must find corresponding weights for sites such that
their power diagram (truncated by the cell boundary)
cuts off the right amount of each material.

Solve system of non-linear equations F(w1,w2, · · · ,wN)− v = 0
F — vector of computed volume fractions
v — vector of specified volume fractions

System solved by Newton’s method with finite difference Jacobian
Special treatment of overshoots (i.e. when weights generate a
power diagram subcell outside the mesh cell)
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Smoothing

• Smooth multi-material interface w.r.t. neighbors

• Smoothing by optimization of constrained objective function

• Optimization variables are coordinates of interface points

• Can move interface points in interior and on boundary of cell

• Optimization by conjugate gradient method

• Constraints enforced by penalty parameters

• Procedure is second-order accurate and exactly recovers
straight lines
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Smoothing objective function

Primary objective: Minimize the C 0 and C 1 discontinuity between
interface segments in neighboring cells

Quantified as discrepancy between normal of interface segment
and normal of segment connecting midpoints of interface segment
and neighbor (Swartz)

φ =
∑

i n̂− n̂r
i

Constraints:
Match Volume fraction exactly
Maintain convexity of cells
Respect cell boundaries

n̂

n̂
r

1

n̂
r

2

x2

x1



Summary of Method

• Compute approximate material locations

• Subdivide cell by Power Diagram

• Smooth interface segments
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Results



Simple Example - Three Materials, Structured Grid
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Ordering 0

Gradient method
Ordering 1

Gradient method
Ordering 2

Power Diagram method
Order Independent !
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Four Materials, Structured Grid

Gradient method New Method



Four Materials, Untructured Grid

Gradient method
incorrect ordering

New method
order-independent



Three-Material Filament

Gradient method
incorrect ordering

New method
Order-independent



Gas Bubble Rising to the Surface

Gradient method
incorrect ordering

New method
Order-independent



Multi-material Interface Smoothing - Three Material
Example

Without Smoothing With Smoothing



Multi-material Interface Smoothing - Bailey Example
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Advection of multi-material bubble (Gradient Method)

Material Order dependent Gradient-based Algorithm

Initial configuration After 50 timesteps After 100 timesteps

40x40 grid, Diagonal Movement with velocity of (1.1,1.1)



Advection of multi-material bubble (New Method)

New Material Order Independent Method (No Smoothing)

Initial After 50 timesteps After 100 timesteps



Multi-material Bubble Advection - Comparison of Final
States

Gradient Method New Method



Convergence

• Measure error in terms of symmetric area difference
∆ = |Ω1|+ |Ω2| − 2|Ω1 ∩ Ω2|,
Ω1: Coarse scale reconstruction,
Ω2: “Exact” or finest scale reconstruction

• 2nd order accurate methods for smooth two material
interfaces maintain order of accuracy in the presence of
multi-material junction

• This includes LVIRA, Swartz and our method

• However, wrong ordering in a multi-material filament will drop
accuracy of traditional methods to first order

• We maintain second order accuracy



Conclusions

• New second-order accurate method for order-independent
multi-material interface reconstruction

• Method can be used to augment existing methods:

• 2-material interfaces using VOF/PLIC

• Multi-material interfaces using new method

• Can be integrated easily into existing hydrocodes

• Method can easily be used for order-independent
reconstruction in Moment-of-Fluid (MOF) methods

• Can be generalized easily to 3D
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Future Work

• Integrate smoothing into advection tests

• Integrate into real hydrocodes

• Explore more accurate centroid approximation methods


