

Ale with Mixed Elements

C. Aymard, J. Flament, J.P. Perlat

Contents

- Introduction
- œ
- Description of Lagrangian step
 - > Treatment of the multi-material cells
 - Elastic-Plastic treatment
- Description of advection step
 - > Criteria and mesh smoothing algorithms
 - > Interface reconstruction in multi-material cells
 - > Material mesh reconstruction
 - ➢ Remapping
- Some results
- Conclusion

Introduction

œ

- Because hydrocodes with lagrangian scheme lack of robustness specially on thin meshes, an ALE formulation with multi-material elements has been implemented to perform simulations with small sizes cells :
 - We introduce ALE blocks with several materials in the same mesh (mixed and pure cells) which can interact with each other or with pure Lagrangian by slide lines.
 - In a same simulation, we can track accurately material boundaries (sliding, void opening and closure) and high material deformation.

$$\Omega_1^L = \text{Lagrangian} \qquad \Omega_2^A = \text{Ale block with M1/M2/M3 materials}$$

$$M_1 M_2 M_3$$

Governing equations

Notations	u(x, t) : material velocity v(x, t) : mesh velocity	$\left(\frac{D\rho}{Dt} + \rho \nabla . u = -(u - v) \cdot \nabla \rho\right)$	6 0
Time derivative : Lagrangian :	$\frac{d}{dt} = \frac{\partial}{\partial t} + u \cdot \nabla$	$\begin{cases} \frac{D\rho u}{Dt} + \nabla p = -(u - v) \cdot \nabla \rho u \\ D \rho u \end{cases}$	$\frac{D}{Dt} = \frac{0}{\partial t} - (u - v) \cdot \nabla$
Ale Reference system	$: \frac{D}{Dt} = \frac{\partial}{\partial t} + v \cdot \nabla$	$\left[\frac{D\rho e}{Dt} + p\nabla . u = -(u - v) \cdot \nabla \rho e\right]$	

In Practice : Splitting method

Lagrangian phase : u = v $\begin{cases}
\rho V = Cste \\
\rho \frac{du}{dt} = -\nabla p \\
\frac{de}{dt} + p \frac{dV}{dt} = 0 \\
p = EOS(e, \rho)
\end{cases}$ Advection phase :

 $\begin{array}{l} 1-\text{Mesh smoothing under criteria} \\ 2-\text{Remapping}: nodal or cell \\ values (\rho, \rho u, \rho e) \text{ from the old mesh} \\ onto the new mesh \end{array}$

Splitting method

- Lagrangian step : with multi-material cells
 - > Use the classical Wilkins second order scheme
 - > Special treatment in multi-material cells :
 - ⇒Assumption of equal material volumetric strain for all materials
 - ⇒ Interface reconstruction

Advection step :

- > Mesh smoothing under criteria : a new grid is defined.
- Remapping phase : the material quantities are interpolated from the old configuration onto the new one.
 - ⇒Material by material, after material mesh reconstruction
 - Dukowicz method (intersection old mesh / new mesh), second order accuracy

Lagrangian step with multi-material cells

- **Treatment of the multi-material cell :**
- Note Volume fraction $f_{\alpha} = \frac{V_{\alpha}}{V}$ **Assumption** : equal volumetric strain for all materials

Only one velocity for all material :

 \rightarrow imply the relation closure for volume fraction in a cell .

$$\frac{dV_{\alpha}}{dt} = V_{\alpha}\nabla \cdot u_{\alpha} = V_{\alpha}\nabla \cdot u = f_{\alpha}V\nabla \cdot u = f_{\alpha}\frac{dV}{dt}$$

 \rightarrow equal material volumetric strain rate for all materials

 \rightarrow And so with the internal energy balance equation, we have the average pressure definition

$$p = \sum p_{\alpha} f_{\alpha}$$

α

 $\frac{df_{\alpha}}{df_{\alpha}} = 0$

 $u = u_{\alpha}$

More robust multi-material cell treatment : Relaxation pressure we perform an iterative method after Lagrangian step (without volume variation) to balance material pressure in a cell.

Lagrangian step with multi-material cells

Lagrangian step with multi-material cells

Elastic-plastic treatment

For each elastic material α , characterized by mechanical characteristics (μ_{α} , Y_{α}), we compute the deviatoric stress tensor:

On the Ale Block : For the momentum conservative equation

Deviatoric stress tensor	$\int \overline{\overline{S}}^{n+1} = \sum_{\alpha} f_{\alpha} \cdot \overline{\overline{S}}_{\alpha}^{n+1}$	Average quantities
Stress tensor	$\begin{cases} = n+1 \\ \sigma = -P \cdot I + \overline{S}^{n+1} \end{cases}$	Average quantities

The average stress is the average of the individual material stresses weighted by the volume fraction.

Advection step : Mesh smoothing under criteria

- <u>Object</u> : improve the mesh quality at the end of the lagrangian step, by finding some ideal position for the nodes, ideal in the sense of minimizing element distortions.
- We use zones definitions which allow user to specify and to adjust locally the mesh smoothing.
 - We define nodal remapping criteria to identify the nodes which need to be relaxed :
 - > For boundary nodes : distance criterion
 - > For internal nodes : volume criterion, angular criterion ...
 - The boundary nodes are moved by specific algorithms (specially for the sliding material boundaries);
 - > To apply an equidistant node distribution along the boundary,
 - \succ To preserve the shape of the boundary.
 - The new position of internal nodes is calculated from classical iterative mesh smoothing algorithms, with a possibility of remapping constraint :
 - > Winslow's equipotential relaxation method
 - Simple average method

Multi-material cell advection step

Remapping phase :

- Interface Material Reconstruction in mixed cells
 - > Multi-material cells are characterized by their volume fractions.
 - To track the material interface, we use the Young's method : the slope is given by the gradient of the volume fractions field :

 $\vec{N} = -\vec{\nabla}f_{\beta}$ where β realizes $\max_{\alpha=1...n} \|\vec{\nabla}f_{\alpha}\|$

- Materials are ordered in a cell by locating each material mass center along the normal direction.
- > Only **one** normal for all interfaces : onion skin method

Material mesh reconstruction

- > From the old grid, we build nodal-cell connectivity for each material :
 - ⇒We create the nodes between the material interface and the mesh edge.

mat2

- ⇒The common nodes are merged.
- ⇒The new material lagrangian mesh is build with non structured connectivity

mat3

New common

nodes

Multi-material cell advection step

Ale with Mixed Elements

Some Results

- Instability with 3 materials :
- Taylor bar impact in both Lagrangian and ALE formulation
- Calculation of a dynamic friction experiment

Instability with 3 Materials

Instability with 3 materials

Instability with 3 materials

Dynamic friction experiment

Dynamic friction experiment

Pure Lagrangian

Lagrangian and ALE

→Good agreement with the Lagrangian deformation

Ale with Mixed Elements

Dynamic friction experiment

Ale with Mixed Elements

Conclusion

œ

Ale method with mixed cells :

- Lagrangian step with treatment of the multi-material cells (equal volumetric strain assumption + relaxation pressure)
- Full 2D advection step with interface reconstruction in multi-material cells

• 2 different treatments for materials interfaces :

- Lagrangian interfaces with slidelines
- Multi materials cells.
- Provides the accuracy of Lagrangian formulation and the robustness of the Eulerian Multi materials cells

• Future works :

Extension to the 3D