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Talk Outline

• Alegra application focus
• Algorithm development areas:

– Lagrangian hydro
– Remap methods
– Eulerian frame hydro

• Application performance improvements
• Future directions

Anode
Cathode

Samples



Introduction to Alegra

• Alegra began in 1990 with the object of 
producing an advanced ALE code

• The code has shock hydrodynamics with 
resistive MHD, radiation transport,…
– Uses standard hydro & remap methods 

(need improvement)
– Advanced resistive MHD, linear algebra, 

constitutive models



Alegra Application - HEDP

• One of the key applications for Alegra is 
high energy density physics at Z.



Z-Machine is a great testbed for 
multiphysics



Fantastic Results with Flyer Plates.



Algorithm/process 
challenges still exist

• We focus on the areas where the algorithms are “standard,” but 
not state-of-the-art.

• Hydrodynamics

– Lagrangian hydrodynamics
– Remap
– Eulerian

• Sustainable verification processes must be implemented 
alongside testing and improvement processes.
– Identify useful problems
– Install problems in a permanent repository in a state which 

permits future testing in as automated a way as possible.

Testing is a
primary
focus with
response
leading to 
improvement



Lagrangian Hydro development is 
critical.

• The Lagrangian hydro algorithm in Alegra is 
based on the method from (SNL code) Pronto.

• It uses the Von Neumann-Richtmyer time-space 
staggering, but the energy equation is first-order 
in time; however the method is conservative.
– It’s the “same” as the predictor in the compatible 

P-C method, except for the time-centering.
• Full stability analysis for this method was not 

available (except for Hicks ‘77).



Test 1: Expansion into a vacuum
• Results from expansion 

problem: instability is 
seen at high resolution 
and long times

• Seen sooner in 
applications

• Conservative but 
unstable.



Stability analysis of the Alegra 
Lagrangian Hydro method

• First write the equations in 1-D (w/o Q)

• Linearize, apply the Fourier transform and 
find the diagonal of the “Jacobian”
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Examine the eigenvalues of the 
system 

• Two of the eigenvalues are OK, one is a problem,

λ

ν

θ
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This eigenvalue can be stabilized by 
using artificial viscosity.

• Examine the eigenvalue with a linear Q
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The expansion can be stabilized in 
several ways.

• Change discrete energy 
equation -> lose conservation

• Add viscosity -> loss of 
isentropic behavior

• Results of either fix “looks”
the same.

• Neither is optimal, begs in the 
long term to do stable and 
conservative solution.



Tensor viscosity results

We examine the performance of the code on the “trisection”
mesh, left is the old Q, right is the same problem with the 
new tensor Q.  It uses Noh’s shock reflection in 2-D.



Remesh and Remap
• The remesh has recently been extensively 

overhauled by Tom Voth. 
• The remap has been the focus of several 

developments.
– The change with the most impact from an 

application’s point-of-view is the implementation 
of the DeBar kinetic energy advection.

– Remap differencing is also being carefully tested 
and evaluated (next slide).

• The differencing is being enhanced for accuracy on 
uneven meshes.

– Enhanced interface reconstruction developed by 
Jay Mosso (See other talk this conference.)



Start with the simple stuff - linear 
advection

• Solved a simple multi-pulse advection

• Found a bug in the superbee limiter (square wave 
problem is enough)

Gaussian           square             triangle            ellipse

200
cells



Even simple testing is necessary

• Superbee limiter error - subtle!
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Our implementation of the “DeBar
fix” for conserving energy in remap.
• This is a modern implementation of DeBar’s

kinetic energy treatment.

• It corrects for the process of remap on the kinetic 
energy and allows full conservation of energy.

• We use a Q/p >0.001 switch to avoid using the fix 
away from shocks.

• This approach will also be implemented for 
magnetic field energy.
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Results with Woodward-
Colella (W-C) Blast Wave 

Problem
This demonstrates the ability
of the KE conservation to 
produce correct results and
is more flexible and robust
than total energy method.

Old
Total Energy
KE conserving

Solid - fiducial 6400 zones
symbols-PPM with 400 zones

Alegra Results
with 1200 zones



Results with W-C Blast Wave 
Problem (continued)

Total energy behavior - internal vs total energy advection vs
DeBar & DeBar at shocks (with Q/p>0.001)

The green curve is 
hidden by the blue curve. 



Development of more physically 
realistic multimaterial treatment(s)
• Based on an isentropic relationship for 

multiple materials in a zone.
• The formal definition of bulk modulus can 

be viewed as the starting point,
• From this relation and assuming that the 

flow is in pressure equilibrium, and 
changes are isentropic, we define
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Pressure Relaxation

• Define the changes in the volume 
fractions, fk to produce pressure 
equilibrium (and requisite energy 
changes),

• Add in a pressure relaxation, and express 
the previous as an evolution equation,

• + a void treatment (a whole talk by itself!)
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• Idea: Use JxB source term to help investigate 
hydrodynamics without invoking magnetics

• Enable code comparison
• Add acceleration to external forces (similar to gravity) 

and enables MMS expertise
• Developed by Jeff Banks and John Shadid
• Article in preparation

• Lumped-mass analysis with thin-shell approximation

Prototype Z-pinch Problem



Multiple Materials
• Used 3 materials (all ideal gases)

– Inside - ρ = 0.05, T = 0.2, P = 0.01
– Liner - ρ = 1.0, T = 0.01, P = 0.01
– Outside - ρ = 0.025, T = 0.4, P = 0.01

• Mesh
– Course mesh: 192x60
– Fine mesh: 768x240
– Sinusoidal perturbation on inside of liner

• JxB source term applied only to liner material
• Used SMYRA Interface tracking
• Problem exhibits

– Kevin-Helmholtz instabilities
– Rayleigh-Taylor instabilities
– Expansion oscillations (numerical)
– Creates thin material “strings” -> good test of interface 

tracking



Multiple Materials



Single Material

• Needed to add tracer variable, λ, to mark JxB source term application
• Similar gross features



Modern Lagrangian scheme + limited 
artificial viscosity in progress

• The current Lagrangian method is nearly 
equivalent to the predictor step (conservative, 
but time-staggered) of a PC method.

• A corrector step for 2nd order is anticipated.
• In the process of developing a FEM 

compatible limited Q using a least square 
approach to computing a limiter.



2nd order P-C with a limited Q 
results: Noh’s problem-very 

coarse mesh
Black = New Q
Red = Old pronto Q Trisection Mesh

w/new Q
(Research code)



Demonstration of Algorithm 
Impact: Z-Pinch Implosion

• A simulation of a wire array implosion on 
the Z-machine at SNL



Results with Simplified Z-pinch
• Results of radiation output from a 1-D 

implosion (comparing Lagrangian w/Eulerian)
Lagrange
Eulerian DeBar
Eulerian No DeBar

Lagrange (4x)
Eulerian DeBar (4x)
Eulerian No DeBar (4x)



Demonstration of Algorithm Impact: 
Full 3D Z-Pinch Implosion

• This shows the impact of conserving energy. 
The radiated power is the key metric.



Summary

• Alegra has benefited from the focus on 
several problem areas.

• In association with an emphasis on 
testing, Alegra’s algorithms have been 
improved and tests are being placed in a 
permanent repository.

• These improvements have provided 
tangible benefits for Alegra’s HEDP 
applications.



Future Directions

• The algorithms need to continue 
improvement in both remap and 
Lagrangian hydro.

• A more modern Lagrangian hydro method 
is needed (modern Q + bonafide 2nd order 
in time predictor-corrector).

• The testing process needs to expand in 
both breadth, depth and ease of use to 
support a sustained V&V evidence base.


