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Overview

• motivation example for Lagrangian formulation

• hydrodynamical model with heat conductivity and laser
absorption

• numerical methods used in our PALE (Prague ALE) code

– hyperbolic part – Arbitrary Lagrangian Eulerian (ALE) met hod
– parabolic part – heat conductivity
– laser absorption – source term in internal energy equation

• laser plasma application, which cannot be treated by pure
Lagrangian method

– high velocity impact problem
– double foil target
– foam target
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Motivation for Lagrangian Formulation

• laser plasma is created by laser interaction with targets

• target is 0.8µm thin Aluminum foil; Prague Asterix Laser System
(PALS) laser at 3-rd harmonics, pulse duration 250ps, focus 40µm,
energy 200J ; animation

• computational mesh is fixed to the fluid and moves with the fluid

• no mass flux between cells through edges

• computation domain changes with time

• problems with large changes of computational domain volume
and/or shape (compression or expansion )

• naturaly treated moving boundaries

• typically used in laser plasma simulations
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Euler Equations in Lagrangian Coordinates
• density ρ, velocity u, pressure p, internal energy ǫ = E/ρ − u2/2,

temperature T , heat conductivity κ, laser intensity I

d ρ

d t
+ ρ div u = 0,

d x

d t
= u

ρ
d u

d t
+ grad p = 0

ρ
d ǫ

d t
+ p div u = −div(I) + div(κgrad T )

• total Lagrangian time derivatives include convective term s

d

d t
=

∂

∂ t
+ u · grad

• equation of state – ideal gas and QEOS for plasma

• splitting – hyperbolic and parabolic part

• heat conductivity essential – faster shock wave
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Moving Lagrangian Mesh

• moving mesh can degenerate

initial Lagr ALE

• degenerate typicaly for shear flow like high velocity impact

• can be treated by ALE method
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ALE Method

• ALE – Arbitrary Lagrangian Eulerian method. Combination of
Lagrangian and Eulerian methods [Hirt, Amsden, Cook (JCP 1974,
1997)]

– I. Lagrangian computation several time steps
– II. Rezoning – mesh untangling and smoothing
– III. Remapping – conservative interpolation of the conservative

quantities from old to new, better mesh. Then, back to
Lagrangian computation.

• remapping corresponds to Eulerian part of ALE method, allow s
mass flux between cells

• ALE method combines positives of both approaches – grid move s
with fluid (as Lagrangian), but Eulerian part keeps it smooth
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I. Lagrangian Step

• staggered discretization – scalar quantities (density, pr essure,
internal energy, temperature) defined inside grid cells, ve ctor
quantities (positions, velocities) defined on grid nodes

• compatible method [Caramana, Burton, Shashkov, Whalen (JCP,
1998)]

• based on zonal, subzonal, and viscosity forces in each grid n ode

– zonal pressure force – force from all neighboring grid cells to
the node due to the pressure inside cells

– subzonal pressure force – depends on difference between
pressure in cell, and the pressure in cell corners, reduces
artificial grid distortions

– viscosity force – adds artificial viscosity in compression
regions; edge [Caramana, Shashkov, Whalen (JCP, 1998)] or
tensor [Campbell, Shashkov (2000)] viscosity
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II. Rezoning
• rezoning – mesh untangling and smoothing.

• for remapping we need to move only those vertices which are
necessary and as little as possible

• simple smothing [Winslow (1963)]

xk+1

i,j =
1

2 (αk + γk)

(

αk (xk
i,j+1 + xk

i,j−1) + γk (xk
i+1,j + xk

i−1,j)

−
1

2
βk (xk

i+1,j+1 − xk
i−1,j+1 + xk

i−1,j−1 − xk
i+1,j−1)

)

,

where coefficients αk = x2
ξ + y2

ξ , βk = xξ xη + yξ yη, γk = x2
η + y2

η, and
where (ξ, η) are logical coordinates.

• Reference Jacobian method [Knupp, Margolin, Shashkov (JCP,
2002)]

• combination of feasible set method and numerical optimizat ion
[Váchal, Garimella, Shashkov (JCP, 2004)] .
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III. Remapping/1

• conservative interpolation of conservative quantities fr om the old
Lagrangian mesh to the new smoothed mesh

1. piecewise linear reconstruction with Barth-Jasperson limiter
[Barth (1997)]

g(x, y) = gc +

(

∂g

∂x

)

c

(x − xc) +

(

∂g

∂y

)

c

(y − yc)

2. quadrature of reconstruction over cells of new mesh
– exact quadrature – intersection of new cell with all

neighboring old cells
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∗ old mesh dashed, new mesh solid

∗ integration of linear function over
each intersection polygon – Green
theorem transforms into integration
over polygon edges
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III. Remapping/2

– approximate quadrature over regions swept by edges moving
form old to new position [Kucha řı́k, Shashkov, Wendroff (JCP,

2003)]
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– exact integration is very ex-
pensive, requires finding inter-
sections.

– integral over new cell can be de-
composed as sum of integrals
over swept regions.

3. repair
– Barth-Jasperson limiter quarantees monotonicity in 1D
– in 2D new local local extrema might appear – repair

[Shashkov, Wendroff (JCP, 2004)]

• remapping of staggered quantities more complicated
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ALE in cylindrical geometry

• generalized to cylindrical r, z geometry [Kucha řı́k, Liska, Loubere,
Shashkov (HYP2006)]

• additional factor r in integrals
∫

f(x, y)dxdy →

∫

f(r, z)rdrdz

• Lagrangian step

– control volume method
– cell center moved to center of cell mass instead of original

average of vertexes – so that ALE remapping can be
conservative

• rezoning – mesh nodes move on the z axis

• remapping – additional factor r in integrals
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Heat Conductivity
• heat conductivity represented as parabolic term in the ener gy

equation. By splitting, we solve aTt + divw = 0,w = −κgrad T = 0
using mimetic operators method [Shashkov, Steinberg (1996)]

• mimetic discrete operators G, D have the same discrete integral
properties, namely gradient is adjoint of divergence G = D∗

• implicit scheme in flux form
a
T n+1 − T n

∆t
+ DWn+1 = 0

Wn+1 − GT n+1 = 0

• temperature T n+1 is eliminated and the system is solved for heat
flux Wn+1; the matrix of the system is symmetric and positive
definite; same time step as in hyperbolic Lagrangian/ALE ste p

• computed fluxes have to be smaller than physical heat flux limi t
Wn+1 = signWn+1 min(|Wn+1|, Wlimit)

• generalization to cylindrical geometry.
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Laser absorption

• simplest model – laser penetrates till critical density ρc and is
absorbed on the critical surface

i,j+1
i+1,j+1

i+1,j

i+1/2,j+1/2

i,j

• source in internal energy equation ρd ǫ
d t

+ p div u = −div(I)

• ray tracing model – curved rays with refraction, no reflected wave
[N. Demchenko]
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High velocity impact

• disc flyer impact problem

• high power laser-irradiated Aluminum
disc ablatively accelerates up to very
high velocity (40-190 km/s) and stri-
kes to massive Aluminum target

• d = 6; 11µm, r = 150µm,L = 200µm,
laser energy 120 − 390 J, 1-st or 3-rd
harmonics, pulse length 400 ps, focus
rf = 125 µm.

BEAM

r

d

L
impv

MASSIVE TARGET

DISC FLYER
LASER

• problem split into two parts for simulations:

– ablative disc flyer acceleration by laser beam; animation
– impact of disc flyer into massive target

• problem parameters similar to the experiment performed on t he
PALS laser facility in Prague [Borodziuk et al. CJP (2003), K álal et
al. ECLIM (2004)] .
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Crater creation

• after impact – increase of temperature, metling and evapora ting
material, circular shock wave

• crater (gas - liquid interface) formed inside the target
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• temperature animation

• simulated craters size and shape correspond reasonably wel l to
exparimental data [Kucha řı́k, Liska, Limpouch (2006)]
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Double foil target

• foils thickness du = 0.8µm, dl = 2µm

• foils distance L = 360µm

• laser energy 78 J, 3-rd harmonics,
pulse length 250 ps, focus rf = 40 µm

• almost vaccum between foils
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• mass of neighboring vaccum and foils cells should not differ much

• vaccum cells are big while foils cells small

• initially e.g. one foil rectangular cell has r/z edges lengths ratio
104 and neighbors the vaccum cell with r/z ratio 0.2

• pure Lagrangian simulation fails due to mesh degeneration s oon
after laser burns through the upper foil
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Double foil target – ALE results

• laser maximum is at 0 ps
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• double foil target density and pressure animation
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Foam target

• 400µ m thick TAC foam with density 9.1mg/cm
3 with 2µm pores.

• Gaussian laser pulse on the third harmonics with wavelength
0.438µm, total energy 170 J, the radius of laser spot on target
300 µm and FWHM length 320 ps.

• foam modelled by uniform density 9.1mg/cm3 material
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Foam target - structured model
• foam modelled by the sequence of ds = 0.018µm thick dense slabs

with density ρs = 1 g/cm3 separated by dv = 1.982µm thick voids
with density ρv = 1 mg/cm
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• experimental speed of laser penetration into the foam is abo ut
600 ∼ 700 µm/ns, speed from structured simulation is about
500 µm/ns (average in time interval (0.1, 0.5) ns) and from uniform
simulation about 1600 µm/ns (average in time interval (0.0, 0.25) ns).

• structured model approximates experimental data much bett er.
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Foam target - structured model/2
• evolution of density and temperature
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• density animation , zoomed animation ,
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Conclusion

• ALE method in Cartesian and cylindrical geometry

• heat conductivity, laser absorption

• applications – simulations of disc flyer, double foil and foa m
targets from PALS experiments

• pure Lagrangian simulation fails while ALE gives reasonabl e
results

• perspectives – multimaterial, two temperature model, radi ation
transport, AMR..........
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