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Overview

motivation example for Lagrangian formulation

hydrodynamical model with heat conductivity and laser
absorption

numerical methods used in our PALE (Prague ALE) code

— hyperbolic part — Arbitrary Lagrangian Eulerian (ALE) met hod
— parabolic part — heat conductivity
— laser absorption — source term in internal energy equation

laser plasma application, which cannot be treated by pure
Lagrangian method

— high velocity impact problem
— double foll target
— foam target



Motivation for Lagrangian Formulation

laser plasma is created by laser interaction with targets

target is 0.8um thin Aluminum foil, Prague Asterix Laser System
(PALS) laser at 3-rd harmonics, pulse duration 250ps, focus 40um.,
energy 200.; animation

computational mesh is fixed to the fluid and moves with the fluid

no mass flux between cells through edges

computation domain changes with time

problems with large changes of computational domain volume
and/or shape (compression or  expansion )

naturaly treated moving boundaries

typically used in laser plasma simulations



Euler Equations in Lagrangian Coordinates

e density p, velocity u, pressure p, internal energy ¢ = E/p —u?/2,
temperature T, heat conductivity «k, laser intensity I
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e equation of state — ideal gas and QEOS for plasma
e splitting — hyperbolic and parabolic part

e heat conductivity essential — faster shock wave



Moving Lagrangian Mesh

e Moving mesh can degenerate

initial

e degenerate typicaly for shear flow like high velocity impact

e can be treated by ALE method



ALE Method

e ALE — Arbitrary Lagrangian Eulerian method. Combination of
Lagrangian and Eulerian methods [Hirt, Amsden, Cook (JCP 1974,
1997)]

— |. Lagrangian computation several time steps

— |I. Rezoning — mesh untangling and smoothing

— |Il. Remapping — conservative interpolation of the conservative
guantities from old to new, better mesh. Then, back to
Lagrangian computation.

e remapping corresponds to Eulerian part of ALE method, allow S
mass flux between cells

e ALE method combines positives of both approaches — grid move S
with fluid (as Lagrangian), but Eulerian part keeps it smooth



|. Lagrangian Step

e staggered discretization — scalar quantities (density, pr essure,
Internal energy, temperature) defined inside grid cells, ve ctor
guantities (positions, velocities) defined on grid nodes

e compatible method [Caramana, Burton, Shashkov, Whalen (JCP,
1998)]

e based on zonal, subzonal, and viscosity forces in each grid n ode

— zonal pressure force - force from all neighboring grid cells to
the node due to the pressure inside cells

— subzonal pressure force — depends on difference between
pressure in cell, and the pressure in cell corners, reduces
artificial grid distortions

— viscosity force — adds artificial viscosity in compression
regions; edge [Caramana, Shashkov, Whalen (JCP, 1998)] or
tensor [Campbell, Shashkov (2000)] viscosity



Il. Rezoning
e rezoning — mesh untangling and smoothing.

e for remapping we need to move only those vertices which are
necessary and as little as possible

e simple smothing [Winslow (1963)]
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where coefficients o* = z7 4 yZ2, 8* = xe xy + ye vy, v° = 27 + 7, and
where (&,7) are logical coordinates.

e Reference Jacobian method [Knupp, Margolin, Shashkov (JCP,
2002)]

e combination of feasible set method and numerical optimizat ion
[Vachal, Garimella, Shashkov (JCP, 2004)]



lll. Remapping/1

e conservative interpolation of conservative quantities fr om the old
Lagrangian mesh to the new smoothed mesh

1. piecewise linear reconstruction with Barth-Jasperson limiter
[Barth (1997)]
dg dg
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2. quadrature of reconstruction over cells of new mesh
— exact quadrature - intersection of new cell with all

neighboring old cells

* 0ld mesh dashed, new mesh solid

x Integration of linear function over
each intersection polygon — Green
theorem transforms into integration
over polygon edges




Ill. Remapping/2

— approximate quadrature over regions swept by edges moving
form old to new position [Kucha rik, Shashkov, Wendroff (JCP,
2003)]

— exact Integration Is very ex-
pensive, requires finding inter-
sections.

— Integral over new cell can be de-
composed as sum of integrals
over swept regions.

3. repair
— Barth-Jasperson limiter quarantees monotonicity in 1D
— In 2D new local local extrema might appear — repair
[Shashkov, Wendroff (JCP, 2004)]

e remapping of staggered quantities more complicated



ALE in cylindrical geometry

generalized to cylindrical r, z geometry [Kucha fik, Liska, Loubere,
Shashkov (HYP2006)]

additional factor r in integrals

/f(xay)dﬂfdy—> /f(?“, z)rdrdz

Lagrangian step

— control volume method

— cell center moved to center of cell mass instead of original
average of vertexes — so that ALE remapping can be
conservative

rezoning — mesh nodes move on the z axis

remapping — additional factor  r in integrals



Heat Conductivity

heat conductivity represented as parabolic term in the ener gy
equation. By splitting, we solve a1} + divw =0, w = —kgrad T = 0
using mimetic operators method [Shashkov, Steinberg (1996)]

mimetic discrete operators G, D have the same discrete integral
properties, namely gradient is adjoint of divergence G = D*

Tn—l—l_Tn
DW"tt = 0
“—ar T

W — Gt = 0

Implicit scheme in flux form

temperature T"*! is eliminated and the system is solved for heat
flux W7”T1: the matrix of the system is symmetric and positive
definite; same time step as in hyperbolic Lagrangian/ALE ste P

computed fluxes have to be smaller than physical heat flux limi t
W = sign W min (W2 Wi i)

generalization to cylindrical geometry.
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Laser absorption

e simplest model — laser penetrates till critical density p. and is

absorbed on the critical surface

e source in internal energy equation p% + pdivu = —div(I)

e ray tracing model — curved rays with refraction, no reflected
[N. Demchenko]

wave
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High velocity impact

e disc flyer impact problem

e high power laser-irradiated Aluminum BEAM DISC FLYER
disc ablatively accelerates up to very -
high velocity (40-190 km/s) and stri- I )
kes to massive Aluminum target S ASSVE TARGET

e d = 6;11um,r = 150um,L = 200um,
laser energy 120 — 390J, 1-st or 3-rd
harmonics, pulse length 400 ps, focus
re =125 pm.

e problem split into two parts for simulations:
— ablative disc flyer acceleration by laser beam; animation

— Impact of disc flyer into massive target

e problem parameters similar to the experiment performed on t he
PALS laser facility in Prague [Borodziuk et al. CJP (2003), K alal et
al. ECLIM (2004)].
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Crater creation

e after impact — increase of temperature, metling and evapora ting
material, circular shock wave

e crater (gas - liquid interface) formed inside the target

100 B 10
O I P Jas
~100 i
-200 51 i {:‘:, 0.25
§ -300 - Mliquid
N 400
_500 - q{ l0.085
b i - {solid
-700 e
800 ‘ S .0
-800 -600 -400 -200 0 200 400 600 800
R [um]
e temperature animation
e Simulated craters size and shape correspond reasonably wel | to

exparimental data [Kucha rik, Liska, Limpouch (2006)]



Double foil target

o foils thickness d, = 0.8um,d; = 2um LASER

BEAM UPPER FOIL
o foils distance L = 360um /
--d,

e laser energy 78J, 3-rd harmonics, ‘

pulse length 250 ps, focus 7¢ = 40 pm LOWER FOIL
+dl

e almost vaccum between foils

e mass of neighboring vaccum and foils cells should not differ much

e vaccum cells are big while foils cells small

e Initially e.g. one foil rectangular cell has r/z edges lengths ratio
10* and neighbors the vaccum cell with 7 /2 ratio 0.2

e pure Lagrangian simulation fails due to mesh degeneration s oon
after laser burns through the upper foll
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Double foll target — ALE results

e laser maximum is at O ps
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e double foil target density and pressure animation
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Foam target

e 400 m thick TAC foam with density ~ 9.1mg/cm® with 2um pores.

e Gaussian laser pulse on the third harmonics with wavelength

0.438 um, total energy 170 J, the radius of laser spot on target
300 pm and FWHM length 320 ps.

e foam modelled by uniform density
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evolution of temperature; timing relates to the laser pulse
maximum at 0 ps.
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Foam target - structured model

e foam modelled by the sequence of d; = 0.018um thick dense slabs

with density p, =1 g/cm3 separated by d, = 1.982um thick voids

with density p, =1 mg/cm3
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structured foam model

e experimental speed of laser penetration into the foam is abo
600 ~ 700 pm/ns, speed from structured simulation is about
500 um /ns (average in time interval (0.1,0.5) ns) and from uniform
simulation about 1600 um/ns (average in time interval

0

burning of laser through the target

ut

(0.0,0.25) ns).

e structured model approximates experimental data much bett

er.
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Foam target - structured model/2

e evolution of density and temperature
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Conclusion

ALE method in Cartesian and cylindrical geometry
heat conductivity, laser absorption

applications — simulations of disc flyer, double foil and foa
targets from PALS experiments

pure Lagrangian simulation fails while ALE gives reasonabl
results

perspectives — multimaterial, two temperature model, radi
transport, AMR..........

ation
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