Applications of ALE Method to Laser Plasma Studies

R. Liska ${ }^{1}$, M. Kuchařík ${ }^{2}$, J. Limpouch ${ }^{1}$, P. Váchal ${ }^{1}$
${ }^{1}$ Czech Technical University in Prague, Czech Republic liska@siduri.fjfi.cvut.cz
${ }^{2}$ Los Alamos National Laboratory, USA

Thanks to M. Shashkov, B. Wendroff, R. Loubère, N. Demchenko

Overview

- motivation example for Lagrangian formulation
- hydrodynamical model with heat conductivity and laser absorption
- numerical methods used in our PALE (Prague ALE) code
- hyperbolic part - Arbitrary Lagrangian Eulerian (ALE) method
- parabolic part - heat conductivity
- laser absorption - source term in internal energy equation
- laser plasma application, which cannot be treated by pure Lagrangian method
- high velocity impact problem
- double foil target
- foam target

Motivation for Lagrangian Formulation

- laser plasma is created by laser interaction with targets
- target is $0.8 \mu \mathrm{~m}$ thin Aluminum foil; Prague Asterix Laser System (PALS) laser at 3-rd harmonics, pulse duration 250 ps , focus $40 \mu \mathrm{~m}$, energy 200J; animation
- computational mesh is fixed to the fluid and moves with the fluid
- no mass flux between cells through edges
- computation domain changes with time
- problems with large changes of computational domain volume and/or shape (compression or expansion)
- naturaly treated moving boundaries
- typically used in laser plasma simulations

Euler Equations in Lagrangian Coordinates

- density ρ, velocity \mathbf{u}, pressure p, internal energy $\epsilon=E / \rho-\mathbf{u}^{2} / 2$, temperature T, heat conductivity κ, laser intensity I

$$
\begin{aligned}
\frac{d \rho}{d t}+\rho \operatorname{div} \mathbf{u} & =0, \quad \frac{d \mathbf{x}}{d t}=\mathbf{u} \\
\rho \frac{d \mathbf{u}}{d t}+\operatorname{grad} p & =0 \\
\rho \frac{d \epsilon}{d t}+p \operatorname{div} \mathbf{u} & =-\operatorname{div}(\mathbf{I})+\operatorname{div}(\kappa \operatorname{grad} T)
\end{aligned}
$$

- total Lagrangian time derivatives include convective terms

$$
\frac{d}{d t}=\frac{\partial}{\partial t}+\mathbf{u} \cdot \operatorname{grad}
$$

- equation of state - ideal gas and QEOS for plasma
- splitting - hyperbolic and parabolic part
- heat conductivity essential - faster shock wave

Moving Lagrangian Mesh

- moving mesh can degenerate

initial

Lagr

ALE

- degenerate typicaly for shear flow like high velocity impact
- can be treated by ALE method

ALE Method

- ALE - Arbitrary Lagrangian Eulerian method. Combination of Lagrangian and Eulerian methods [Hirt, Amsden, Cook (JCP 1974, 1997)]
- I. Lagrangian computation several time steps
- II. Rezoning - mesh untangling and smoothing
- III. Remapping - conservative interpolation of the conservative quantities from old to new, better mesh. Then, back to Lagrangian computation.
- remapping corresponds to Eulerian part of ALE method, allows mass flux between cells
- ALE method combines positives of both approaches - grid moves with fluid (as Lagrangian), but Eulerian part keeps it smooth

I. Lagrangian Step

- staggered discretization - scalar quantities (density, pressure, internal energy, temperature) defined inside grid cells, vector quantities (positions, velocities) defined on grid nodes
- compatible method [Caramana, Burton, Shashkov, Whalen (JCP, 1998)]
- based on zonal, subzonal, and viscosity forces in each grid node
- zonal pressure force - force from all neighboring grid cells to the node due to the pressure inside cells
- subzonal pressure force - depends on difference between pressure in cell, and the pressure in cell corners, reduces artificial grid distortions
- viscosity force - adds artificial viscosity in compression regions; edge [Caramana, Shashkov, Whalen (JCP, 1998)] or tensor [Campbell, Shashkov (2000)] viscosity

II. Rezoning

- rezoning - mesh untangling and smoothing.
- for remapping we need to move only those vertices which are necessary and as little as possible
- simple smothing [Winslow (1963)]

$$
\begin{aligned}
\mathbf{x}_{i, j}^{k+1}=\frac{1}{2\left(\alpha^{k}+\gamma^{k}\right)} & \left(\alpha^{k}\left(\mathbf{x}_{i, j+1}^{k}+\mathbf{x}_{i, j-1}^{k}\right)+\gamma^{k}\left(\mathbf{x}_{i+1, j}^{k}+\mathbf{x}_{i-1, j}^{k}\right)\right. \\
& \left.-\frac{1}{2} \beta^{k}\left(\mathbf{x}_{i+1, j+1}^{k}-\mathbf{x}_{i-1, j+1}^{k}+\mathbf{x}_{i-1, j-1}^{k}-\mathbf{x}_{i+1, j-1}^{k}\right)\right)
\end{aligned}
$$

where coefficients $\alpha^{k}=x_{\xi}^{2}+y_{\xi}^{2}, \beta^{k}=x_{\xi} x_{\eta}+y_{\xi} y_{\eta}, \gamma^{k}=x_{\eta}^{2}+y_{\eta}^{2}$, and where (ξ, η) are logical coordinates.

- Reference Jacobian method [Knupp, Margolin, Shashkov (JCP, 2002)]
- combination of feasible set method and numerical optimization [Váchal, Garimella, Shashkov (JCP, 2004)].

III. Remapping/1

- conservative interpolation of conservative quantities from the old Lagrangian mesh to the new smoothed mesh

1. piecewise linear reconstruction with Barth-Jasperson limiter [Barth (1997)]

$$
g(x, y)=g_{c}+\left(\frac{\partial g}{\partial x}\right)_{c}\left(x-x_{c}\right)+\left(\frac{\partial g}{\partial y}\right)_{c}\left(y-y_{c}\right)
$$

2. quadrature of reconstruction over cells of new mesh

- exact quadrature - intersection of new cell with all neighboring old cells

* old mesh dashed, new mesh solid
* integration of linear function over each intersection polygon - Green theorem transforms into integration over polygon edges

III. Remapping/2

- approximate quadrature over regions swept by edges moving form old to new position [Kuchařík, Shashkov, Wendroff (JCP,
 2003)]
- exact integration is very expensive, requires finding intersections.
- integral over new cell can be decomposed as sum of integrals over swept regions.

3. repair

- Barth-Jasperson limiter quarantees monotonicity in 1D
- in 2D new local local extrema might appear - repair [Shashkov, Wendroff (JCP, 2004)]
- remapping of staggered quantities more complicated

ALE in cylindrical geometry

- generalized to cylindrical r, z geometry [Kuchařík, Liska, Loubere, Shashkov (HYP2006)]
- additional factor r in integrals

$$
\int f(x, y) d x d y \rightarrow \int f(r, z) r d r d z
$$

- Lagrangian step
- control volume method
- cell center moved to center of cell mass instead of original average of vertexes - so that ALE remapping can be conservative
- rezoning - mesh nodes move on the z axis
- remapping - additional factor r in integrals

Heat Conductivity

- heat conductivity represented as parabolic term in the energy equation. By splitting, we solve $a T_{t}+\operatorname{divw}=0, \mathbf{w}=-\kappa \operatorname{grad} T=0$ using mimetic operators method [Shashkov, Steinberg (1996)]
- mimetic discrete operators G, D have the same discrete integral properties, namely gradient is adjoint of divergence $G=D^{*}$
- implicit scheme in flux form

$$
\begin{aligned}
a \frac{T^{n+1}-T^{n}}{\Delta t}+D \mathbf{W}^{n+1} & =0 \\
\mathbf{W}^{n+1}-G T^{n+1} & =0
\end{aligned}
$$

- temperature T^{n+1} is eliminated and the system is solved for heat flux W^{n+1}; the matrix of the system is symmetric and positive definite; same time step as in hyperbolic Lagrangian/ALE step
- computed fluxes have to be smaller than physical heat flux limit $\mathbf{W}^{n+1}=\operatorname{sign} \mathbf{W}^{n+1} \min \left(\left|\mathbf{W}^{n+1}\right|, W_{\text {limit }}\right)$
- generalization to cylindrical geometry.

Laser absorption

- simplest model - laser penetrates till critical density ρ_{c} and is absorbed on the critical surface

- source in internal energy equation $\rho \frac{d \epsilon}{d t}+p \operatorname{div} \mathbf{u}=-\operatorname{div}(\mathbf{I})$
- ray tracing model - curved rays with refraction, no reflected wave [N. Demchenko]

High velocity impact

- disc flyer impact problem
- high power laser-irradiated Aluminum disc ablatively accelerates up to very high velocity ($40-190 \mathrm{~km} / \mathrm{s}$) and strikes to massive Aluminum target
- $d=6 ; 11 \mu m, r=150 \mu m, L=200 \mu m$, laser energy 120 - 390 J , 1-st or 3-rd harmonics, pulse length 400 ps , focus
 $r_{f}=125 \mu \mathrm{~m}$.
- problem split into two parts for simulations:
- ablative disc flyer acceleration by laser beam; animation
- impact of disc flyer into massive target
- problem parameters similar to the experiment performed on the PALS laser facility in Prague [Borodziuk et al. CJP (2003), Kálal et al. ECLIM (2004)].

Crater creation

- after impact - increase of temperature, metling and evaporating material, circular shock wave
- crater (gas - liquid interface) formed inside the target

- temperature animation
- simulated craters size and shape correspond reasonably well to exparimental data [Kuchařík, Liska, Limpouch (2006)]

Double foil target

- foils thickness $d_{u}=0.8 \mu m, d_{l}=2 \mu m$
- foils distance $L=360 \mu m$
- laser energy $78 \mathrm{~J}, 3$-rd harmonics, pulse length 250 ps , focus $r_{f}=40 \mu \mathrm{~m}$

- almost vaccum between foils
- mass of neighboring vaccum and foils cells should not differ much
- vaccum cells are big while foils cells small
- initially e.g. one foil rectangular cell has r / z edges lengths ratio 10^{4} and neighbors the vaccum cell with r / z ratio 0.2
- pure Lagrangian simulation fails due to mesh degeneration soon after laser burns through the upper foil

Double foil target - ALE results

- laser maximum is at 0 ps

$\rho\left[\mathrm{g} / \mathrm{cm}^{3}\right]$ at $\mathbf{0} \mathrm{ps} \quad \rho\left[\mathrm{g} / \mathrm{cm}^{3}\right]$ at $\mathbf{1 0 0} \mathrm{ps} \quad p\left[\mathrm{~g} /\left(s^{2} \mathrm{~cm}\right)\right]$ at $\mathbf{1 0 0} \mathrm{ps} \quad T[\mathrm{eV}]$ at 100 ps
- double foil target density and pressure animation

Foam target

- $400 \mu \mathrm{~m}$ thick TAC foam with density $9.1 \mathrm{mg} / \mathrm{cm}^{3}$ with $2 \mu \mathrm{~m}$ pores.
- Gaussian laser pulse on the third harmonics with wavelength $0.438 \mu \mathrm{~m}$, total energy 170 J , the radius of laser spot on target $300 \mu \mathrm{~m}$ and FWHM length 320 ps .
- foam modelled by uniform density $9.1 \mathrm{mg} / \mathrm{cm}^{3}$ material

evolution of temperature; timing relates to the laser pulse maximum at 0 ps .

Foam target - structured model

- foam modelled by the sequence of $d_{s}=0.018 \mu \mathrm{~m}$ thick dense slabs with density $\rho_{s}=1 \mathrm{~g} / \mathrm{cm}^{3}$ separated by $d_{v}=1.982 \mu \mathrm{~m}$ thick voids with density $\rho_{v}=1 \mathrm{mg} / \mathrm{cm}^{3}$

structured foam model

burning of laser through the target
- experimental speed of laser penetration into the foam is about $600 \sim 700 \mu \mathrm{~m} / \mathrm{ns}$, speed from structured simulation is about $500 \mu \mathrm{~m} / \mathrm{ns}$ (average in time interval $(0.1,0.5) \mathrm{ns}$) and from uniform simulation about $1600 \mu \mathrm{~m} / \mathrm{ns}$ (average in time interval ($0.0,0.25$) ns).
- structured model approximates experimental data much better.

Foam target - structured model/2

- evolution of density and temperature

- density animation, zoomed animation,

Conclusion

- ALE method in Cartesian and cylindrical geometry
- heat conductivity, laser absorption
- applications - simulations of disc flyer, double foil and foam targets from PALS experiments
- pure Lagrangian simulation fails while ALE gives reasonable results
- perspectives - multimaterial, two temperature model, radiation transport, AMR

