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A physics-inspired model closes a two-material,
single-pressure, mixed-cell hydro model.

• 1-D hydrodynamics is a building-block for higher-dimensional methods:
– Allows the careful investigation of basic assumptions.
– Highlights the details and the features of a particular method.

• Two-material, single-pressure models are a basic element of multi-
material hydrodynamics:
– Homogenize materials via single-velocity, single-pressure model.
– Sub-cell interaction assumptions appear in the model equations.

• Models for a gradual (as opposed to instantaneous) approach to
pressure equilibrium may be closer to the underlying physics.
– Simplified models capture the essence of the relevant physics.

• A Riemann-problem-inspired approach demonstrates some promising
characteristics on various test problems.
– Results are quantified against exact solutions.
– Mixed-cell properties are evaluated and quantified.
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Outline of this presentation

• 1-D, 2-material Lagrangian hydrodynamics:  the
closure problem for mixed cells.

• Instantaneous pressure equilibration: this assumption
gives closed-form solutions for polytropic gases.

• Pressure relaxation model: the physics, mathematics,
and numerics of a local Riemann problem.

• Implementation: how to use this model with a predictor-
corrector scheme.

• Test problem results:  Sod shock tube, a shock-contact
problem, the water-air shock tube + comparison with
other methods.

• Summary:  Conclusions + future work.
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Two-material Lagrangian hydrodynamics
in 1-D presents numerous open issues.

• Conservation laws govern the flow of inviscid, non-heat-
conducting, compressible fluids in the Lagrangian frame:

Mass:

Momentum:

Energy:

Thermodynamics:

• With the 1-D equations, we can:
– Impose design principles clearly
– Test fundamental algorithms
– Quantitatively evaluate algorithm performance
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This model is for a two-material, single-
pressure cell with instantaneous equilibration.

• The four-equation model for the mixed cell is:

Assign Spec. Vol.:

Equality of
Pressure:

Assign SIE:

Equality of
Change in Heat:

• In the last equation, one must make a modeling choice
for the expressions P1 and P2 in terms of
– Why?  Because this (equilibrium) thermodynamics statement

(dQ1 = dQ2) occurs over the (discrete) timestep, ∆t ≡  tn+1 – tn
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Three obvious choices for the pressure in
the equality-of-heat-change equation:

• Model #1: Fully Explicit (FE), with                 and

• Model #2: Fully Implicit (FI), with                 and

• Model #3: “Thermodynamically Consistent” (TC), with

� 

P
1
 !  p

1

n

� 

P
1
 !  p

1

n+1

� 

P
2
 !  p

2

n

� 

P
2
 !  p

2

n+1
� 

!
1
n+1 "  !

1
n

+  p
1
n

 (#
1
n+1

"#
1
n  ) =  !

2
n+1 "  !

2
n

+  p
2
n

 (#
2
n+1

"#
2
n  ) 

� 

!
1
n+1 "  !

1
n

+  p
1
n+1

 (#
1
n+1

"#
1
n  ) =  !

2
n+1 "  !

2
n

+  p
2
n+1

 (#
2
n+1

"#
2
n  ) 

� 

P
1
 !  1

2
(p

1
n

+ p
1
n+1) and

� 

P
2
 !  1

2
(p

2
n

+ p
2
n+1)

� 

!
1
n+1 "  !

1
n

+  1
2
(p

1
n

+ p
1
n+1)(#

1
n+1

"#
1
n  ) 

       =  !
2
n+1 "  !

2
n

+  1
2
(p

2
n

+ p
2
n+1) (#

2
n+1

"#
2
n  ) 

� 

!

� 

!

� 

!



6kammj@lanl.gov

LA-UR-07-5900U N C L A S S I F I E D

U N C L A S S I F I E D shashkov@lanl.gov

For polytropic gases, there are closed-form
sol’ns to the closure equations in each case.

• Fully Implicit case (#2):

• Fully Explicit (#1) , Thermo. Consist. (#3) are complicated…
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There are two solutions for the Fully Explicit case.

• Fully Explicit case (#1):

• First solution for p:
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And two solutions in the “Thermo. Consist.” case:
• Thermodynamically Consistent case (#3):
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The expressions for the updated value of the
SIE for the FE case are more complicated…

• First solution for        : • Second solution for        :

• What happens to these two solutions as γ1 → γ2 ?
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– Analysis incomplete… – Suggestive numerical evidence…

•  TC case has more complicated expressions.
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Instantaneous pressure equilibration is not
consistent with the sub-grid-scale physics.

• Physical relaxation processes slow pressure equilibration.
– We want to include this effect—but not the full physics.
– Why not?  Complicated, many unknown parameters.

• How? A physics-inspired approach à la Godunov:  use
the 2-material, mixed cell as a (local) Riemann problem.
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We can work out the details of the Riemann-
problem-based pressure expressions.

• The initial (start-of-timestep) material interface is:

• With these wave speeds, a simple geometrical average
for the (single) overall cell pressure can be derived:

tn+1:

� 

p*

• For either polytropic gas or stiffened-gas EOS, there are
exact expressions for the Riemann wave speeds*

– For general EOS, these can be approximated…

*Gottlieb, J.J., and Groth, C.P.T., J. Comp. Phys. 78, pp. 437–458 (1988); Plohr, B.,AIAA J. 26, pp. 470–478 (1988).
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With this approach, a pressure-relaxation
equation must satisfy two limiting cases.

• Perfect equilibration in ∆t: • Pressure unchanged in ∆t:
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This pressure-relaxation equation includes a
modification from the local Riemann solution.

• Relax the pressure according to the following relation:
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• The parameters  a1, d1, d2, b2  are non-dimensional
measures of the extent of the wave propagation:
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This approach generalizes to all possible
Riemann-problem solution states.

• For example, the polytropic gas Riemann problem has five
fundamentally different solutions:

• These wave speeds can be used to obtain values for (i) the
relaxation equation and (ii) the overall cell pressure model,
each in terms of the mat’l-1, *-state, and mat’l-2 pressures.

• In each case, the leading right-going and left-going waves
and their wave speeds can be determined.

SCR RCR RCVCR RCS SCS
R=Rarefaction C=Contact V=Vacuum S=Shock
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en
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These four-equation models can be solved
with Newton’s method for any EOS.

• We assume that the necessary thermodynamic
derivatives of the pressure are available from the EOS.

• Recall, in the last equation one must make a modeling
choice for the expressions P1 and P2.
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The Newton iteration is well-conditioned
numerically and converges rapidly.

• The Newton iteration can be written:

– The matrix              requires pressure derivatives (e.g.,            ),
which can be evaluated for a general EOS.

– For the pressure-relaxation scheme, the Jacobian does not
depend on X, i.e., the pressure-relaxation equation does not
depend on the tn+1 state:

– This matrix has several zero-elements and appears to be well-
conditioned for polytropic and stiffened-gas EOSs, for the
explicit, implicit, and thermodynamically consistent assumptions.

– In all cases we have evaluated, this method converges:  this is
not a proof, per se; rather, it is a statement of plausibility.
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This model is incorporated into a standard
Lagrangian predictor step...
Artificial viscosity, tn:

Edge-velocities:
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…followed by a standard Lagrangian
   corrector step:

Artificial viscosity, tn+1/2:
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We examine the results of this method
on several standard test problems.

• The test problems were run in a similar fashion:
— Nx  zones on  xmin ≤ x < xmax  with  ∆xi = h , i ≠  imix

— One mixed cell for  i = imix  with  ∆ximix= 2h

1 2

– The fictitious mixed-cell interface is assigned at the center
of mixed cell, with no explicit mass-matching
 This information is used, e.g., to calculate the mixed-cell

mass fractions.

• Graphical results for the test problems include:
– “Snapshots”: fixed-in-time, spatial solution over the whole mesh
– “Histories”:  fixed-in-space, temporal solution only in the mixed cell
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The results for the Sod shock tube suggest
that this approach is reasonable.

• Sod problem initial conditions:

(ρ,p,u,γ ) =
(1.0,   1.0, 0.0,1.4),       0≤x<0.5
(0.125,0.1,0.0,1.4),    0.5<x≤1.0

tfinal = 0.25

• FE: “Exact” mixed-cell sol’n • TC: Instan’s. vs. Relax’n:

– Similar results for all closure models.

Mixed Cell Pressures
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The method shows overall first-order
convergence results for the Sod problem.

• Make the Ansatz:
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 yexact
! y
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rr
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Pressure
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Velocity
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1.012.35Velocity
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0.990.82Pressure
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Our results compare favorably with Tipton’s
and Barlow’s methods for the Sod shock tube.

• Both Barlow and Tipton use pressure relaxation schemes.
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Increasing mesh resolution by a factor
of four implies a shorter relaxation time.

• It also implies sharper features:
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This shock-contact problem* tests the behavior
through a pure, two-material contact.

• Two-material, γ -law gas problem, rightward shockwave

(ρ,p,u,γ ) =
(2.76, 4.45, 1.48,1.35),      0<x<0.1
(1.0,   1.0,   0.0, 1.35),    0.1<x<0.5 tfinal = 0.25

Mach 2 shock

“Closed-form” – Computed = Difference * J.W. Banks et al. “A high-resolution Godunov method for compressible multi-
material flow on overlapping grids,”  J. Comp. Phys. 150, 425–467 (2007).

.

(1.9,   1.0,   0.0, 5.0),      0.5<x<1
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This shock-contact problem allows us to test
all of the exact equilibration closure solutions.

• Two closure solutions produce invalid solutions for this
multi-material, multi-γ  test problem:

Fully Explicit #1 Fully Explicit #2 Fully Implicit Therm. Cons. #1 Therm. Cons. #2

• The mathematics here might be telling us something —
is there a removable singularity (that wasn’t removed)?
– This is a subject for further investigation…

Density, sound
speed negative

on cycle 1

Density, sound
speed negative

on cycle 1

Runs to
completion

Runs to
completion

Runs to
completion

✓✓ ✓
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The shock-contact problem shows
little difference among the methods.

• The snapshots are similar.
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The moving-shock problem tests the basic
strong-shock propagation capabilities.

• One-material,  2×104-strength shock propagation:

• TC: “Comparison of instantaneous and relaxation results:

“Closed-form” – Computed = Difference

(ρ,p,u,γ ) =
(4.0, 4/3,         1.0, 5/3),     -1≤x<0
(1.0, 2/3×10-4, 0.0, 5/3),      0<x≤1 tfinal = 0.5

uLeft = 1.0
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The moving-shock problem also exhibits
overall first-order convergence.

• Make the Ansatz:
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The moving-shock problem exhibits some
minor differences among the methods.

• The snapshots are similar.
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Finer (4x) resolution on the  moving-shock
problem reveals only minor differences.

• Minor differences.
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• Early-time differences.
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A water-air shock tube has become a de facto
standard for multimaterial hydro solvers.

• Water-air shock tube problem* with stiffened gas EOS:

• TC: Differences in post-shock and near-rarefaction results.

“Closed-form” – Computed = Difference

(ρ,p,u,γ ,p∞) =
(1.e+3,1.e+9,0.0,4.4,6.e+8),   0≤x<0.7
(5e+2, 1.e+6,0.0,1.4,0.0),    0.7<x≤1.0

p = (γ −1)ρe-γ  p∞
tfinal = 2.2e-4

* R. Saurel & R. Abgrall, “A Multiphase Godunov Method for Compressible
Multifluid and Multiphase Flows,” J. Comp. Phys. 150, 425–467 (1999).
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The water-air shock tube problem highlights
some differences among the methods.

• The snapshots and time-histories differ among all methods.
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Again, increasing mesh resolution by a factor
of four implies a shorter relaxation time.

• The water-air shock snapshots and time-histories still differ.
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There are advantages, disadvantages,
and open questions about this approach.

• Exact solutions of three mixed-cell equilibrium closure models permit
confirmation of Newton’s method coding (but there are open questions).

• Riemann-problem-based pressure-relaxation model for mixed cells:
– This breaks the assumption of instantaneous pressure equilibrium.
– It uses a physics-motivated approach to evolve the mixed cell states.
– It is sufficiently general for a tabular EOS.
– Use the form of the K-S pressure relaxation equations (1) to better

understand and/or (2) to improve other models (Tipton, Barlow).

• Limitations of this model:
– Slower: (1) Riemann-solve (→approx.), (2) Newton’s method (→1-step).
– Extension to 2-D or 3-D would require further approximations.

 E.g., how does one address the issue of interface orientation?
– How does one deal with many (>2) materials?

• Rigorous comparison of different methods on well-defined test
problems allows careful examination of important flow situations.


