Ion-sound waves (electrostatic low frequency waves)

are longitudinal waves similar classical sound

in gas
$$c_s = \frac{\omega}{k} = \left(\frac{\gamma k_B T}{M}\right)^{\frac{1}{2}}$$

plasma – sound is slow for electrons, but fast for ions

Electron density is in each moment in equilibrium with instantaneous potential:

$$n_{e} = n_{0} \exp\left(\frac{e\Phi_{1}}{k_{B}T_{e}}\right) = n_{0}\left(1 + \frac{e\Phi_{1}}{k_{B}T_{e}} + ...\right)$$
$$n_{1} = n_{0} \frac{e\Phi_{1}}{k_{B}T_{e}} \qquad \text{electrons are isothermal } (\gamma = 1)$$

Electric field may be also derived from quasi-neutrality condition—sum of forces acting on electrons = 0

$$eE_1 = -e\nabla\Phi_1 = -\frac{1}{n_0}\nabla p_{e1} = -\frac{k_B T_e}{n_0}\nabla n_1 = -ikk_B T_e \frac{n_1}{n_0} \qquad \Rightarrow E_1$$

Vlny 1

hydrodynamic equation for ion fluid

$$i\omega n_{i1} = n_{i0}ikv_{i1} \qquad n_{i0} = \frac{n_0}{Z}$$
$$-i\omega Mv_{i1} = -\frac{\nabla p_{i1}}{n_{i0}} + ZeE_1 \qquad E_1$$
$$E_1 = -\nabla \Phi = -ik\Phi_1$$

Poisson equation is not needed

$$\frac{-\varepsilon_{0}\Delta\Phi_{1} = Zen_{i0} = en_{1} = e(Zn_{i1} - n_{1})}{\text{slow motion}} \rightarrow \text{quasineutrality} \quad Zn_{i1} = n_{1}}$$
we express
$$\Phi_{1} = \frac{k_{B}T_{e}}{en_{0}}n_{1} = \frac{k_{B}T_{e}}{en_{0}}Zn_{i1} \Rightarrow \text{equations of motion}$$

$$-i\omega M n_{i0} \mathbf{v}_{i1} = -ik\gamma_i k_B T_i n_{i1} - ikk_B T_e Z n_{i1} - \text{ion motion}$$
$$i\omega n_{i1} = n_{i0} ik \mathbf{v}_{i1} \qquad \text{continuity equation}$$

$$\omega^{2} = \underbrace{\left(\frac{\gamma_{i}k_{B}T_{i} + Zk_{B}T_{e}}{M}\right)}_{C_{s}^{2}} \cdot k^{2}$$

 \Rightarrow dispersion equation

usually ions are adiabatic $\gamma_i = 5/3$

If $ZT_e \approx T_i$, then there is strong collisionless damping by ions, phase velocity $c_s \approx$ ion thermal velocity

Ion-sound waves for $ZT_e >> T_i$ are weakly damped

ion-sound velocity
$$c_s \simeq \sqrt{\frac{Zk_B T_e}{M}}$$

The above applied plasmatic approximation does not hold for large *k* comparable with λ_{De}^{-1} . Consequently, dispersion relation will be derived without plasmatic approximation:

$$\nabla \vec{E}_1 = -\Delta \Phi_1 = k^2 \Phi_1 = e \left(Z n_{i1} - n_{e1} \right) / \varepsilon_0$$
$$n_{e1} = \frac{e \Phi_1}{k_B T_e} n_0$$

Density perturbation is included into Poisson equation

$$\Phi_1\left(k^2 + \frac{n_0 e^2}{\varepsilon_0 k_B T_e}\right) = \frac{Zen_{i1}}{\varepsilon_0}$$

$$\Phi_1 = \frac{Zen_{i1}}{\varepsilon_0} \frac{\lambda_{De}^2}{1 + k^2 \lambda_{De}^2}$$

potential Φ_1 is included into ion equation of motion

$$\frac{\omega}{k} = \left(\frac{Zk_BT_e}{M}\frac{1}{1+k^2\lambda_{De}^2} + \frac{\gamma_ik_BT_i}{M}\right)^{1/2}$$

Dispersion relation of ion-sound waves differs due to inclusion of deviation from quasineutrality only by the term $k^2 \lambda_{De}^2$,

The most simple relation $k >> \lambda_{De}^{-1}$ a $T_i = 0$

$$\omega^2 = \frac{n_0 Z e^2}{\varepsilon_0 M} = \frac{n_{i0} Z^2 e^2}{\varepsilon_0 M} = \omega_{pi}^2$$

... ion plasma frequency

Elmg. waves in plasmas without external magnetic field B₀

Maxwell's equations

we transform to wave equation

$$\nabla \times \vec{E} = -\frac{\partial B}{\partial t}$$

$$\frac{1}{\mu_0} \nabla \times \vec{B} = \varepsilon_0 \frac{\partial \vec{E}}{\partial t} + \vec{j} \qquad \nabla \times \left(\nabla \times \vec{E} \right) + \varepsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2} = \mu_0 \frac{\partial \vec{j}}{\partial t}$$

Plasma impact via high-frequency current density \vec{j} (electron current dominant) Fluid equations for electrons – equation for electron fluid velocity

$$\frac{\partial \vec{v_e}}{\partial t} + \left(\vec{v_e} \nabla \right) \vec{v_e} = -\frac{1}{n_e m_e} \nabla p_e - \frac{e}{m_e} \left(\vec{E} + \vec{v_e} \times \vec{B} \right)$$

A linear (i.e. weak) electromagnetic wave assumed, linearization

 \rightarrow

$$\vec{E} = \vec{E}_1 \quad \vec{B} = \vec{B}_1 \quad \vec{j} = \vec{j}_1 \quad \vec{v}_e = \vec{v}_1 \quad n_e = n_0 + n_1 \quad p_e = p_0 + p_1$$

Magnetic force $-e\left(\vec{v}_1 \times \vec{B}_1\right)$ omitted (small of the 2nd order)

 $\vec{v_1} \| \vec{E_1} \, \operatorname{div} \vec{E_1} = 0 \Rightarrow \operatorname{div} \vec{v_1} = 0, \, n_1 = 0 \Rightarrow p_1 = 0$ electron density does not change, equation for electron velocity simplified

$$\frac{\partial \vec{v}_{e1}}{\partial t} = -\frac{e}{m_e} \vec{E}_1$$

current density

$$\vec{j}_1 = -en_0\vec{v}_1 = -en_e\vec{v}_1 \quad \Longrightarrow \quad \frac{\partial\vec{j}_1}{\partial t} = -en_e\frac{\partial\vec{v}_1}{\partial t} = \frac{e^2n_e}{m_e}\vec{E}_1$$

For a monochromatic wave of frequency ω with time dependence exp(-i ω t)

$$\vec{v}_1 = -\frac{ie\vec{E}_1}{m_e\omega} \qquad \qquad \vec{j}_1 = \sigma\vec{E}_1 = \frac{ie^2n_e}{m_e\omega}\vec{E}_1$$

Relative permittivity for the electromagnetic (transverse) wave ε_r^{tr}

$$\varepsilon_r^{tr} = 1 + \frac{i\sigma}{\varepsilon_0\omega} = 1 - \frac{e^2 n_e}{\varepsilon_0 m_e \omega^2} = 1 - \frac{\omega_{pe}^2}{\omega^2}$$
 (no spatial dispersion)
_{Vlny 7}

When expression for current is inserted into wave equation

$$-\Delta \vec{E}_1 + \frac{1}{c^2} \frac{\partial^2 \vec{E}_1}{\partial t^2} = -\mu_0 \frac{\partial \vec{j}_1}{\partial t} = -\frac{1}{c^2} \frac{e^2 n_e}{\varepsilon_0 m_e} \vec{E}_1$$

The dispersion equation is obtained for a wave of the wavevector k

$$\omega^{2} = \omega_{pe}^{2} + c^{2}k^{2}$$
When ion current is added, then $\omega_{pe}^{2} \rightarrow \omega_{p}^{2}$

$$k^{2} = \omega^{2}\mu_{0}\varepsilon_{0}\varepsilon_{r}^{tr} = \omega^{2}(1-\omega_{p}^{2}/\omega^{2})/c^{2}$$

phase
$$v_{\varphi} = \frac{\omega}{k} = \sqrt{c^2 + \omega_p^2 / k^2}$$
 group $v_g = \frac{d\omega}{dk} = c^2 k / \omega = c^2 / v_{\varphi}$

for $\omega < \omega_p \rightarrow k^2 < 0$ wave does not propagate, it penetrates into plasma only via skin-effect

for $\omega \to \omega_{p+}$ $k \to 0$ and wave is totally reflected (cut off frequency) !! no absorption in collisionless approximation

- $n_c = 10^{21} \text{cm}^{-3} \rightarrow \lambda = 1,06 \ \mu\text{m} \text{ (Nd-laser)}$ $n_c = 10^{19} \text{ cm}^{-3} \rightarrow \lambda = 10,6 \ \mu\text{m} \text{ (CO}_2\text{-laser)}$
- $n_c = 10^{13} \,\mathrm{cm}^{-3} \longrightarrow \lambda = 1,06 \,\mathrm{cm} \,(\mathrm{cm \, waves})$

Collisional absorption (also called **inverse bremsstrahlung**)

Electron collisions with other type of particles cause absorption (dominance of electron-ion collisions is assumed for simplicity)

Absorption of a photon during collision with ion is **time-reversed** process to the bremsstrahlung emission.

Derivation of absorption coefficient from microscopic description – tedious. Macroscopically - collisions \Rightarrow friction slowing down electron oscillations When electron collides with ion, the ordered oscillation velocity of electron transforms to stochastic thermal velocity and wave must missing oscillation energy to the electron – and energy of wave is thus absorbed by electrons

Equation for velocity of electron fluid with electron-ion collision frequency ν_{ei}

$$\frac{\partial \vec{v}_1}{\partial t} + \nu_{ei}\vec{v}_1 = -\frac{e}{m_e}\vec{E}_1$$

For a monochromatic wave of frequency ω with time dependence exp(-i ω t)

$$\vec{v}_{1} = -\frac{ie\vec{E}_{1}}{m_{e}(\omega + i\nu_{ei})}$$

$$\vec{j}_{1} = \sigma\vec{E}_{1} = \frac{ie^{2}n_{e}}{m_{e}(\omega + i\nu_{ei})}\vec{E}_{1} = i\frac{\omega e^{2}n_{e}}{m_{e}(\omega^{2} + \nu_{ei}^{2})}\vec{E}_{1} + \frac{\nu_{ei}e^{2}n_{e}}{m_{e}(\omega^{2} + \nu_{ei}^{2})}\vec{E}_{1}$$

Part of current in phase with the electric field \Rightarrow Joule heating, absorption

Absorbed power per unit volume

$$W = \left\langle \vec{j}_1 \cdot \vec{E}_1 \right\rangle = \frac{1}{2} \Re \left\{ \vec{j}_1 \cdot \vec{E}_1^{\star} \right\} = \frac{1}{2} \frac{\nu_{ei} e^2 n_e}{m_e \left(\omega^2 + \nu_{ei}^2 \right)} |\vec{E}_1|^2$$

Relative permittivity - complex with positive imaginary part

$$\varepsilon_r^{tr} = 1 + \frac{i\sigma}{\varepsilon_0\omega} = 1 - \frac{e^2n_e}{\varepsilon_0m_e\omega\left(\omega + i\nu_{ei}\right)} \simeq 1 - \frac{\omega_p^2}{\omega^2 + \nu_{ei}^2} + i\frac{\nu_{ei}}{\omega}\frac{\omega_p^2}{\omega^2 + \nu_{ei}^2}$$

Wavevector is then given by the expression

$$k^2 = \frac{\omega^2}{c^2} \varepsilon_r^{tr} = \frac{\omega^2}{c^2} \left(1 - \frac{\omega_p^2}{\omega^2 + \nu_{ei}^2} + i \frac{\nu_{ei}}{\omega} \frac{\omega_p^2}{\omega^2 + \nu_{ei}^2} \right)$$

Imaginary part-decrease of electric field amplitude in propagation direction Absorbed energy is transferred to the **electron thermal energy**, ions are not directly heated. As energy exchange between electrons and ions is slow process, electron temperature in corona of laser-produced plasmas is higher than ion temperature.

Normal incidence of electromagnetic wave on planar plasma

Permittivity depends only on x ($\varepsilon_r = \varepsilon_r(x)$) and wavevector is in x direction

$$\operatorname{curl} E + \frac{\partial B}{\partial t} = 0 \qquad \operatorname{curl} \operatorname{curl} = \operatorname{grad} \operatorname{div} - \Delta$$
$$\operatorname{curl} B - \mu_0 \frac{\partial D}{\partial t} = 0 \qquad \operatorname{div} \vec{D} = 0 = \varepsilon \operatorname{div} \vec{E} + \frac{\vec{E} \nabla \varepsilon}{0} \qquad \Longrightarrow \operatorname{div} \vec{E} = 0$$
if time scale of density variations is $\tau >> \omega^{-1} \qquad \varepsilon_r(x, t) \to \varepsilon_r(x)$ and
$$\Delta E - \mu_0 \varepsilon_0 \varepsilon_r \frac{\partial^2 E}{\partial t^2} = 0 \qquad \frac{\partial}{\partial t} \to -i\omega \qquad E \sim e^{-i\omega t}$$
$$\partial^2 E + \frac{\omega^2}{2} \varepsilon_r E = 0 \qquad \varepsilon_r^2 = 0$$

 $\Delta E - \mu_0 \varepsilon_0 \varepsilon_r \frac{1}{\partial t^2} = 0 \qquad \qquad \overline{\partial t} \rightarrow -i\omega \qquad E \sim e^{-i\omega t}$ $\frac{\partial^2 E}{\partial x^2} + \frac{\omega^2}{c^2} \varepsilon_r E = 0 \implies k^2 = \frac{\omega^2}{c^2} \varepsilon_r \qquad \text{stationary wave equation}$ $\text{if } \lambda \left| \frac{\nabla \varepsilon}{\varepsilon} \right| <<1 \implies \varepsilon \text{ is slowly varying in space}$

WKB approximation

$$E = E_{+}(x)e^{i\int k\,dx} + E_{-}(x)e^{-i\int k\,dx} \qquad E^{*} = \begin{bmatrix} \underbrace{-k^{2}E_{+}}_{0.\check{r}\check{a}d} + \underbrace{2ik\frac{\partial E_{+}}{\partial x} + i\frac{\partial k}{\partial x}E_{+}}_{1.\check{r}\check{a}d} + \underbrace{\frac{\partial^{2}E_{+}}{\partial x^{2}}}_{2.\check{r}\check{a}d} \end{bmatrix} e^{i\int k\,dx} + \dots$$

$$0. \text{ order} \qquad -k^{2}E_{+} = \frac{\omega^{2}}{c^{2}}\varepsilon_{r}E_{+} \qquad \text{ fulfilled}$$

$$1. \text{ order} \qquad 2ik\frac{\partial E_{+}}{\partial x} + i\frac{\partial k}{\partial x}E_{+} = 0 \qquad E \sim k^{-\frac{1}{2}} \sim \varepsilon_{r}^{-\frac{1}{4}}$$

$$E = \frac{E_{0+}}{\sqrt[4]{\varepsilon_{r}}}e^{i\int k\,dx} + \frac{E_{0-}}{\sqrt[4]{\varepsilon_{r}}}e^{-i\int k\,dx} \qquad \text{WKB solution (no reflection !!)}$$

Such density (permittivity) profiles do exist where WKB solves the task exactly

Critical point neighborhood – $\varepsilon \to 0$ - WKB approximation is not valid Solution is found for linear profile of electron density n_e relative permittivity $\varepsilon_r = -ax + iS$ where $S = v_{ei}/\omega$ in the critical surface Plasma density is growing in direction of x axis – field must go to 0 for $x \rightarrow \infty$

$$\frac{\partial^2 E}{\partial x^2} + \frac{\omega^2}{c^2} \left(-ax + iS\right) E = 0 \qquad \qquad \xi = \left(\frac{\omega}{ca}\right)^{2/3} \left(-ax + iS\right) \implies \quad \frac{d^2 E}{d\xi^2} + \xi E = 0$$

There exists exact solution that fulfills the boundary condition

Oblique incidence and resonance absorption

Permittivity depends only on $x (\varepsilon_r = \varepsilon_r(x))$ and wavevector $\vec{k} = (k_x, k_y, 0)$

$$k^{2} = k_{x}^{2} + k_{y}^{2} = k_{x}^{2} + \frac{\omega^{2}}{c^{2}}\sin^{2}\theta_{0}$$

$$\odot E$$

 $\backsim B$ TE wave =
s-polarization
 $\odot B$
 $\backsim E$ TM wave =
p-polarization

reflection point $\operatorname{Re}(\varepsilon_r) = \sin^2 \theta_0$

p-polarization

$$\vec{E} \cdot \nabla \mathcal{E} \neq 0$$

div $\vec{E} \neq 0$

$$\frac{d^{2}B}{dx^{2}} - \frac{1}{\varepsilon} \frac{d\varepsilon}{dx} \frac{dB}{dx} + \frac{\omega^{2}}{c^{2}} \left(\varepsilon_{r} - \sin^{2}\theta_{0}\right) B = 0$$
$$E_{x} = -\frac{k_{y}B}{\omega\mu_{0}\varepsilon} = -\frac{\sin\theta_{0}}{\sqrt{\mu_{0}\varepsilon_{0}}} \cdot \frac{B}{\varepsilon_{r}} \qquad \text{singularity in the critical surface}$$

<u>Resonance absorption</u> $t \rightarrow l$ (transverse elmg. wave transfers into longitudinal) l – plasma wave cannot escape from plasma– collisional or collisionless in principle linear process – it exists even at small intensities Iabsorption

$$\int \frac{|E_x|^2}{|e_x|^2} \quad \text{when } \frac{\nu}{\omega} \to 0 \quad A = f(q) \quad q = (k_0 L)^{\frac{2}{3}} \sin^2 \theta_0$$

$$\theta_0 \to 0 \quad E_x \Big|_{x_c} \to 0 \quad \text{normal incidence - no } E_x$$

$$L \to \infty \quad E_x \Big|_{x_c} \to 0 \quad \text{reflection point far from } x_c$$

 $E_{\mathbf{X}}$

The width of field maximum Δ

$$\frac{\frac{|n-n_c|}{n_c}}{\underbrace{\frac{\Lambda}{L}}} = \frac{v_c}{\omega} \implies \Delta = \frac{v_c}{\omega}L$$

Absorbed energy

$$W = \frac{\omega}{c} \int_{-\Delta/2}^{\Delta/2} \frac{v_{ei}}{\omega} |E|^2 dz \simeq \frac{v_c}{\omega} \frac{\omega}{c} |E_z(x_c)|^2 \cdot \Delta = \frac{\omega}{c} \frac{v_c}{\omega} \frac{\sin^2 \theta_0}{\left(\frac{v_c}{\omega}\right)^2} B^2(x_c) c^2 \cdot \left(\frac{v_c}{\omega}\right) L$$

 $W = \omega c B^2 \left(x_c \right) \times L \sin^2 \theta_0$

independent of V_c

Warm plasma (spatial dispersion of longitudinal field)

$$\frac{1}{\varepsilon_0}\vec{D} = \varepsilon_r^{tr}\vec{E} + \frac{3v_{Te}^2}{c^2} \left[\text{grad } \operatorname{div}\vec{E} - \frac{1}{3}\frac{\nabla\varepsilon_r}{\varepsilon_r - 1}\operatorname{div}\vec{E} \right]$$

Plasma wave propagates from critical surface to rarified plasma, in decreasing density wavenumber k grows and thus v_{ϕ} decreases. When it becomes comparable to thermal velocity \Rightarrow Landau damping (it accelerates electrons out of plasma)

At higher intensities plasma wave damps via nonlinear mechanism of wavebreaking – energy is transferred to a small group of so called ,,hot (fast) electrons. Electrons are accelerated both into target, and to plasma-vacuum, where most of electrons are reflected in electrostatic field of sheath back into target.

Nonlinearities of electromagnetic wave propagation in plasmas

$$\varepsilon_r = 1 - \frac{e^2 n_e}{\varepsilon_0 m_e \omega^2} = 1 - \frac{\omega_p^2}{\omega^2}$$

A. $\rightarrow m_e$ – relativistic nonlinearity

$$m_{e} = \frac{m_{e0}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} \approx \frac{m_{e0}}{\sqrt{1 - \frac{e^{2} \left|E_{L}\right|^{2}}{2 m_{e}^{2} c^{2} \omega^{2}}}} \qquad \text{(for } v_{\text{osc}} \gg v_{\text{Te}}\text{)}$$

$$v_{osc} \ll c \Rightarrow \qquad \varepsilon_{r} = 1 - \frac{e^{2} n_{e}}{\varepsilon_{0} m_{e0} \omega^{2}} \left(1 - \frac{1}{4} \frac{e^{2} \left|E_{L}\right|^{2}}{m_{e0}^{2} c^{2} \omega^{2}}\right)$$

nonlinearity

if

 $\delta \epsilon \sim |E_L|^2 / \omega^2 \sim I \lambda^2$ - quadratic nonlinearity – permittivity **grows** with the quadrat of electric field

- B. $\rightarrow n_e$ density modification caused by ponderomotive force or pressure gradient
 - a) ponderomotive nonlinearity

$$F_{p} = -\frac{\rho}{2\rho_{c}}\varepsilon_{0}\nabla\left\langle E^{2}\right\rangle = -\frac{\rho}{4\rho_{c}}\varepsilon_{0}\nabla\left|E_{L}\right|^{2}$$

$$F_p - \nabla p = 0$$

Ponderomotive force pushes plasma out of intense field \Rightarrow it causes density gradient \Rightarrow pressure gradient

In equilibrium pressure gradient compensates for ponderomotive force:

$$-\frac{n_e}{4n_c}\varepsilon_0 \nabla \left|E_L\right|^2 - k_B T_e \nabla n_e = 0 \quad \Rightarrow \quad n_e = n_0 \exp\left(-\frac{\varepsilon_0 \left|E_L\right|^2}{4k_B T_e n_c}\right)$$

For small *I* – positive quadratic nonlinearity

b) thermal – plasma is most heated in the field maximum and the density decreases there to keep the pressure constant

 $\delta \varepsilon \sim |E_L|^2 / n_c \sim I \lambda^2$

Nonlinearity consequences

A. Formation of filaments (hot spots inside a laser beam)

Quadratic medium $\varepsilon_R = \varepsilon_L + \varepsilon_2 \langle E^2 \rangle$

Wave
$$E = E_0 \cos(k_0 x - \omega t)$$
 $E \parallel z \quad \delta E \parallel z$

Perturbation (for simplicity periodic in the normal to *E* direction)

$$\delta E = \left[e_1(x) \cos(k_0 x - \omega t) + e_2(x) \sin(k_0 x - \omega t) \right] \cdot \cos(k_\perp y)$$

 e_1 is the component in phase with the main planar wave

$$\varepsilon = \varepsilon_L + \varepsilon_2 \left\langle \left(E + \delta E \right)^2 \right\rangle = \varepsilon_L + \frac{1}{2} \varepsilon_2 E_0^2 + \varepsilon_2 e_1 \left(x \right) E_0 \cos(k_\perp y)$$

Field perturbation induces permittivity perturbation periodic in *y*

 $k_0^2 = \frac{\omega^2}{c^2} \varepsilon_m$ wavevector in homogeneous medium

 $2k_0 \frac{de_1}{dx} - k_{\perp}^2 e_2 = 0$

$$\Delta = \partial^2 / \partial x^2 + (\partial^2 / \partial y^2 + \partial^2 / \partial z^2) = \nabla_{\parallel}^2 + \nabla_{\perp}^2$$

notation

$$2ik_0\frac{\partial\delta E}{\partial x} + \nabla_{\perp}^2\delta E + \frac{\omega^2}{c^2}\delta\varepsilon E_0 = 0$$

$$-2k_0\frac{de_2}{dx} - k_{\perp}^2 e_1 + \frac{\omega^2}{c^2}\varepsilon_2 E_0^2 e_1 = 0$$

wave equation for perturbation next rewritten for components

$$\sim \cos(k_0 x - \omega t)$$

$$\sim \sin(k_0x - \omega t)$$

Assumption:
$$e_1(x) \sim e^{k_{\parallel}x}$$
 $k_{\parallel} = \pm \frac{k_{\perp}}{2k_0} \sqrt{\frac{\omega^2}{c^2}} \varepsilon_2 E_0^2 - k_{\perp}^2$

The higher is the radiation intensity, the narrower perturbations can grow.

Maximum growth
$$k_{\parallel} = \frac{\omega \varepsilon_2 E_0^2}{4 c \sqrt{\varepsilon_m}} \qquad \text{for} \qquad k_{\perp}^2 = \frac{\omega^2}{2c^2} \varepsilon_2 E_0^2$$

Laser beam is finally split into high intensity zones (hot spots) – filaments are observed when looking from the side

B. Self-focusing

Laser beam focuses as a whole at lower intensity – filaments are formed earlier for high *I* and quadratic nonlinearity,

Wave equation (ε_L is linear and $\delta \varepsilon$ nonlinear part of permittivity)

$$\Delta E - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \Big[(\varepsilon_L + \delta \varepsilon) E \Big] = 0$$

$$\xi = t - \frac{x}{v_g}$$

$$E = \Psi (x, y, z, \xi) \exp (ikx - i\omega t)$$

 Ψ is slowly varying complex wave amplitude

$$\left(2ik\frac{\partial}{\partial x} + \nabla_{\perp}^{2}\right)\Psi = -k^{2}\frac{\delta\varepsilon}{\varepsilon_{L}}\Psi$$
$$\Psi = A\exp(i\varphi)$$

parabolic equation

$$k^2 = \omega^2 \varepsilon_L / c^2$$

 Ψ is divided into real amplitude and phase

Then, one can write equations for the amplitude and the phase

 $k\frac{\partial}{\partial x}A^2 = -\nabla_{\perp} \left(A^2 \nabla_{\perp} \varphi\right) \dots \qquad \text{describes the energy transport}$

the shape of wavefront

Self-focusing of collimated beam occurs, if refraction is greater than diffraction

For Gaussian beam

and self-focusing condition reads

$$A = A_0 \exp\left(-\frac{r^2}{2a^2}\right)$$
$$\nabla_{\perp}^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r}\right)$$
$$\frac{\varepsilon_2 A_0^2}{\varepsilon_1} > \frac{2}{k^2 a^2}$$

As $A_0^2 a^2 \sim P$, self-focusing occurs, is beam power is $P > P_0$ – threshold power for self-focusing [for relativistic NL is $P_0 \simeq 17.5(n_c/n_e)$ GW].

Gaussian beam would focus according to the above equations ideally into a point focus, however the slowly varying amplitude approximation is not valid in its neighborhood.

Elmg. waves in plasma with external magnetic field B₀

Let's assume homogeneous stationary magnetic field B_0 .

Plasma is **anisotropic**, we derive **conductivity tensor** σ_{ij} and from conductivity we shall calculate tensor of **high-frequency permittivity** ε_{ij} .

We shall assume high-frequency waves, and thus for simplicity we omit the ion current. Further, for simplicity we shall assume cold plasma and omit possible impact of gradient of high-frequency pressure.

Let axis z is in the direction of B_0 . Let weak high frequency field E_1 (B_1 does not influence linear conductivity) is of frequency ω . Plasma is collisionless. Then

$$\vec{u}_1 = -i\frac{e}{m_e\omega}\vec{E}_1 - i\frac{\omega_c}{\omega}\vec{u}_1 \times \hat{z}$$

Magnetic field has no impact on conductivity in z direction and for directions x, y we obtain

$$u_{1x} = -i\frac{\omega e E_{1x}}{m_e \left(\omega^2 - \omega_c^2\right)} - \frac{e \omega_c E_{1y}}{m_e \left(\omega^2 - \omega_c^2\right)}$$
$$u_{1y} = \frac{e \omega_c E_{1x}}{m_e \omega^2 \left(\omega^2 - \omega_c^2\right)} - i\frac{\omega e E_{1y}}{m_e \left(\omega^2 - \omega_c^2\right)}$$

The current is
$$\vec{j}_1 = -e n_{e0} \vec{u}_1 = \vec{\sigma} \vec{E}_1$$
 and permittivity $\varepsilon_{ij} = \varepsilon_0 \varepsilon_{r,ij} = \varepsilon_0 \left(\delta_{ij} + i \frac{\sigma_{ij}}{\omega \varepsilon_0} \right)$

$$\vec{\varepsilon}_{r} = \begin{pmatrix} 1 - \frac{\omega_{p}^{2}}{\omega^{2} - \omega_{c}^{2}} & i \frac{\omega_{c}}{\omega} \frac{\omega_{p}^{2}}{\omega^{2} - \omega_{c}^{2}} & 0 \\ -i \frac{\omega_{c}}{\omega} \frac{\omega_{p}^{2}}{\omega^{2} - \omega_{c}^{2}} & 1 - \frac{\omega_{p}^{2}}{\omega^{2} - \omega_{c}^{2}} & 0 \\ 0 & 0 & 1 - \frac{\omega_{p}^{2}}{\omega^{2}} \end{pmatrix}$$

From Maxwell's equations one derives wave equation

$$i\vec{k}\times\vec{E}-i\omega\vec{B}=0 \qquad i\vec{k}\times\vec{B}+i\omega\varepsilon_{0}\vec{\varepsilon}_{r}\vec{E}=0 \quad \Rightarrow \quad -\vec{k}\times\left(\vec{k}\times\vec{E}\right)-\frac{\omega^{2}}{c^{2}}\vec{\varepsilon}_{r}\vec{E}=0$$

Coordinate system is chosen so that $\vec{k} = (k_x, 0, k_z)$ a non-zero solution of homogeneous equation exists only if the determinant is equal to 0.

$$\det \begin{pmatrix} k_{z}^{2} - \frac{\omega^{2}}{c^{2}} \varepsilon_{r,xx} & -\frac{\omega^{2}}{c^{2}} \varepsilon_{r,xy} & -k_{x} k_{z} \\ -\frac{\omega^{2}}{c^{2}} \varepsilon_{r,yx} & k_{x}^{2} + k_{z}^{2} - \frac{\omega^{2}}{c^{2}} \varepsilon_{r,yy} & 0 \\ -k_{x} k_{z} & 0 & k_{x}^{2} - \frac{\omega^{2}}{c^{2}} \varepsilon_{r,zz} \end{pmatrix} = 0$$

A. $k \perp B_0$ (propagation normal to magnetic field) if $\vec{E} \parallel \vec{B}_0$ B_0 does not influence wave – ordinary wave-O 3^{rd} line of determinant $k_x^2 - \frac{\omega^2}{c^2} \varepsilon_{r,zz} = 0 \implies \omega^2 = \omega_p^2 + c^2 k^2$ extraordinary wave – X influenced by field B_0 – 1st and 2nd row and column $\Rightarrow V_{1y} \Rightarrow F_x \sim V_{1y} \times B_0 \Rightarrow V_{1x} \Rightarrow j_x \Rightarrow E_x$

Electric field is not normal to the propagation direction

Dispersion relation for X wave is $(\omega_h^2 = \omega_p^2 + \omega_c^2)$

$$\frac{c^2k^2}{\omega^2} = \frac{c^2k_x^2}{\omega^2} = 1 - \frac{\omega_p^2}{\omega^2} \frac{\omega^2 - \omega_p^2}{\omega^2 - \omega_h^2}$$

Relative permittivity of plasma for X wave (indexu of refraction *n* squared)

$$\varepsilon_{r} = n^{2} = 1 - \frac{\omega_{p}^{2}}{\omega^{2}} \frac{\omega^{2} - \omega_{p}^{2}}{\omega^{2} - \omega_{h}^{2}}$$

$$\varepsilon_{r} = \frac{1}{\omega} \qquad \text{pro } \omega = \omega_{h}$$

$$\varepsilon_{r} = 0 \quad \text{for } \omega_{L} = \frac{1}{2} \left[-\omega_{c} + \sqrt{\omega_{c}^{2} + 4\omega_{p}^{2}} \right]$$

$$\varepsilon_{r} = 0 \quad \text{for } \omega_{R} = \frac{1}{2} \left[\omega_{c} + \sqrt{\omega_{c}^{2} + 4\omega_{p}^{2}} \right]$$

for $\omega \to \omega_{h-}$ there is resonance $(k \to \infty) \Rightarrow$ total absorption of wave points $\omega \to \omega_{L+}, \omega_{R-}$ are cutoffs $(k \to 0) \Rightarrow$ total reflection of the wave

A. $k \parallel B_0$ (propagation along magnetic field)

$$\det \begin{pmatrix} k_z^2 - \frac{\omega^2}{c^2} \varepsilon_{r,xx} & -\frac{\omega^2}{c^2} \varepsilon_{r,xy} \\ -\frac{\omega^2}{c^2} \varepsilon_{r,yx} & k_z^2 - \frac{\omega^2}{c^2} \varepsilon_{r,yy} \end{pmatrix} = 0$$

Left-handed circular wave (L wave)

$$\varepsilon_r = n^2 = 1 - \frac{\omega_p^2}{\omega^2} \frac{1}{1 + \frac{\omega_c}{\omega}}$$
 $\omega_L - \text{cutoff, propagation for } \omega > \omega_L$

Right-handed circular wave (R wave) – cyclotron rotation of electrons is right-handed - resonance!!

$$\varepsilon_r = n^2 = 1 - \frac{\omega_p^2}{\omega^2} \frac{1}{1 - \frac{\omega_c}{\omega}}$$
 propagates for $\omega > \omega_R$

and $\omega < \omega_c$ (whistlers)– resonance for ω_c

permittivity for R wave

CMA diagram

(electromagnetic waves)

It contains

- boundaries between particular areas of propagation types
- vertically propagation along B, horizontally – normally to B
- dependence of phase velocity on direction of propagation
- transition between types of waves if propagation direction changes

density (ω_p^2/ω^2) on horizontal axis magnetic field oriented along vertical axis – value (ω_c/ω) on vertical axis

Ion electromagnetic waves (hydromagnetic waves)

- exist only in presence of B_0

a) $\vec{k} \parallel \vec{B}_0$ – Alfvén wave

Plasma moves with the same velocity as the field line Magnetic field line are "frozen" in plasma" Alfvén wave – transverse waves "on string" String \cong magnetic field line (Hannes Alfvén – Nobel prize – 1970) $\vec{k} \perp \vec{B}_0$ – magnetosonic wave $\vec{E} \perp \vec{B}_0$ b) В dispersion relation for cold plasma $\omega^{2} = \frac{k^{2} v_{A}^{2}}{1 + \frac{v_{A}^{2}}{2^{2}}} \approx k^{2} v_{A}^{2}$

for $T_e \neq 0$ additional action of pressure

$$\omega^{2} = k^{2} \frac{\mathbf{v}_{A}^{2} + c_{s}^{2}}{1 + \frac{\mathbf{v}_{A}^{2}}{\mathbf{c}^{2}}} \approx k^{2} \left(\mathbf{v}_{A}^{2} + c_{s}^{2}\right)$$