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Waves in plasma 

 
linear × nonlinear 
 
Linear waves - small perturbations of a certain state of a system (stationary 

homogeneous or slowly varying in time and/or space) 
 
Linear expansion of quantities 

0 1 0 1( , ) ( , )a a a r t b b b r t= + = + 
 

a0, b0 may be functions of r , t in general 

The products 
2 2
1 1 1 1, ,a a b b⋅  are omitted (they are small of the 2nd order) 

 

In spatially unlimited medium  1 exp( ) dka a ikr k=  
 

 Fourier expansion 
The perturbations evolve independently of each other, it is sufficient to study 
evolution of periodic perturbations. 
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We shall be often interested in eigenmodes, i.e. solutions in the form 

( ){ }1Re expa a i kr tω = ⋅ − 


 
Eigenmodes are one of the characteristics of a system. We shall search for the 

dispersion relation ( )kω ω=


 
 
Way of the system description 
• Two-fluid hydrodynamics - simple, but in some cases incomplete description of 

the system 
• Vlasov equation 
 
Classification of waves 
• Longitudinal waves  x  transverse waves 
• High-frequency (electron) waves x low-frequency waves 
• Plasma without stationary B x plasma in magnetic field (magnetized plasma) 
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Plasma waves (Langmuir waves) 
(recommended reading – Chen 4.3, 4.4, 7.4 or Nicholson 6.3-6.8,7.3,7.4) 
 longitudinal waves  - velocity u k

   
 high-frequency (in 1st approximation im → ∞ ) 
We assume small deviations from homogeneous stationary state 

 ( )0 1 ,en n n r t= + 
   

Continuity equation 

 ( )div 0e
e e

n n u
t

∂ + =
∂


 

  0. order ( )0
0 0div 0n n u

t
∂ + =
∂


    0 .n const=  

  1. order 
1

1 0 0 1
0

div 0n n u n u
t

 ∂ + + =  ∂  

 
  we omit 1 1n u     = 2. order 

    
1

0 1div 0n n u
t

∂ + =
∂


 

0 in Zn= ( )0 1

0

,eu u u r t
=

= +
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Electron density variations   –>  ( )10 ,E E r t= +
  

  

  ( )
0

div e
e i

qE n Zn
ε

= −


   1 1
0

div eqE n
ε

=


 
Equation of motion (momentum conservation) 

  

( ) ( )

1 1
1 1

0

e e e
e e ei e i

e e e

e
ei

e e

u q pu u E u u
t m m n

qu pu E
t m m n

ν

ν

∂ ∇+ ∇ = − − −
∂

∂ ∇+ ⋅ = −
∂

    

   

 

Solution will be assumed in the form ( )i kr te ω−


 ( k  is real) 

  

( ) ( )( ) ( )

( )

, Re e Re e

1 ( e . .)
2

i kr ti kr t

i kr t

a r t A A

a A c c

ωω

ω

∗− −− ∗

−

 = =  
 

= +







 

Capital letters – complex amplitudes 

( )0 0p∇ =
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Cold plasma without collisions (last term on both sides of eq. motion disappear) 
1

0 1

1 1
0

1
1

div 0

div

,
e

n n u
t

eE n

u e E
t m

u E k

ε

∂ + =
∂

= −

∂ = −
∂





 

 

     

1 0

1
0

0

0

0
e

i N n i kU
ei kE N

ei U E
m

ω

ε

ω

− + =

+ =

− + =





 




 

 
22

01
12

0

0
e

e nn n
t mε

∂ + =
∂   

2
2 0

0
pe

e

e n
m

ω
ε

=   
1

0

NU
k n
ω= ⋅   1

0

i eE N
kε

=  

Correction when ions are taken into account 

2 2 2
p pe piω ω ω= +     

2
2 0

0
pi

i

Ze n
m

ω
ε

=  
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0Eε =


00 rE ε =≠ 


Reactions on high-frequency field 1E


 (it can be internal or external) 




1

2
0

0 1 1 0

0
e

e

E

ie ne n u n u E
m

j
ω

σ

 
 
  
 

= − + =
 

 

0 div Eε ρ=


  div 0j
t
ρ∂ + =

∂


   ( )0div divE j
t

ε∂ = −
∂

 
 

frequency ω   0 0div i jEi ε
ω

ω  
+ = 

 
−


 

0
0

1 0div Ei Eσ
ωε

ε  
+ = 

 




   eigenwaves of charge 

 
  

and thus dispersion relation ω = ωp independent of k  plasma oscillations 

2

2 2
0

2
0 11 p

e
r

e n
m

ω
ω

ε
ε ω

= −= −
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Impact of collisions 
2

21 1 1
1 1 12 0ei ei p

e

u n neu E n
t m tt

ν ν ω∂ ∂ ∂+ ⋅ = − + ⋅ + =
∂ ∂∂

 
 

solution i te ω−  
2

2
1,2 2 4

ei ei
piν νω ω= − ± −     2

1 10

ei
p

ti tn e en
ν

ω −−=  damped oscil. 

Impact of pressure (non-zero temperature) 

when 0T =   
d 0
d

vg k
ω= =




  but when 0T ≠  perturbations propagate 

spatial shape of the perturbation is preserved, we choose 1 1ˆ ˆk k x u u x=  =
 

 
adiabatic process, ω > νei  collisions are not 
able to make the distribution function isotropic  

1
1 1

0

1

1
xj

e e j

xx

u e E P
t m m n r

P
x

∂ ∂= − −
∂ ∂

∂
∂
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Unperturbed pressure 0 0 0Bp n k T=  (scalar, 0T  electron temperature) 
Pressure perturbation across wavevector is caused only by density perturbation 

( )1 1 1 0 1 0yy zz BP P n k T T ⊥= = =  
In longitudinal direction, the work by pressure must transform into thermal energy 

0 0 0 0 0
0

1 dd d
2

d

B
nn V k T p V p V

n
U

= − =
    1 1,d d Tn n T →→    

0 0
1 1 12

0 0

2 2 B
B

p k TT n n
n n

k = =   1 1 0 0 10 1 3xx BB BP n n k T nk T k T= + =  

In longitudinal direction, electrons are particles with 1 degree of freedom (γ=3) 

1
1 1

0

3 B

e e

e k T nu E
t m m n x

∂ ∂= − −
∂ ∂   

22 2
0 01 1

12 2
0

3 0B

e e

k T e nn n n
t m x mε

∂ ∂
 − + =

∂ ∂  

Plasma wave propagates   ( )2 2 2 2 23 v v /p Te Te B e ek k T mωω = + =  
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Dispersion relation 2 2 2 23 vp Tekωω = +  
2

2
2

2

2 2 2

2

v 3v

3 vdv
d 3 v

3vv
v

p
Te

Te
g

p Te

Te
g

k k
k

k k

ϕ

ϕ

ωω

ω
ω

= = +

= =
+

=

 

System with temporal and spatial dispersion  ( )
2 2 2

( )
2 2

3 v, 1 pl Te
r

kk
ω

ω
ω ω

ε = − −
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Description via Vlasov equation 

v 0e e ef f feE
t r p

∂ ∂ ∂+ − =
∂ ∂ ∂


    solution 0 ( )f p , 0 0E =


 

Perturbations 1 1( , ),f r p E
 

, ˆk xk=


    
01 1

x 1v 0
x

ff f eE
t x p

∂∂ ∂+ − =
∂ ∂ ∂  

Solution in the form exp(ikx-iωt) 
  perturbation need not be small for  xv v / kϕ ω= =  

 resonance electrons 
 

1 1 1
0 0

div de eE n f p
ε ε

= − = − 
 

    
01

1
0

d
vx x

feEeikE i p
k pε ω

∂= −
− ∂


 

2
0

0 1
0

11 d 0
vx x

r

feik p E
k k p

ε
ε ω

ε

 ∂+ = − ∂ 




  ( )x

2

22
( )1 d

v1

p x
r x

g p p
k

ω
ω

ω

ε = −
−

  

where 
1

0 0( ) ( )d dx y zg p n f p p p−= 


 

01
1  = 

vx x

feEf i
k pω

∂
− ∂
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When v vTekϕ
ω=   we use Taylor expansion, resonance electrons are omitted 

  (for vϕ > c there are no resonance electrons at all) 

x

2 2 2
x

22
3 v2 v1 ( ) 1 dp

r x x
kkg p p

ω
ω ωω

ε  ≅ − + + 
    assumed v 0x xu= =  

Then  

2 22 2

22 2
3 v1 p pTe

r
kω ω
ωω ω

ε = − −     
2 2 2 23 vp Tekωω ≅ +  

 
When vϕ < c ? what to do with pole in integral – answer must be searched via 
solving initial value problem, i.e. perturbation is given in the initial time t0 and we 
follow its evolution 
For solving initial value problem, Laplace transform must be applied 

Laplace transform is defined by integral  
0

( ) ( ) e di t

t

A a t tωω
∞

=   for ω with enough 

large positive imaginary part (for a(t) limited, it is for Im(ω) > 0) 
For other ω, Laplace transform is obtained by analytic continuation of function 
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2

x

1 d1 d
v d

e p
r x

x

m g p
k k p
ω

ω
ε = +

−  

For Im(ω) > 0 integration path runs below the pole, when doing analytic 
continuation the path has to stay always below pole (go around pole from below !) 

    
One knows from residue theorem that integral over half-circle is i×π×residue 
For ω/k << c it is 

1 1 P
v

e e e e
x

e ex
x x

m m m mi pm mk k k k kp p
k k

ωπ δω ωω
 = − = − − − −  − −  

Here P denotes integral in the sense of Cauchy principal value 
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For ω real it is   

2
2

2
d( , )
d

Im e
r p

x mepx k

m gk
k p ω

ω π ωε
=

= −
 

  
Im(εr) > 0        Im(εr) < 0 

One searches complex ω =ωR+i ωI so that εr(ω,k) = 0 
Weakly damped (slowly growing) waves |ωI| << ωR  
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d Re ( )( ) Re ( ) Im ( ) 0
d

r R
r R I r R r R I

R

i i i ωω ω ω ω ω
ω
εε ε ε+ = + + =  

For ωR/k >> vTe  it is  ( )
2 2 2

22
3 v1 0Re p Te

r R
RR

kω
ω

ωω
ε = − − =  

and thus     
2 2 2 23 vR p Tekω ω= +  

imaginary part of frequency is 

 

2
2

2
Im ( ) d
d Re ( ) 2 d

d
R

e Rr R
I p

r R x

R

mepx k

m g
k p ω

ωωω π ωω
ω

ε
ε

=
= − =

 

The evolution is exp(-iωRt)exp(ωIt)  - the rate of Landau damping is γL=-ωI 

For Maxwell’s distribution it is   

2 2 2

3 3 2 2exp
8 v 2 v

p R R
I

Te Tek k
ω ω ωπω

 
= − − 
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Energy of plasma wave 
2

0 0
1
2

E j E jE
t t

ε ε∂ ∂− =  = −
∂ ∂

  
  ( )*1

2
R Ri t i tE E e E eω ω−= + 

 

E  is complex amplitude, R denotes real part, we average over time 2
R

π
ω  

( )2 20 d 1 Re ( )
4 d 2

E E
t

ε σ ω= − 
 

d ImRe ( ) Re ( )
dR I

Rω

σσ ω σ ω ω
ω

= −
 

2 2 20 d 1 d Im d 1 Re ( )
4 d 4 d d 2 R

R

E E E
t tω

ε σ σ ω
ω

− = −  
    used    

d
d I

E E
t

ω=
 

 

Conductivity  σ related to permittivity εr  
0

1r
iσε

ω ε
= +   → let Re( )R rε ε=  

   general expression                

(plasma wave       0 0
d ( ) 2

d Rωε ε ε
ω

= ) 

2 2

0
d 1 d 1( ) Re ( )
d 4 d 2

energy density

R R

R

E E
t

Wtot

ω
ωε ε σ ω

ω
 

= − 
  

=
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Linear  × Non-linear Landau damping 
in coordinate system connected to the wave is ωR=0 

        1 sinE E kx=    a          cosp
eEU e kx
k

ϕ= − = −


 
and electron equation of motion is 
                 sinem x eE kx= −   
electron oscillates in potential well with frequency 

        
1/ 2

b
e

e E k
m

ω
 

=  
 


       (bounce frequency) 

for times 1
bt ω −  motion is not influenced by field  Landau damping is linear 

for L I bγ ω ω= − >                   in time / bt π ω=  electrons start to return energy to wave 
trapped electrons  

2

1/2

v v v v v

v / 2 2

v 2

t t

e t m

t
e

m e

eE
m k

ϕ ϕ

ϕ

− < < +

=

 
=  
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BGK modes (Bernstein, Green, Kruskal) 
It follows from inhomogeneous equilibrium – accurate non-linear solution 
Stationary Vlasov equation for particle s                       has solution

v 0x s
f fq E
x p

∂ ∂+ =
∂ ∂                                             

2

( ) ( )
2 s

s

pf f q x f U
m

ϕ
 

= + = 
   

Simplest solution for cold untrapped beams 

0 0(x)v ( ) ve e en x n=    
0

0(x)v ( ) vi i i
nn x
Z

=
     

2
0v ( ) v 2 ( ) /e e ex e x mϕ= +  

Continuity equation for e,i and particle motion in potential field   (vi similarly)  
Charge densities of particle are inserted into Poisson equation 

0 0

1/ 2 1/ 2
2

0 0 0 0
2 2 2

0 0

v vd 2 21 1
d v ( ) v ( ) v v

e i

e i

e i e i

e n e n e Ze
x x x m M
ϕ ϕ ϕ

ε ε

− −       = − = + − −                
 

Equation is similar to that for motion in potential field – potential V(ϕ) 
2

2
d ( )
d

V
x
ϕ ϕ

ϕ
∂= −

∂   where  
0

0

0 0

1/ 2 1/ 22
20

2 2
0

v2 2( ) v 1 1
v v

i

e

e i

i
e

e i

Mn e ZeV m
m Z M

ϕ ϕϕ
ε

     = − + + −            
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For small ϕ  

2
2 0
0

v( ) v ( ) i i
e e

Me x m e x
Z

ϕ ϕ∧   
22

0
2 2 2

0 0 0

d 1 0
d v ve e i i

n e Z
x m M
ϕ ϕ

ε
 

+ + = 
      solution  

( )0

2 2 2 2 2
0 0

( ) sin /

/ v / v
BGK

BGK pe e pi i

x xϕ ϕ λ

λ ω ω−

=

= +  

 
periodic potential 

 electrons see it reversely 
 
 

For any potential, it is possible to construct such stationary distribution of ions and 
electrons that it creates this given potential 
 
Case-van Kampen modes 
One searches for f1 for given ω, k ( )1 1 expf f ikx i tω= −  contain δ function – 
non-physical 
There exist combinations CvK modes that do not contain singularities 
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High-frequency electrostatic waves in plasma with stationary magnetic 
field B0 

 

0k B
 
  magnetic field does not influence waves  plasma waves 

 
0k B⊥

 
 additionally to electrostatic forces, electrons are returned back by 

magnetic field – cyclotron frequency ωc  
 
when T=0   

2 2 2 2
p c hω ω ω ω= + ≡  upper hybrid frequency 

 
upper hybrid waves – plasma waves in direction normal to 0B


 

in warm plasma they propagate due to thermokinetic pressure (similarly as 
plasma waves) 
 
additionally there exist linear eigenmodes of Vlasov equation that do not 
have hydrodynamic equivalent – Bernstein modes 
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Stream instabilities (Two-stream instability) 
 
Many situations – motion electrons against ions, motion of electron groups 

Simplest situation (mainly for analytic 
solution) – 2 identical electron groups 
against each other – ions static ui=0 
 nA0= nB0= n0/2,  Zni = n0 
 vTe << v0    E0=0 

( ) 0n n u
t x
α

α α
∂ ∂+ =
∂ ∂   ( )

e

u eEu u
t m
α

α α
∂ + ∇ = −
∂     ( )0

0

div A B
eE n n n

ε
= − + −  

We solve evolution of linear perturbation  nα1, uα1, E1 ~ exp(ikx-iωt) 
( ) ( )

( )
1 0 1 0 1 1 0 1 0 1

1 1
1 0 1 1 0 1 1 1 1

0

/ 2 v 0 / 2 v 0

v v

A A A B B B

A A B B A B
e e

i n ik n u n i n ik n u n
eE eE ei u ik u i u ik u ikE n n
m m

ω ω

ω ω
ε

− + − = − + + =

− − = − − + = − = − +  

Amplitudes of velocities are expressed from equations of motion and we 
substitute them into continuity equations 
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( ) ( )
0 01 1

1 12 2
0 0

( ) ( )
2 2v vA B

e e

n neE eEn k i n k i
m k m kω ω

= − = −
+ −   and insert them to 

Poisson equation  ( ) ( )
2

0
1 12 2

0 0 0

1 1
2 v ve

e nikE ik E
m k kε ω ω

 
= + 

 + −   and from here 

we obtain dispersion relation  ( ) ( )

2

2 2
0 0

1 11
2 v v

p

k k

ω
ω ω

 
= + 

 + −   leading to 

( )4 2 2 2 2 2 2 2 2 2
0 0 0(2 v ) v v 0p pk k kω ω ω ω− + + − =  , character of the 

solution depends on the sign of absolute term, if it is > 0, 
2 2
1 20, 0ω ω> >  

then system is stable, if 
2 2 2

0v pk ω< , then 
2 2
1 20, 0ω ω> <  and root with 

positive imaginary frequency exists – solution grows in time – instability  
2 2 2

2 2 2 0
1,2 0 2

vv 1 1 8
2

p

p

kk
ω

ω
ω

 
= + ± +  

  , pro 
2 2 2

0v pk ω<  je  
2

3,4 2iω ω= ± −   

and solution 2
3 2iω ω= −  is growing exp(-iω3t) = exp (γt) 
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for 
2 2 2

0v pk ω  it is 3 0vi i kω γ= =  search for fastest growing mode (k),– 

in maximum   
2
2

2 2
0

d( ) 0
d( v )k

ω− =   
2 2 2

0
3v ;
8 8

p
pk

ω
ω γ= =  

thus fastest growing mode grows only a bit 
slower than ωp 
How the growing modes look like?  
Pro small k for growing mode 0vi kω =  
density perturbations of A,B nearly cancel 
(upper figure – v0=2) Field E1 is formed only 
by small sum of densities of order ~k2v02/ωp2 
growing field exp(ikx+kv0t) 
Fastest growing mode (lower figure)  
One sees nonzero sum of density 
perturbations of beams A,B  
Here special case of growing static 
perturbation (due to problem symmetry) 
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Other case – electron motion against ions with velocity v0 
We introduce x=ω/ωp a y=kv0/ωp 

Dispersion relation  ( )22

/ 11 ( , )e im M F x y
x x y

= + =
−  

for y> boundary, the dispersion relation has 4 real roots – stable system 
for y < boundary, the dispersion relation has only 2 real roots – instability 

 

stability  boundary  

2 2/3
2

3 31 1 1i e e

e i i

M m my
m M M

    
= + + ≈             (thus kv0≈ωp) 

maximal growth   
1/ 3

max
e

p
i

m
M

γ ω
 

=  
   


