Waves in plasma

linear \times nonlinear
Linear waves - small perturbations of a certain state of a system (stationary homogeneous or slowly varying in time and/or space)

Linear expansion of quantities
$a=a_{0}+a_{1}(\vec{r}, t) \quad b=b_{0}+b_{1}(\vec{r}, t)$
a_{0}, b_{0} may be functions of \vec{r}, t in general
The products $a_{1}^{2}, a_{1} \cdot b_{1}, b_{1}^{2}$ are omitted (they are small of the $2^{\text {nd }}$ order)
In spatially unlimited medium $\quad a_{1}=\int a_{\vec{k}} \exp (i \vec{k} \vec{r}) \mathrm{d} \vec{k} \quad$ Fourier expansion The perturbations evolve independently of each other, it is sufficient to study evolution of periodic perturbations.

We shall be often interested in eigenmodes, i.e. solutions in the form $a=\operatorname{Re}\left\{a_{1} \cdot \exp [i(\vec{k} \vec{r}-\omega t)]\right\}$
Eigenmodes are one of the characteristics of a system. We shall search for the dispersion relation $\omega=\omega(\vec{k})$

Way of the system description

- Two-fluid hydrodynamics - simple, but in some cases incomplete description of the system
- Vlasov equation

Classification of waves

- Longitudinal waves \mathbf{x} transverse waves
- High-frequency (electron) waves x low-frequency waves
- Plasma without stationary B x plasma in magnetic field (magnetized plasma)

Plasma waves (Langmuir waves)

(recommended reading - Chen 4.3, 4.4, 7.4 or Nicholson 6.3-6.8,7.3,7.4)
longitudinal waves - velocity $\vec{u} \| \vec{k}$
high-frequency (in $1^{\text {st }}$ approximation $m_{i} \rightarrow \infty$)
We assume small deviations from homogeneous stationary state

$$
\begin{array}{ll}
\quad n_{e}=n_{0}+n_{1}(\vec{r}, t) \\
\text { Continuity equation } & \vec{u}_{e}=\underbrace{\vec{u}_{0}}_{=\overrightarrow{\overrightarrow{0}}}+\vec{u}_{1}(\vec{r}, t) \quad n_{0}=Z n_{i}
\end{array}
$$

$$
\frac{\partial n_{e}}{\partial t}+\operatorname{div}\left(n_{e} \vec{u}_{e}\right)=0
$$

0 . order $\frac{\partial n_{0}}{\partial t}+\operatorname{div}\left(n_{0} \vec{u}_{0}\right)=0$ $n_{0}=$ const.

1. order $\frac{\partial n_{1}}{\partial t}+\operatorname{div}(\underbrace{n_{1}}_{0} \vec{u}_{0}+n_{0} \vec{u}_{1})=0$ we omit $n_{1} u_{1}<=2$. order

$$
\Rightarrow \quad \frac{\partial n_{1}}{\partial t}+n_{0} \operatorname{div} \vec{u}_{1}=0
$$

Electron density variations $\quad \rightarrow \quad \vec{E}=0+\vec{E}_{1}(\vec{r}, t)$

$$
\operatorname{div} \vec{E}=\frac{q_{e}}{\varepsilon_{0}}\left(n_{e}-Z n_{i}\right) \quad \operatorname{div} \vec{E}_{1}=\frac{q_{e}}{\varepsilon_{0}} n_{1}
$$

Equation of motion (momentum conservation)

$$
\begin{aligned}
& \frac{\partial \vec{u}_{e}}{\partial t}+\left(\vec{u}_{e} \nabla\right) \vec{u}_{e}=\frac{q_{e}}{m_{e}} \vec{E}-\frac{\nabla p_{e}}{m_{e} n_{e}}-v_{e i}\left(\vec{u}_{e}-\vec{u}_{i}\right) \\
& \frac{\partial \vec{u}_{1}}{\partial t}+V_{e i} \cdot \vec{u}_{1}=\frac{q_{e}}{m_{e}} \vec{E}_{1}-\frac{\nabla p_{1}}{m_{e} n_{0}} \quad\left(\nabla p_{0}=0\right)
\end{aligned}
$$

Solution will be assumed in the form $e^{i(\bar{k}-\omega t)}$ (k is real)

$$
\begin{aligned}
a(\vec{r}, t) & =\operatorname{Re}\left(A \mathrm{e}^{i(\vec{k}-\omega t)}\right)=\operatorname{Re}\left(A^{*} \mathrm{e}^{-i\left(\vec{k}-\omega^{*} t\right)}\right) \\
a & =\frac{1}{2}\left(A \mathrm{e}^{i(\vec{k}-\omega t)}+\text { c.c. }\right)
\end{aligned}
$$

Capital letters - complex amplitudes

Cold plasma without collisions (last term on both sides of eq. motion disappear)

$$
\frac{\partial n_{1}}{\partial t}+n_{0} \operatorname{div} \vec{u}_{1}=0
$$

$$
\begin{gathered}
\operatorname{div} \vec{E}_{1}=-\frac{e}{\varepsilon_{0}} n_{1} \\
\frac{\partial \vec{u}_{1}}{\partial t}=-\frac{e}{m_{e}} \vec{E}_{1} \\
\vec{u}, \vec{E} \| \vec{k}
\end{gathered}
$$

$$
\begin{aligned}
-i \omega N_{1}+n_{0} i k U_{\|} & =0 \\
i k \tilde{E}_{\|}+\frac{e}{\varepsilon_{0}} N_{1} & =0 \\
-i \omega U_{\|}+\frac{e}{m_{e}} \tilde{E}_{\|} & =0
\end{aligned}
$$

$$
\frac{\partial^{2} n_{1}}{\partial t^{2}}+\frac{e^{2} n_{0}}{\varepsilon_{0} m_{e}} n_{1}=0 \quad \omega_{p e}^{2}=\frac{e^{2} n_{0}}{\varepsilon_{0} m_{e}} \quad U_{\|}=\frac{\omega}{k} \cdot \frac{N_{1}}{n_{0}} \quad \tilde{E}_{\|}=\frac{i e}{\varepsilon_{0} k} N_{1}
$$

Correction when ions are taken into account

$$
\omega_{p}^{2}=\omega_{p e}^{2}+\omega_{p i}^{2} \quad \quad \omega_{p i}^{2}=\frac{Z e^{2} n_{0}}{\varepsilon_{0} m_{i}}
$$

Reactions on high-frequency field \vec{E}_{1} (it can be internal or external)

$$
\vec{j}_{e}=-e(n_{0} \vec{u}_{1}+\underbrace{n_{1} \vec{u}_{0}}_{0})=\underbrace{\frac{i e^{2} n_{0}}{m_{e} \omega}}_{\sigma_{E}} \vec{E}_{1}
$$

$\varepsilon_{0} \operatorname{div} \vec{E}=\rho \quad \frac{\partial \rho}{\partial t}+\operatorname{div} \vec{j}=0 \quad \operatorname{div} \frac{\partial}{\partial t}\left(\varepsilon_{0} \vec{E}\right)=-\operatorname{div} \vec{j}$
frequency $\omega \quad-i \omega \operatorname{div}\left(\varepsilon_{0} \vec{E}+\frac{i \vec{j}}{\omega}\right)=0$

$$
\begin{aligned}
& \operatorname{div} \varepsilon_{0} \underbrace{\left(1+\frac{i \sigma_{E}}{\omega \varepsilon_{0}}\right)} \vec{E}=0 \quad \text { eigenwaves of charge } \\
& \varepsilon_{r}=1-\frac{e^{2} n_{0}}{\varepsilon_{0} m_{e} \omega^{2}}=1-\frac{\omega_{p}^{2}}{\omega^{2}} \quad \vec{E}=0
\end{aligned}
$$

and thus dispersion relation $\omega=\omega_{\mathrm{p}}$ independent of $k \Rightarrow$ plasma oscillations

Impact of collisions

$$
\frac{\partial \vec{u}_{1}}{\partial t}+v_{e i} \cdot \vec{u}_{1}=-\frac{e}{m_{e}} \vec{E}_{1} \quad \frac{\partial^{2} n_{1}}{\partial t^{2}}+v_{e i} \cdot \frac{\partial n_{1}}{\partial t}+\omega_{p}^{2} n_{1}=0
$$

solution $\sim e^{-i \omega t} \omega_{1,2}=-i \frac{V_{e i}}{2} \pm \sqrt{\omega_{p}^{2}-\frac{V_{e i}^{2}}{4}} \quad n_{1}=n_{10} e^{-i \omega_{p} t} e^{-\frac{V_{e i}}{2} t}$ damped oscil.
Impact of pressure (non-zero temperature)

$$
\text { when } T=0 \quad \overrightarrow{\mathrm{~V}}_{g}=\frac{\mathrm{d} \omega}{\mathrm{~d} \vec{k}}=\overrightarrow{0} \quad \text { but when } T \neq 0 \text { perturbations propagate }
$$ spatial shape of the perturbation is preserved, we choose $\vec{k}=k \hat{X} \Rightarrow \vec{u}_{1}=u_{1} \hat{X}$

$$
\frac{\partial u_{1}}{\partial t}=-\frac{e}{m_{e}} E_{1}-\frac{1}{m_{e} n_{0}} \underbrace{\frac{\partial}{\partial x} P_{1 x j}}_{\frac{\partial}{\partial r_{j}} P_{1 x x}} \text { able to make the distribution function isotropic }
$$

Unperturbed pressure $p_{0}=n_{0} k_{B} T_{0}$ (scalar, T_{0} electron temperature)
Pressure perturbation across wavevector is caused only by density perturbation
$P_{1 y y}=P_{1 z z}=n_{1} k_{B} T_{0} \quad\left(T_{1 \perp}=0\right)$
In longitudinal direction, the work by pressure must transform into thermal energy
$\underbrace{\frac{1}{2} n_{0} V_{0} k_{B} \mathrm{~d} T_{\|}}_{\mathrm{d} U}=-p_{0} \mathrm{~d} V=p_{0} V_{0} \frac{\mathrm{~d} n}{n_{0}}$
$\mathrm{d} n \rightarrow n_{1}, \quad \mathrm{~d} T_{\|} \rightarrow T_{1 \|}$
$\Rightarrow k_{B} T_{1| |}=\frac{2 p_{0}}{n_{0}^{2}} n_{1}=\frac{2 k_{B} T_{0}}{n_{0}} n_{1} \quad P_{1 x x}=n_{1} k_{B} T_{0}+n_{0} k_{B} T_{1| |}=3 k_{B} T_{0} n_{1}$
In longitudinal direction, electrons are particles with 1 degree of freedom ($\gamma=3$)
$\frac{\partial}{\partial t} u_{1}=-\frac{e}{m_{e}} E_{1}-\frac{3 k_{B} T}{m_{e} n_{0}} \frac{\partial n_{1}}{\partial x} \quad \Rightarrow \frac{\partial^{2} n_{1}}{\partial t^{2}}-\frac{3 k_{B} T_{0}}{m_{e}} \frac{\partial^{2} n_{1}}{\partial x^{2}}+\frac{e^{2} n_{0}}{\varepsilon_{0} m_{e}} n_{1}=0$
Plasma wave propagates

$$
\omega^{2}=\omega_{p}^{2}+3 k^{2} \mathrm{v}_{T e}^{2} \quad\left(\mathrm{v}_{T e}^{2}=k_{B} T_{e} / m_{e}\right)
$$

$$
\begin{aligned}
& \text { Dispersion relation } \omega^{2}=\omega_{p}^{2}+3 k^{2} \mathrm{v}_{T e}^{2} \\
& \qquad \begin{array}{c}
\mathrm{v}_{\varphi}=\frac{\omega}{k}=\sqrt{3 \mathrm{v}_{T e}^{2}+\frac{\omega_{p}^{2}}{k^{2}}} \\
\mathrm{v}_{g}=\frac{\mathrm{d} \omega}{\mathrm{~d} k}=\frac{3 k \mathrm{v}_{T e}^{2}}{\sqrt{\omega_{p}^{2}+3 \mathrm{k}^{2} \mathrm{v}_{T e}^{2}}} \\
\mathrm{v}_{g}=\frac{3 \mathrm{v}_{T e}^{2}}{\mathrm{v}_{\varphi}}
\end{array}
\end{aligned}
$$

System with temporal and spatial dispersion $\varepsilon_{r}^{(l)}(\omega, \vec{k})=1-\frac{\omega_{p}^{2}}{\omega^{2}}-\frac{3 k^{2} v_{T e}^{2}}{\omega^{2}}$

Description via Vlasov equation

$\frac{\partial f_{e}}{\partial t}+\overrightarrow{\mathrm{v}} \frac{\partial f_{e}}{\partial \vec{r}}-e \vec{E} \frac{\partial f_{e}}{\partial \vec{p}}=0 \quad$ solution $f_{0}(\vec{p}), \vec{E}_{0}=0$
Perturbations $f_{1}(\vec{r}, \vec{p}), \vec{E}_{1}, \vec{k}=\hat{x} k$

$$
\frac{\partial f_{1}}{\partial t}+\mathrm{v}_{\mathrm{x}} \frac{\partial f_{1}}{\partial x}-e E_{1} \frac{\partial f_{0}}{\partial p_{x}}=0
$$

Solution in the form $\exp (i k x-i \omega t)$
$f_{1}=i \frac{e E_{1}}{\omega-k \mathrm{v}_{x}} \frac{\partial f_{0}}{\partial p_{x}} \quad \begin{aligned} & \text { perturbation need not be small for } \mathrm{v}_{\mathrm{x}}=\mathrm{v}_{\varphi}=\omega / k \\ & \Rightarrow \text { resonance electrons }\end{aligned}$
$\operatorname{div} \vec{E}_{1}=-\frac{e}{\varepsilon_{0}} n_{1}=-\frac{e}{\varepsilon_{0}} \int f_{1} \mathrm{~d} \vec{p} \quad \quad i k E_{1}=-\frac{e}{\varepsilon_{0}} \int i \frac{e E_{1}}{\omega-k v_{x}} \frac{\partial f_{0}}{\partial p_{x}} \mathrm{~d} \vec{p}$
$i k \varepsilon_{0} \underbrace{\left(1+\frac{e^{2}}{\varepsilon_{0} k} \int \frac{1}{\omega-k \mathrm{v}_{x}} \frac{\partial f_{0}}{\partial p_{x}} \mathrm{~d} \vec{p}\right)}_{\varepsilon_{r}} E_{1}=0 \quad \varepsilon_{r}=1-\frac{\omega_{p}^{2}}{\omega^{2}} \int \frac{g\left(p_{x}\right)}{\left(1-\frac{k \mathrm{v}_{x}}{\omega}\right)^{2}} \mathrm{~d} p_{x}$
where $g\left(p_{x}\right)=n_{0}^{-1} \int f_{0}(\vec{p}) \mathrm{d} p_{y} \mathrm{~d} p_{z}$

When $\mathrm{v}_{\varphi}=\frac{\omega}{k} \gg \mathrm{v}_{\text {Te }}$ we use Taylor expansion, resonance electrons are omitted (for $\mathrm{v}_{\varphi}>\mathrm{c}$ there are no resonance electrons at all)
$\varepsilon_{r} \cong 1-\frac{\omega_{p}^{2}}{\omega^{2}} \int g\left(p_{x}\right)\left(1+\frac{2 k \mathrm{v}_{\mathrm{x}}}{\omega}+\frac{3 k^{2} \mathrm{v}_{\mathrm{x}}^{2}}{\omega^{2}}\right) \mathrm{d} p_{x} \quad$ assumed $\left\langle\mathrm{v}_{x}\right\rangle=u_{x}=0$
Then $\quad \varepsilon_{r}=1-\frac{\omega_{p}^{2}}{\omega^{2}}-\frac{3 k^{2} v_{T e}^{2}}{\omega^{2}} \frac{\omega_{p}^{2}}{\omega^{2}} \quad \Rightarrow \quad \omega^{2} \cong \omega_{p}^{2}+3 k^{2} \mathrm{v}_{T e}^{2}$
When $\mathrm{v}_{\varphi}<\mathrm{c} \quad$? what to do with pole in integral - answer must be searched via solving initial value problem, i.e. perturbation is given in the initial time t_{0} and we follow its evolution
For solving initial value problem, Laplace transform must be applied
Laplace transform is defined by integral $A(\omega)=\int_{t_{0}}^{\infty} a(t) \mathrm{e}^{i \omega t} \mathrm{~d} t$ for ω with enough
large positive imaginary part (for $a(t)$ limited, it is for $\operatorname{Im}(\omega)>0$)
For other ω, Laplace transform is obtained by analytic continuation of function

$$
\varepsilon_{r}=1+\frac{m_{e} \omega_{p}^{2}}{k} \int \frac{1}{\omega-k \mathrm{v}_{\mathrm{x}}} \frac{\mathrm{~d} g}{\mathrm{~d} p_{x}} \mathrm{~d} p_{x}
$$

For $\operatorname{Im}(\omega)>0$ integration path runs below the pole, when doing analytic continuation the path has to stay always below pole (go around pole from below !)

One knows from residue theorem that integral over half-circle is $i \times \pi \times$ residue For $\omega / \mathrm{k} \ll \mathrm{c}$ it is

$$
\frac{1}{\omega-k \mathrm{v}_{x}}=-\frac{m_{e}}{k} \frac{1}{p_{x}-\frac{m_{e} \omega}{k}}=-\frac{m_{e}}{k} \frac{\mathrm{P}}{p_{x}-\frac{m_{e} \omega}{k}}-i \pi \frac{m_{e}}{k} \delta\left(p_{x}-\frac{m_{e} \omega}{k}\right)
$$

Here \mathbf{P} denotes integral in the sense of Cauchy principal value

For ω real it is

$$
\operatorname{Im} \varepsilon_{r}(\omega, k)=-\left.\pi \omega_{p}^{2} \frac{m_{e}^{2}}{k^{2}} \frac{\mathrm{~d} g}{\mathrm{~d} p_{x}}\right|_{p_{x}=\frac{m_{e} \omega}{k}}
$$

$\operatorname{Im}\left(\varepsilon_{\mathrm{r}}\right)>0$
One searches complex $\omega=\omega_{R}+i \omega_{\mathrm{I}}$ so that $\varepsilon_{\mathrm{r}}(\omega, \mathrm{k})=0$
Weakly damped (slowly growing) waves $\left|\omega_{r}\right| \ll \omega_{R}$

$$
\mathcal{E}_{r}\left(\omega_{R}+i \omega_{I}\right)=\operatorname{Re} \varepsilon_{r}\left(\omega_{R}\right)+i \operatorname{Im} \varepsilon_{r}\left(\omega_{R}\right)+i \omega_{I} \frac{\mathrm{~d} \operatorname{Re} \varepsilon_{r}\left(\omega_{R}\right)}{\mathrm{d} \omega_{R}}=0
$$

For $\omega_{R} / k \gg v_{T e} \quad$ it is

$$
\operatorname{Re} \varepsilon_{r}\left(\omega_{R}\right)=1-\frac{\omega_{p}^{2}}{\omega_{R}^{2}}-\frac{3 k^{2} v_{T e}^{2}}{\omega_{R}^{2}}=0
$$

$$
\omega_{R}^{2}=\omega_{p}^{2}+3 k^{2} \mathrm{v}_{T e}^{2}
$$

imaginary part of frequency is

$$
\omega_{I}=-\frac{\operatorname{Im} \varepsilon_{r}\left(\omega_{R}\right)}{\frac{\mathrm{dRe} \varepsilon_{r}\left(\omega_{R}\right)}{\mathrm{d} \omega_{R}}}=\left.\pi \omega_{p}^{2} \frac{m_{e}^{2} \omega_{R}}{2 k^{2}} \frac{\mathrm{~d} g}{\mathrm{~d} p_{x}}\right|_{p_{X}=\frac{m_{e} \omega_{\mathrm{R}}}{k}}
$$

The evolution is $\exp \left(-i \omega_{R} t\right) \exp \left(\omega_{I} t\right) \quad$ - the rate of Landau damping is $\gamma_{\mathrm{L}}=-\omega_{\mathrm{I}}$
For Maxwell's distribution it is $\omega_{I}=-\sqrt{\frac{\pi}{8}} \frac{\omega_{p}^{2} \omega_{R}^{2}}{k^{3} \mathrm{v}_{T e}^{3}} \exp \left(-\frac{\omega_{R}^{2}}{2 k^{2} \mathrm{v}_{T e}^{2}}\right)$

Energy of plasma wave

$-\varepsilon_{0} \frac{\partial \vec{E}}{\partial t}=\vec{j} \quad \Rightarrow \quad \frac{1}{2} \varepsilon_{0} \frac{\partial}{\partial t} E^{2}=-\vec{j} \vec{E} \quad E=\frac{1}{2}\left(\tilde{E} e^{-i \omega_{R} t}+\tilde{E}^{*} e^{i \omega_{R} t}\right)$
\tilde{E} is complex amplitude, R denotes real part, we average over time $\left\rangle \frac{\lambda_{2 \pi}}{\omega_{R}}\right.$
$\frac{\varepsilon_{0}}{4} \frac{\mathrm{~d}}{\mathrm{~d} t}|\tilde{E}|^{2}=-\frac{1}{2}(\operatorname{Re} \sigma(\omega))|\tilde{E}|^{2} \quad \operatorname{Re} \sigma(\omega)=\operatorname{Re} \sigma\left(\omega_{\mathrm{R}}\right)-\left.\omega_{\mathrm{I}} \frac{\mathrm{d} \operatorname{Im} \sigma}{\mathrm{d} \omega}\right|_{\omega_{\mathrm{R}}}$
$\frac{\varepsilon_{0}}{4} \frac{\mathrm{~d}}{\mathrm{~d} t}|\tilde{E}|^{2}-\left.\frac{1}{4} \frac{\mathrm{~d} \operatorname{Im} \sigma}{\mathrm{~d} \omega}\right|_{\omega_{R}} \frac{\mathrm{~d}}{\mathrm{~d} t}|\tilde{E}|^{2}=-\frac{1}{2} \operatorname{Re} \sigma\left(\omega_{R}\right)|\tilde{E}|^{2} \quad$ used $\quad \frac{\mathrm{d} \tilde{E}}{\mathrm{~d} t}=\omega_{I} \tilde{E}$
Conductivity σ related to permittivity $\varepsilon_{\mathrm{r}} \varepsilon_{r}=1+\frac{i \sigma}{\omega \varepsilon_{0}} \rightarrow$ let $\varepsilon_{R}=\operatorname{Re}\left(\varepsilon_{r}\right)$
$\frac{\mathrm{d}}{\mathrm{d} t} \underbrace{\left[\left.\frac{1}{4} \frac{\mathrm{~d}}{\mathrm{~d} \omega}\left(\omega \varepsilon_{0} \varepsilon_{R}\right)\right|_{\omega_{R}}|\tilde{E}|^{2}\right]}_{W_{\text {tot }}=\text { energy density }}=-\frac{1}{2} \operatorname{Re} \sigma\left(\omega_{R}\right)|\tilde{E}|^{2} \quad \begin{aligned} & \text { general expression } \\ & \text { (plasma wave } \quad \frac{\mathrm{d}}{\mathrm{d} \omega} \\ & \left(\omega \varepsilon_{0} \varepsilon_{R}\right)=2 \varepsilon_{0} \text {) }\end{aligned}$

Linear \times Non-linear Landau damping

in coordinate system connected to the wave is $\omega_{\mathrm{R}}=0$

$$
E_{1}=\tilde{E} \sin k x \quad \text { a } \quad U_{p}=-e \varphi=-\frac{e \tilde{E}}{k} \cos k x
$$

and electron equation of motion is

$$
m_{e} \ddot{x}=-e \tilde{E} \sin k x
$$

electron oscillates in potential well with frequency

$$
\omega_{b}=\left(\frac{e \tilde{E} k}{m_{e}}\right)^{1 / 2} \quad \text { (bounce frequency) }
$$

for times $t \ll \omega_{b}^{-1}$ motion is not influenced by field \Rightarrow Landau damping is linear for $\gamma_{L}=-\omega_{I}>\omega_{b} \quad$ in time $t=\pi / \omega_{b}$ electrons start to return energy to wave
 trapped electrons

$$
\begin{aligned}
& \mathrm{v}_{\varphi}-\mathrm{v}_{t}<\mathrm{v}<\mathrm{v}_{\varphi}+\mathrm{v}_{t} \\
& m_{e} \mathrm{v}_{t}^{2} / 2=2\left|e \varphi_{m}\right| \\
& \mathrm{v}_{t}=2\left(\frac{e \tilde{E}}{m_{e} k}\right)^{1 / 2}
\end{aligned}
$$

BGK modes (Bernstein, Green, Kruskal)

It follows from inhomogeneous equilibrium - accurate non-linear solution Stationary Vlasov equation for particle \boldsymbol{s} has solution
$\mathrm{v}_{x} \frac{\partial f}{\partial x}+q_{s} E \frac{\partial f}{\partial p}=0$

$$
f=f\left(\frac{p^{2}}{2 m_{s}}+q_{s} \varphi(x)\right)=f(U)
$$

Simplest solution for cold untrapped beams

$$
n_{e}(\mathrm{x}) \mathrm{v}_{e}(x)=n_{0} \mathrm{~V}_{e 0} \quad n_{i}(\mathrm{x}) \mathrm{v}_{i}(x)=\frac{n_{0}}{Z} \mathrm{v}_{i 0} \quad \mathrm{v}_{e}(x)=\sqrt{\mathrm{v}_{e 0}^{2}+2 e \varphi(x) / m_{e}}
$$

Continuity equation for e, i and particle motion in potential field (v_{i} similarly) Charge densities of particle are inserted into Poisson equation

$$
\frac{\mathrm{d}^{2} \varphi}{\mathrm{~d} x^{2}}=\frac{e n_{0}}{\varepsilon_{0}}\left(\frac{\mathrm{v}_{e 0}}{\mathrm{v}_{e}(x)}-\frac{\mathrm{v}_{\mathrm{i} 0}}{\mathrm{v}_{\mathrm{i}}(x)}\right)=\frac{e n_{0}}{\varepsilon_{0}}\left\{\left(1+\frac{2 e \varphi}{m_{e} \mathrm{v}_{e 0}^{2}}\right)^{-1 / 2}-\left(1-\frac{2 Z e \varphi}{M_{i} \mathrm{v}_{\mathrm{i}}^{2}}\right)^{-1 / 2}\right\}
$$

Equation is similar to that for motion in potential field - potential $V(\varphi)$

$$
\frac{\mathrm{d}^{2} \varphi}{\mathrm{~d} x^{2}}=-\frac{\partial}{\partial \varphi} V(\varphi) \text { where } V(\varphi)=-\frac{n_{0}}{\varepsilon_{0}}\left\{m_{e} \mathrm{v}_{e 0}^{2}\left(1+\frac{2 e \varphi}{m_{e} \mathrm{v}_{e 0}^{2}}\right)^{1 / 2}+\frac{M_{i} \mathrm{v}_{i 0}^{2}}{Z}\left(1-\frac{2 Z e \varphi}{M_{i} \mathrm{v}_{\mathrm{i}}^{2}}\right)^{1 / 2}\right\}
$$

For small $\varphi \quad|e \varphi(x)| \ll m_{e} \mathrm{v}_{e 0}^{2} \wedge|e \varphi(x)| \ll \frac{M_{i} \mathrm{v}_{i 0}^{2}}{Z}$

$$
\frac{\mathrm{d}^{2} \varphi}{\mathrm{~d} x^{2}}+\frac{n_{0} e^{2}}{\varepsilon_{0}}\left(\frac{1}{m_{e} \mathrm{v}_{e 0}^{2}}+\frac{Z}{M_{i} \mathrm{v}_{i 0}^{2}}\right) \varphi=0 \quad \begin{aligned}
& \text { solution }
\end{aligned} \begin{aligned}
& \varphi(x)=\varphi_{0} \sin \left(x / \lambda_{\mathrm{BK}}\right) \\
& \lambda_{\mathrm{BCK}}^{-2}=\omega_{p e}^{2} / \mathrm{v}_{e 0}^{2}+\omega_{p i}^{2} / \mathrm{v}_{i 0}^{2}
\end{aligned}
$$

periodic potential

electrons see it reversely

For any potential, it is possible to construct such stationary distribution of ions and electrons that it creates this given potential

Case-van Kampen modes

One searches for f_{1} for given $\omega, k \quad f_{1}=\tilde{f}_{1} \exp (i k x-i \omega t)$ contain δ function -non-physical
There exist combinations CvK modes that do not contain singularities

High-frequency electrostatic waves in plasma with stationary magnetic

 field $B_{0}$$\vec{k} \| \vec{B}_{0} \quad$ magnetic field does not influence waves \Rightarrow plasma waves
$\vec{k} \perp \vec{B}_{0}$ additionally to electrostatic forces, electrons are returned back by magnetic field - cyclotron frequency ω_{c}
when $\mathrm{T}=0 \quad \omega^{2}=\omega_{p}^{2}+\omega_{c}^{2} \equiv \omega_{h}^{2} \quad$ upper hybrid frequency
upper hybrid waves - plasma waves in direction normal to \vec{B}_{0} in warm plasma they propagate due to thermokinetic pressure (similarly as plasma waves)
additionally there exist linear eigenmodes of Vlasov equation that do not have hydrodynamic equivalent - Bernstein modes

Stream instabilities (Two-stream instability)

Many situations - motion electrons against ions, motion of electron groups
 Simplest situation (mainly for analytic solution) - 2 identical electron groups
 against each other - ions static $u_{i}=0$

$\mathcal{C}=\boldsymbol{A}, \boldsymbol{B} \longrightarrow \boldsymbol{x} \quad$| $n_{\mathrm{A} 0}=n_{\mathrm{B} 0}=n_{0} / 2$, |
| :--- |
| $\mathrm{V}_{\mathrm{Te}} \ll \mathrm{V}_{0}$ |\quad| $Z n_{\mathrm{i}}=n_{0}$ |
| :--- |
| $E_{0}=0$ |

$\frac{\partial n_{\alpha}}{\partial t}+\frac{\partial}{\partial x}\left(n_{\alpha} u_{\alpha}\right)=0 \quad \frac{\partial u_{\alpha}}{\partial t}+\left(u_{\alpha} \nabla u_{\alpha}\right)=-\frac{e E}{m_{e}} \quad \operatorname{div} E=-\frac{e}{\varepsilon_{0}}\left(n_{A}+n_{B}-n_{0}\right)$
We solve evolution of linear perturbation $n_{\alpha 1}, u_{\alpha 1}, E_{1} \sim \exp (i k x-i \omega t)$
$-i \omega n_{A 1}+i k\left(n_{0} u_{A 1} / 2-v_{0} n_{A 1}\right)=0 \quad-i \omega n_{B 1}+i k\left(n_{0} u_{B 1} / 2+v_{0} n_{B 1}\right)=0$
$-i \omega u_{A 1}-i k v_{0} u_{A 1}=-\frac{e E_{1}}{m_{e}} \quad-i \omega u_{B 1}+i k v_{0} u_{B 1}=-\frac{e E_{1}}{m_{e}} \quad i k E_{1}=-\frac{e}{\varepsilon_{0}}\left(n_{A 1}+n_{B 1}\right)$
Amplitudes of velocities are expressed from equations of motion and we substitute them into continuity equations
$n_{A 1}=k \frac{n_{0}}{2}(-i) \frac{e E_{1}}{m_{e}\left(\omega+k \mathrm{v}_{0}\right)^{2}} \quad n_{B 1}=k \frac{n_{0}}{2}(-i) \frac{e E_{1}}{m_{e}\left(\omega-k \mathrm{v}_{0}\right)^{2}} \quad$ and insert them to Poisson equation $i k E_{1}=i k \frac{e^{2} n_{0}}{2 \varepsilon_{0} m_{e}}\left(\frac{1}{\left(\omega+k \mathrm{v}_{0}\right)^{2}}+\frac{1}{\left(\omega-k \mathrm{v}_{0}\right)^{2}}\right) E_{1}$ and from here we obtain dispersion relation $1=\frac{\omega_{p}^{2}}{2}\left(\frac{1}{\left(\omega+k \mathrm{v}_{0}\right)^{2}}+\frac{1}{\left(\omega-k \mathrm{v}_{0}\right)^{2}}\right) \quad$ leading to $\omega^{4}-\left(2 k^{2} \mathrm{v}_{0}^{2}+\omega_{p}^{2}\right) \omega^{2}+k^{2} \mathrm{v}_{0}^{2}\left(k^{2} \mathrm{v}_{0}^{2}-\omega_{p}^{2}\right)=0$, character of the solution depends on the sign of absolute term, if it is $>0, \omega_{1}^{2}>0, \omega_{2}^{2}>0$ then system is stable, if $k^{2} \mathrm{v}_{0}^{2}<\omega_{p}^{2}$, then $\omega_{1}^{2}>0, \omega_{2}^{2}<0$ and root with positive imaginary frequency exists - solution grows in time - instability $\omega_{1,2}^{2}=k^{2} \mathrm{v}_{0}^{2}+\frac{\omega_{p}^{2}}{2}\left(1 \pm \sqrt{1+8 \frac{k^{2} v_{0}^{2}}{\omega_{p}^{2}}}\right)$, pro $k^{2} \mathrm{v}_{0}^{2}<\omega_{p}^{2}$ je $\omega_{3,4}= \pm i \sqrt{-\omega_{2}^{2}}$
and solution $\omega_{3}=i \sqrt{-\omega_{2}^{2}}$ is growing $\exp \left(-i \omega_{3} t\right)=\exp (\gamma t)$
for $k^{2} v_{0}^{2} \ll \omega_{p}^{2}$ it is $\omega_{3}=i \gamma=i|k| v_{0} \quad$ search for fastest growing mode (k),-
in maximum $\quad \frac{\mathrm{d}\left(-\omega_{2}^{2}\right)}{\mathrm{d}\left(k^{2} \mathrm{v}_{0}^{2}\right)}=0 \quad \Rightarrow \quad k^{2} \mathrm{v}_{0}^{2}=\frac{3}{8} \omega_{p}^{2} ; \quad \gamma=\frac{\omega_{p}}{\sqrt{8}}$
thus fastest growing mode grows only a bit slower than ω_{p}
How the growing modes look like?
Pro small k for growing mode $\omega=i|k| \mathrm{v}_{0}$ density perturbations of A, B nearly cancel (upper figure $-\mathrm{v}_{0}=2$) Field E_{1} is formed only by small sum of densities of order $\sim k^{2} \mathrm{v}_{0}{ }^{2} / \omega_{\mathrm{p}}{ }^{2}$ growing field $\exp \left(i k x+k v_{0} t\right)$
Fastest growing mode (lower figure) One sees nonzero sum of density perturbations of beams A,B Here special case of growing static perturbation (due to problem symmetry)

Other case - electron motion against ions with velocity v_{0}
We introduce $x=\omega / \omega_{p}$ a $y=k v_{0} / \omega_{p}$
Dispersion relation $\quad 1=\frac{m_{e} / M_{i}}{x^{2}}+\frac{1}{(x-y)^{2}}=F(x, y)$
for $\mathrm{y}>$ boundary, the dispersion relation has 4 real roots - stable system for y < boundary, the dispersion relation has only 2 real roots - instability

stability boundary $y^{2}=\left(1+\sqrt[3]{\frac{M_{i}}{m_{e}}}\right)^{2}\left(\frac{m_{e}}{M_{i}}\right)^{2 / 3}\left(1+\sqrt[3]{\frac{m_{e}}{M_{i}}}\right) \approx 1$ (thus $\left.k \mathrm{v}_{0} \approx \omega_{\mathrm{p}}\right)$
maximal growth $\quad \gamma_{\max }=\omega_{p}\left(\frac{m_{e}}{M_{i}}\right)^{1 / 3}$

