

Vacuum-UV Two-photon ionization of Kr

Varvarezos Lazaros

Supervisors: Prof John Costello Dr Bill Brocklesby Dr Lampros Nikolopoulos

EXTATIC Welcome Week 2017 Czech Technical University in Prague, Prague 23rd Sep. 2017

Outline

- ✓ Ionization in the IR vs the VUV to X-ray region
- ✓ Atomic TPDI : Sequential vs Direct process
- ✓ The Kr ionization in the VUV region
- ✓ The experiment in FLASH
- ✓ Angular distribution and the extracted anisotropy parameters
- ✓ Conclusions and future work

Ionization of atoms in the IR spectral region

How can we distinguish between the different regimes ? Keldysh parameter

Ionization of atoms in the IR spectral region

 I_P : Ionization potential , U_P : Ponteromotive potential

$$U_P = 9.3 \ 10^{-14} \ I \ \left(\frac{W}{cm^2}\right) \lambda^2 (\mu m^2)$$

L. V. Keldysh, "Ionization in the field of a strong electromagnetic wave," *Sov. Phys. JETP*, vol. 20, no. 5, pp. 1307–1314, **1965**.

Multiphoton Ionization : $\gamma \gg 1$, Tunnel Ionization : $\gamma \approx 1$, Field Ionization : $\gamma \ll 1$

Example : Ionization of Argon
Ti:Saphire laser
$$\lambda = 800 \ nm$$
, $I_P = 15.76 \ eV$
 $I = 10^{12} \left(\frac{W}{cm^2} \right) \Rightarrow \gamma = 12 \ \text{MPI}$
 $I = 10^{14} \left(\frac{W}{cm^2} \right) \Rightarrow \gamma = 1.2 \ \text{TI}$
 $I = 10^{16} \left(\frac{W}{cm^2} \right) \Rightarrow \gamma = 0.12 \ \text{FI}$

Atomic ionization in the FEL era

Generation of ultrashort pulses in the VUV up to X-ray region became possible with the advent of FELs

J. Andruszkow et al., "First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength," Phys. Rev. Lett., vol. 85, no. 18, pp. 3825–3829, 2000.

✓ In VUV and X-ray radiation, the photon energy approaches or even exceeds the ionization potential !

 The Keldysh parameter becomes unsuitable for characterizing nonlinear interactions !

✓ In that case it's the comparison between the photon energy and the ponderomotive potential that defines whether the interaction is perturbative or not !

Atomic ionization in the FEL era

<u>Non-perurbative</u> behavior if $U_P \ge \omega \hbar$

Example :

λ (nm)	photon energy (eV)	Intensity where U _p = ωħ in (w/cm²)
800	1.55	2.6 10 ¹³
40	31	2.1 10 ¹⁷

For FEL lasers, **multi-photon** ionization is the primary process and will involve *few photons*

TPDI Sequential vs direct ionization

When the photon energy is **larger** than the ionization potential of the singly charged ion, **sequential TPDI** dominates

For Kr the **4p** ionization potential is **24.36** eV, while the **3d** threshold lies at **96** eV.

In our study, the photon energy was set at **25.2** eV

Southampton

The Kr case

Experiment in FLASH

FEL parameters

✓ Pulse duration 80 fs (pulse to pulse
 fluctuation between 60fs and 100 fs)

- ✓ Pulse energy at the focus : 3µJ to 10µJ
- Focal spot : 50 μm
- ✓ Peak intensities between 2 10¹² w/cm² and

5 10¹² w/cm²

✓ VMI resolution : 0.3 eV

The first step: singly ionized Kr atoms

Southampton

The second step : Ionization of the Kr⁺

The second step : Ionization of the Kr⁺

Southampton

The β -parameters

Channel Kr: $4s^2 4p^6 \rightarrow Kr^+: 4s^2 4p^5$

Averaged data	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5
$\beta_2 = 0.95$	$\beta_2 = 1.20$	$\beta_2 = 1.15$	$\beta_2 = 1.09$	$\beta_2 = 1.02$	$\beta_2 = 0.95$

Channel $Kr^+:4s^2 4p^5 {}^2P_{1/2} \rightarrow Kr^{2+}:4s^2 4p^4 {}^3P_{2,1,0}$

 $\beta_2 = 0.84 \qquad \beta_2 = 1.62 \qquad \beta_2 = 1.44 \qquad \beta_2 = 1.27 \qquad \beta_2 = 1.11 \qquad \beta_2 = 1.10$

Channel $Kr^+:4s^2 4p^5 {}^2P_{1/2} \rightarrow Kr^{2+}:4s^2 4p^4 {}^3P_{2,1,0}$ (with β_4 included)

$\beta_2 = 0.82$	$\beta_2 = 1.55$	$\beta_2 = 1.38$	$\beta_2 = 1.22$	$\beta_2 = 1.07$	$\beta_2 = 1.08$
$\beta_4 = 0.08$	$\beta_4 = 0.21$	$\beta_4 = 0.15$	$\beta_4 = 0.11$	$\beta_4 = 0.10$	$\beta_4 = 0.08$

 $Channel \ Kr^{+}\!\!:\!\!4s^2 \ 4p^5 \ ^2P_{3/2} \ \rightarrow \ \ Kr^{2+} \ \!:\!\!4s^2 \ 4p^4 \ ^3P_{2,1,0}$

$\beta_2 = 1.55$	$\beta_2 = 2.11$	$\beta_2 = 2.10$	$\beta_2 \!= 1.95$	$\beta_2 = 1.70$	$\beta_2 \!= 1.57$
$\beta_4 = 0.24$	$\beta_4{=}0.24$	$\beta_4{=}0.33$	$\beta_4\!=\!0.34$	$\beta_4\!=\!0.28$	$\beta_4{=}0.22$

The first step electrons come from the un-polarized atom

$$\frac{d\sigma}{d\Omega} = \frac{\sigma}{4\pi} \left(1 + \beta_2 P_2(\cos\theta)\right)$$

Second step electrons come from the **aligned** ${}^{2}P_{3/2}$ intermediate state

An atom/ion with total angular momentum J is **aligned** when the population of the m-substates is non-statistical, but states with projections **m,-m** are **equally** populated

$$\frac{d\sigma}{d\Omega} = \frac{\sigma}{4\pi} \left(1 + \beta_2 P_2(\cos\theta) + \beta_4 P_4(\cos\theta) \right)$$
proportional to the alignment of the ionic core created by the ionization in the first step

Conclusions / Future work

- \checkmark Intensity dependence of the β -parameters for all the channels involved
- Theoretical calculations to support our
 - experimental findings

Acknowledgments

- Prof. John Costello, Dr. Lampros Nikolopoulos, Dr. Bill Brocklesby and Dr. Thomas Kelly
- NCPST and School of Physical Sciences
- All the group members
- Work supported by the Education, Audiovisual and Culture Executive Agency (EACEA) Erasmus Mundus Joint Doctorate Programme Project No. 2011 – 0033.

Thank you for your attention!

