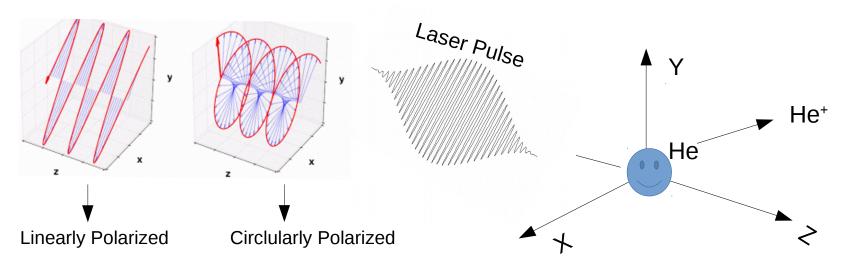


Ab-initio quantum dynamic imaging using circularly polarized light

Katravulapally Tejaswi

Primary Supervisor: Dr. Lampros Nikolopoulos (DCU) Secondary supervisor(s): Pof. John Costello (DCU) and Dr. Bill Brocklesby (UoS)

> EXTATIC Welcome Week 2017 Prague, Czech Republic 24/09/2017.



• Finding an Ab-initio solution to the Time Dependent Schrodinger Equation (TDSE) to describe the dynamics of a multi electron atomic system.

Scenario:

- Linearly polarized light ionizes an atom without changing the magnetic quantum number of the electron i.e. $\Delta M_L = 0$
- Circularly polarized light can access continuum states with different magnetic quantum numbers as $\Delta M_L = \pm 1$ and hence more detailed structural information can be obtained.

Using *orthonormality* of the ϕ 's (the two electron eigen wavefunctions):

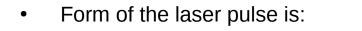
$$\rightarrow \langle \phi_{nLM_L} | \phi_{n'L'M'_{L'}} \rangle = \delta_{nLM_L;n'L'M'_{L'}}$$

and introducing the following notation:

Represents the state of polarization

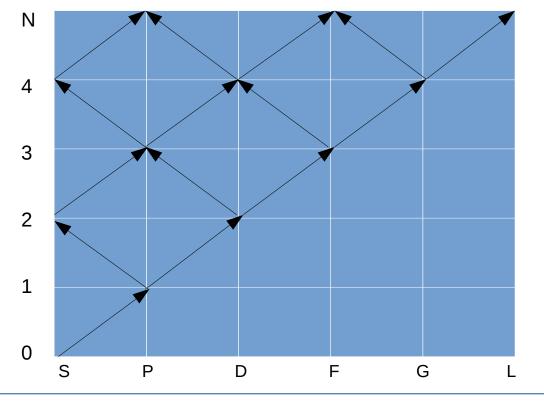
$$\langle \phi_{nLM_L} | \hat{D}^q | \phi_{n'L'M'_{L'}} \rangle = \hat{D}^{q'}_{nLM_L;n'L'M'_{L'}}$$

 $\rightarrow i\dot{C}_{nLM_L}(t) = C_{nLM_L}(t)E_{nLM_L} + \sum C_{n'L'M'_{L'}}(t)\hat{D}^{q}_{nLM_L;n'L'M'_{L'}}(t)$ $n'L'M'_{\tau}$ $C = C^R + iC^I$ $\dot{C}^R = EC^I - \sum DC^R$ $\dot{C}^{I} = -EC^{R} - \sum DC^{I}$ $E_{nLM_L} \leq E_{IP}$ $\underbrace{t \ge \tau_p}_{J} \rightarrow IY = 1 - \sum_{nLM_L}^{-nLM_L} |C_{nLM_L}(t)|^2$ Ionization Yield



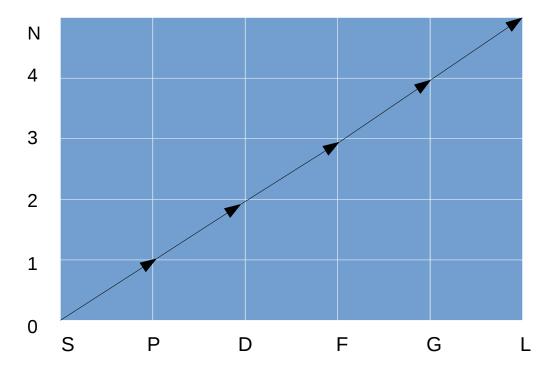
- τ_p is the total duration of the pulse which has n_c number of optical cycles.
- Physical field E(t) is related to A(t) in dipole approximation as:

$$E(t) = -\dot{A}(t)$$



• For linear polarisation: $(\mathbf{q}=0;\,\mathbf{L}'=L\pm 1;M_{L'}'=M_L)$

$$D_{nLM_L;n'L'M'_{L'}}^{q=0} = D_{nLM_L;n'(L\pm 1)M_L}$$



- For Circular Polarisation: $(\mathbf{q}=\pm 1; L'=L+1; M'_{L'}=M_L\mp 1)$

$$\begin{split} D_{nLM_{L};n'L'M_{L'}'}^{q=-1} &= D_{nLM_{L};n'L+1M_{L}+1} \longrightarrow \text{RCP} \\ D_{nLM_{L};n'L'M_{L'}'}^{q=+1} &= D_{nLM_{L};n'L+1M_{L}-1} \longrightarrow \text{LCP} \end{split}$$

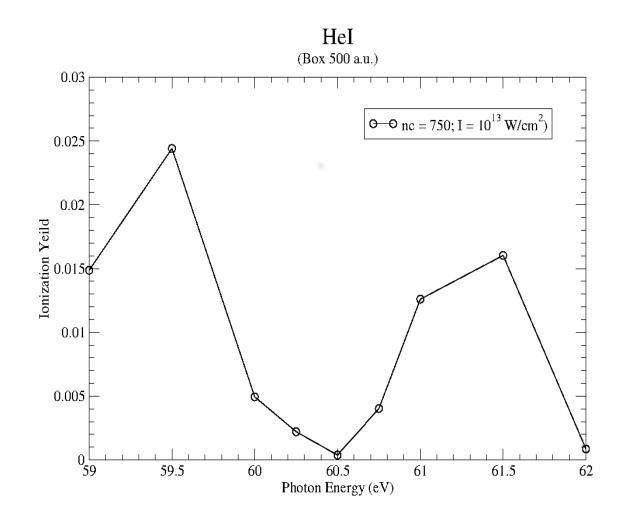
- The physical scenario
- TDSE
- An approach to solve the TDSE
- Involvement of laser matter interaction operator D^q
- The form of the pulse used in D^q
- How the state of polarisation (q = 0, 1, -1) effects the transitions

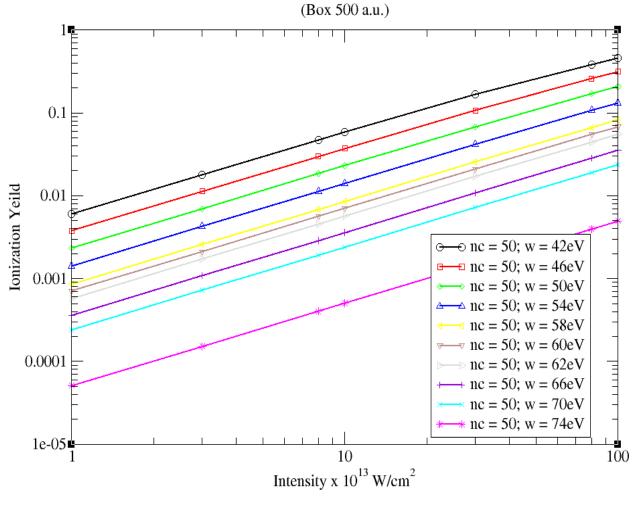
<u>LP</u>:

- Used linearly polarized laser beam to check the ionization behavior.
- Compared the results of TDSE with that of widely used perturbation theory.

LP Vs CP:

- Incorporated circular polrization.
- Compared the ionization yields from circularly polarized and linearly polarized laser beams.





HeI

• Comparing the one photon crossection results obtained from solving the TDSE with that of perturbation theory.

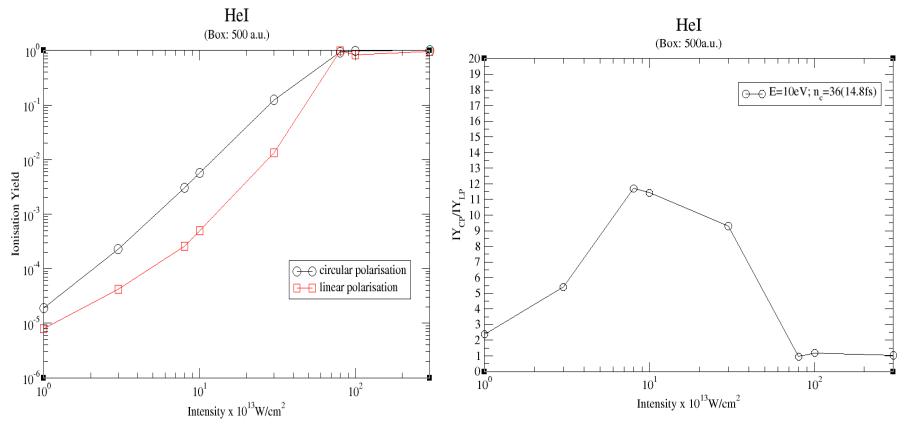
$$\sigma_1 = IY_1(\frac{\omega}{I})\frac{1}{\tau_1} \qquad \tau_1 = \frac{3}{8}\tau_p$$

ω(eV) (10 ¹³ W/cm²)	IY (TDSE)	σ ₁ (TDSE)	σ ₁ (Perturbation)	Δ(%)
42	6.04453	2.203	2.186	0.64
46	3.76076	1.644	1.636	0.49
50	2.36709	1.222	1.208	1.14
54	1.43904	0.866	0.834	3.6

• Comparing the three photon crossection results obtained from solving the TDSE with that of perturbation theory. Photon energy used is 10eV.

$$\sigma_3 = IY_3(\frac{\omega}{I})^3 \frac{1}{\tau_3} \qquad \qquad \tau_3 = \frac{231}{1024} \tau_p$$

Intensity (x 10 ¹³ W/cm ²)	IY ₃ (TDSE)	σ ₃ (TDSE) x 10 ⁻⁸⁵ cm ⁶ s ²	σ_{3}^{3} (Perturbation) x 10 ⁻⁸⁵ cm ⁶ s ²	Δ(%)
1	0.806	98	6.5	93.36
3	4.2276	19.2	6.5	66
8	25.858	6.195	6.5	4.92
10	50.052	6.14	6.5	5.86
30	1341.9	6.097	6.5	6.6
80	97654	23.39	6.5	72.21
100	83640	10.26	6.5	36.65



- Ionization yield comparision between LP and CP laser beams.
- Photon energy is 10eV for both the polarizations (three photon ionization)

- Next step is to include fluctuations in the electric field (FEL radiation).
- Yileds and Angular Distrubutions will be calculated.

- I thank Dr. Lampros Nikolopoulos for his constant supervision and guidance.
- I also thank Prof. John Costello for his support and kind help.
- Work supported by the Education, Audiovisual and Culture Executive Agency (EACEA) Erasmus Mundus Joint Doctorate Programme Project No. 2011 0033.

Thank You

