This file is prepared by
L. Kocbach, University of Bergen, on the
basis of R. Cowan's file
readme
(at t4.lanl.gov/pub/cowan/) contained in the
standard
distribution. of Cowan's code.
Cowan's Code: the rcn input
WARNING: Do not edit this file using Netscape Composer
newer than 3.0 !!!!
(or any other similar programs)
They will destroy the data below!!
In Cowan's standard distribution, the programs are called
rcn
rcn2
rcg
rce
They are written to use always the same input and output files.
the program rcn discussed here allways uses in36 as
the input file and allways outputs to out36.
Sample input files (always to be named in36) for
the HF program RCN is as follows. It is still position-dependent,
therefore the numbers of columns are provided. Each 'card set' is
delimited by hyphen-lines.
EXAMPLE 1: HYDROGEN ONLY
123456789*123456789*123456789*123456789*123456789*123456789*123456789*
10 20 30 40 50 60 70
--------------------------------------------------------------------------
2 -9 2 10 0.2 5.e-08 1.e-11-2 090 1.0 0.65 0.0 0.0 -6
1 1H I 1s 1s
-1
--------------------------------------------------------------------------
EXAMPLE 2: 5-times ionized potassium (Kalium)
123456789*123456789*123456789*123456789*123456789*123456789*123456789*
10 20 30 40 50 60 70
--------------------------------------------------------------------------
2 -9 2 10 0.2 5.e-08 1.e-11-2 090 1.0 0.65 0.0 0.0 -6
19 6K VI 3s2 3p2 3s2 3p2
19 6K VI 3p4 3p4
19 6K VI 3p 3d 3s2 3p 3d
-1
--------------------------------------------------------------------------
EXAMPLE 3: Copper calculation
123456789*123456789*123456789*123456789*123456789*123456789*123456789*
10 20 30 40 50 60 70
--------------------------------------------------------------------------
2 -9 2 10 0.2 5.e-08 1.e-11-2 090 1.0 0.65 0.0 0.0 -6
29 1Cu I 1s2 4s 1s2 3d10 4s
29 1Cu I 1s 4s .1p 1s 3d10 4s 99p 0.1
29 1Cu I 1s 4s 1.p 1s 3d10 4s 99p 1.0
-1
--------------------------------------------------------------------------
The first line is an almost universal control card, except that
the "090" should be changed to "190" if relativistic corrections in the
wavefunctions are desired (used mainly for elements with Z greater than
about 30),
123456789*123456789*123456789*123456789*123456789*123456789*123456789*123456
10 20 30 40 50 60 70
------------------------------------------- non-relativistic ------------
2 -9 2 10 0.2 5.e-08 1.e-11-2 090 1.0 0.65 0.0 0.0 -6
--------------------------------------------------------------------------
------------------------------------------ relativistic -----------------
2 -9 2 10 0.2 5.e-08 1.e-11-2 190 1.0 0.65 0.0 0.0 -6
--------------------------------------------------------------------------
and that the "-6" in columns 74-75
(which sends abbreviated
output on the course of the calculation to the monitor screen) should
be deleted for batch running on a mainframe computer.
Each remaining line specifies an electron configuration, except
that a
negative atomic number (in columns 3-5)
specifies a normal exit from RCN;
Calculation for only the ground configuration 1s of hydrogen.
2 -9 2 10 0.2 5.e-08 1.e-11-2 090 1.0 0.65 0.0 0.0 -6
1 1H I 1s 1s
-1
Calculation for
the two even-parity configurations 3s2 3p2 and 3p4 and the odd-parity
configuration 3s2 3p 3d of K VI (5-fold ionized potassium, Z=19).
2 -9 2 10 0.2 5.e-08 1.e-11-2 090 1.0 0.65 0.0 0.0 -6
19 6K VI 3s2 3p2 3s2 3p2
19 6K VI 3p4 3p4
19 6K VI 3p 3d 3s2 3p 3d
-1
(With output passed on through RCN2 to RCG, one would then obtain a
calculation of a 3s2 3p2 + 3p4 to 3s2 3p 3d electric-dipole spectrum.)
Calculations for the ground configuration 3d10 4s of
neutral copper together with two continuum configurations (a principal
"quantum number" of 99 signifying a free electron) with free-electron
kinetic energies of 0.1 and 1.0 rydbergs, for purposes in RCG of
calculating photoionization cross-sections for 1s to ep transitions
at e=0.1 and 1.0 Ry.
2 -9 2 10 0.2 5.e-08 1.e-11-2 090 1.0 0.65 0.0 0.0 -6
29 1Cu I 1s2 4s 1s2 3d10 4s
29 1Cu I 1s 4s .1p 1s 3d10 4s 99p 0.1
29 1Cu I 1s 4s 1.p 1s 3d10 4s 99p 1.0
-1
The value of atomic number must lie in columns 2-5,
the spectrum
number (one more than the ionization stage) in columns 9-10,
and the
ion and configuration description (for printed information only) in
columns 11-28.
For maximum legibility in output from programs RCG and
RCE, it is desirable that the element and spectrum identification be
limited to columns 11-16 (e.g., "C I ", "O III ", "Fe23+ " or
"Fe+23 ", etc.), and that the configuration label be limited to columns
17-22 or maybe 17-24.
The Configurations
The actual specification of electron orbitals for calculational
purposes can follow a semi free-form format,
beginning at least three
blank spaces after the configuration label, with at least one blank
space separating orbitals (and kinetic energy, if present).
spectrum number
ZZZZ II text BBB
TXTXTXTXTXTXTXTXTX CONFIGURATION_INFORMATION
29 1Cu I 1s2 4s 1s2 3d10 4s
29 1Cu I 1s 4s .1p 1s 3d10 4s 99p 0.1
29 1Cu I 1s 4s 1.p 1s 3d10 4s 99p 1.0
-1
123456789*123456789*123456789*123456789*123456789*123456789*123456789*123456
10 20 30 40 50 60 70
The complete electron configuration is set up by RCN as follows:
The number
of electrons is calculated to be Z+1-spectrum number,
and a configuration is set up for the ground configuration of the neutral noble gas
(He, Ne, Ar, Kr, Xe, or Rn)
containing no more than this number of
electrons.
This configuration is then modified and/or added to
according to the given orbital information.
As an example, for neutral
copper, the number of electrons is 29+1-1=29, and so the code starts
from the ground configuration
1s2 2s2 2p6 3s2 3p6
of neutral argon (18 electrons).
For the first copper configuration in the example,
29 1Cu I 1s2 4s 1s2 3d10 4s
ten 3d
electrons and one 4s electron are added to give the
ground configuration of neutral copper.
For the other two Cu cases,
29 1Cu I 1s 4s .1p 1s 3d10 4s 99p 0.1
29 1Cu I 1s 4s 1.p 1s 3d10 4s 99p 1.0
the closed 1s shell
1s2
is modified to
1s
(the occupation number is obtained by table lookup, and either
a blank or a one will give unit occupation--similarly, d occupation
numbers must be typed ...d7, d8, d9, d10, with no blank space for
occupation less than 10), and then ten 3d electrons, a 4s electron,
and a continuum p electron added.
Units internally to RCN are Bohr units of length and rydberg units
(units of 13.6058 eV) for energy. The final line of the output (in
file out36) for each configuration gives the quantities needed for
energy-level calculations in RCG, with Eav in Ry and all other energy
radial integrals in units of kK (1000 cm-1) (kilokayser); these same quanties are
given in the last line of the monitor-screen output for each cofiguration.
The control card
123456789*123456789*123456789*123456789*123456789*123456789*123456789*123456
10 20 30 40 50 60 70
------------------------------------------- non-relativistic ------------
2 -9 2 10 0.2 5.e-08 1.e-11-2 090 1.0 0.65 0.0 0.0 -6
------------------------------------------ relativistic -----------------
2 -9 2 10 0.2 5.e-08 1.e-11-2 190 1.0 0.65 0.0 0.0 -6
--------------------------------------------------------do not write to screen
2 -9 2 10 0.2 5.e-08 1.e-11-2 190 1.0 0.65 0.0 0.0
-------------------------------------------------------------------------
The configuration cards
2-5 9-10 11-28 3 blanc free format configurations
ZZZZ II BBB
TXTXTXTXTXTXTXTXTX CONFIGURATION_INFORMATION
29 1Cu I 1s2 4s 1s2 3d10 4s
29 1Cu I 1s 4s .1p 1s 3d10 4s 99p 0.1
29 1Cu I 1s 4s 1.p 1s 3d10 4s 99p 1.0
123456789*123456789*123456789*123456789*123456789*123456789*123456789*123456
10 20 30 40 50 60 70
RCN input
COMMENT
(With output passed on through rcn2 to rcg, one would then obtain a
calculation of a
3s2 3p2 + 3p4 to 3s2 3p 3d
electric-dipole spectrum.)
This file is prepared by
L. Kocbach, University of Bergen, on the
basis of R. Cowan's file
readme
(at t4.lanl.gov/pub/cowan/) contained in the
standard
distribution. of Cowan's code.