This file is prepared by L. Kocbach, University of Bergen, on the basis of R. Cowan's file readme (at t4.lanl.gov/pub/cowan/) contained in the standard distribution. of Cowan's code.


Cowan's Code: the rcn input

WARNING: Do not edit this file using Netscape Composer newer than 3.0 !!!! (or any other similar programs) They will destroy the data below!! In Cowan's standard distribution, the programs are called rcn rcn2 rcg rce They are written to use always the same input and output files.

the program rcn discussed here allways uses in36 as the input file and allways outputs to out36.

Sample input files (always to be named in36) for the HF program RCN is as follows. It is still position-dependent, therefore the numbers of columns are provided. Each 'card set' is delimited by hyphen-lines. EXAMPLE 1: HYDROGEN ONLY 123456789*123456789*123456789*123456789*123456789*123456789*123456789* 10 20 30 40 50 60 70 -------------------------------------------------------------------------- 2 -9 2 10 0.2 5.e-08 1.e-11-2 090 1.0 0.65 0.0 0.0 -6 1 1H I 1s 1s -1 -------------------------------------------------------------------------- EXAMPLE 2: 5-times ionized potassium (Kalium) 123456789*123456789*123456789*123456789*123456789*123456789*123456789* 10 20 30 40 50 60 70 -------------------------------------------------------------------------- 2 -9 2 10 0.2 5.e-08 1.e-11-2 090 1.0 0.65 0.0 0.0 -6 19 6K VI 3s2 3p2 3s2 3p2 19 6K VI 3p4 3p4 19 6K VI 3p 3d 3s2 3p 3d -1 -------------------------------------------------------------------------- EXAMPLE 3: Copper calculation 123456789*123456789*123456789*123456789*123456789*123456789*123456789* 10 20 30 40 50 60 70 -------------------------------------------------------------------------- 2 -9 2 10 0.2 5.e-08 1.e-11-2 090 1.0 0.65 0.0 0.0 -6 29 1Cu I 1s2 4s 1s2 3d10 4s 29 1Cu I 1s 4s .1p 1s 3d10 4s 99p 0.1 29 1Cu I 1s 4s 1.p 1s 3d10 4s 99p 1.0 -1 --------------------------------------------------------------------------
 
The first line is an almost universal control card, except that the "090" should be changed to "190" if relativistic corrections in the wavefunctions are desired (used mainly for elements with Z greater than about 30), 123456789*123456789*123456789*123456789*123456789*123456789*123456789*123456 10 20 30 40 50 60 70 ------------------------------------------- non-relativistic ------------ 2 -9 2 10 0.2 5.e-08 1.e-11-2 090 1.0 0.65 0.0 0.0 -6 -------------------------------------------------------------------------- ------------------------------------------ relativistic ----------------- 2 -9 2 10 0.2 5.e-08 1.e-11-2 190 1.0 0.65 0.0 0.0 -6 -------------------------------------------------------------------------- and that the "-6" in columns 74-75
(which sends abbreviated output on the course of the calculation to the monitor screen) should be deleted for batch running on a mainframe computer.


Each remaining line specifies an electron configuration, except that a negative atomic number (in columns 3-5)

specifies a normal exit from RCN;


Calculation for only the ground configuration 1s of hydrogen. 2 -9 2 10 0.2 5.e-08 1.e-11-2 090 1.0 0.65 0.0 0.0 -6 1 1H I 1s 1s -1


Calculation for the two even-parity configurations 3s2 3p2 and 3p4 and the odd-parity configuration 3s2 3p 3d of K VI (5-fold ionized potassium, Z=19). 2 -9 2 10 0.2 5.e-08 1.e-11-2 090 1.0 0.65 0.0 0.0 -6 19 6K VI 3s2 3p2 3s2 3p2 19 6K VI 3p4 3p4 19 6K VI 3p 3d 3s2 3p 3d -1


(With output passed on through RCN2 to RCG, one would then obtain a calculation of a 3s2 3p2 + 3p4 to 3s2 3p 3d electric-dipole spectrum.)


Calculations for the ground configuration 3d10 4s of neutral copper together with two continuum configurations (a principal "quantum number" of 99 signifying a free electron) with free-electron kinetic energies of 0.1 and 1.0 rydbergs, for purposes in RCG of calculating photoionization cross-sections for 1s to ep transitions at e=0.1 and 1.0 Ry. 2 -9 2 10 0.2 5.e-08 1.e-11-2 090 1.0 0.65 0.0 0.0 -6 29 1Cu I 1s2 4s 1s2 3d10 4s 29 1Cu I 1s 4s .1p 1s 3d10 4s 99p 0.1 29 1Cu I 1s 4s 1.p 1s 3d10 4s 99p 1.0 -1


The value of atomic number must lie in columns 2-5,

the spectrum number (one more than the ionization stage) in columns 9-10,

and the ion and configuration description (for printed information only) in columns 11-28.

For maximum legibility in output from programs RCG and RCE, it is desirable that the element and spectrum identification be limited to columns 11-16 (e.g., "C I ", "O III ", "Fe23+ " or "Fe+23 ", etc.), and that the configuration label be limited to columns 17-22 or maybe 17-24.

The Configurations

The actual specification of electron orbitals for calculational purposes can follow a semi free-form format, beginning at least three blank spaces after the configuration label, with at least one blank space separating orbitals (and kinetic energy, if present). spectrum number ZZZZ II text BBB TXTXTXTXTXTXTXTXTX CONFIGURATION_INFORMATION 29 1Cu I 1s2 4s 1s2 3d10 4s 29 1Cu I 1s 4s .1p 1s 3d10 4s 99p 0.1 29 1Cu I 1s 4s 1.p 1s 3d10 4s 99p 1.0 -1 123456789*123456789*123456789*123456789*123456789*123456789*123456789*123456 10 20 30 40 50 60 70 The complete electron configuration is set up by RCN as follows:

The number of electrons is calculated to be Z+1-spectrum number,

and a configuration is set up for the ground configuration of the neutral noble gas

(He, Ne, Ar, Kr, Xe, or Rn)

containing no more than this number of electrons.

This configuration is then modified and/or added to according to the given orbital information.

As an example, for neutral copper, the number of electrons is 29+1-1=29, and so the code starts from the ground configuration 1s2 2s2 2p6 3s2 3p6 of neutral argon (18 electrons).

For the first copper configuration in the example, 29 1Cu I 1s2 4s 1s2 3d10 4s ten 3d electrons and one 4s electron are added to give the ground configuration of neutral copper.

For the other two Cu cases, 29 1Cu I 1s 4s .1p 1s 3d10 4s 99p 0.1 29 1Cu I 1s 4s 1.p 1s 3d10 4s 99p 1.0 the closed 1s shell 1s2 is modified to 1s (the occupation number is obtained by table lookup, and either a blank or a one will give unit occupation--similarly, d occupation numbers must be typed ...d7, d8, d9, d10, with no blank space for occupation less than 10), and then ten 3d electrons, a 4s electron, and a continuum p electron added.

Units internally to RCN are Bohr units of length and rydberg units (units of 13.6058 eV) for energy. The final line of the output (in file out36) for each configuration gives the quantities needed for energy-level calculations in RCG, with Eav in Ry and all other energy radial integrals in units of kK (1000 cm-1) (kilokayser); these same quanties are given in the last line of the monitor-screen output for each cofiguration.


The control card

123456789*123456789*123456789*123456789*123456789*123456789*123456789*123456 10 20 30 40 50 60 70 ------------------------------------------- non-relativistic ------------ 2 -9 2 10 0.2 5.e-08 1.e-11-2 090 1.0 0.65 0.0 0.0 -6 ------------------------------------------ relativistic ----------------- 2 -9 2 10 0.2 5.e-08 1.e-11-2 190 1.0 0.65 0.0 0.0 -6 --------------------------------------------------------do not write to screen 2 -9 2 10 0.2 5.e-08 1.e-11-2 190 1.0 0.65 0.0 0.0 -------------------------------------------------------------------------

The configuration cards

2-5 9-10 11-28 3 blanc free format configurations ZZZZ II BBB TXTXTXTXTXTXTXTXTX CONFIGURATION_INFORMATION 29 1Cu I 1s2 4s 1s2 3d10 4s 29 1Cu I 1s 4s .1p 1s 3d10 4s 99p 0.1 29 1Cu I 1s 4s 1.p 1s 3d10 4s 99p 1.0 123456789*123456789*123456789*123456789*123456789*123456789*123456789*123456 10 20 30 40 50 60 70 RCN input

COMMENT

(With output passed on through rcn2 to rcg, one would then obtain a calculation of a

3s2 3p2 + 3p4 to 3s2 3p 3d

electric-dipole spectrum.)


This file is prepared by L. Kocbach, University of Bergen, on the basis of R. Cowan's file readme (at t4.lanl.gov/pub/cowan/) contained in the standard distribution. of Cowan's code.