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Abstract

The aim of this paper is to present an Arbitrary Lagrangian-Eulerian (ALE [1])
code for simulation of problems in compressible fluid dynamics and plasma physics
including heat conduction and laser absorption, in both Cartesian and cylindrical
geometries. Various techniques are utilized for mesh adaptation (rezoning), including
Winslow smoothing [2], three-step untangling [3] and Reference Jacobian method
[4, 5]. For conservative transfer (remapping) of variables onto the rezoned mesh,
linear interpolation with a posteriori repairs is used by default. Simulation of high
velocity impact, for which pure Lagrangian method fails, proves the usefulness of ALE
approach.

1. Introduction

The Arbitrary Lagrangian-Eulerian (ALE) method [1] is a popular tool for sim-
ulation of continuum mechanics problems with large shear deformation such as fluid
flow and metal forming. Compared to pure Eulerian methods, it is also better suited
for moving boundaries and large volume changes of the computational domain, ap-
pearing in simulations of laser-plasma interactions and inertial confinement fusion.

The ALE algorithm consists of a classical Lagrangian step in which the mesh
moves along with the modeled material, a rezone step in which the mesh is modified
to preserve good quality through the computation, and a remapping step in which
the solution is conservatively transferred from the old mesh to the new, rezoned
one. We present new efficient techniques for the rezoning and remapping stages of
the ALE framework and demonstrate some of their properties on a real physical
simulation of high velocity impact.

Note that by the ALE method we understand the variation of Lagrangian hy-
drodynamics which avoids Lagrangian mesh distortion (arising in some problems
involving e.g. shear flows) by rezoning and remapping. Another method, unfortu-
nately also called ALE, uses a mesh smoothly moving in a predefined way, typically
determined by moving boundaries rather than by fluid motion.

Details on implementation of particular procedures and on the physical back-
ground can be found in [6].
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and LC528.
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2. The Lagrangian Step

In pure Lagrangian computation, each mesh cell can be considered as a particle
of the fluid, so that the mesh moves along with the simulated problem, with no
mass flux between the cells. Euler equations for compressible fluid flow with heat
conductivity and laser absorption in Lagrangian coordinates read

1

ρ

d ρ

d t
= −∇ · ~v, ρ

d ~v

d t
= −∇p,

d ~x

d t
= ~v, (1a)

ρ
d ε

d t
= −p ∇ · ~v + ∇ · (κ∇T ) − Ca∇ · ~I (1b)

where total Lagrangian time derivatives include convective terms: d
d t

= ∂
∂ t

+ ~v · ∇.
Scalar quantities (density ρ, pressure p, specific internal energy ε and temperature
T ) are approximated in mesh cells, while vectors (position ~x and velocity ~v) are
related to the nodes. To complete the system, one has to supply also the equation
of state (EOS). For the ideal polytropic gas, the EOS is p = (γ − 1)ερ. For other
materials, more sophisticated formulas are advised, e.g. the Quotidian EOS [7]. The
hyperbolic Lagrangian system is numerically treated by compatible method [8, 9]
conserving total energy. Several types of artificial viscosity are incorporated into the
difference scheme, such as bulk viscosity, edge viscosity, etc. [6]. Laser absorption is
taken into account by the last term in the energy equation (1b).

The system is split into hyperbolic and parabolic parts. The parabolic part

d T

d t
−∇ · (κ∇T ) = 0

of the energy equation is solved separately by a scheme fully implicit in time, which
allows the choice of timestep equal to that of the hyperbolic system. A discretiza-
tion of operators div and grad by a mimetic method [10] leads to a system with a
symmetric and positive definite matrix, which is then solved by conjugate gradient
method.

3. Mesh Adaptation (Rezoning)

During the rezoning process, the quality of strongly deformed parts of the mesh
must be improved, so that the computation can continue with desired precision.
However, doing more changes than necessary could lead to loss of valuable simulation
information gathered so far. If the mesh is really strongly distorted, e.g. containing
the “hourglass-shaped” (⊲⊳) quadrilateral cells, one first needs to untangle it, that
is to fix all the fully or partly inverted elements. An efficient method to do this is
the three-step algorithm [3], combining direct node placement based on geometrical
considerations with numerical optimization of a quadratic functional which serves
as a local mesh quality indicator. Another option is to prevent evolution of strong
deformations (tangling) by regular use of a less expensive rezoning technique, such
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as the simple Winslow approach [2], where new node positions are given by

~xk+1
i,j =

1

2 (αk + γk)


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i,j−1) + γk (~xk
i+1,j + ~xk

i−1,j)−

−
1

2
βk (~xk
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i+1,j−1)



 (2)

with coefficients αk = x2
ξ + y2

ξ , βk = xξ xη + yξ yη, γk = x2
η + y2

η, where zξ, zη

denote finite differences in logical, index coordinates zξ = (zi+1,j − zi−1,j)/2, zη =
(zi,j+1−zi,j−1)/2. A more sophisticated method is based on the local parametrization
and optimization of the Reference Jacobian matrix [4, 5]. First, each node is assigned
a virtual reference position ~x(R) by optimization of a local mesh quality estimator
in its neighborhood. In particular, in N dimensions, for node V one minimizes the
functional

QV =
∑

T∈TV

‖JV,T‖ · ‖J
−1

V,T‖,

which is a sum of condition numbers of the Jacobi mapping matrices

JV,T = [eV,1, eV,2, . . . , eV,N ]

given by edges eV,k = ~xk −~xV forming a virtual simplex in the N -dimensional space.
The sum is taken over all simplices T sharing node V as a vertex. Then, global
optimization is used to find a mesh of good quality, with edges as close as possible
to their reference counterparts. This is done by minimization of the functional

FRJ =
∑

V

∑

T∈TV

‖JV,T (x) − J(R)
V,T‖

‖J(R)
V,T‖

where the sum is taken over all mesh vertices V and the reference Jacobian matrix
is defined as

J(R)
V,T =

[

e
(R)
V,1 , e

(R)
V,2 , . . . , e

(R)
V,N

]

, e
(R)
V,k = ~xk − ~x

(R)
V

Both functionals are optimized using the conjugate gradient method, which is well
suited for problems with large number of parameters.

The input mesh for this procedure must not contain inverted elements (i.e. sim-
plices with negative volume in the sense of original orientation). Therefore, strongly
distorted meshes must be preprocessed by an untangling procedure, e.g. the three-
step method [3] mentioned above.

4. Conservative Transfer of Solution (Remapping)

Once the mesh is adapted (rezoned), the discrete values of conserved variables
must be transferred (remapped) from the old mesh to this new, rezoned one. This

3



procedure is required to be conservative for mass, each component of momentum,
and total energy and must preserve monotonicity (or at least local bounds) for den-
sity, velocity and specific internal energy. The remapping should be as accurate as
possible. Exact transfer from the old mesh to the new one is required for linear func-
tions. All this is achieved by a method which first interpolates discrete values by a
piecewise linear function, then integrates it over swept regions and finally corrects
the possibly created overshoots or undershoots by redistribution of these into the
neighboring cells (so called Repair) [11, 12].

Other techniques enforce all imposed requirements already during the remap-
ping process, with no need of a posteriori repair. Many of them combine low-order
intercell fluxes (which preserve local bounds by default) with some portion of higher-
order (generally unconstrained) fluxes. An example called Flux-Corrected Remap-
ping (FCR) is described in [13].

5. Numerical Example

As a practical example, we show a simulation inspired by an experiment per-
formed recently at the Prague Asterix Laser System (PALS) facility: a laser-irradiated
aluminum disc ablatively accelerates and strikes a massive aluminum target[14, 15].
Here we focus on the second part, that is on disc impact. The setup is as in Fig. 1(a)
with the following parameters: a 400 ps laser pulse with energy 240 J operating
in the 3rd harmonic with radius of focal spot on target rf = 125 µm, irradiates a
d = 11 µm thick disc with radius r = 150 µm, located L = 200 µm above the target.
The disc is ablatively accelerated up to the impact velocity vimp = 134 km/s and hits
the target. Simulation starts at the moment of impact. Pure Lagrangian computa-
tion fails very soon (at approximately t ≈ 0.5 ns) because of fatal mesh distortion,
while the ALE simulation preserves sufficient mesh quality for the computation to
continue. In particular, EOS for ideal gas was used, mesh rezoning was performed
by Winslow smoothing (2) and remapping by linear interpolation with Repair. The
flyer starts to sink into the target, material of both the flyer and the target are
compressed, heated and evaporated. Part of the hot material is ionized, ablated and
forms an expanding plasma corona, shown at t = 80 ns in Fig. 1(b). Shock wave
is propagating into the target, continuing to melt and evaporate its material, see
Fig. 1(c), where only every second mesh edge in each direction is shown, so that each
quadrilateral corresponds to four real cells. Solid, liquid and gas phases are shown
by different colormaps in grayscale. In all performed tests, size and shape of the
crater approximated the experimental data with reasonable precision.
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Figure 1: Disc impact problem. Experiment setup (a) and temperature at 80ns:
whole domain with hot plasma corona (b), detail of crater evolving in the target (c).
Only every fourth layer of edges is shown in (c). Solid, liquid and gas phases are
shown in separate colormaps.
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