Xenon Filled Fast Capillary Discharge as a Source of Intense EUV Radiation

C. CACHONCINLLE, E. ROBERT, O. SARROUKH, T. GONTHIEZ, R. VILLADROSA,

C. FLEECIER, J.M. POUVESLE

GREMI-ESPEO, Université d'Orléans, BP 6744 Orleans cedex 02, France

N. BOBROVA, P. SASOROV

Institute of Theoretical and Experimental Physics, Moscow, Russia

M. VRBOVA CTU, FNSPE Brehova 7 CZ-115 19 Prague 1, Czech Republic

P. VRBA

Institute of Plasma Physics, AS CR, CZ-18221 Prague 8, Czech Republic

Experiments - GREMI. MHD code – ITEP. IONMIX code – IPP CAS

Experimental Setup

Fig. 1: Experimental set up (GREMI-ESPEO Orleans) 1 - Knob capacitors, 2 - Gas inlet, 3 - Capillary, 4 - Fast switch, 5 - to Detection chamber

Measured X-ray emission spectra

Time resolved spectra from 1.0 mm dia 10 mm long alumina capillary at 0.5 Torr Xenon without conductance at 15 kV

Current waveforms

Electric current profiles measured for Charging voltages **28, 24, 18, 15** kV.

Fitting formula entered to MHD code:

$$I(t) = I_0 \sin(\frac{\pi t}{2t_0}) \exp(\frac{-t}{t_1})$$

NPINCH Code

Input parameters to 1d - MHD code one-fluid and two-temperature plasma model of capillary discharge

	Initial	Initial	Initial				Re
Case	Voltage	Pressure	Density	I ₀	t ₀	t ₁	marks
	[kV]	p ₀ [mbar]	$[g/cm^3]$	[kA]	[ns]	[ns]	
U28	28	0.66	3.474e-6	6.605	85	867.1	
U24/p66	24	0.66	3.474e-6	5.556	85	966.5	Spectra
/p53		0.53	2.782e-6				
/p33		0.33	1.737e-6				
/p13		0.13	6.948e-7				
U18	18	0.66	3.474e-6	4.314	85	723.4	
U15/p66	15	0.66	3.474e-6	4.761	85	182.9	Spectra
/p53		0.53	2.782e-6				
/p33		0.33	1.737e-6				
/p13		0.13	6.948e-7				

 $p_0 = 0.66 \text{ mbar}$

 $N_{e} \,\,({\rm cm}^{-3})$

 T_e (eV)

 $U_0 = 15 \text{ kV}$

Dependence of the Plasma Properties on the Charging Voltage and Filling Pressure

Overview

Case	Initial Voltage [kV]	Energy stored [J]	Maximum Current I _{max} [kA]	Initial Pressure p ₀ mbar]	Initial Density ho [g/cm ³]	Initial Concentration [cm ⁻³]	<mark>I</mark> 0 [kA]	t ₀ [ns]	t ₁ [ns]
Α	28	6.3	6	<mark>1.0</mark>	5.263e-6	$2.4 \ 10^{16}$	6.53	85	986.4
В	28	6.3	6	<mark>0.2</mark>	1.0526e-6	$4.8 \ 10^{15}$	6.53	85	986.4
С	<mark>12</mark>	1.2	2.6	<mark>1.0</mark>	5.263e-6	$2.4 \ 10^{16}$	4.80	85	123.1
D	12	1.2	2.6	<mark>0.2</mark>	1.0526e-6	$4.8 \ 10^{15}$	4.80	85	123.1

	Pinch	Compression	Electron	Electron	Average	
Case	Time	ratio	Temperature	Density	Ionisation	Remarks
	$t_1[ns]$	ρ/ρ_0	$T_e [eV]$	$N_e[cm^{-3}]$	State Z	
A	48 (62)	<mark>2.89</mark>	21.8	9.30 10 ¹⁷	13.2	double pinch
B	38	<mark>12.75</mark>	95.1	1.83 10 ¹⁸	29.7	high compression, hot
C	30	<mark>1.97</mark>	18.4	4.33 10 ¹⁷	9.0	low compression, cold
D	37 (51)	<mark>2.71</mark>	37.3	$2.42 \ 10^{17}$	16.7	low compression,

Space-time Dependences of Compression Ratio ρ / ρ_0

The peak value of compression ratio increases with increasing current (initial voltage) and with decreasing filling pressure. The highest value is **12**, the lowest about **2**. The pinch effect is the most profound for low pressures and high voltage (*case B*).

Space-time Dependences of Electron Temperature T_e

Local plasma electron temperature increases with the increasing current density. Peak temperatures are higher than **20 eV** in all investigated cases. The highest

Thermodynamic and Radiative Plasma Properties **IONMIX Code**

Input parameters: **plasma temperature, nuclei densities**, **ionization potentials Ionization state** is sensitive to changes of plasma temperature not to initial pressure. If plasma temperature is 20 eV the ions Xe⁸⁺ prevail, for 50 eV Xe¹¹⁺, Xe¹²⁺, Xe¹³⁺ ions are expected.

Bohr-like Model for Xe Ions

Energy of any ion with outermost electron residing in shell n: $E_{n,j} = -\Phi_j (n_0/n)^2$, $n \ge n_0$ n_0 is principal quantum number of outermost electron in its ground state, Φ_j is the ionization potential of the j^{th} ion.

Wavelength corresponding to Lymann– and Balmer- like transitions for various Xe ions

Ion	Xe ⁶⁺	Xe ⁷⁺	Xe ⁸⁺	Xe ⁹⁺	Xe ¹⁰⁺	Xe ¹¹⁺	Xe ¹²⁺	Xe ¹³⁺	Xe ¹⁴⁺	Xe ¹⁵⁺	Xe ¹⁶⁺	Xe ¹⁷⁺	Xe ¹⁸⁺
$\Phi_j[eV]$	98	112	170	202	233	264	294	325	358	389	421	452	572
n ₀	5	5	4	4	4	4	4	4	4	4	4	4	4
λ_L [nm]	41.4	36.1	<mark>20.2</mark>	<mark>17.1</mark>	<mark>14.8</mark>	<mark>13.1</mark>	<mark>11.7</mark>	<mark>10.6</mark>	<mark>9.6</mark>	<mark>8.8</mark>	<mark>8.1</mark>	7.6	6.0
$\lambda_{\rm B}[\rm nm]$	68.6	59.9	37.1	31.4	27.3	24.1	21.5	<mark>19.5</mark>	17.7	<u>16.3</u>	15.1	<mark>14.0</mark>	11.1
λ_{Edge}	12.6	11.04	7.25										

Spectral Emissivity

Kirchhoff – Planck'' law:

$$\eta(\lambda) = k(\lambda) \cdot w(\lambda)$$

 $k(\lambda)$ is the **spectral emission coefficient** (line part calculated by IONMIX code) and **continuous part** for plasma temperature T :

$$w(\lambda) = 8\pi hc \frac{1}{\lambda^5} \frac{1}{\exp(\frac{hc}{kT} \cdot \frac{1}{\lambda}) - 1}$$

Maximum value of $w(\lambda)$ corresponds to $\lambda_{max}[nm] = 442 / T [eV]$. For $\lambda_{max} = 13$ nm, should be T = 34 eV.

Calculated Spectral Emissivity for various temperatures

Temperatures T= 20-70 eV and initial atom density $N = 3.10^{17} \text{ cm}^{-3}$ according to the experiment and results of N-pinch code

70

Lyman-like transitions $\lambda_L = 14.8, 13.1, 11.7$ nm are identified for ions Xe¹⁰⁺ - Xe¹²⁺ at temperatures 35 - 60 eV. The higher is the plasma temperature the shorter wavelength of Lyman-like transition for higher ionized ions is seen.

For lower temperatures the recombination edges (free-bound transitions) at $\lambda_{Edge} = 12.6$ and 11.0 nm, corresponding to Xe⁶⁺ and Xe⁷⁺ are apparent.

Measured Spectral Intensity

for various time delays

Three emission peaks at 11.7, 13.5 and 14.7 nm correspond to Lyman-like α transitions of Xe¹²⁺, Xe¹¹⁺, Xe¹⁰⁺ ions.

The time evolutions of their amplitudes are interpreted as the time changes of the **ion concentrations**.

The highest concentration of Xe¹²⁺ (highest peak at 11.7 nm) observed at $t_{exp} = 75$ ns.corresponds to T_e = 50 eV.

155

Conclusion

- For experimental values of electrical peak currents $I_{peak} = 2.6 6.3 \text{ kA}$ and Xe pressure $p_0 = 0.2 - 1 \text{ mbar}$
- The evaluated pinch effect is weak,
- Temperature varies in the range Te = 36 167 eV,
- Three observed emission peaks at 11.2, 13.5 and 14.7 nm correspond to the similar quantum transitions of adjacent Xe¹²⁺, Xe¹¹⁺, Xe¹⁰⁺ ions,
- Time changes of peak values of spectral lines during a shot correspond to the simulated plasma temperature evolution.

References

 Cachoncinlle C. et al.: Cpillary Discharge Sources of Hard UV Radiation, Proc.of XXV ICPIG Nagoya, Japan 2001, vol. 4, 345.
Bobrova N.A., Bulanov S.V., Razinkova T.L., Sasorov P.V., Plasma Physics Reports 22 (1996), 387-402
MacFarlane J.J., Comput. Phys. Commun. 56 (1989) 259-278.