L. Kocbach¹, L.B. Madsen² and J.P. Hansen¹

¹ University of Bergen, Norway

² University of Århus, Denmark

The Nobel Prize in Chemistry 1999

The Royal Swedish Academy of Sciences has awarded the 1999 Nobel Prize in Chemistry to Professor Ahmed H. Zewail for his studies of transition states of chemical reactions by femtosecond spectroscopy.

The Nobel Prize in Chemistry 1999

The Royal Swedish Academy of Sciences has awarded the 1999 Nobel Prize in Chemistry to Professor Ahmed H. Zewail for his studies of transition states of chemical reactions by femtosecond spectroscopy.

Zewail's technique uses what can be thought of as the world's fastest camera. The "shutter speed" of such a camera must be extremely high since molecules are very small (about 10^{-9} m) and move extremely rapidly (1000 m/s). To obtain a sharp "image" of the molecules in the course of a chemical reaction requires a femtosecond (10^{-15} s) shutter speed.

Prague, November 4, 2002

Figure 1. Experimental scheme. In our pump-and-probe experiment the first near-IR femtosecond-laser pulse prepares a vibrationally excited molecule with an energy of 4000–6000 cm⁻¹ in its ground electronic state, and a second laser pulse, tuned to the red wing of the electronic transition in the UV, measures the change in absorption induced by the first laser pulse.

Few Cycles Light Pulses

FIG. 1. Focusing of few-cycle ultrashort light pulses delivered in a collimated laser beam by a parabolic mirror, producing a "light bullet" with transverse and longitudinal dimensions of the order of a few microns. This extreme spatial and temporal confinement of light creates optical-field strengths sufficient to lower the Coulomb barrier of atoms and to tunnel-ionize an outer electron at moderate pulse energy levels.

VOLUME 89, NUMBER 9

PHYSICAL REVIEW LETTERS

Excitation in Ion-Atom Collisions Inside Subfemtosecond Laser Pulses

L. B. Madsen,¹ J. P. Hansen,² and L. Kocbach²

¹Institute of Physics and Astronomy, University of Aarhus, 8000 Århus C, Denmark ²Institute of Physics, University of Bergen, Allégaten 55, 5007 Bergen, Norway (Received 24 January 2002; revised manuscript received 19 June 2002; published 9 August 2002)

We discuss new excitation mechanisms in energetic ion-atom collisions embedded in short laser pulses. For comparable duration and strength of the pulse and collisional interaction, the laser field will probe and modify the interaction between projectile and target. Coherence effects emerge, insight into reaction dynamics is gained, and new dynamical features are discovered. As an example, we show (i) how a propensity rule for s-p excitation can be dramatically changed, and (ii) how the presence of the laser pulse modifies the ionization process in ion-atom collisions.

Collision and laser pulse combined

Prague, November 4, 2002

Collision and laser pulse combined

Schrödinger Equation

$$i\partial_t \Psi(\mathbf{r}, t) = H(t)\Psi(\mathbf{r}, t)$$

$$H(t) = h(\mathbf{r}) + V_p(t)$$

Combination of projectile-electron and laser-electron interactions

$$V_p(t) = -\frac{Z_p}{|\mathbf{R}(t) - \mathbf{r}|} - \mathbf{E}(t) \cdot \mathbf{r}$$

Dipole Approximation

$$V_p(t) \approx -\mathbf{r} \cdot [\mathbf{E}(t) + \mathbf{E}_c(t)]$$

Quantal formulation

$$\begin{pmatrix} i\partial_t c_s \\ i\partial_t c_{p-} \\ i\partial_t c_{p+} \end{pmatrix} = \begin{bmatrix} f_{sp}(R) \begin{pmatrix} 0 & \text{c.c. c.c.} \\ e^{-i[\Delta E_{sp}(t) - \phi(t)]} & 0 & 0 \\ e^{-i[\Delta E_{sp}(t) + \phi(t)]} & 0 & 0 \end{pmatrix} +$$

$$y_{sp}E_0f(t) \begin{pmatrix} 0 & \text{c.c. c.c.} \\ -e^{i\Delta\varepsilon_{sp}t}\cos(\omega t + \delta) & 0 & 0 \\ e^{i\Delta\varepsilon_{sp}t}\cos(\omega t + \delta) & 0 & 0 \end{pmatrix} \left[\begin{pmatrix} c_s \\ c_{p-} \\ c_{p+} \end{pmatrix} \right]$$

 c_s, c_{p-}, c_{p+} are amplitudes for the s, $p_{m=-1}$, and $p_{m=+1}$ states

 y_{sp} is the dipole matrix element $\langle s|y|p \rangle$ between s and p states.

Amplitude Equations

Collision and laser pulse combined

Prague, November 4, 2002

FIG. 2. Excitation probability for H(1s)-H(2 p_{-}) ($Z_p = 1$) in the presence (dashed line) and absence (full line) of a laser pulse. The dot-dashed line is the laser-only contribution. The projectile velocity is v = 1 a.u., the duration of the laser pulse is $\tau =$ 0.3 fs, and the peak intensity is set by $y_{sp}E_0 = 0.045$ a.u. (cf. Fig. 4).

Collisions inside subfemtoseconds laser pulses

FIG. 3. As Fig. 2, but for constructive interference between the collision and laser interactions (see text).

Prague, November 4, 2002

FIG. 4. As Fig. 2, but for Na(3s)-Na(3 p_{-}), $\tau = 1$ fs, and v = 0.4 a.u. The peak intensity of the laser is set by $y_{sp}E_0 = 0.1$ a.u., corresponding to the peak value in the collisional strength $f_{sp}(R)$.

FIG. 4. As Fig. 2, but for Na(3s)-Na(3 p_{-}), $\tau = 1$ fs, and v = 0.4 a.u. The peak intensity of the laser is set by $y_{sp}E_0 = 0.1$ a.u., corresponding to the peak value in the collisional strength $f_{sp}(R)$.

Collisions leading to ionization.

One electron is ejected as a result of the collision, the laser pulse, or their combination

Simulated in CTMC

CTMC: Classical Trajectory Monte Carlo model

Newton equations are solved for hundreds of thousands sets of initial conditions

FIG. 5. Distribution of the ejected electron momenta in the collision plane for ionization in *p*-H(1*s*). Upper: Laser only. Middle: Collision only. Lower: Collision and laser. The CTMC data have been binned into a 32×32 array and slightly smoothed. Each new shade corresponds to an increase in probability density by 15%. The broken lines indicate the position of the most probable momentum. Parameters as in Fig. 2, except $E_0 = 0.19$ a.u.

Classical (CTMC) simulations of ionization in collisions inside a short laser pulse

> Laser only Collision only Combination of both

FIG. 5. Distribution of the ejected electron momenta in the collision plane for ionization in *p*-H(1*s*). Upper: Laser only. Middle: Collision only. Lower: Collision and laser. The CTMC data have been binned into a 32×32 array and slightly smoothed. Each new shade corresponds to an increase in probability density by 15%. The broken lines indicate the position of the most probable momentum. Parameters as in Fig. 2, except $E_0 = 0.19$ a.u.

Prague, November 4, 2002

Laser pulse only

Combination of both laser pulse and collision

Prague, November 4, 2002

Can this be detected?

COLTRIMS

COLd Target Recoil I on Momentum Spectroscopy

PES Photon Emission spectroscopy

TES Translational Energy gain Spectroscopy

COLTRIMS COLd Target Recoil I on Momentum Spectroscopy

The concept and techniques of COLTRIMS were introduced by the group of Prof. H. Schmidt-Böcking (Frankfurt) just before the 1990's and in particular with the work of J. Ullrich – and R. Dörner. By using static 30 K ($\Delta E = 4 \text{ meV}$) gas targets they demonstrated – that transverse recoil momenta could be measured corresponding to μRad projectile scattering angles. In the 1990's however, the real breakthrough for COLTRIMS came with the development of the ultra-cold supersonic gas jet (Mergel et al.⁴¹) and also with sophisticated recoil ion extraction and detection techniques by using electrostatic lenses⁴² (– Ali et al. –, Frohne et al. –). These two improvements pushed the resolution of helium recoils to $1.2 \ \mu eV$ (Mergel et al. –). Moreover the solid angle for recoil detection increased to 4π .

