

Dobré ráno

Observation of Ne-like Ar Soft X-ray Lasing in Fast Capillary Discharge

Eiki Hotta, Yasushi Hayashi, Yifan Xiao^a, Gohta Niimi^b, Masato Watanabe, Akitoshi Okino, Nobuhiro Sakamoto and Kazuhiko Horioka

Department of Energy Sciences, Tokyo Institute of Technology ^aDepartment of Electronic Science and Technology, Harbin Institute of Technology ^bAdvanced Semiconductor Research Center, National Institute of Advanced Industrial Science and Technology (AIST)

Outline of Talk

Objective

- Experimental Setup
- Experimental Results
 - Pre-ionization
 - Lasing properties Directivity, Gain, Spectroscopy
 - Parameter region Current, Pressure

• Summary

- Construction of compact X-ray laser
 - High rep-rate, compact X-ray laser : Metrology
 - Lasing by minimum input energy
 - Minimum current, Initial filling pressure?
- Effect of pre-ionization
 - Suppression of instability
 - Observation with high speed camera
 - Output laser energy
- Property of soft X-ray laser
 - Directivity
 - Gain
 - Wavelength Spectroscopic measurement

Laser parameter	
Pulse energy	0.88 mJ @ 4 Hz
Average pulse power	3.5 mW
Peak pulse power	0.6 MW
Divergence	$\approx 4.6 \text{ mrad}$
Pulse width	1.2–1.5 ns
Pulse spectral brightness	$2 \cdot 10^{25} \text{ photons}/(\text{s} \cdot \text{mm}^2 \cdot \text{mrad}^2 \cdot 0.01\% \text{ bandwidth})$

J.J.Rocca et al., C. R. Acad. Sci. Paris, t. 1, Série IV, p. 1065-1081, 2000

Electrical Circuit of Experimental Device

Experimental Setup

Capillary Z pinch (Soft X-ray Laser)

DEPARTMENT OF ENERGY SCIENCES

Photograph

Specification

Water capacitor: 3nF, Max. 900 kV (1.2 kJ) Capillary: Polyacetal, Pyrex or Almina Ceramics, φ3mm, 60-200 mm long Filling gas: 100-1000 mTorr Ar

Nov. 04 '02

Measurement System

DEPARTMENT OF ENERGY SCIENCES

Electrical Circuit of XRD

Aluminum foil filter of 0.8 or 2 µm thick is used.

Time Evolution of Pre-Discharge Plasma

Without predischarge current With predischarge current of 10 A (C) 30 - 40 ns (A) 10 - 20 ns (C) 40 - 50 ns (A) 20 - 30 ns Capillary Tube Plasma Column (B) 20 - 30 ns (D) 40 - 50 ns (B) 30 - 40 ns (D) 50 - 60 ns $\phi = 3 \text{ mm}$ $\phi = 3 \text{ mm}$ 1 = 20 mml = 20 mmCapillary Tube Plasma Column

Helical instabilities are observedPoor reproducibility

StableHighly repeatableDiameter of pinched plasma: 300µm

Dependence of XRD Signal on Pre-discharge Current

The unstable and low laser output at low pre-discharge current is possibly related to the growth of instabilities. Uniform pre-ionized plasma is essential for lasing.

Streak Photograph and Simulation Result

Streak Photograph and 1D-MHD Simulation Result

Nov. 04 '02

Time-spatial evolution of electron temperature

Time-spatial evolution of electron density

Directivity of Spike Output

DEPARTMENT OF ENERGY SCIENCES

Nov. 04 '02 Seminar on High-Current Pulsed Discharge Plasmas at Czech Technical University in Prague

XRD signal |

Gain-Length Product

Nov. 04 '02 Seminar on High-Current Pulsed Discharge Plasmas at Czech Technical University in Prague

τοκγο

Nov. 04 '02 Seminar on High-Current Pulsed Discharge Plasmas at Czech Technical University in Prague

DEPARTMENT OF ENERGY SCIENCES

Spectrum

Nov. 04 '02

Seminar on High-Current Pulsed Discharge Plasmas at Czech Technical University in Prague

17

Current and Pressure Range of Lasing

Capillary: $\acute{O} = 3$ mm, 32kA = 150 mm,6 Predischarge: 10 A Energy [µJ] 18kA 9kA 600 800 400 200Pressure [mTorr]

Lasing may be obtained with a current of below 9kA and over 32 kA, with adequate gas pressure.

XRD Output vs Pressure

XRD Output vs Plasma Length

Summary

- Ne-like Ar Soft X-ray Lasing was observed
 - Current of 9-32kA and half period of 110ns
 - Ceramic capillary : *φ*=3mm, *l* = 150, 200mm
 - Argon gas pressure: 150-800mTorr
 - Maximum *gl* =12 (g=0.8cm⁻¹) at 32kA, 500mTorr
 - Pre-discharge current: 5-15A
- Sufficient pre-discharge current is essential for
 - Production of uniform pre-ionized plasma
 - Suppression of instabilities of pinched plasma
 - Increase of laser output and improvement of reproducibility
- Lasing at current of less than 10 kA may be possible
 - Lower laser output energy
 - Compact power supply
 - Higher rep-rate operation

Děkuju vám

nk you

Nov. 04 '02