next up previous
Next: The exact solution of Up: The standing wave solutions Previous: The condition of existence

The approximate solution of system (5)

This system of equations is very difficult to solve. On the one hand, all Rjj are infinite series and the number of equations is infinite too. On the other hand, each equation of this system is a nonlinear one. We have restricted ourselves to finding a particular solution. To simplify calculations we assume that the function $\varphi_0^{\vphantom{+}}(x,\tilde t)$ contains only odd harmonics. Our goal is to find a real solution and we seek $c_j^{\vphantom{+}}\in\hbox{\rm I\hskip-2pt\bf R}$.

To find an approximate solution we apply the Galerkin method: cut off higher diagonal harmonics $\forall j>N$ : $c_{2j-1}^{\vphantom{+}}=0$ and seek an approximation for $\varphi_0^{\vphantom{+}}(x,\tilde t)$ in the following form

\begin{displaymath}\varphi_0^{\vphantom{+}}(x,\tilde t)=a_{1}^{\vphantom{+}}
\l...
...2j-1}^{\vphantom{+}}\sin((2j-1)x)\sin((2j-1)\tilde t)\right\}.
\end{displaymath}

We have obtained the finite system of nonlinear equations, with the number of equations three times as mush as that of the variables. We solve the first N equations and substitute the obtained values in the other equations. The system of the N leading nonlinear equations can be solved, using standard procedures of the computer algebra system REDUCE: the SOLVE operator and the Groebner basis package [15,16]. The SOLVE operator (in "on rounded" mode) round off numbers with accuracy $\delta=10^{-11}$ (the system (5) is too difficult to be solved in "off rounded" mode). We admit that the system of the first N equations is solved if for all $j\leq N$ the inequalities $\vert R_{jj}({\bf c})\vert< \delta$ are true. We also admit that the value of N is sufficient to solve system (5) if for all $j \in
\hbox{\cal I\hskip-2pt\bf N}$ the inequalities $\vert R_{jj}({\bf c})\vert< \delta$ are true.

Using the SOLVE operator and computer with 128M bytes operating memory (RAM) we have solved the system (5) only for N<5, but due to a short program (see Appendix) we have found a particular solution for any N<50 and obtained that the minimal sufficient value of N for $\delta=10^{-11}$ is N=8 and that the value of the frequency is

\begin{displaymath}\omega_1^{\vphantom{+}}=0.282680034541a_1^2.\end{displaymath}

We also have found numerical values of the fifteen leading Fourier coefficients of $\varphi_0^{\vphantom{+}}(x,\tilde t)$. The obtained values of $c_j^{\vphantom{+}}$ are very close to the values of the corresponding terms of the following finite sequence:

\begin{displaymath}{\bf d}=\{
d_{2j-1}^{\vphantom{+}}=\frac{f_{2j-1}^{\vphantom...
...}}; {} \;\;{ }
d_{2j}^{\vphantom{+}}=0 ; { } \ \;{ } j<23 \},
\end{displaymath}

with q=0.0142142623201. It is easy to verify that substitution of this finite sequence gives

\begin{displaymath}\forall j\in\hbox{\cal I\hskip-2pt\bf N}\mbox{ \ \ : \ \ }\vert R_{jj}({\bf d})\vert<10^{-12}.
\end{displaymath}

In other words, the finite sequence ${\bf d}$is an approximate solution of system (5). These numerical calculations help to find the analytical form of $\varphi_0^{\vphantom{+}}(x,\tilde t)$. The following table illustrates this interesting result:

$j^{\vphantom{+}}$ $c_{j_{\vphantom{j}}}^{\vphantom{+}}$ $R_{jj}({\bf c})$ $d_{j_{\vphantom{j}}}^{\vphantom{+}}$ $R_{jj}({\bf d})$

1

1 0 $1^{\vphantom{+}}$ 0

3

$\;1.44162661711\times 10^{-2^{\vphantom{+}}}\;$ $ 3.5\times
10^{-12}$ $\;1.44162661711\times 10^{-2^{\vphantom{+}}}\;$ $ -
8.0\times 10^{-14}$

5

$2.04917177408\times 10^{-4^{\vphantom{+}}}$ $ 2.1\times 10^{-12}$ $2.04917177419\times 10^{-4}$ $ - 3.4\times 10^{-15}$

7

$2.91274649724\times 10^{-6^{\vphantom{+}}}$ $ 7.8\times 10^{-12}$ $2.91274651543\times 10^{-6}$ $- 9.7\times 10^{-17}$

9

$4.14025418115\times 10^{-8^{\vphantom{+}}}$ $ 8.3\times 10^{-13}$ $4.14025430425\times 10^{-8}$ $- 2.3\times 10^{-18}$

11

$5.88506592014\times 10^{-10^{\vphantom{+}}}$ $ 1.0\times
10^{-14}$ $5.88506607528\times 10^{-10}$ $- 4.9\times 10^{-20}$

13

$8.36488192079\times 10^{-12^{\vphantom{+}}}$ $ 4.6\times 10^{-13}$ $8.36518729655\times 10^{-12}$ $- 9.7\times 10^{-22}$

15

$1.18901919266\times 10^{-13^{\vphantom{+}}}$ $-7.8\times
10^{-22}$ $1.1890496659\times 10^{-13}$ $- 1.8\times 10^{-23}$

17

0 $4.4\times 10^{-12^{\vphantom{+}}}$ $1.69014638629\times
10^{-15}$ $- 3.4\times 10^{-25}$

19

0 $7.3\times 10^{-14^{\vphantom{+}}}$ $2.40241840942\times
10^{-17}$ $- 6.0\times 10^{-27}$

21

0 $1.1\times 10^{-15^{\vphantom{+}}}$ $3.41486054743\times
10^{-19}$ $ - 1.0\times 10^{-28}$

23

0 $1.7\times 10^{-17^{\vphantom{+}}}$ $4.85397236079\times
10^{-21}$ $ - 1.8\times 10^{-30}$

25

0 $2.4\times 10^{-19^{\vphantom{+}}}$ $
6.89956364312\times 10^{-23}$ $ - 3.0\times 10^{-32}$

27

0 $3.3\times 10^{-21^{\vphantom{+}}}$ $ 9.8072207518\times
10^{-25}$ $ - 4.9\times 10^{-34}$

29

0 $4.2\times 10^{-23^{\vphantom{+}}}$ $ 1.39402408398\times
10^{-26}$ $ - 8.1\times 10^{-36}$

31

0 $5.2\times 10^{-25^{\vphantom{+}}}$ $
1.98150240103\times 10^{-28}$ $- 1.3\times 10^{-37}$

33

0 $5.7\times 10^{-27^{\vphantom{+}}}$ $
2.81655949163\times 10^{-30}$ $- 2.1\times 10^{-39}$

35

0 $6.1\times 10^{-29^{\vphantom{+}}}$ $
4.00353154544\times 10^{-32}$ $- 3.4\times 10^{-41}$

37

0 $6.2\times 10^{-31^{\vphantom{+}}}$ $5.69072475939\times
10^{-34}$ $ - 5.4\times 10^{-43^{\vphantom{+}}}$

39

0 $5.9\times 10^{-33}$ $8.08894545219\times
10^{-36}$ $ - 8.5\times 10^{-45^{\vphantom{+}}}$

41

0 $5.0\times 10^{-35}$ $ 1.14978392551\times 10^{-37}$ $- 1.3\times 10^{-46^{\vphantom{+}}}$

43

0 $ 3.6\times 10^{-37}$ $ 1.63433303287\times
10^{-39}$ $ - 2.1\times 10^{-48^{\vphantom{+}}}$

45

0 $ 1.7\times 10^{-39^{\vphantom{+}}}$ $
2.32308384477\times 10^{-41}$ $- 1.6\times 10^{-49^{\vphantom{+}}}$
47 0 0 0 $1.4\times 10^{-50^{\vphantom{+}}}$


next up previous
Next: The exact solution of Up: The standing wave solutions Previous: The condition of existence
IMACS ACA'98 Electronic Proceedings