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Abstract

The complete Arbitrary Lagrangian-Eulerian (ALE) method, applicable to the fluid and laser plasma
hydrodynamics, both in Cartesian and cylindrical geometries is presented. All parts of the ALE algo-
rithm, i.e. Lagrangian solver, mesh smoothing, and conservative quantity remapping, in both geometries
are fully described. The issues related to the laser plasma physics as plasma equation of state, ther-
mal conductivity, interaction with laser beam, and sophisticated treatment of the boundary conditions
necessary for the realistic laser plasma simulations are described. The complete developed ALE code is
tested on a series of typical fluid problems to show its properties for the well known solutions. Finally,
three sets of laser plasma simulations inspired by the real experiments are performed – the interaction
of a laser beam with a massive target, ablative acceleration of small Aluminum disc flyer irradiated by
a laser beam, and the high velocity impact of such accelerated disc onto a massive Aluminum target.
The standard Lagrangian simulation of the last, high velocity impact problem fails, and the complete
ALE methodology is required for this problem. Simulations of all types of problems show reasonable
agreement with the experimental results.
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Chapter 1

Introduction

The first note about the numerical solving of partial differential equations appeared in 1917, when the
British scientist L. F. Richardson introduced his first talk about weather forecast using this technique,
done by hand, and published in 1922 [81]. In general, this moment (although unsuccessful due to the
CFL problem) is acknowledged as the beginning of the scientific discipline, which is nowadays called the
Computational Fluid Dynamics (CFD). From the time of Richardson, not only the technical equipment
allowing us to solve much more extensive and complex problems, but also theoretical knowledge essential
for the computations, have evolved. Today, we know lots of mathematical theorems describing stability
and accuracy of numerical methods, we know about the necessity of their conservativity and advantages
of their symmetry. A wide spectrum of difference schemes based on the finite difference methods is used
for numerical simulations. The numerical solving of the partial differential equations (PDEs) is today
used not only in such traditional branches, as the weather forecast or oceanography. Connected with
the technical development, many engineering and industrial applications, where the numerical modeling
can be successfully used, came to view. On the other hand, the science provides many problems, where
numerical simulations is the only approach to study them.
Although the field of numerical simulations is very large, our interest focuses on the simulations of
the behavior of the compressible fluid, symbolized mathematically by a system of partial differential
equations of hyperbolic type. Solution of such equations is represented as a density distribution of the
conservative quantities in the computational domain, in the particular time of the simulation. In the
case of compressible fluid dynamics, it is usual to neglect the fluid viscosity and the full set of the
Navier-Stokes equations reduces to the form of system called the Euler equations. Here, the conservative
quantities become the total mass, the total energy, and the components of the total momentum in each
direction. In the compressible fluid dynamics, the phenomena of shock waves can appear. Shock wave is a
severe change in the fluid density, velocity, pressure, and internal energy in a small distance in space and
time. The shock waves have the form of discontinuity in the solutions and can cause serious troubles to
the numerical methods – oscillations or diffusion can appear around the shock, when numerical treatment
is not adequate. In reality, the shock waves thickness is proportional to the free mean path of the fluid
particles and no real discontinuity exists. The numerical methods have to deal with such phenomena,
and calculate the solution of the Euler equations close to the realistic fluid behavior.
For plasma simulations, two approaches are possible – the kinetic and the fluid models. In the kinetic
model, the complete Boltzmann equation is solved either by a direct or statistical method (such as
Particle in Cell or Monte Carlo method), and the solution has the form of the velocity distribution of
electrons and ions. Kinetic approach may provide more complete information and use less assumptions
than fluid approach, but it is computationally more expensive. Fluid approximation assumes that the
scale lengths of intense quantities are large compared with electron and ion mean free paths. The
temporal variations of these quantities are assumed slow compared with collision frequency. For these
conditions, the difference of the particle distribution from Maxwellians is negligible. As electron ion
relaxation is much slower than distribution relaxation to Maxwellian, electron and ion temperatures
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often differ in the hot, low density corona. However, the difference is negligible in dense areas and thus
we limit ourselves to one temperature approximation. Generally, these conditions can be violated in
special cases, such as in extremely low pressure rarefied gas flows, where the fluid approach cannot be
applied. On the other hand, the computational time of fluid simulations is reasonable also for large-scale
simulations (when compared with the kinetic simulations), and allows simulations in higher dimensions.
The first goal of this thesis is the development of an efficient, linearity and local-bound preserving
remapping algorithm for recomputation of the conservative quantities between similar computational
meshes, and its generalization to the cylindrical geometry. For future use, this algorithm must be
generalizable to 3D and to meshes with changing topology. The next goal is the development of an
efficient and reasonably accurate method for the simulations of laser-matter interaction and high velocity
impacts, based on the fluid Arbitrary Lagrangian-Eulerian (ALE) methodology. This method have to
treat severe computational mesh motion and produce results comparable with the experimental data.
The method must be able to reproduce the experiments in both Cartesian and cylindrical geometries,
and testing of the method on a set of experiment-inspired simulations is required. This thesis describes
the construction of such method, and analyzes its properties. The last main goal of this thesis is the
implementation of the presented ALE method, development of the computer code, and performing
simulations of laser-matter and high velocity impact problems to model selected experiments.
In this chapter, we summarize the main contributions of this thesis to the field of ALE methods, and
laser plasma simulations. The rest of the thesis is organized as follows. In the next chapter 2, we
discuss two main approaches for solving the equations of compressible hydrodynamics – the Eulerian
and the Lagrangian methods. These methods are suitable for different types of problems being solved.
We summarize the main advantages and disadvantages of both approaches, and present the reasons
for using their combinations – the Arbitrary Lagrangian-Eulerian (ALE) methods. We discuss the main
types of the ALE methods, and briefly go through the history of the ALE methods. Several representative
Eulerian, Lagrangian, and ALE codes for compressible fluid and plasma simulations are resumed.
In chapter 3, the complete Cartesian ALE method is presented. We go through all three parts of
the ALE algorithm – Lagrangian solver, mesh smoothing techniques, and remapping. The compatible
staggered Lagrangian method based on the evaluation of several types of forces affecting the nodal
movement is reviewed, including several types of artificial viscosity formulation. Several both classical
and modern methods for mesh smoothing and untangling are briefly summarized. Finally, the remapping
method (the conservative interpolation of the conservative quantities) based on the approximate swept
integration approach, is presented. This technique, which is the author mostly interested in, and which
is his main contribution to the ALE methodology, is fully described and compared with the classical,
computationally expensive method based on the exact integration. The swept integration remapping
algorithm is also generalized to 3D, and to the computational meshes with changing connectivity.
In chapter 4, the ALE method is generalized into the cylindrical coordinates. It follows the previous
chapter 3, and describes all points, where the cylindrical geometry changes the Cartesian formulas. The
Area-Weighted Differencing (AWD) Lagrangian scheme is described and it is shown, that this approach
cannot be used in our ALE formulation. Then, an alternative Control Volume (CV) Lagrangian method is
presented, satisfying all needs for successful usage in the complete ALE algorithm. As for mesh smoothing
techniques, no major changes according to the Cartesian geometry, are needed. The cylindrical formulas
for our swept integration remapping method are derived in and easy-to-implement form. In the whole
chapter 4, we emphasize the form of the formulas to be close to Cartesian ones, and thus an easy
generalization of the Cartesian ALE code to the cylindrical geometry is possible.
In chapter 5, the main properties of the complete ALE method are commented. We discuss the con-
servativity of all parts of the ALE algorithm, and their linearity preservation, which in practice induces
second order of accuracy. Satisfaction of these important properties is demonstrated for the typical tests
of fluid dynamics.
In chapter 6, several physical aspects of the compressible fluid simulations are discussed, which arise
when the ideal fluid is replaced by a laser-produced plasma. Properties of the quotidian equation of
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state (QEOS) are briefly summarized, bringing our simulation closer to the real plasma behavior. The
implementation of the thermal conductivity model with the classical Spitzer-Harm heat conductivity
coefficient is briefly characterized, and its influence on different types of the laser plasma simulations is
summarized. The process of laser beam absorption at the critical density is described, and we discuss
the influence of the implementation of the laser plasma boundary conditions on the solution.
Chapter 7 includes numerical simulations of the laser-matter interactions, and their comparison with
the experimental data. We present three approaches for expressing the maximal laser beam intensity
from the experimental data. The code is applied to model several types of processes. At first, we
perform simulations of the interaction of an intense laser beam with a massive Aluminum target, and
compare the final crater formations with the craters obtained from experiments. Next, simulations of
the laser beam irradiating and ablatively accelerating a thin Aluminum disc flyer are performed. And
finally, simulations of the high velocity impact of this flyer on a massive target are shown. Two ways of
construction of the initial data for the impact simulations are compared, average uniform values in the
disc, and interpolated data from the disc acceleration simulations. All simulations are compared with
the experimental results, and demonstrated on one particular example.

1.1 New Contributions of the Thesis

The main contributions of the thesis to the problematics of conservative interpolations, ALE methods,
and computational laser plasma hydrodynamics, are listed below:

• Introducing the swept region remapping method in

– 2D logically quadrilateral meshes in Cartesian and cylindrical geometries.

– 3D general meshes.

– 2D general meshes with changing connectivity.

• Introducing the complete remapping algorithm (for all state quantities) in cylindrical geometry.

• Development of the 2D ALE code on logically-orthogonal computational meshes working in both
Cartesian and cylindrical geometries, applicable to the fluid and laser plasma simulations.

• Simulations of the small disc flyer ablative acceleration by an intense laser beam, and its impact
to the massive target.

The given points are new, and can be useful for both the ALE and laser plasma societies. Parts of
this thesis have been presented at the scientific conferences and published in the proceedings and in the
specialized journals, for example “Journal of Computational Physics” [58], “Computers and Fluids” [36],
or “Czechoslovak Journal of Physics” [55], other parts are submitted or in preparation for publication.
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Chapter 2

Numerical Methods for Compressible
Fluid Flows

In this chapter, we describe the main approaches for numerical solving of the compressible fluid Euler
equations – the Eulerian and Lagrangian methods. We show the form of the system of the fluid Euler
equations in both formulations and mention the basic methods for their solving, and selected codes im-
plementing them. We also describe the ALE (Arbitrary Lagrangian-Eulerian) methods, the combination
of both approaches. Finally, several codes for the plasma simulations are overviewed.

2.1 Eulerian Methods

The family of Eulerian methods solves the system of the compressible fluid Euler equations in the form

∂ρ

∂t
+ div(ρw) = 0

∂(ρw)

∂t
+ div(ρw2) + grad p = 0 (2.1)

∂E

∂t
+ div(w (E + p)) = 0,

representing the laws of the conservation of mass, momentum in all directions, and the total energy.
Here, ρ denotes the fluid density, w = (u, v) is the vector of fluid velocities in 2D, E is the total energy,
and p is the fluid pressure given by the equation of state p = p(ρ, ǫ), where ǫ = E/ρ − |w|2/2 is the
specific internal energy of the fluid. In the Eulerian model, the system of equations is discretized on the
static (in time) computational mesh. The conservative quantities (as mass, momentum, or total energy)
are transfered between the computational cells in the form of the advective flux through their edges.
There exist a comprehensive theory describing many aspects of solving the Euler equations. It describes
existence of shock waves, contact discontinuities, and rarefaction waves in the solution. Also dependence
of the solution on the fluid velocity compared with the sound speed is characterized, and special cases of
initial conditions where the solution is analytically expressible, are identified. There exist a big number
of CFD monographs about this topic, we recommend [62, 61, 93] for details.
As for the numerical methods for solution of the hyperbolic Euler equations, there exist lots of them
with different properties. There are techniques for analyzing the numerical methods as for their stability
or order of accuracy. For an overview of the numerical Eulerian schemes and their analysis, see [93, 34].
Comparison of several Eulerian-type methods is done in [66].
Many Eulerian codes and simulation tools exist for modeling of different phenomena in the field of
compressible fluid dynamics, for different purposes. Let us review several of them.
On the first place, we name the package CLAWPACK [63] developed by Randall LeVeque at the University
of Washington. This package for solving time dependent conservation laws in 1D, 2D, and 3D (including
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the system of Euler equations), uses sophisticated flux splitting scheme based on advection ideas. The
code is adapted for the user to include his own numerical scheme, and use it in the CLAWPACK. Parallel
version of the code is available, as well as the adaptive mesh refinement extension named AMRCLAW.
ALLSPD-3D Combustor Code [21] is a numerical tool developed in NASA for simulating the chemically
reacting flows in the aerospace propulsion systems. The code can simulate multi-phase turbulences
and flows with wide range of Mach-number in combustors of complex geometry. It uses 3D multi-zone
structured grids with internal blockages and finite difference, compressible flow formulation with low
Mach number preconditioning for both laminar and turbulent flows.
Another important simulations code FLASH [5], is being developed at the University of Chicago. It is a
modular, adaptive, parallel simulation code capable of handling general compressible flow problems in
astrophysics. Its aim is to solve the long-standing problem of thermonuclear flashes on the surfaces of
compact stars such as neutron stars and white dwarf stars, and in the interior of white dwarfs.
Finally, we mention the SAGE [37] (Simple Adaptive Grid Eulerian) code developed in the Lawrence
Livermore national Laboratory and the Los Alamos National Laboratory. It is a massively parallel
multimaterial hydrodynamical code for solving of high deformation flow problems. By adding the tem-
perature radiation to the code, RAGE code was developed. These codes are applicable for a variety
of simulations, such as laser-target interaction, meteorite impact simulations, or tsunami wave spread
simulations. The SAGE/RAGE codes are not available for public usage.

2.2 Lagrangian Methods

The philosophy of the Lagrangian-type methods is completely different from the Eulerian philosophy. In
the Lagrangian model, the conservation system is solved in the form

1

ρ

d ρ

d t
= −∇ · w

ρ
dw

d t
= −∇ p (2.2)

ρ
d ǫ

d t
= −p∇ · w,

where
d

d t
=

∂

∂ t
+
∂ x

∂ t

∂

∂ x
+
∂ y

∂ t

∂

∂ y
=

∂

∂ t
+ w ×∇ (2.3)

is the Lagrangian derivation in 2D Cartesian geometry. The Lagrangian method solves this system on
the computational mesh moving with the fluid according to the ordinary differential equations

żn = wn (2.4)

for all nodes n, where zn(t) = (xn(t), yn(t)) is the position of node n and wn its velocity. The symbol żn

denotes temporal derivative of the nodal position. Masses in all cells remain constant. There is no mass
flux (and thus no advective momentum or energy flux) through the cell edges as in the Eulerian model.
For completeness, we demonstrate here, that the Eulerian (2.1) and Lagrangian (2.2) systems are equiv-
alent. We show this equivalence for the case of 1D Cartesian equations with velocity w = u. The main
point is substitution of the total derivatives in the Lagrangian equations by the partial ones (2.3). By
this process, the first equation changes to

(
∂ρ

∂t
+
∂x

∂t

∂ρ

∂x

)
+ ρ

(
∂u

∂x

)
= 0 . (2.5)

Here, the temporal partial derivative of the coordinate is equal to the actual fluid speed, that is

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0 , (2.6)
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and after putting the derivatives together

∂ρ

∂t
+
∂(ρ u)

∂x
= 0 , (2.7)

the Eulerian equation for mass conservation is derived. By doing similar process with the momentum
equation, we get

ρ

(
∂u

∂t
+
∂x

∂t

∂u

∂x

)
+
∂p

∂x
= 0 (2.8)

and after some algebra

ρ
∂u

∂t
+ ρ u

∂u

∂x
+
∂p

∂x
= 0 . (2.9)

To get the Eulerian equation for momentum, let us rewrite (2.9) in the form

∂(ρ u)

∂t
− u

∂ρ

∂t
+
∂(ρ u2)

∂x
− u

∂(ρ u)

∂x
+
∂p

∂x
= 0 . (2.10)

The two terms with minus sign correspond to the mass equation (2.7) multiplied by the velocity factor,
thus they disappear and momentum equation from (2.1) remains. By the similar process, the energy
equation can be transformed to the Eulerian methodology. For this transformation, the definition of the
specific internal energy ǫ from the previous section, and both mass and momentum equations in Eulerian
form are required. Analogical process can be repeated to show the equality of the Lagrangian and the
Eulerian formulation also in the case of multidimensional Euler equations, and the Euler equations in
the cylindrical geometry.
The usual process in the Lagrangian method is following. At first, the forces due to the pressure gradient
are evaluated from the momentum equations. The forces identify the velocities in each node defining
the nodal movement. After moving the nodes according to the forces, a new mesh appears, the internal
energy is updated from the energy equation, and density is updated from new mesh and constant cells
masses Lagrangian assumption.
There exist many types of the Lagrangian methods. The beginning of the Lagrangian history is in late
’40s, when the Lagrangian coordinates for the fluid equations were introduced by Courant and Friedrichs
[23]. The classical methods reduce the system of the Lagrangian equations to the Hamiltonian system
[33] corresponding to the transformation from the motion to the action equations, naturally preserving
the total energy. The systematic approach of deriving the discrete operators with the same properties,
as the continuous ones, has been developed by Shashkov and is presented in his book [84]. This approach
is used in [18] to develop the conservative Lagrangian discretization in cylindrical coordinates.
Lagrangian methods are a standard tool in CFD and are widely used for fluid simulations. Especially, in
the simulations of laser plasma, where huge changes of the computational domain during the simulations
appear, the Lagrangian methods become eligible due to the natural treatment of the moving boundary
conditions, which cause serious problems to the Eulerian methods.
Let us overview few Lagrangian codes. The first code is the classical 2D HYDRO code developed and
used in the Los Alamos National Laboratory. This code is based on the algorithm described in [83], and
represents a wide range of Lagrangian hydrodynamical codes quite similar to HYDRO.
Specialized Lagrangian code for the laser-plasma interactions ATLANT [43] was developed in the Russian
Institute of Mathematical Modeling. This 2D Lagrangian code implements the hydrodynamical one-
fluid model with two temperatures. Collisional laser absorption including the ray-tracing laser beam
propagation algorithm is included. This code has been applied for many simulations of experiments of
laser-plasma interactions. By including the radiation transport in the multi-group approximation, code
LATRANT [4] was developed.
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2.3 ALE Methods

Both the Eulerian and Lagrangian methods have their advantages and disadvantages, making them
suitable for solving of different types of problems. The Eulerian methods are excellent for the simulations,
where the computational domain does not change very much, and its size and shape remains more or
less the same. Eulerian methods are general, applicable to solving of arbitrary system of hyperbolic
equations, robust, and stable. On the other hand, the Lagrangian methods are excellent for solving of
problems, where significant changes of the computational domain appear, or for problems of contacts of
different materials. The changing Lagrangian mesh naturally covers the whole computational domain,
the material interface is naturally kept sharp and in right direction, which needs additional complicated
procedures in the Eulerian methods. On the other hand, several problems may appear in the Lagrangian
process due to the mesh movement. The computational mesh can degenerate – cells with a very small
volume can appear, opposite cell edges can intersect each other (hourglass-type cell motion), and negative
volume cells can arise. In such situation, the Lagrangian method either fails, or (if treated by the method)
quickly increases its numerical error. One way, how to deal with these problems, is to use the Arbitrary
Lagrangian-Eulerian (ALE) methods (for more details, see chapter 3).
The ALE algorithm was firstly proposed by Hirt in 1974 [42] and at the beginning, it was used often for
the simulations of the solid body deformations. Many authors contributed to this topic [27, 9, 10, 11,
79, 6, 28], but the CFD society did not pay enough attention to them. During the last several years, the
situation has changed, and the ALE methods are becoming a modern tool for fluid simulations [47, 24, 3].
When talking about the ALE methods, one can distinguish two main types of the methods. In the first
type, the movement of the computational mesh is predefined, using some information about the problem
solution. Thus, no tangling of the mesh can appear [28]. In the second type (preferred in our approach)
[79, 24, 3], the purely Lagrangian movement is performed. In the situation, when the mesh degenerates,
or its quality is low, or just after each several Lagrangian steps, the mesh smoothing technique is applied
and followed by the conservative recomputing (remapping) of the conservative quantities to the smoother
mesh. Both types of ALE methods are used for real computations in modern ALE codes.
Let us briefly summarize several known ALE codes, used for the CFD simulations. Probably the first
ALE code developed and applicable for practical usage is YAQUI [1], implementing the original ALE
algorithm [42] by its authors. The programs computational scheme was later improved a little, and code
SALE-2D [2] was released. These codes solve the Navier-Stokes equations on 2D computational mesh,
which can either move with the fluid in a typical Lagrangian fashion, can be held fixed in an Eulerian
manner, or can move in some arbitrarily specified way. 3D version of the code was also developed.
Another and much newer ALE code is called ICF3D-Hydro [88], and as clear from the name, it is a 3D
ALE code for simulations of inertial confinement fusion plasmas. It handles general 3D unstructured
meshes, using a second order FEM Godunov scheme with a 3D generalization of van Leer slope limiter
process for shock stabilization. The code can work in a fully parallel mode on both SMP and MPP
architectures.
Another ICF oriented code is DRACO [46], which is still under development. It is the ALE hydrodynamical
code designated to run in 1D, 2D, and 3D in planar, spherical, and cylindrical geometries. The code
uses Lagrangian hydro step, second order rezoning algorithm, and interface tracking method. The code
uses SESAME equation of state [12], and works in parallel.
For simulations of the fluid behavior involving strong shock waves, the ALEGRA [79] (ALE General Re-
search Application) code was developed in the Sandia National Laboratory. It uses the ALE algorithm on
an unstructured mesh, combining the properties of modern fluid Eulerian shock codes with Lagrangian
solid mechanics codes. Moreover, magnetohydrodynamics (MHD) is included into it, allowing to perform
high energy density plasma simulations (as z-pinch simulations).
Another sophisticated ALE code CALE [92] was developed in the Lawrence Livermore National Labo-
ratory, and uses a staggered 2D quadrilateral structured mesh Lagrange scheme followed by the mesh
smoothing and remapping step. The code includes a multi-group, flux-limited, radiation diffusion model
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in a wide variety of plasma models. The extension of the code CALEICF includes the thermonuclear
burning mechanism, and is also extended to 3D HYDRA [73] code representing the state of the art of 3D
ICF codes.
One of the top ALE codes is the code CORVUS [6] developed at the British Atomic Weapons Estab-
lishment (AWE). This robust and accurate multimaterial code works on the general unstructured 2D
meshes. The main strength of the code is in its treatment of the material interfaces. Today, the code
is used in different areas, such as the simulations of highly explosive materials explosions, shock/bubble
interactions, or high velocity projectile impact to the tank of water. The code is currently being extended
to the 3D fully parallel code PEGASUS.
Finally, we refer to the ALE code ALE Inc. [69], being currently under development in the Los Alamos
National Laboratory. This 2D code uses exactly the same approach, as this thesis – Lagrangian step
based on the compatible discretization [84, 18], several types of mesh rezoning techniques, and swept-
region integration based remapping method [58]. The author of this thesis communicates with the
authors of the ALE Inc. code a lot, collaborate in several fields, and many ideas and algorithms are
similar. The main difference is in the purpose of the codes. The ALE Inc. code is the incubator – the
testing environment for confirming of the properties of the developed methods in different aspects of
the ALE field (a similar developmental code focusing on the combination of the ALE method with the
adaptive mesh refinement approach (AMR) is described in [3]). On the other hand, our code described
in this thesis, is a specialized ALE code for the laser plasma simulations, including many physical aspects
of the simulations, such as heat conductivity, plasma equation of state, or the interaction of plasma with
a laser beam.

2.4 Hydrodynamical Codes for Plasma Simulations

The field of plasma physics appeared at the turn of the 19th and 20th century. The reflection of radio
waves led to the discovery of the Earth’s ionosphere, a layer of partially ionized gas in the upper atmo-
sphere. During the first half of the 20th century, many astrophysical discoveries produced a requirement
of understanding the plasma physics. Around the year 1940, Hannes Alfvén formulated the theory of
magnetohydrodynamics (MHD), in which plasma is treated as a conducting fluid, and its conclusions
were confirmed by astrophysical observations. The creation of the hydrogen bomb in 1952 generated
a great deal of interest in controlled thermonuclear fusion as a possible power source for the future
in the late 1950’s and the early 1960’s. In these years, theoretical plasma physics first emerged as a
mathematically rigorous discipline. The development of high powered lasers in the 1960’s opened up the
field of laser plasma physics. When an intense laser beam strikes a solid target, material is immediately
ablated, and a plasma forms at the boundary between the beam and the target. The major application
of laser plasma physics is the approach to fusion energy known as the inertial confinement fusion. The
requirement of the simulation tools for plasma physics arises, leading to the development of many codes
for numerical modeling of various plasma physics phenomena, based on both kinetic and hydrodynamic
approaches. In this section, we summarize several hydrodynamical codes for the plasma simulations.
The state of the art of the plasma simulation is represented by 3D codes applied in the fusion research,
typically used on high performance servers and clusters for simulations of the inertial confinement fusion
(ICF) processes. Such codes usually solve the full set of the Maxwell equations by their direct integration,
taking all electromagnetic effects into account, such as charges and currents generated by the charges
in the plasma, or the connection of the full spectrum radiation and the plasma charges. In such critical
ICF simulations, processes as the ion-ion and ion-wall collisions has to be taken into account. Such
sophisticated and complex codes do not only simulate performed experiments, but are also used for
investigating new and unknown phenomena in the plasma field.
In the previous three sections, we have already described several complex codes used for plasma sim-
ulations, Eulerian FLASH and SAGE/RAGE codes, the Lagrangian ATLANT code, and ALE ICF3D-Hydro,
DRACO, ALEGRA, and CALE codes. All of them were based on the fluid models of plasma. Let us review
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several more codes for fluid plasma simulations MEDUSA and ALPS, and the hybrid fluid/particle codes
LASNEX and VORPAL.
Classical code MEDUSA [22] is a 1D Lagrangian hydrodynamical code, which was written to investigate
some of the hydrodynamic and plasma processes that take place in a small pellet which is irradiated
by laser light. Its main purpose is to perform simulations of processes appearing in ICF, and verify
its feasibility. In the code’s model, the Navier-Stokes equations are supplemented by separate heat
conduction equations for the ion and electron temperatures, and a variety of additional effects are
included.
Adaptive Laser Plasma Simulator (ALPS) [29] developed in the Lawrence Livermore National Laboratory
is a 2D and 3D hydrodynamical code, using an Eulerian high-order accurate upwind technique combined
with the adaptive mesh refinement (AMR) approach. The laser beam propagation is modeled using a
paraxial wave equation. The main goal of this code is in modeling of laser plasma instabilities, and
developing techniques to make laser beams more resistant to them.
The LASNEX code [40] was developed in the Lawrence Livermore National Laboratory to study inertial
confinement fusion (ICF) processes, and to construct and analyze ICF experiments. It was first referred
to in literature in 1972, but over time the code has evolved and has been greatly enhanced. It includes
the Lagrangian (or simple ALE) hydrodynamics, the electron, ion, and radiation heat conduction, and
the coupling among these energy fields. Thermonuclear reaction can be modeled by LASNEX, including
the energy produced as well as the reaction products. It provides sufficient agreement between the
calculations and the experiments, which makes this code eligible to predict and design future experiments,
such as on the National Ignition Facility, for example.
Finally, we state the code developed at the University of Colorado – VORPAL [76], a versatile plasma
simulations code. It includes both PIC and fluid plasma models, incorporating several models of plasma
and electromagnetic field behavior in 1D, 2D, and 3D. Both modes (PIC and fluid) can run independently
or in a hybrid regime. VORPAL is currently being used to study a number of plasma physics problems,
such as generation of laser wake fields, optical injection of particles into wake fields, or radio frequency
heating of fusion plasmas.
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Chapter 3

ALE Method in Cartesian Geometry

In this section, we describe the basic principles of the ALE methods in the Cartesian geometry. We go
through all three main parts of the ALE algorithm – the Lagrangian solver, mesh smoothing techniques,
and conservative interpolation algorithms. We focus on the remapping techniques, which are the main
contribution of the author to the field of ALE methods.
The ALE algorithm is based on the combination of the Eulerian and the Lagrangian methods. The
computational mesh moves with the fluid (as in the Lagrangian approach), however the mass flux over
cell boundaries is allowed (as in the Eulerian approach). The ALE method combines advantages of
both approaches. Because of the moving mesh, it allows to simulate problems on moving or changing
computational domain. The computational mesh is smoothed from time to time, causing less problems
with negative cell volumes, hourglass-type motion, sharp edge angles, and other configurations, which
are hardly to treat by pure Lagrangian methods.

yes

no

Main Program Loop

Compute Timestep dt

t = t + dt
i = i + 1

Perform Lagrangian Step

if (i>imax ) or (bad_quality_mesh)

Until t<tmax

t = 0
i = 0

Initialization

Quantities to the New Mesh
 Perform Remapping of All

Perform Mesh Smoothing

i = 0

End

Figure 3.1: Structure of the ALE algorithm.

In the ALE algorithm, the Lagrangian-type and Eulerian-type steps are used. At first, several time
steps of the Lagrangian solver are performed. After a selected number of such steps, or if the mesh
becomes invalid or has bad quality, the Eulerian-type step is used. It includes a mesh smoothing sub-
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step providing us a new mesh, which is already regular and better quality, but similar to the original
Lagrangian mesh. The second part of the Eulerian-type step is the conservative interpolation sub-
step, which conservatively remaps all conservative quantities from the Lagrangian mesh, to the new,
smoothed one. The basic structure of the ALE algorithm is shown in Figure 3.1. Let us go through all
the mentioned parts of the ALE method in detail.

3.1 Lagrangian Solver

There exist many approaches for formulating the Lagrangian schemes. For completeness we mention here
the well known point-centered method with all quantities defined in the centers of the computational
cells, reviewed in [18]. In general, this type of methods has problems with the total energy conservation.
On the other hand, it is quite easy to incorporate such method into complete ALE code.
We employ the classical staggered Lagrangian methods with the scalar quantities (such as fluid pressure,
density, or internal energy) defined in the centers of the computational mesh cells, and the vector
quantities (such as positions or velocities) defined in the mesh nodes. We use discretization from [18,
19, 20, 16], which is one of the most suitable approaches for the Lagrangian hydrodynamical simulations
of the fluid dynamics. This method is fully conservative, and allows a natural treatment of boundary
conditions, which are very important for laser plasma simulations. On the other hand, due to the
staggered discretization, it requires more sophisticated method for conservative quantity remapping to
make the Lagrangian solver compatible with the rest of the ALE code.
The Lagrangian solver is based on the computation of three types of forces in each node of the computa-
tional mesh, and movement of the nodes according to these forces. They include the zonal pressure force,
the subzonal pressure force, and the artificial viscosity force. The zonal pressure force represents the
total force of the fluid caused by the pressure gradient, affecting the node from all cells around it. The
subzonal pressure force arises from the finer discretization (subzones), and prevents the nodes from un-
physical hourglass-type motion. The viscosity force adds artificial diffusion to the solution, which makes
the Lagrangian solver able to perform also simulations including shock waves or contact discontinuities.
Let us discuss the Lagrangian solver and the forces in more details.

3.1.1 Geometrical Structure

The Lagrangian solver uses staggered subzonal discretization on logically-orthogonal computational mesh
characterized in Figure 3.2. Each cell is divided into four subzones, separated by four dashed lines
(separators) connecting the cell center with the center of each edge of the cell. All cell edges, subzones,
and dashed separators are enumerated from 1 to 4 in the particular cell, starting from the lower (edges,
separators) or lower-left (subzones) ones, in the counter-clock wise order. For further integration, we
also need orientation of all cell edges and separators, so let us define, that all separators s point from the
cell center to the corresponding edge center, and all subzonal edges a+, a− have their directions from
the nodes to the edge centers.
The centers of the edges are computed as the average of the coordinates of both end nodes. The original
Lagrangian scheme uses simple averaging also for the computation of the cell centers. To incorporate
the Lagrangian method into the ALE context, we changed the cell centers to centers of mass (centroids),
which is needed by the remapping part of the algorithm. This change does not affect the order of
accuracy of the Lagrangian scheme, as demonstrated later. The centroid of cell c is computed as

xc =

∫
c x dx dy

Vc
, yc =

∫
c y dx dy

Vc
, (3.1)

where the formula for the volume of cell c is

Vc =

∫

c
1 dx dy . (3.2)
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By using the Green formula, the volume integrals can be reduced to the boundary integrals

Vc =
∑

e∈E(c)

∫

e
x dy (3.3)

xc =

1
2

∑
e∈E(c)

∫
e x

2 dy

Vc
(3.4)

yc =

1
2

∑
e∈E(c)

∫
e x y dy

Vc
, (3.5)

where E(c) is set of edges of cell c. After evaluating the line integrals, we get the final formula

Vc =
1

2
((y2 − y1) (x1 + x2) + (y3 − y2) (x2 + x3) + (y4 − y3) (x3 + x4) + (y1 − y4) (x4 + x1)) (3.6)

for the volume of any quadrilateral cell with nodal coordinates (x1, y1), (x2, y2), (x3, y3), (x4, y4) in
counter-clock wise order. Analogically, we get the formula for the coordinates of the centroid of the
computational cell. It can be shown that the final formulas are the same, if the opposite part of the
Green formula is used, for example if the cell volume is computed as

Vc =
∑

e∈E(c)

∫

e
−y dx . (3.7)

This is, of course, expected, but it gives us a simple test of correctness of our formulas.
Subzonal mass of subzone l = 1 . . . 4 of cell c is naturally expressed as

ml
c = ρl

c V
l
c , (3.8)

where the subzonal volume V l
c is computed using the same formula as for the zonal volume (3.6),

ρl
c represents subzonal density defined by formula (3.8), and the subzonal mass ml

c results from the
initialization process and remains unchanged during the whole Lagrangian computation. Nodal and cell
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(zonal) masses are naturally defined as

mn =
∑

c′∈C(n)

m
ln
c′

c′ , mc =
4∑

l=1

ml
c (3.9)

respectively. Here lnc means subzone of cell c corresponding to node n, and C(n) is a set of all cells
including node n1. This allows us to define the zonal (cell) density (and also nodal density similarly)
naturally as

ρc =
mc

Vc
, (3.10)

because

Vc =

4∑

l=1

V l
c . (3.11)

3.1.2 Zonal Pressure Force

By integration of the momentum equation in x direction

ρ
∂u

∂t
= −∂p

∂x
(3.12)

over the nodal volume (four subzones from four different cells around a common node) characterized in
Figure 3.3, we get

mn

(
∂u

∂t

)

n

= −
∫

Vn

∂p

∂x
dx dy , (3.13)

where mn is the nodal mass (3.9), Vn is the nodal volume defined as sum of the corresponding subzonal
volumes, and (∂u/∂t)n is the average temporal derivative of the fluid velocity in Vn. We have assumed
that the nodal velocity un is constant in the whole nodal volume Vn. The right hand side of equation
(3.13) represents the total force affecting the nodal movement in x direction, which we denote by the
symbol F x

n . By applying the Green theorem to the right hand side, we get the boundary integral

F x
n = −

∮

∂Vn

p dy , (3.14)

which can be decomposed into a sum of edge integrals

F x
n = −

4∑

l=1

(
−
∫

s
c(n,l)
l

p dy +

∫

s
c(n,l)
l−1

p dy

)
, (3.15)

where by the symbol c(n, l) we mean the cell, whose subzone with the index l corresponds to the node
n, and sc

l denotes the separator inside cell c with the index l. In this thesis, the l index is cyclic (as
modulo of 4), in the sense that sc

0 = sc
4, and similarly for all terms, where l appears. Here, we assume

constant pressure pc inside each cell c. Then, one can put pressures in front of the integrals and rewrite
the formula as

F x
n =

4∑

l=1

pc(n,l)

(∫

s
c(n,l)
l

dy −
∫

s
c(n,l)
l−1

dy

)
. (3.16)

The edge integrals can be evaluated from the ending points of the separators, so let us define

I
(
s
c(n,l)
l′

)
=

∫

s
c(n,l)

l′

dy = yc(n,l) − y
e
c(n,l)

l′

, (3.17)

1Generally, in this paper, we use capitals to note sets of objects, for example C(c) means all cells in the neighborhood
of cell c (in our logically rectangular mesh, C(c) is a 3× 3 patch of cells sharing an edge or vertex with c, including cell c),
E(n) are all edges connected to node n, or N(c) represents all nodes of cell c.
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where the symbol e
c(n,l)
l′ represents the edge of cell c(n, l) with index l′, and the formulas for the coordinate

of the cell center yc and edge center ye are defined in the previous section 3.1.1. Now, one can rewrite
the formula as

F x
n =

4∑

l=1

pc(n,l)

(
I(s

c(n,l)
l ) − I(s

c(n,l)
l−1 )

)
=

4∑

l=1

Fpx l
c(n,l) , (3.18)

or explicitly for the node n = i, j as

F x
i,j = pi+1,j+1

(
I(si+1,j+1

1 ) − I(si+1,j+1
4 )

)
+ pi,j+1

(
I(si,j+1

2 ) − I(si,j+1
1 )

)

+ pi,j

(
I(si,j

3 ) − I(si,j
2 )
)

+ pi+1,j

(
I(si+1,j

4 ) − I(si+1,j
3 )

)
.

(3.19)

Every term of the previous formula corresponds to the corner pressure force Fpl
c(n,l), influencing the

node from the particular subzone. In the later text, we will denote the nodal pressure force by the
symbol Fpx

n.
For completeness, exactly the same formula can be used for the computation of the zonal pressure force
in y direction

F y
n =

4∑

l=1

pc(n,l)

(
J(s

c(n,l)
l ) − J(s

c(n,l)
l−1 )

)
=

4∑

l=1

Fpy l
c(n,l) , (3.20)
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just the integrals are computed as

J
(
s
c(n,l)
l′

)
=

∫

s
c(n,l)

l′

dx = −xc(n,l) + x
e
c(n,l)

l′

, (3.21)

the different sign arises from the Green theorem. These relations give us the complete formulas for the
computation of the zonal forces from each subzone to the particular node.

3.1.3 Subzonal Pressure Force

To explain the subzonal pressure force concept, let us suppose now that the pressure is not constant in
each cell. Let us make finer discretization – let us define the subzonal pressures as

pl
c =

v∗c
2

γ
ρl

c (3.22)

or the subzonal pressure difference

δpl
c =

v∗c
2

γ
(ρl

c − ρc) , (3.23)

where the sound speed v∗ is computed from the equation of state, and γ is the ratio of the specific heats.
The zonal and subzonal densities are computed by dividing the particular mass by the corresponding
volume. These zonal and subzonal masses are equal to the initial values from the first Lagrangian step,
the densities change in time as the computational mesh moves. Easily, the following relation holds

pl
c = pc + δpl

c , (3.24)

which expresses the subzonal pressure as the variation of the zonal one.
Now, let us repeat the same process, as in the previous section. It continues till the formula (3.15) exactly
the same way, as before, but now, one cannot put the pressure in front of the integrals, because there
is no unique pressure value in the cell. Thus, one have to define a value of pressure along the separator
lines, which can simply be done by averaging the adjacent subzonal pressures. Then, the formula can
be rewritten as

F x
n = −

4∑

l=1

(
−
pl

c(n,l) + pl+1
c(n,l)

2

∫

s
c(n,l)
l

dy +
pl

c(n,l) + pl−1
c(n,l)

2

∫

s
c(n,l)
l−1

dy

)
, (3.25)

and after putting the formula (3.24) and the notation (3.17), we get

F x
n = −

4∑

l=1

(
−
(
pc(n,l) +

δpl
c(n,l) + δpl+1

c(n,l)

2

)
I(s

c(n,l)
l ) +

(
pc(n,l) +

δpl
c(n,l) + δpl−1

c(n,l)

2

)
I(s

c(n,l)
l−1 )

)
.

(3.26)
After regrouping the terms, one can write the formula in several different forms including the zonal
pressure force Fpx

n defined in (3.18),

F x
n = Fpx

n +
1

2

4∑

l=1

((
δpl

c(n,l) + δpl+1
c(n,l)

)
I(s

c(n,l)
l ) −

(
δpl

c(n,l) + δpl−1
c(n,l)

)
I(s

c(n,l)
l−1 )

)
(3.27)

= Fpx
n +

4∑

l=1

δpl
c(n,l)

(
I(s

c(n,l)
l ) − I(s

c(n,l)
l−1 )

)
(3.28)

+
1

2

4∑

l=1

I(s
c(n,l)
l )

(
δpl+1

c(n,l) − δpl
c(n,l)

)
+

1

2

4∑

l=1

I(s
c(n,l)
l−1 )

(
δpl

c(n,l) − δpl−1
c(n,l)

)

= Fpx
n +

4∑

l=1

Fdpx l
c(n,l) .
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Especially, the formulation (3.28) is important, because it demonstrates the geometrical meaning of the
subzonal pressure force. The first term of the force corrects directly the zonal pressure force due to the
different pressure in the zone and in the subzone. The second and the third terms are associated with
the midpoints of the particular cell edges and play a very important role in reducing the artificial mesh
movement. For more details about the subzonal discretization and different force formulations, see [19].
Let us also note, that (exactly as in the previous section 3.1.2) the subzonal pressure force in y direction
can be computed using the same formulas, just the integrals must be defined as in (3.21).
Due to the fact, that the integral of 1 over the boundary of a subzone must be equal to zero (subzone is
closed)

0 =

∫

∂V l
c

1 dy = −I(sc
l ) + I(sc

l−1) − I(ac−
l ) + I(ac+

l ) , (3.29)

the integrals over the separators s can be replaced by the integrals over the outer half-edges of the cell
a,

I(sc
l ) − I(sc

l−1) = I(ac+
l ) − I(ac−

l ) , (3.30)

where

I(ac±
l ) =

∫

ac±
l

dy = ye(c±,l) − yn(c,l) . (3.31)

This allows us to reformulate the force formulas (3.18), (3.28), which may be useful in the particular
implementations.
In the later text, we use the term subzonal pressure force and notation Fdpx

n for the part of the formula
(3.28) not including the original zonal pressure force Fpx

n. In the real computations, we multiply this
subzonal pressure force by the merit factor fM ∈ 〈0, 1〉. It is an important issue for setting the amount of
the subzonal pressure force, which regulates the measure of removing the unreal hourglass-type motion of
the computational mesh. It is not generally easy to say, how to select the merit factor, in real simulations
we usually select it close to the center of the feasible interval, fM ≈ 1/2. Automatization of selecting
the merit factor is analyzed in [19].

3.1.4 Viscosity Force

Viscosity is an important part of the total nodal force. Without the artificial viscosity, the Lagrangian
solver is not able to simulate problems including shock waves and contact discontinuities. This is im-
portant particularly in the field of laser plasma target impacts, which we focus on.
There exist many approaches, how to incorporate the artificial viscosity to the solution. The original
approach coming from [95] adds a nonlinear term in the form

qc = C ρc (∆w)2 (3.32)

to the pressure pc in cell c, where shock compression appears. Here, C is an unity order constant, and
∆w is the velocity difference over this cell. Purpose of this term is preventing the cell c to collapse
during the computational time step ∆t satisfying the CFL stability condition v∗c ∆t/∆xc ≤ 1, where v∗c
is the sound speed in cell c appropriate to the fluid pressure pc + qc, and ∆xc is the characteristic length
of the zone. To enforce the viscosity pressure to be dissipative, we define it non-zero only in the case
of zonal compression. Then, the nodal velocity (and consequently kinetic energy) is via this mechanism
transformed into the higher pressure (and consequently into the higher internal energy), so it acts as the
real viscosity.
The previous formulation prevents the zone from collapsing, but does not remove the unphysical oscil-
lations around the shock wave. To eliminate them, linear viscosity formulation was developed [60]

qc = C ρc v
∗
c |∆w| , (3.33)
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which diminish slower around the shock wave and thus eliminates more compression in the contiguous
cells. Many Lagrangian codes use the artificial viscosity in the form of combination of the previous two
formulas,

qc = C1 ρc v
∗
c |∆w| + C2 ρc (∆w)2 , (3.34)

and typically the following relation for the constants holds, C1 ≤ C2.
Finally, we present here the Kuropatenko combination of the linear and non-linear viscosity combination
[59, 96], which we will denote by qKur:

qKur
c = ρc


C2

γ + 1

4
|∆w| +

√

C2
2

(
γ + 1

4

)2

(∆w)2 +C2
1 (v∗c )

2


 |∆w| . (3.35)

Typically, the coefficients are selected as C1 = C2 = 1. Obviously, this formula reduces to the linear
viscosity for ∆v → 0, and to the non-linear formula for v∗c → 0. Both in our practical tests and [20],
this formulation produces high-quality results and we use it as a viscosity pressure for our simulations.
However, there are several ways how to incorporate the viscosity pressure into the viscosity nodal forces
which we describe later.

Bulk Viscosity

The easiest way to add the viscosity to the solution, is the bulk formulation [20]. The first possibility is
to include the Kuropatenko viscosity pressure (3.35) directly into the pressure of each zone, and compute
the zonal pressure forces Fpx

n (3.18) in each node n from such modified pressures pc + qKur
c .

The second way is to construct the subzonal viscosity forces, and add them to the total nodal force.
In fact, this approach is not needed in the case of bulk viscosity, but it is required for other viscosity
formulations, where the easy way is not possible. In the case of the bulk viscosity, the viscosity force is

Fqx
n =

4∑

l=1

qKur
c(n,l)

(
I(s

c(n,l)
l ) − I(s

c(n,l)
l−1 )

)
=

4∑

l=1

Fqx l
c(n,l) (3.36)

and analogically in the y direction, just the pressure is replaced by the Kuropatenko viscosity pressure
in equation (3.18). The equivalence of both approaches is apparent.

Edge Viscosity

The edge viscosity is also constructed to decrease the kinetic energy and transform it to the internal
one. It was introduced in [20]. The basic principle of the edge-centered viscosity is the evaluation of the
Kuropatenko viscosity (3.35) along every edge e(c, l) of cell c,

qKur
e(c,l) = ρe(c,l)


C2

γ + 1

4
|∆we(c,l)| +

√

C2
2

(
γ + 1

4

)2

(∆we(c,l))2 + C2
1 (v∗e(c,l))

2


 |∆we(c,l)| . (3.37)

Here the edge density and sound speed is computed from the nodal densities and sound speeds on both
sides of the edge

ρe(c,l) = 2
ρn(e(c,l),−) ρn(e(c,l),+)

ρn(e(c,l),−) + ρn(e(c,l),+)
, v∗e(c,l) = min(v∗n(e(c,l),−) , v

∗
n(e(c,l),+)) , (3.38)

where by the symbols n(e,−) and n(e,+) represent the starting and ending nodes of edge e, the nodal
density ρn is naturally computed as

ρn =

∑
c∈C(n)

ρ
lnc
c V

lnc
c

∑
c∈C(n)

V
lnc
c

. (3.39)
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The nodal sound speed v∗n is obtained by the same formula, with the zonal volumes and sound speed
instead of subzonal volumes and densities. The velocity difference ∆we along the edge e is computed as

∆we =
√
δu2

e + δv2
e , (3.40)

where

δue = un(e,+) − un(e,−) (3.41)

δve = vn(e,+) − vn(e,−) . (3.42)

This allows us to write the edge-centered viscosity force as

fx
e(c,l) = (1 − ψe(c,l)) q

Kur
e(c,l) δue(c,l)

δue(c,l) I (sc
l ) + δve(c,l) J (sc

l )

∆w2
e(c,l)

, (3.43)

fy
e(c,l)

= (1 − ψe(c,l)) q
Kur
e(c,l) δve(c,l)

δue(c,l) I (sc
l ) + δve(c,l) J (sc

l )

∆w2
e(c,l)

. (3.44)

The previous formulas are used only in the case of cell compression, which means, that the following
relation is true

δue(c,l) I (sc
l ) + δve(c,l) J (sc

l ) ≤ 0 , (3.45)

otherwise the edge forces are set to zero. Each edge-centered viscosity force is then added/subtracted
to/from the total nodal viscosity force,

Fqx
n =

4∑

l=1

(fx
e(c(n,l),l) − fx

e(c(n,l),l−1)) =
4∑

l=1

Fqx l
c(n,l) (3.46)

and similarly in the y direction.
We still did not comment the edge viscosity limiter ψe(c,l). It helps to reduce the artificial viscosity also in
regions of linear velocity gradients, where the viscosity is not required (case of shock-less compression).
On the other hand, in some simulations from the field of laser plasma, the limiting process causes less
diffusion and unsteady solution, so we kept the possibility in the code to switch the limiting off. It is
necessary to test for the particular problem type, whether to use limiting or not. As for the formulas for
the limiter evaluation, we refer to the original paper [20], including also more details about the complete
edge viscosity process.

Tensor Viscosity

The tensor form of the artificial viscosity generalizes the previous edge formulation. Again, it is based
on the scalar Kuropatenko viscosity term, multiplied by the tensor of velocity gradient. Analogically as
in the edge viscosity case, the tensor viscosity can include a limiter term switching the viscosity off for
the case of shock-less compression. The advantage of this formulation is the reduction of dependence of
the solution on the computational mesh. It keeps the useful features of the edge viscosity, but it follows
the real physical viscosity in a tensor form.
The tensor viscosity has the following form

Q = µG⊤ , (3.47)

where µ is a scalar viscosity coefficient, and G = gradw is the tensor of velocity gradient. In [17],
the tensor viscosity formulas are derived both in continuous and discrete cases. When compared with
the edge viscosity, the viscosity forces are not edge centered any more, but they directly affect the
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computational mesh node from a particular cell subzone. In each subzone l of cell c we need to compute
the following viscosity coefficient

µl
c = (1 − ψl

c) ρ
l
c


C2

γ + 1

4
|∆wl

c| +

√

C2
2

(
γ + 1

4

)2

(∆wl
c)

2 +C2
1 (v∗c )2


 Ll

c (3.48)

based on the Kuropatenko modulus again. Here, ψl
c is the viscosity limiter, this time computed in each

subzone, ∆wl
c is the subzonal velocity jump computed as the maximal velocity difference across the

corner volume, and the characteristic subcell length Ll
c is required to keep the correct magnitude of

the viscosity coefficient. There are many ways to select the characteristic length, we use the formula
suggested in [17]

Ll
c =





2
√
V l

c

√
|∆x1|
|∆x2|

for ∆x1 ·wavg > ∆x2 · wavg

2
√
V l

c

√
|∆x2|
|∆x1|

for ∆x1 ·wavg ≤ ∆x2 · wavg ,
(3.49)

where the average subzonal velocity wavg is computed as the arithmetical average of the four velocity val-
ues in all subzone vertices. The vectors x1 and x2 start in the edge centers of the subzone corresponding
to the cell edges, and point to the centers of the separators on the opposite side of the subzone.
The final complicated formula for the viscosity force Fql

c from each subzone to the corresponding node
including the scalar viscosity coefficient µl

c is presented in [17]. As in the case of the other viscosity
types, just by summing all these forces around a node, we get the total nodal viscosity force.

3.1.5 Conservative Internal Energy Update

In sections 3.1.2 and 3.1.3 we have shown, that the force is evaluated by integration of the momentum
equation. Simply, by substituting the temporal velocity derivative by the central difference

mn

(
∂w

∂t

)

n

= mn

(
w1

n − wn

∆t

)
= Fn , (3.50)

and just by moving the old velocity wn to the right hand side of the equation, we get the formula for
the new velocity w1

n computation

w1
n = wn +

∆t

mn
Fn . (3.51)

Thus, the momentum conservation in each cell is satisfied due to the force definition and the closeness
of the cell.
Now, let us derive the formula for the new specific internal energy computation. At first, we have to
define the total energy in cell c as

Ec = mc ǫc +
4∑

l=1

1

2
ml

c

(
u2

n(c,l) + v2
n(c,l)

)
, (3.52)

which corresponds well to the original formula for the total energy density defined in section 2.1. Due
to the conservation of total energy in each cell, the time derivative of this quantity is equal to zero and
can be written as

0 =
∂Ec

∂t
= mc

∂ǫc
∂t

+

4∑

l=1

1

2
ml

c

(
2un(c,l)

∂un(c,l)

∂t
+ 2 vn(c,l)

∂vn(c,l)

∂t

)
(3.53)

and due to equation (3.50), one can rewrite it as

0 = mc
∂ǫc
∂t

+
4∑

l=1

(
un(c,l) F

x l
c + vn(c,l) F

y l
c

)
. (3.54)
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Now, let us define the total work, performed in cell c due to the forces Fc as

Ework
c = −

4∑

l=1

wn(c,l) · Fl
c , (3.55)

which allows us to rewrite the previous equation in the form

mc
∂ǫc
∂t

= Ework
c . (3.56)

By substituting the specific internal energy derivative by the central difference, we get the final formula
for the new specific internal energy

ǫ1c = ǫc +
∆t

mc
Ework

c , (3.57)

which is fully conservative.
We have shown, that the conservation of momentum and total energy are naturally satisfied by definition
of the corner forces. There is still the issue of the mass conservation. This is guaranteed by the Lagrangian
nature of the step. The zonal, subzonal, and consequently the nodal masses are computed during the
initialization stage, and then kept unchanged during the whole pure Lagrangian simulation. Only the
zonal and subzonal densities are updated in each Lagrangian step according to the nodal movement
changing the volumes, the total mass is conserved without any complications. Thus, we have completely
conservative Lagrangian scheme for fluid simulations.

3.1.6 Complete Algorithm of the Lagrangian Method

In this section, we describe the complete algorithm of the Lagrangian step, allowing us to solve the
system of fluid equations in Lagrangian form (2.2). It follows the process presented in [18, 19, 16].
When the Lagrangian step starts, the following quantities are known from the previous time step or
initialization: time step ∆t, nodal coordinates zn = (xn, yn), nodal speeds wn = (un, vn), cell and
subzone volumes Vc, V

n
c , cell and subzone densities ρc, ρ

n
c , cell pressures pc, and specific internal energies

ǫc. The complete algorithm can be described in the following way

1. For each subzone, compute the zonal, subzonal, and viscosity pressure forces Fpl
c, Fdpl

c, and Fql
c

described in sections 3.1.2, 3.1.3, and 3.1.4 respectively.

2. Compute total corner and total nodal forces in each node

Fl
c = Fpl

c + Fdpl
c + Fql

c (3.58)

Fn =
4∑

l=1

Fl
c(n,l) (3.59)

as a sum of all forces of all adjacent subzones.

3. According to the nodal forces, compute the new velocities

w1
n = wn +

∆t

mn
Fn (3.60)

and apply the velocity boundary conditions to them, and compute the velocities in the half-time

w1/2
n =

1

2

(
wn + w1

n

)
. (3.61)

23



4. Move the nodes to their new positions

zn = zn + ∆t w1/2
n (3.62)

according to the velocities in half-time.

5. Update the geometry according to the new nodal position – compute new zonal and subzonal
volumes, centers, and edge centers.

6. Compute the total work done in each cell c due to the forces affecting its nodes

Ework
c = −

4∑

l=1

Fn(c,l) ·w1/2
n(c,l) (3.63)

and compute the new specific internal energy due this work

ǫc = ǫc +
∆t

mc
Ework

c . (3.64)

7. Update cell and subzone densities in new cells as

ρc =
mc

Vc
, ρl

c =
ml

c

V l
c

, (3.65)

and new cell pressure from the equation of state, and apply the pressure boundary conditions to
them.

8. Finally, switch velocities to the new mesh wn = w1
n.

In fact, this algorithm uses the Euler method with step ∆t for time integration, which is fast and easy
to implement, but only first order accurate. To improve the algorithm, and due to the fact, that we
wish all quantities entering the definition of total energy to be defined at the same time level, better
time integration scheme should be used. We use the second-order Runge-Kutta method (RK2). The
modification is quite easy – at the end of the process, the new quantities (positions zn and the geometrical
quantities as volumes, centers, . . . , energies, zonal and subzonal densities) are transformed to the half-
time ∆t/2 by averaging the computed values with the original ones, and the described process is repeated
once again to get the new values in the final time ∆t. For more details about the time integration issues,
see [18].

3.2 Mesh Smoothing Techniques

The second essential part of the ALE algorithm is the method for mesh smoothing and regularization.
It regularizes (untangles and smoothes) the computational mesh and produces the new one, used for
further calculation. There exist many types of mesh regularization techniques, due to our needs we focus
only on the methods smoothing the meshes by node repositioning. There are several approaches for this
task – methods based on plain or weighted averaging, or local and global optimization methods. Let us
go through several methods for mesh optimization and discuss its properties.

3.2.1 Plain Averaging and Winslow Smoothing

The easiest methods for computational mesh regularization are based on some kind of average calcula-
tions. The method based on the plain average calculation can compute the new mesh nodes positions in
the following way

z̃i,j =
1

8
(4 zi,j + zi−1,j + zi+1,j + zi,j−1 + zi,j+1) . (3.66)
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where zi,j = (xi,j, yi,j) denotes the nodal position of the node n = (i, j), and the tilde symbol denotes
the quantities connected to the new smoothed computational mesh. This simple formula is fast and
smoothes the mesh properly. On the other hand, the mesh motion can be too severe, and the new mesh
can be too different from the original one.
Another method using principles of averaging for mesh smoothing, is the classical Winslow smoothing
introduced in [97] and extended in [91] and [15]. This smoothing scheme results from the solution of the
inverted Laplace equation and can be written in the following form

z̃i,j =
1

2 (α+ γ)

(
α (zi,j+1 + zi,j−1) + γ (zi+1,j + zi−1,j)−

1

2
β (zi+1,j+1 − zi−1,j+1 + zi−1,j−1 − zi+1,j−1)

)
,

where the coefficients α, β, γ are computed as

α = x2
ξ + y2

ξ (3.67)

β = xξ xη + yξ yη (3.68)

γ = x2
η + y2

η . (3.69)

The derivatives of the nodal positions zξ, zη according to the logical coordinates ξ, η of node n = (i, j)
are computed as

zξ =
1

2
(zi+1,j − zi−1,j) (3.70)

zη =
1

2
(zi,j+1 − zi,j−1) . (3.71)

This movement attempts to preserve mesh orthogonality and is used for mesh smoothing in many ALE
codes [79]. Although, this method can produce meshes very different from the original Lagrangian
meshes, on the other hand (unlike the plain averaging), the obtained results are reasonable and can be
used for real ALE simulations. There exist some special cases, where this method is not advisable and
more sophisticated method is necessary, but in general, the Winslow smoothing method can be employed
to most ALE simulations.

3.2.2 Advanced Rezoning Methods

There exist many other methods for mesh regularization and smoothing, here we briefly describe two
types of them closely connected to the ALE approach – the methods based on the combination of global
and local mesh smoothing techniques, and the methods based on the Reference Jacobian smoothing.
Generally, the mesh smoothing techniques can be divided into two groups – global and local optimization
methods. We focus here on the local feasible set method and the global method of the numerical
optimization of mesh quality functional, and show their combination introduced in [94], which can be
used for untangling of hardly distorted computational meshes. The feasible set method is a local method
moving the nodal position just with respect to the local neighborhood of the node. Its biggest advantage
is the fact, that it moves only the nodes, that are necessary to be moved. On the other hand, it is
not guaranteed for a locally hardly distorted meshes that the local method will help. For each mesh
node, its feasible set is constructed [78], which is the polygon, into which one can move the node to
locally correct the problematic node and make all cells around the node valid (with positive subzonal
volumes). The numerical functional optimization method is a global method moving all the mesh nodes
at once. The main advantage is producing a valid mesh. On the other hand it moves all mesh nodes,
also in smooth mesh regions, and thus increases the numerical error of the coming remapping stage. At
first, a functional describing mesh quality must be constructed (for examples see [94]), which is then
minimized by some optimization method, such as conjugate gradient method [77]. The combination
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of both methods, introduced in [94], combines positives of both approaches. At first, the feasible set
method locally correcting most of the problematic nodes is applied. The following global numerical
optimization corrects all problems, but zero-volume cells can appear. Due to the previous feasible set
step, the global mesh movement in the second step is not so strong. Then, the third step is applied –
local feasible set method again, extending possible degenerated zero-volume cells. This 3-step method
achieves acceptable mesh untangling while keeping the mesh close to the original one. It is suitable for
sporadic usage in the case that computational mesh degenerates, but not for regular usage for mostly
regular meshes. The best strategy in the ALE process is to keep the mesh smooth during the whole
computation and do not allow such hardly degenerated meshes.
The last approach for mesh smoothing which is discussed in this study, is the reference Jacobian method
introduced in [48], and extended and described in more details in [32]. It constructs reference positions
of each node by local mesh quality functional (based on the local Jacobi determinants) minimization.
Then, the reference Jacobi matrix depending on the reference nodal positions is constructed in each
subzone. A global mesh quality functional based on the Jacobi matrices is constructed and minimized,
which provides the new nodal positions for the new computational mesh. This final mesh is closer to the
original Lagrangian mesh than the reference one, and can be directly applied in the ALE simulations.

3.3 Conservative Remapping Algorithm

The last essential part of the ALE algorithm is the conservative interpolation of all quantities from
the Lagrangian computational mesh, to the new, smoothed one. We require the remapping method
to be linearity-preserving (this condition seems in practical tests to imply second order of accuracy),
conservative for all conservative quantities, and local-bound preserving (the method should not create
new local extrema in any of the primitive quantities). Our approach results from [68, 70], and reduces
the problem of remapping all conservative quantities to the problem of remapping of each of them by a
single process, while satisfying the named properties for all these quantities.
In the next subsections, we describe the algorithm for remapping of arbitrary function (density of a
conservative quantity) between computational meshes. In subsection 3.3.6, we go through the complete
algorithm for remapping of all quantities, where we use the described remapping algorithm for each
single conservative quantity. Then, in subsection 3.3.7, we demonstrate the properties of the remapping
method on several numerical examples. Finally, for future use, we extend the idea of the remapping
algorithm to 3D and to the case when the computational mesh changes its connectivity during the
smoothing stage. This will allow the future development of the changing-topology and a 3D ALE codes.

3.3.1 Remapping of One Conservative Quantity

We have two computational meshes – the old one from the last Lagrangian step {c}, and the new one
coming from the mesh smoothing process {c̃}. We will denote all quantities related to the new mesh by
the tilde accent. Suppose, we have an arbitrary function g(z), z = (x, y) defined in the computational
domain. The function can be arbitrary. In the context of ALE methods, this function represents the
density of mass g = ρ, density of momentum g = ρ u, g = ρ v, or density of total energy g = ρ (ǫ+|w|2/2).
We do not know the explicit formula for the function evaluation, we know only the mean values of this
function in the cells of the original computational mesh gc. These values correspond to the integrals

gc =

∫
c g(x, y) dx dy

Vc
(3.72)

and by the definition of cell mass (or cell momentum or total cell energy),

gc =
Gc

Vc
. (3.73)
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We call the integral of the function g over the cell as the mass of the function g (or cell mass) in cell c
and denote it Gc (in the case g(z) = ρ(z), it corresponds to the real cell mass Gc = mc). The total mass
of the whole computational domain Ω corresponds to

GΩ =

∫

Ω
g(z) dV =

∑

∀c

∫

c
g(z) dV =

∑

∀c

Gc . (3.74)

Our task is to compute the new mean values in the new mesh cells gc̃ = Gc̃/Vc̃. And we want to satisfy
the previously mentioned conditions of good remapping method:

1. Accuracy – we want the new mean values and masses to be as close to the exact ones, as possible

Gc̃ ≈ Gexact
c̃ =

∫

c̃
g(z) dV . (3.75)

2. Conservativity – the new total mass must be the same, as the original one

∑

∀c̃

Gc̃ = GΩ . (3.76)

3. Local-bound preservation – we require the new mean values not to create the new local extrema,
they must remain in the original local bounds

gmax
c ≥ gc̃ ≥ gmin

c , gmax
c = max

c′∈C(c)
gc′ , gmin

c = min
c′∈C(c)

gc′ (3.77)

over the neighborhood C(c) (patch of 3 × 3 cells) of the original cell c.

4. Linearity preservation – in the case, that the density function g corresponds to the global linear
function, the new mean values and masses must be exact

Gc̃ = Gexact
c̃ =

∫

c̃
g(z) dV , if g(z) = a+ b x+ c y . (3.78)

Our remapping method is based on the algorithm introduced in [71], [72] and extended in [58]. It consists
of three parts:

1. Piecewise linear reconstruction inside old cells.

2. Integration (exact or approximate).

3. Repair.

In the first stage, the unknown function g is approximated by the piecewise linear function, which is
exactly equal to the mean values gc in the cell centers (centroids), and linear inside each old cell. In the
second stage, the reconstructed function is integrated over the new cells c̃, which gives us the new cell
masses Gc̃, and thus new mean values gc̃. The most natural approach is the exact integration – direct
integration of the reconstructed function over the new cell c̃. Unfortunately, it requires to find all the
intersections of both meshes, which is computationally expensive in 2D. In 3D, this approach is almost
uncodable and uncomputable. Thus, we have developed an approximate integration method – swept
integration, which does not require any intersections, and is easily generalizable to 3D. On the other
hand, this method is approximate, and it may happen, that the new mean values violate the local-bound
preservation condition (3.77). Therefore, we have added the third stage – the repair, which corrects this
problem and conservatively returns the values back to the local bounds. Finally, our algorithm satisfies
all the conditions required for a high-quality remapping method stated above. Let us go through all the
remapping stages.
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3.3.2 Piecewise Linear Reconstruction

Piecewise linear reconstruction is the first stage of the remapping process. Its task is to compute the
slopes of the unknown function g in each cell c. Suppose that the reconstructed function in cell c with
cell center (xc, yc) has the form

gc(x, y) = gc +

(
∂g

∂x

)

c

(x− xc) +

(
∂g

∂y

)

c

(y − yc) . (3.79)

To respect the linearity-preservation condition of the remapping algorithm, the reconstruction stage itself
must be linearity-preserving.
There are several methods for function reconstruction. We discuss here three of them, the average dif-
ference method, the least-squares minimization process, and finally the Barth-Jespersen limiting process
to enforce monotonicity preservation of the reconstructed function.

Average Derivative in Neighborhood The most natural approach for the unlimited slopes approx-
imation, is averaging of the function derivative over the region V neigh

i,j defined by connecting the centers
of the adjacent neighbors. The region is shown in Figure 3.4.

V
neigh

i,j

i,j
i+1,ji−1,j

i,j−1i−1,j−1

i,j+1
i−1,j+1

i+1,j−1

i+1,j+1

Figure 3.4: Patch of 3×3 cells and the region of integration V neigh
i,j (in dashed lines) for the approximation

of the average derivative in cell i, j.

The unlimited slope approximation in cell c = i, j can be written in the form

(
∂g

∂x

)unlim

i,j

=

∫
V neigh

i,j

∂g
∂x dx dy∫

V neigh
i,j

1 dx dy
. (3.80)

The denominator is equal to the neighborhood volume, and the numerator can be reduced by using the
Green theorem to the boundary integral

(
∂g

∂x

)unlim

i,j

=

∮
∂V neigh

i,j

g dy

|V neigh
i,j |

. (3.81)
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After defining the function value along each edge of the neighborhood by the average of the corresponding
cell values, one can rewrite the whole formula to the form

(
∂g

∂x

)unlim

i,j

=
1

|V neigh
i,j |

∑

∀e∈∂V neigh
i,j

1

2

(
gc(e,−) + gc(e,+)

) ∫

e
dy

=
1

|V neigh
i,j |

1

2

∑

∀e∈∂V neigh
i,j

(
gc(e,−) + gc(e,+)

) (
yc(e,+) − yc(e,−)

)
,

(3.82)

where the orientation of the neighborhood boundary edges is assumed in the counter-clock wise order.
This formula can be explicitly expressed for the situation shown in Figure 3.4 as

(
∂g

∂x

)unlim

i,j

=
1

|V neigh
i,j |

1

2

((
gi−1,j−1 + gi,j−1

) (
yi,j−1 − yi−1,j−1

)
+
(
gi,j−1 + gi+1,j−1

) (
yi+1,j−1 − yi,j−1

)
+

(
gi+1,j−1 + gi+1,j

) (
yi+1,j − yi+1,j−1

)
+
(
gi+1,j + gi+1,j+1

) (
yi+1,j+1 − yi+1,j

)
+(

gi+1,j+1 + gi,j+1

) (
yi,j+1 − yi+1,j+1

)
+
(
gi,j+1 + gi−1,j+1

) (
yi−1,j+1 − yi,j+1

)
+

(
gi−1,j+1 + gi−1,j

) (
yi−1,j − yi−1,j+1

)
+
(
gi−1,j + gi−1,j−1

) (
yi−1,j−1 − yi−1,j

))
,

(3.83)

where the symbols yi±1,j±1 in this context denote the y coordinates of the centers of the corresponding

cells. Here, the neighborhood volume |V neigh
i,j | is computed as the sum of four quadrilateral regions

defined by connecting the neighboring cell centers with the center of the central cell i, j. The formula for
the y slope (∂g/∂y)unlim

i,j is derived analogically and has the same form, just a minus sign coming from
the Green theorem appears in front of it.
This method is straightforward and provides reasonable approximation for the function slopes in each
cell. For more details about this approach, see [84], [71]. This method can be used in 2D, logically
rectangular meshes. Unfortunately, this method is hardly generalizable to 3D, and several complications
appear also for the case of general polyhedral cells. Thus, for future generalization of the code, we present
here also another method based on minimization of the slope error functional, which is generalizable to
the mentioned, more complicated cases.

Least-squares Minimization Process The second method is the least-squares method minimization
of the error functional

F

((
∂g

∂x

)unlim

c

,

(
∂g

∂y

)unlim

c

)
=

∑

c′∈C(c)

(
gc′ −

∫
c′ g

unlim
c (x, y) dx dy

Vc

)2

(3.84)

defining the measure of the difference of the neighboring mean values from the (unlimited) reconstructed
values in the centers of the neighboring cells.
Now, let us find the minimum of this functional (which means to set the reconstructed function as close
to the exact function as possible). Let us differentiate this functional according to its parameters and set
it to zero. We present here the process of differentiating the functional according to the first parameter,
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(∂g/∂x)unlim
c , the second one is analogical. So we solve the following equation

0 =

∂F

((
∂g
∂x

)unlim

c
,
(

∂g
∂y

)unlim

c

)

∂
(

∂g
∂x

)unlim

c

=

∂

(
∑

c′∈C(c)

(
gc′ −

R
c′

gunlim
c (x,y) dx dy

Vc′

)2
)

∂
(

∂g
∂x

)unlim

c

(3.85)

=
∑

c′∈C(c)

2


gc′ −

∫
c′ gc +

(
∂g
∂x

)unlim

c
(x− xc) +

(
∂g
∂y

)unlim

c
(y − yc) dx dy

Vc′



(
−
∫
c′(x− xc) dx dy

Vc′

)

(3.86)

and by substituting the definitions of cell volumes (3.3) and cell centers (3.4), (3.5), we get the following
expression

0 =
∑

c′∈C(c)

2

(
gc′ − gc −

(
∂g

∂x

)unlim

c

(xc′ − xc) −
(
∂g

∂y

)unlim

c

(yc′ − yc)

)
(−(xc′ − xc)) . (3.87)

This equation can be rewritten into the linear form

0 = −bx + axx

(
∂g

∂x

)unlim

c

+ axy

(
∂g

∂y

)unlim

c

. (3.88)

After repeating the same process for the y derivative, one can write the complete system as

A

(∂g
∂z

)
c
= b (3.89)

or explicitly (
axx axy

axy ayy

)
·
( ( ∂g

∂x

)unlim

c(∂g
∂y

)unlim

c

)
=

(
bx
by

)
(3.90)

for unknown partial derivatives, where

aαβ = 2
∑

c′∈C(c)

(αc′ − αc) (βc′ − βc) (3.91a)

bα = 2
∑

c′∈C(c)

(αc′ − αc) (gc′ − gc) (3.91b)

for α, β ∈ {x, y}. Solution of this linear system (3.90) is computed by direct method based on the inverse
matrix calculation. The final solution is then

( ( ∂g
∂x

)unlim

c(∂g
∂y

)unlim

c

)
=

1

D

(
bx ayy − by axy

by axx − by axy

)
, (3.92)

where the determinant of the matrix

D = det(A) = axx ayy − a2
xy (3.93)

also serves as an indicator of regularity of cell c. In some severe fluid motion types it may happen, that
the particular cell degenerates to a line or a point (not exactly, but approximately). This causes the
determinant D to be close to zero and this situation must be treated specially.
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Barth-Jespersen Limiting Process Finally, to minimize the number of overshoots in the remapped
values, we limit the reconstructed function. We have tested several most commonly used limiters [50], and
the Barth-Jespersen (BJ) approach [8, 7] seems to us to be the most suitable for the reconstruction task.
This limiter is constructed such that it preserves linear function, but it does not allow any overshoots in
the reconstructed function. The cellular BJ limiter is defined as

Φc = min
n∈N(c)

Φn
c , (3.94)

where the nodal limiters are defined as

Φn
c =





min
(
1, gmax

c −gc

gunlim
c (n)−gc

)
for gunlim

c (n) − gc > 0

min
(
1, gmin

c −gc

gunlim
c (n)−gc

)
for gunlim

c (n) − gc < 0

1 for gunlim
c (n) − gc = 0 .

(3.95)

Here gunlim
c (n) is the value of the reconstructed function (3.79) computed with the unlimited slopes

(∂g/∂x, y)unlim
c and evaluated in the nodal position n. The local extrema gmin

c , gmax
c are computed as

the extrema of the mean values over the neighboring cells (3 × 3 patch of cells around the cell c) of the
particular cell. The computation of the unlimited slopes has been presented in the previous paragraphs.
The final slopes used for the numerical integration are then computed as

(
∂g

∂x

)

c

= Φc

(
∂g

∂x

)unlim

c

,

(
∂g

∂y

)

c

= Φc

(
∂g

∂y

)unlim

c

. (3.96)

These slopes guarantee the global linearity and monotonicity preservation of the reconstructed function
according to the original mean values gc.
Formula (3.92) gives us the unlimited slopes, which is together with the limitation process (3.96) used
for the final slopes evaluation. The main advantage of this approach is the fact that this method is
generalizable to 3D meshes, and to meshes with the changing connectivity. As for the numerical errors
of the final solution, there is no big difference between the unlimited method minimizing the error
functional, and the previous unlimited method of average derivative in the neighborhood, resulting in
formula (3.83).

3.3.3 Exact Numerical Integration

The first approach for getting the new density function masses and their mean values, is the exact
integration of the reconstructed function over new cells. This method analytically integrates the recon-
structed function over all overlapping elements of both meshes, which gives us the masses of these cells
intersections. By summing the masses corresponding to some particular new cell, we get the new cell
mass, and after dividing by the new volume, the new density mean value. Let us go through the method
in more details.
At first suppose, that we have some reconstruction gc(x, y) as described in (3.79) in each cell c, obtained
by some reconstruction method described in the previous section. Now, we go through the patch of the
original mesh fully covering the new cell c̃. Usually, it is practical to suppose, that the mesh movement
was not to severe during the mesh smoothing stage, and one can use the original cell c and its nearest
neighbors C(c). The situation is shown in Figure 3.5. We go through all cells in this patch c′ ∈ C(c),
and compute the intersection of the cell c′ with the new cell c̃. The examples of such intersection of
the new cell with the neighborhood of the corresponding original cell, are shown in different shades of
gray. Each intersection is a polygon, which can have arbitrary number of vertices from 0 (if the cell does
not intersect the new one, for example cell c′ = i − 1, j + 1 in Figure 3.5) up to 8 (this may happen,
when the original cell rotates a little). For computation of this intersection region, a robust and precise
intersection method is required. We use an intersection method described in [78], which is based on the
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Figure 3.5: Original cell c = i, j (solid lines) and its neighborhood C(c), and the corresponding new cell
c̃ = ĩ, j (dashed lines). All segments of intersection of the new cell with the original mesh are shown in
different shades of gray.

computation of the intersections of all correctly oriented halfplanes assigned to all edges of both (old
and new) cells. Some details about the exact integration approach are included in [71].
Suppose, we have computed an intersection of the old cell c and the new cell c̃′. We denote this polygon
by the symbol P c̃′

c . To compute the mass in this intersection region, we integrate the reconstructed
function of the original cell gc(x, y) over this region

GP c̃′
c

=

∫

P c̃′
c

gc(x, y) dx dy =

∫

P c̃′
c

(
gc +

(
∂g

∂x

)

c

(x− xc) +

(
∂g

∂y

)

c

(y − yc)

)
dx dy , (3.97)

which can be rewritten in the form

GP c̃′
c

= gc

∫

P c̃′
c

1 dx dy +

(
∂g

∂x

)

c

(∫

P c̃′
c

x dx dy − xc

∫

P c̃′
c

1 dx dy

)

+

(
∂g

∂y

)

c

(∫

P c̃′
c

y dx dy − yc

∫

P c̃′
c

1 dx dy

)
.

(3.98)

Here, the integrals of 1, x, and y over the polygon can be evaluated analogically, as in cell volume and cell
centers definitions, as we did in section 3.1.1. Using the Green theorem, they can explicitly be expressed
from the intersection region vertices positions. Let us show the process on the example of the volume
computation (integral of 1). The integral can be reduced to the boundary integral, which can be written
as a sum of edge integrals ∫

P c̃′
c

1 dx dy =

∮

∂P c̃′
c

x dy =
∑

e∈∂P c̃′
c

∫

e
x dy . (3.99)

Now, suppose, that the particular edge e = [e1, e2] with vertices e1 = (x1, y1) and e2 = (x2, y2) has the
following equation

x = x1 +
x2 − x1

y2 − y1
(y − y1) , (3.100)

which can be substituted into the integral and evaluated
∫

e
x dy = x1 (y2 − y1) +

x2 − x1

y2 − y1

y2
2 − y2

1

2
− x2 − x1

y2 − y1
y1 (y2 − y1) (3.101)
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or after some algebra ∫

e
x dy =

1

2
(x1 + x2) (y2 − y1) . (3.102)

The situation of y1 = y2 is treated by analogical process with exchanged x and y coordinates in the edge
equation (3.100). The final formula is exactly the same as formula (3.102), in which is the problematic
y2 − y1 denominator missing, and can be used for arbitrary edge e. The other integrals are evaluated
exactly the same way, and can be written as

∫

P c̃′
c

1 dx dy =

∮

∂P c̃′
c

x dy =
∑

e∈∂P c̃′
c

1

2
(x1 + x2) (y2 − y1) (3.103)

∫

P c̃′
c

x dx dy =

∮

∂P c̃′
c

x2 dy =
∑

e∈∂P c̃′
c

1

6

(
x2

1 + x1 x2 + x2
2

)
(y2 − y1) (3.104)

∫

P c̃′
c

y dx dy = −
∮

∂P c̃′
c

y2 dx = −
∑

e∈∂P c̃′
c

1

6

(
y2
1 + y1 y2 + y2

2

)
(x2 − x1) . (3.105)

This process gives us the final explicit formula for the mass of the intersection region GP c̃′
c

(3.98), and
by summing them, we get the final formula for new cell mass and new cell density

Gc̃ =
∑

c′∈C(c)

GP c̃
c′

(3.106)

gc̃ =
Gc̃

Vc̃
. (3.107)

By summing the intersections volumes (3.103), one can check, whether some part of the new cell c̃
was not forgotten to be included (the sum of the intersection volumes must in some positive ε range
correspond to the new volume Vc̃). If we forget some piece, one can extend the intersection patch (level
2, 3, . . . neighborhood), compute the intersection of the new cell c̃ with the larger patch, until we cover
the complete cell c̃. This situation may occur, if the cell changes significantly during the smoothing
process.
This method is applicable to our remapping problem and is conservative

∑

∀c̃

Gc̃ =
∑

∀c̃


 ∑

c′∈C(c)

GP c̃
c′


 =

∑

∀c̃

(
∑

∀c

GP c̃
c

)

=
∑

∀c

(
∑

∀c̃

GP c̃
c

)
=
∑

∀c


 ∑

c̃′∈C(c̃)

GP c̃
c′


 =

∑

∀c

Gc .

(3.108)

Unfortunately, this method is computationally expensive due to the need to compute cells intersections.
Moreover, this algorithm for cells intersections appears to have problems in cases, that the original and
the new cell are almost the same, and their nodes differ just a little (which happens very often during
smoothing in already smooth regions). This algorithm for cells intersections works only for convex cells.
Another disadvantage of this method is its complicated generalization to 3D, where planar faces are not
guaranteed. Although the method is applicable in 3D [38], the method is unfeasibly slow. Thus, we are
forced to develop more sophisticated method, which does not require the intersections computation.

3.3.4 Approximate Swept Numerical Integration

This approach was developed to replace the exact integration method described in the previous section.
This method does not need the computation of the intersections of the original and the smoothed meshes,
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which makes this method much more efficient. This method was introduced in [72] and extended for full
usage in [58]. Let us go through this method in more details.
Again, we suppose that we know some reconstruction gc(x, y) (3.79) in each old cell c, coming from some
reconstruction method described in section 3.3.2. The swept-region integration method is based on the
integration of the reconstructed function over swept regions, defined by the smooth movement of the
cell edges from their old to the new positions. One cell with its swept regions is shown in Figure 3.6.
Each quadrilateral cell has four swept regions corresponding to their four edges. Each swept region

i+1/2,jδ

i−1/2,jδ

i,j+1/2δ

i,j−1/2δ

i,j

i−1,j+1

i−1,j

i−1,j−1

i,j

i,j−1 i+1,j−1

i+1,j

i+1,j+1i,j+1

~

Figure 3.6: Original cell c = i, j (solid lines) and its neighborhood C(c), and the corresponding new cell
c̃ = ĩ, j (dashed lines). Four swept regions are shown in different shades of gray.

is a quadrilateral region surrounded by the original edge, the corresponding new edge, and the lines
connecting the corresponding old and new vertices.
The swept-region algorithm is based on the simple idea, that the mass of the new cell can be composed
from the original cell mass and masses of all four swept regions

Gc̃ = Gc +
∑

e∈E(c)

δGe , (3.109)

or explicitly for the cells enumerated as in Figure 3.6,

Gfi,j = Gi,j + δGi− 1
2
,j + δGi+ 1

2
,j + δGi,j− 1

2
+ δGi,j+ 1

2
. (3.110)

Analogical equation can be written for the new cell volume. When using swept-region masses or swept-
region volumes (or shortly swept masses, swept volumes), we always mean them in signed sense. By
definition, if we are in a particular cell, the corresponding swept regions have positive volumes, if they
move outwards from the cell, and negative, if moving inwards. The swept volume Vδe

is computed using
the same formula as (3.103), from the vertices of the swept region.
From the sign of each swept volume we detect, whether the corresponding edge moves inwards or outwards
of the original cell. This approach naturally handles twisted swept regions (as the upper swept region
δi,j+1/2 in Figure 3.6), which may occur in case, that one edge vertex moves inwards and second one
outwards of the cell. In this case, the sign of the swept volume corresponds to its larger segment, which
overweights the smaller one. For computation of the swept mass, we integrate reconstruction from the
cell, in which more of the region lies

c∗ =

{
c for Vδe

≤ 0
c′ for Vδe

> 0 ,
(3.111)
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where the cell c′ here is a neighbor of cell c, which have a common edge e with c. The integration is
straightforward,

δGe =

∫

δe

gc∗(x, y) dx dy

=

(
gc∗ −

(
∂g

∂x

)

c∗
xc∗ −

(
∂g

∂y

)

c∗
yc∗

) ∫

δe

1 dx dy

+

(
∂g

∂x

)

c∗

∫

δe

x dx dy +

(
∂g

∂y

)

c∗

∫

δe

y dx dy ,

(3.112)

where the integrals are computed the same way as shown in equations (3.103), (3.104), (3.105).
Finally, we add this swept mass to the mass of the particular cell, and subtract it from the corresponding
neighbor. Due to this edge-based nature of the algorithm, each swept volume and swept mass can be
computed only once, and used twice for both adjacent cells, which increases its efficiency. Moreover,
due to this fact, the algorithm is naturally conservative – the cell masses are interchanged between
neighboring cells, what is added in one cell, is subtracted from other one. As for linearity preservation,
this algorithm exactly integrates the linear reconstructed function (in case of global linear function, the
reconstruction is also a global linear function), so the produced new masses (and thus new densities)
are also exact. So the swept integration method preserves global linear function as well. This property,
together with the smooth underlying function g, implies the second order of accuracy [72].
The swept region integration is an approximate method. In the regions of significant changes of the
remapped quantities (typically, the regions close to shock waves), it may happen, that the new density
value overjumps the local extrema of the original mean values. Thus, one more step must follow, to
enforce the local-bound preservation condition.

3.3.5 Repair

Repair is the last stage of the remapping process, which corrects the possible local-bound violations
caused by the integration process. This method can be described as the conservative redistribution
of the conservative quantity. It was introduced in [58] and extended in [87], where its application to
advection equation is shown.
The first step of the repair process should be finding the bound-determining neighborhood of cell c, the
piece of the original mesh fully covering the new cell c̃, and computing local extrema of the underly-
ing function from the original mean values in this bound-determining neighborhood. Finding the real
bound-determining neighborhood would require computations of the intersections of the original and new
mesh, which we want to avoid. In practical implementation, we use the same local extremes, which we
computed during reconstruction limiting process in section 3.3.2. These extrema are computed over the
cell neighborhood C(c) (3 × 3 patch of cells), which covers the whole bound-determining neighborhood
for reasonably strong mesh movement.
So, in each cell c, we know the original mean value gc, the new mean value gc̃, and the local extremes

gmin
c = min

c′∈C(c)
gc′ (3.113)

gmax
c = max

c′∈C(c)
gc′ . (3.114)

If the new mean value lies within the local extremes

gmin
c ≤ gc̃ ≤ gmax

c , (3.115)

the condition is satisfied and no repair process is required. Suppose, that the local minimum is violated

gc̃ ≤ gmin
c , (3.116)
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maximum case is treated analogically. At first, we compute the mass, which is missing in the new cell
to bring the value back to the local minimum

δGneed
c̃ =

(
gmin
c − gc̃

)
V (c̃) . (3.117)

The algorithm has to be conservative, so we cannot just add the mass to the cell c̃, we have to subtract
it from the mass of the neighborhood. For each neighboring cell, we compute the mass

δGavail
c̃′ = max

(
0, (gc̃′ − gmin

c′ )V (c̃′)
)

, (3.118)

which can safely be taken from it without violating its local minimum. Then, the total available mass
in the neighborhood is their sum

δGavail
C(c̃) =

∑

c′∈C(c)

δGavail
c̃′ . (3.119)

If the available mass is smaller than the needed mass

δGavail
C(c̃) < δGneed

c̃ , (3.120)

we have to extend the neighborhood stencil and search for the mass in a larger region. If we found
enough mass

δGavail
C(c̃) ≥ δGneed

c̃ , (3.121)

we can perform the repair process. We increase the wrong new value up to the local minimum

Gc̃ = gmin
c V (c̃) , (3.122)

and take the mass, which was just added to it, from the neighboring cells proportionally to their available
masses

Gc̃′ = Gc̃′ −
δGavail

c̃′

δGavail
C(c̃)

δGneed
c̃ (3.123)

from all cells c̃′ from the neighborhood C(c̃). This method repairs all local-bound violations coming from
the integration process.
In [58], we have also proved, that this process successfully finishes the repair in a finite number of
steps. It is not obvious, that the repair algorithm always finds enough mass in some (maybe larger)
neighborhood, so let us go through the proof to clear it here. Suppose, that the new cell c̃ is fully
covered by the neighborhood C(c) of the original cell c,

c̃ ∩ c′ 6= ∅ if and only if c′ ∈ C(c) , (3.124)

and suppose, that the local minimum is violated in cell c (as in equation (3.116)). Let us define two
quantities,

∆M− =
∑

c̃′:gc̃′<gmin
c′

(
gmin
c′ − gc̃′

)
V (c̃′) (3.125)

∆M+ =
∑

c̃′:gc̃′>gmin
c′

(
gc̃′ − gmin

c′
)
V (c̃′) . (3.126)

Here, ∆M− > 0 is the total amount of mass, that is needed to bring all new densities in cells c′, where
they are lower that their local minima gmin

c′ , up to these local minima. On the other hand, ∆M+ > 0
is the total amount of mass, that can safely be taken from all other cells without violating their local
minima. To show, that the repair process is successful, we have to prove the following relation

∆M− ≤ ∆M+ . (3.127)
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Let us write the total mass in the entire mesh as

M =
∑

∀c̃

gc̃ Vc̃

=
∑

∀c̃

gmin
c V (c̃) +

∑

c̃′:gc̃′>gmin
c′

(
gc̃′ − gmin

c′
)
V (c̃′) −

∑

c̃′:gc̃′<gmin
c′

(
gmin
c′ − gc̃′

)
V (c̃′)

=
∑

∀c̃

gmin
c V (c̃) + ∆M+ − ∆M− ,

(3.128)

which means the total mass of the local minimal masses, plus the total masses over this minimum, minus
the local masses missing in these local minima. One can rewrite the formula as

∆M+ − ∆M− = M −
∑

∀c̃

gmin
c V (c̃) (3.129)

and using the definition of gmin
c and assumption (3.124), one can rewrite it as

∆M+ − ∆M− = M −
∑

∀c̃

∑

c′∈C(c)

gmin
c V (c̃ ∩ c′) ≥M −

∑

∀c̃

∑

c′∈C(c)

gc′ V (c̃ ∩ c′)

= M −
∑

∀c̃

∑

∀c′

gc′ V (c̃ ∩ c′) = M −
∑

∀c′

gc′
∑

∀c̃

V (c̃ ∩ c′)

= M −
∑

∀c′

gc′ V (c′) = M −M = 0 .

(3.130)

That is, ∆M− ≤ ∆M+, and thus we proved, that it is always possible to finish the repair process by
extending the repair stencil.
The presented repair process is naturally conservative – we are just exchanging the mass from one cell
to another, no new mass is added or taken away. Moreover, this algorithm does not affect the linearity
preservation of the complete remapping process. In the case of global linear function, the local extrema
are situated in the neighboring cells, not in the actual one, and the repair process is not turned on at
all. Problems may only appear in the regions close to the domain boundary, where the local extremes
must be treated by suitable boundary conditions – by extrapolating the global underlying function to
the external ghost cells.

3.3.6 Remapping of All Quantities

In this section we discuss the algorithm for remapping of all conservative quantities from the Lagrangian
computational mesh, to the new, smoothed one. The complete algorithm is based on an older version of
the remapping algorithm presented in [70]. The following properties are required from the algorithm:

1. Conservation – the total mass, momentum in both directions, and total energy must remain un-
changed. This together with the Lagrangian step conservativity ensures the conservation of the
complete ALE algorithm.

2. Local-bound preservation – the remapped mass density, velocities in both directions, and internal
energy, must remain in the local bounds from the original values. This is important for reduction
of possible generation of new peaks and oscillations during the remapping stage.

3. Accuracy – by accuracy, we mean in this context, that the remapping process preserves any linear
function. This property corresponds in practical tests to the second order of accuracy. In [70],
more accuracy issues are discussed.
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4. Reversibility – this property says, that in the case of identical Lagrangian and new mesh, the
remapped values must remain unchanged. This natural and important property is related to the
continuous dependence of the change of primary quantities between the old and the new mesh [70].

We discuss here such remapping algorithm and describe all the important concerns of it. We use the
remapping algorithm for conservative remapping of density of one arbitrary conservative quantity inside
this section, which is described in previous sections. Let us remark, that satisfaction of the mentioned
required features is mostly implied by their satisfaction by the method for remapping of one quantity.
The complete algorithm for remapping of all quantities to the new mesh can be described in the following
way. At first, we define all the needed quantities in the mesh subzones. This can be understood as defining
the quantities on a double-dense mesh (mesh of subzones), four values in each cell. This stage is called a
gathering stage in [70]. It is important do define the subzonal quantities conservatively, such that their
total value in the zones is equal to their sum over the corresponding subzones. The masses mn

c (and
thus densities ρn

c ) are already defined in subzones, we need to define also subzonal momentum densities
in both directions µn

c , νn
c (and thus subzonal velocities un

c , vn
c ), and the subzonal internal and kinetic

energy densities En
c , Kn

c . Definitions of all mentioned subzonal quantities corresponding to the subzone
of cell c at node n are presented as follows

ρn
c =

mn
c

V n
c

(3.131)

µn
c = ρn

c un (3.132)

νn
c = ρn

c vn (3.133)

En
c = ρn

c ǫc (3.134)

Kn
c =

1

2
ρn

c (u2
n + v2

n) . (3.135)

The definitions of subzonal velocities and specific internal and kinetic energies are obvious

wn
c = wn (3.136)

En
c = ǫc (3.137)

Kn
c =

1

2
(u2

n + v2
n) . (3.138)

It is easy to check, that this distribution of the conservative quantities to subzones is conservative.
Now comes the remapping stage, in which we remap each subzonal conservative quantity from the
Lagrangian mesh to the smoothed one. The first comes the subzonal density of mass ρn

c , which is
remapped to the new values ρñ

c̃ , and then repaired (for explanation see section 3.3.5) according to the
local extrema computed from subzonal densities in subzones neighboring the actual one. Now, one can
update the new zonal, nodal, and subzonal masses, and zonal densities

mñ
c̃ = ρñ

c̃ V
ñ
c̃ (3.139)

mc̃ =
∑

ñ∈N(c̃)

mñ
c̃ (3.140)

mñ =
∑

c̃∈C(ñ)

mñ
c̃ (3.141)

ρc̃ =
mc̃

Vc̃
. (3.142)

Now, let us have a look at the momentum remapping. Using the same procedure for one conservative
remapping, we remap both momentum densities µn

c , νn
c to the new mesh and get new momentum µñ

c̃ ,
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νñ
c̃ . This allows us to define new subzonal velocities

uñ
c̃ =

µñ
c̃

ρñ
c̃

(3.143)

vñ
c̃ =

νñ
c̃

ρñ
c̃

(3.144)

and the new nodal velocities

wñ =
1

mñ

∑

c̃∈C(ñ)

(
mñ

c̃ wñ
c̃

)
. (3.145)

Now, from the new nodal densities ρñ = mñ/Vñ and the original nodal velocity local extremes, one can
compute the nodal extremes of the momentum density

µmin
ñ = ρñ u

min
n , (3.146)

and analogically the others. Using these extremes, one can repair the nodal momentum densities

µñ = ρñ uñ (3.147)

νñ = ρñ vñ (3.148)

and then recompute the new velocities back

uñ =
µñ

ρñ
(3.149)

vñ =
νñ

ρñ
. (3.150)

This causes the new nodal velocities to satisfy the local-bound preservation condition.
The last quantity we need to remap, is the density of the subzonal total energy

T n
c = En

c +Kn
c , (3.151)

which gives us the new subzonal total energy T ñ
c̃ . From the new density and new velocities, we compute

the new density of kinetic energy

K ñ
c̃ =

1

2
ρñ

c̃

(
u2

ñ + v2
ñ

)
(3.152)

and the new subzonal and zonal density of internal energy

Eñ
c̃ = T ñ

c̃ −K ñ
c̃ (3.153)

Ec̃ =
1

Vc̃

∑

ñ∈N(c̃)

Eñ
c̃ V

ñ
c̃ . (3.154)

From the original cellular specific internal energy ǫc, we compute local extremes of the specific internal
energy ǫmin

c and ǫmax
c , and transform them to extremes of density of internal energy

Emin
c̃ = ρc̃ ǫ

min
c (3.155)

Emax
c̃ = ρc̃ ǫ

max
c . (3.156)

Then, we perform the repair of densities of the cell internal energy Ec̃ using to these local extremes.
This procedure causes the final specific internal energy

ǫc̃ =
Ec̃

ρc̃
(3.157)
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to satisfy the local-bound preservation condition. Now, we can update the cell pressure field from the
equation of state, apply the pressure boundary condition, and we have the complete algorithm for the
remapping of all conservative quantities from the original Lagrangian mesh to the new, smoothed one. If
the remapping method for one quantity satisfies all the required properties (which our method described
in the previous sections does), this complete algorithm satisfies them also.
Compared with the method described in [70], there are several differences in our approach. In fact,
we are using an older version of the method [70], which strictly separates three stages of the algorithm
– gathering stage defining all subzonal quantities, remapping stage performing one by one subzonal
quantity remapping and repair (all quantities are repaired in subzones), and the scattering stage defining
the final nodal and zonal quantities. Next difference is in the fact, that the algorithm in [70] remaps
the kinetic and internal energies separately, not their sum – the total energy. The separate energy
remapping should be better, the algorithm does not mix two quantities, which may vary in an order of
magnitude. We plan to add this property to the remapping algorithm in the future version. The last
important difference occurs in the computation of the subzonal velocities. In our algorithm, there is no
principal difference between nodal and subzonal velocities, which is correct in sense of conservativity, but
it may decrease the accuracy of velocity remapping. In [70], there exist a transformation matrix in each
cell, which converts the nodal velocities to subzonal ones, and vice versa. This requires computation
of the inverse matrices, involving lot of additional computations. Moreover, this approach can generate
consequent oscillations in the velocity field, and more repair steps would be necessary for correcting this
problem.

3.3.7 Numerical Testing of Remapping Methods

In this section, we present several numerical examples showing properties of our complete remapping
algorithm. Thus, we demonstrate all important features of the remapping algorithm – conservativity,
linearity preservation and local-bound preservation. We focus on the importance of the limiting process
in the reconstruction stage, and the repair process.
The first numerical example, we demonstrate here, is a linear function

g(x, y) = x+ 2 y (3.158)

remapped over a series of 100 randomly changing quadrilateral meshes of 162 cells in 〈0, 1〉2 computational
domain. In Figure 3.7, one can see the remapped values on the final mesh (a), the front view (b), and
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Figure 3.7: Linear function remapped over a series of randomly changing computational meshes. (a) –
view to the final mean values, (b) – front view, (c) – contour map.

their contours (c). The described method, using Barth-Jespersen limited reconstruction, swept region
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integration, and the final repair process, is used. This example demonstrates preservation of the global
linear function, numerical error is zero up to the round off error.
In the second example, we use the following sine function

g(x, y) = 1 + sin(2π x) + sin(2π y) (3.159)

remapped over a series of 80 orthogonal, sine-like moving meshes described in [58]. The position of node
n = i, j in time t of the computation is described by the following formulas

xi,j(t) = (1 − α(t)) ξi + α(t) ξ3i (3.160)

yi,j(t) = (1 − α(t)) ηj + α(t) η2
j (3.161)

α(t) =
1

2
sin

(
4π

t

tmax

)
, (3.162)

where the logical coordinates ξi = i/Nx, and ηj = j/Ny. Clearly, for t = 0 and t = tmax, the parameter
α(t) = 0, and the initial and final meshes are identical and uniformly rectangular. In Figure 3.8, the
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Figure 3.8: Sine function remapped over a series of orthogonal, sine-like moving computational meshes.
(a) – view to the final mean values, (b) – front view, (c) – contour map.

mean values (a) on the last computational mesh of 162 cells in 〈0, 1〉2 domain, the front view (b), and the
contour maps (c) are shown, computed using the full limiting+swept integration+repair method. The
initial and the final meshes are the same, which allows us compare the numerical errors of the remapping.
In Table 3.1, relative numerical errors L1 and Lmax of the described problem, depending on the number

Nx = Ny Nt L1
LNx

1

L2Nx
1

Lmax
LNx

max

L2Nx
max

16 80 6.85e-2 6.23 2.82e-1 2.52
32 160 1.10e-2 6.01 1.12e-1 2.76
64 320 1.83e-3 6.33 4.06e-2 2.78
128 640 2.89e-4 7.17 1.46e-2 2.82
256 1280 4.03e-5 — 5.17e-3 —

Table 3.1: Numerical errors of the remapping process including limited reconstruction, swept region
integration, and the repair stage applied to the smooth sine function (3.159). L1 and Lmax errors for
different mesh sizes and different number of remappings, and their ratio to the errors with half number
of mesh cells in each direction, are presented.

of computational cells Nx ×Ny, and the number of remaps performed Nt, are presented. The L1 error

41



shows at least second order of accuracy of the complete remapping method, the maximum Lmax error
slowly converges to the second order of accuracy too.
The last numerical test presented here is remapping of a non-smooth square function

g(x, y) =

{
1 for

(
(x− 1

2 )2 ≤ 0.03
)
∧
(
(y − 1

2)2 ≤ 0.03
)

0 else
(3.163)

over a series of consequently smoothing meshes. This function includes a strong jump, and is hard
for the repair algorithm to be treated in a good quality. The original mesh is a randomly distorted
mesh, which is smoothed into the next step by plain averaging (3.66). The final mesh is obtained after
20 smoothing steps. In Figure 3.9, we show the mean values in the final, almost smooth mesh, using
different combinations of limiting and repair methods with the approximate swept region integration.
Relative numerical errors and the global extrema of all the methods on mesh with 16 × 16 cells, are
presented in Table 3.2. From the presented numbers, one can see that all the numerical errors are

reconstruction and repair L1 Lmax gmin gmax T [s]

swept, unlimited, no repair 9.97e-3 1.51e-1 -5.09e-2 1.058 0.032
swept, unlimited, repair 9.85e-3 1.91e-1 0 1 0.040
swept, BJ limiter, no repair 1.06e-2 1.93e-1 -3.46e-9 1.000006 0.024
swept, BJ limiter, repair 1.06e-2 1.93e-1 0 1 0.028
exact, BJ limiter, no repair 1.13e-2 1.98e-1 0 1 0.784

Table 3.2: Numerical errors L1 and Lmax and the global extrema gmin and gmax of the different remapping
methods applied to the non-smooth square function (3.163) in 16 × 16 cells mesh after 20 steps. Time
of computation T in seconds on a 2.4GHz machine is also presented.

comparable, and in this particular case, the swept integration method is even better than the exact
one. The limiting process dramatically decreases number of possible overshoots, but does not guarantee
absolute bound preservation. The repair process helps in every situation, but due to the higher number
of repairs, it causes the whole computation to need more time. From the times of computation, one can
see that all swept integration simulations are much faster than the exact one.
Thus, all parts of the remapping method are essential. The swept integration is much more efficient than
the exact one, the limiting process decreases the number of repairs applied, and the repair stage must
be performed to guarantee bound preservation. Only combination of all these three stages guarantees
optimal results for non-smooth underlying function. For more numerical tests of the 2D remapping
algorithm, see [58].

3.3.8 Remapping in 3D

For the future development of the 3D ALE code, we have developed a 3D version of the complete remap-
ping algorithm for arbitrarily polyhedral cells. The 3D algorithm was described and several preliminary
examples presented in [35], and the full algorithm description with comprehensive numerical tests is
presented in [36]. Here, we briefly describe the main differences of the 3D remapping process from the
2D case.
The main problem, which we have to deal with in 3D, is the fact that the faces in 3D do not have
to be planar. Only the positions of the face nodes are known, the faces themselves (their shapes) are
not defined. For each face f of a particular cell c, we find the face center by plain averaging all face
vertices. By connecting all face vertices to this face center, we uniquely subdivide the face to triangles
corresponding to each face edge. This way, every faces shape is uniquely defined.
In 3D, we use exactly the same process of error functional minimization for underlying function recon-
struction, as described in section 3.3.2. In 3D, although the exact integration method was developed
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Figure 3.9: Non-smooth square function (3.163) with its front views and contour maps, remapped over a
series of consequently smoothing meshes to the final mesh. Several combinations of reconstruction and
repair, with the swept integration, are used – (a) unlimited slopes, (b) unlimited slopes + repair, (c) BJ
limiter, and (d) BJ limiter + repair.
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[38], it is quite a complicated and unfeasibly computationally expensive procedure. Thus, for practical
use, we have only the swept integration method available. As for the swept integration and the repair
algorithm, there is no major principle difference from the 2D case. The only really difficult part, is the
integration of the linear function over arbitrary polyhedron, which is needed for the computation of the
cell volumes

V (c) =

∫

c
1 dx dy dz , (3.164)

cell centers

xc =
1

V (c)

∫

c
x dx dy dz , yc =

1

V (c)

∫

c
y dx dy dz , zc =

1

V (c)

∫

c
z dx dy dz , (3.165)

swept volumes, and masses analogical to 2D swept masses (3.112). This integration procedure is con-
suming most of the computational time. Let us describe the integration process briefly.
For the integration of the linear function over arbitrary polyhedron with faces split into triangles as
described before (for example cell c), we use the method introduced in [74]. Let us demonstrate the
integration procedure on the example of the computation of the cell volume, which can be written in
the form

V (c) =

∫

c
1 dV =

∫

c
divΦ1 dV =

∮

∂c
Φ1 · n+

c dS , (3.166)

where the vector function Φ1 have the form

Φ1 =
1

3
(x, y, z)T , (3.167)

and n+
c is the outer normal of the cell c. The surface integral can be represented as sum of the face

integrals, which can be composed as the sums of integrals over corresponding triangles. Therefore, the
previous expression for volume can be rewritten in the following way

V (c) =
1

3

∑

f∈F (c)

∑

∆∈T (f)

∑

κ=x,y,z

n+,κ
c (∆)

∫

∆
κdS , (3.168)

where n+,x
c , n+,y

c , n+,z
c , are components of the normal n+

c (∆) corresponding to the triangle ∆, whose
orientation is consistent with outward normal to boundary of cell c. The symbol F (c) denotes the set of
all faces of cell c, and T (f) denotes the set of all triangles of face f .
To evaluate the integrals ∫

∆
κdS (3.169)

for κ = x, y, z, we project each triangle to one of the coordinate planes, as described in [74]. Suppose,
that the triangle ∆ belongs to the plane

n+,x
c (∆)x+ n+,y

c (∆) y + n+,z
c (∆) z + ω = 0 , (3.170)

where ω = −n+
c · p and p is an arbitrary point in the plane (for example, one of the vertices of the

triangle). To reduce the error of computations, for the given triangle ∆ we choose α − β − γ as right-
handed permutation of x− y− z coordinates, such that |n+,γ

c | is maximal. If we denote projection of the
triangle ∆ to (α, β) plane by Π∆, then integrals over ∆ can be reduced to integrals over Π∆ as follows

∫

∆
α dS = |n+,γ

c |−1 JΠ∆
α (3.171a)

∫

∆
β dS = |n+,γ

c |−1 JΠ∆
β (3.171b)

∫

∆
γ dS = −|n+,γ

c |−1 (n+,γ
c )−1 (n+,α

c JΠ∆
α + n+,β

c JΠ∆
β + ω JΠ∆

1 ) , (3.171c)
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(a) (b)

Figure 3.10: Distribution of the linear function (3.174) in the original twisted mesh (a), and the final RJ
method smoothed mesh (b). In both pictures, cut in z = 0 plane is shown.

where the integral JΠ∆
g is defined as

JΠ∆
g =

∫

Π∆

g dα dβ . (3.172)

Finally, using the Green theorem in (α, β) plane, the integrals
∫
Π∆

g dα dβ of polynomial function g are
reduced to the 1D integrals over the edges and evaluated in the form

JΠ∆
α =

1

6
sign(n+,γ)

∑

e∈∂∆

δβe (α2
e2

+ αe2 αe1 + α2
e1

) (3.173a)

JΠ∆
β = −1

6
sign(n+,γ)

∑

e∈∂∆

δαe (β2
e2

+ βe2 βe1 + β2
e1

) (3.173b)

JΠ∆
1 =

1

2
sign(n+,γ)

∑

e∈∂∆

1

2
(δβe (αe2 + αe1) − δαe (βe2 + βe1)) , (3.173c)

where each edge e has the end points [e1, e2] in α, β coordinates, and δαe = αe2 −αe1 and similarly δβe.
The final formula is then the combination of (3.173), (3.171), and (3.168).
Computation of integrals of arbitrary linear functions follows the same path, just the vector function Φ

has to be redefined. For example, in the case of the computation of the integral of x coordinate (xc from
equation (3.165)), we use the form of Φx = (1

2 x
2, 0, 0)T suggested in [74]. Then, in the final stage one

needs to compute 1D integrals of higher degree polynomial function, which still can be done explicitly.
For completeness, we present here one 3D numerical example of the remapping process. To show the
linearity-preservation property of the algorithm, we have chosen the example of a linear underlying
function

g(x, y, z) = 1 + 3x+ y + 2 z (3.174)

remapped over a series of 3D polyhedral meshes including about 700 different polyhedrons with up to
21 faces in a unit sphere. Using the Reference Jacobian mesh smoothing method (RJM) described in
section 3.2.2, we get a series of 19 consecutive meshes – the original twisted one, and 18 gradually
smoothing meshes. Each mesh is obtained from the previous one by applying 10 steps of the reference
Jacobian smoothing process. In Figure 3.10, we present the cut in z = 0 plane through the original
twisted unit-sphere mesh, and the final RJM smoothed mesh. The remapped mean values of the linear
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(a) (b) (c)

Figure 3.11: One reconnection in 2D mesh (a). Solving in two steps: shrinking old edges to one point
(b) and expanding it to the new edges (c). Original mesh in dashed lines, new one in solid lines. Swept
regions are shaded in gray.

underlying function (3.174) correspond exactly to the values of the function in the new cell centers, the
numerical error is (up to round-off error) zero. For more numerical examples of 3D remapping, see [36].

3.3.9 Remapping with Changing Topology

Next useful generalization of the remapping method for the future, is remapping from the Lagrangian
mesh to the rezoned (smoothed) mesh with different topology. This is an important issue, because
some of the mesh rezoning methods are not based on a pure nodal movement, they can also change
the connections between them. We have developed generalization of the described remapping algorithm
to the case of meshes with changing topology [57], which satisfies the same properties (conservativity,
reversibility, linearity and local-bound preservation). Here, we only summarize the main ideas of this
method.
In topology changing case in 2D, there is no difference in reconstruction and repair stages, there is no
need to change anything. We have the exact integration method available without any change, there
is only a problem with selecting the patch of the original mesh for intersection computation. The only
requirement is, that both meshes must have consistent cells enumeration – corresponding cells in both
meshes must have the same index to identify the mirror of each cell in the rezoned mesh. The same
problem is with the mesh patch for reconstruction limiting, and for repair stage. Determining of such cell
neighborhood (called good neighborhood) is quite a complicated task [90]. For this particular case, we
switched from classical neighborhood identification (just neighbors of cell) to geometrical neighborhood
identification. In this approach, we find the patch as cells, which are geometrically (not topologically)
close to the original one.
The swept region integration must be revised for changing topology. The typical situation, when one
reconnection appears, is shown in Figure 3.11. Detection of such reconnection is easy – we have to detect
two cells, which were neighbors in the original mesh, and are not neighbors any more in the rezoned
mesh. In the example shown in Figure 3.11 (a), these are the left and the right cell. We detect the edge,
which is removed from the original mesh, and the edge, which is new in the new mesh. We perform
the swept integration in two steps. In the first step, we shrink the disappearing edge into one central
point computed as an average of the nodal positions of vertices of both edges as shown in Figure 3.11
(b). We have to perform five swept integrations corresponding to the disappearing edge, and four edges
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(a) (b) (c)

Figure 3.12: Linear function on the initial quadrilateral mesh (a), remapped to the central polygonal
mesh (b), and remapped to the final mesh.

connected to it. In the second step, we extend the central point into the new edge doing similar next five
swept integrations shown in Figure 3.11 (c). This process treats the situation of one topology change
in the cell. Special care must be taken, when the reconnection appears close to the domain boundary.
If there should appear more reconnections in one cell, it can be solved by reducing the smoothing, and
performing the mesh smoothing technique just to the point, when one reconnection appears, and then
continue to the next one.
We present here one numerical example of remapping with changing topology. As the example, we
demonstrate remapping of a linear function over a series of Voronoi meshes. The initial mesh is a
quadrilateral mesh of 322 cells, which is in fact equal to the Voronoi mesh with equidistant generators.
We move the generators according to the sine movement, described in [58]. Figure 3.12 (a), presents the
linear function distribution on the initial quadrilateral mesh. In the middle of the computation, after
a series of remappings, we get the situation shown in Figure 3.12 (b), where the mesh has completely
different connectivity. The final mesh in Figure 3.12 (c) is the same, as the original one, and the
remapped mean values correspond exactly (up to round off error) to linear function values in the cell
centers. Massive changes of mesh topology were done during the process, the middle-time mesh (b) is
completely different, from the initial (final) one, and remapping still works well. For more numerical
tests, see [57].
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Chapter 4

ALE Method in Cylindrical Geometry

In this chapter, we describe changes in the ALE method, which are needed to perform simulations in
the 2D cylindrical geometry. By the 2D cylindrical geometry, we understand here, that the simulated
problems have cylindrical symmetry, the solution depends on the distance r from the axis z, and the
position in z direction only. There is no dependence on the cylindrical angle.

4.1 Lagrangian Solver

There exist several cylindrical Lagrangian approaches, we describe two methods from [18] – the Area-
Weighted Differencing (AWD) scheme and the Control Volume (CV) method. Both these methods have
the same staggered discretization, as in the Cartesian case. Let us describe both generalizations of the
Lagrangian method to the cylindrical coordinates briefly in the following subsections 4.1.1, 4.1.2.
At this moment we note, that the AWD scheme is presented here just for completeness. Due to its
geometrical nature, it is not possible to combine it into a complete conservative ALE algorithm. On
the other hand, the scheme itself is quite simple and easy to understand, so we do not skip the AWD
method here.

4.1.1 Area-Weighted Differencing Scheme

The complete derivation of the Area-Weighted Differencing (AWD) scheme in cylindrical coordinates is
presented in details in [18] as an example of numerical method preserving spherical symmetry of the
solution.
As for the geometry used for the AWD approach, the cell centers rc, zc are computed as the arithmetical
averages of the corresponding cell vertices. Similarly, edge centers are computed by plain averaging of
its vertices. Now, we compute Cartesian volumes of the dual triangles Al corresponding to all edges in
each cell, as shown in Figure 4.1. The subzonal volume of the lth subzone of cell c is defined as

V l
c = rn(c,l)

5Al−1 + 5Al +Al+1 +Al+2

12
, (4.1)

where rn(c,l) is the r coordinate of the node n(c, l), belonging to the particular subzone. The zonal
volume can be written in the form

Vc =
4∑

l=1

V l
c =

4∑

l=1

Al

rn(c,l) + rn(c,l+1) + rc

3
, (4.2)

as a sum of dual triangles with the r factor (average of r coordinates of all vertices of the particular
triangle). Cellular, nodal, and subzonal masses are computed from the initial subzonal densities and the
described volumes, using the same formula as in the Cartesian case, (3.9), (3.8).
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Figure 4.1: Cell c in AWD approach with dual triangles Al (shaded in different grades of gray) corre-
sponding to all cell edges el. Cell subzones are enumerated from 1 to 4.

In the AWD approach, the momentum equation has the discrete form

mn

(
∂w

∂t

)

n

= rn Fn , (4.3)

and the energy equation has the form

mc

(
∂ǫ

∂t

)

c

= −
4∑

l=1

rn(c,l)

(
un(c,l) F

r l
c + vn(c,l) F

z l
c

)
, (4.4)

where the velocity vector w = (u, v) have its direction in r, z coordinates, and the vector of corner and
total nodal forces are computed using exactly the same process, as described in section 3.1.6 for Cartesian
geometry. When we compare the equations with the Cartesian equations (3.50) and (3.54), one can see
the obvious generalization of the Cartesian method to cylindrical geometry. The corner forces

Fl
c = Fpl

c + Fdpl
c + Fql

c (4.5)

are computed exactly the same way as in the Cartesian geometry, using the same formulas for zonal
pressure (3.18), subzonal pressure (3.28), and viscosity forces. Then, just by multiplying these forces by
the r coordinate of the corresponding node, we convert these forces to the cylindrical, AWD forces.
The AWD algorithm provides reasonable solutions in the cylindrical geometry, which are conservative,
cylindrical symmetry preserving, and consistent with the fluid equations. Unfortunately, due to the
volumes definitions, it is not possible to consistently combine this approach with the remapping stage
into the complete ALE algorithm, such that the algorithm would be conservative. The reason is, that
the remapping algorithm requires cell masses (and volumes) to be defined in such a way, that they can be
computed as integrals of some quantity (density, 1) over the cell volume. In the AWD approach, the cell
volume is defined as a sum of triangle volumes multiplied by the r factor, which cannot be transformed
to any integral formula. Thus, we have to leave the AWD approach, and search for a different method,
where the cell (and subzonal) volumes are defined as integrals.

4.1.2 Control Volume Method

The second method, which can be used for the cylindrical Lagrangian solver, is the Control Volume (CV)
method shown in [18]. This method has one disadvantage – it does not preserve the spherical symmetry
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(for more details see [18], some more details were provided by [67]). On the other hand, this property
at the moment is not so important in our real calculations, it is fully overweighted by the fact, that the
volume is “naturally” defined as the integral in cylindrical coordinates over the cell, which is needed
for the combination with the conservative remapping method in the ALE code, as described in the last
paragraph of the previous section.
As for the geometry (defined by the method of volume evaluation) in the CV method, the cell volumes
are defined as cylindrical integrals of 1 over the cell

Vc =

∫

c
1 r dr dz , (4.6)

which can be reduced by the Green theorem to the edge integrals and evaluated from the coordinates of
the edge vertices

Vc =
∑

e∈∂c

∫

e

r2

2
dz =

1

6

4∑

l=1

(zl+1 − zl)
(
r2l + r2l+1 + rl rl+1

)
. (4.7)

Here (rl, zl) are coordinates of node n(c, l) in (r, z) coordinate system, where the nodes are enumerated
as introduced in Figure 3.2. The subzonal volumes V l

c are computed exactly the same way, and due to
to the volume defined by the analytical integration, clearly

Vc =

4∑

l=1

V l
c . (4.8)

Analogically, the cell centers are defined as cylindrical integrals of the corresponding coordinate over the
cell

rc =
1

Vc

∫

c
r r dr dz =

1

Vc

∑

e∈∂c

∫

e

r3

3
dz (4.9)

zc =
1

Vc

∫

c
z r dr dz =

1

Vc

∑

e∈∂c

∫

e

r2

2
z dz , (4.10)

which can be evaluated from the edges vertices similarly. In [18], arithmetical averages of cell vertices
coordinates are used for the cell centers computation, but we need the centroids (4.9), (4.10) for the
combination with the remapping stage in the ALE method. Our numerical tests show, that this algorithm
change does not affect the numerical stability nor the order of accuracy of the cylindrical CV method.
Let us derive the cylindrical CV forces, as we did for the Cartesian geometry in section 3.1.1.
The momentum equations has the following general form

ρ
d

dt
w = −∇ p , (4.11)

not depending on the coordinate system. Gradient of arbitrary function in the cylindrical coordinates
can be written as

∇ f = grad f =

(
∂ f

∂ r
,
1

r

∂ f

∂ ϕ
,
∂ f

∂ z

)
, (4.12)

or applied to the pressure p in the cylindrical symmetry (cylindrical symmetry assumes, that the function
does not depend on ϕ) we get

grad p =

(
∂ p

∂ r
, 0,

∂ p

∂ z

)
, (4.13)

where the derivatives can be written as

∂ p

∂ z
=

1

r

∂(p r)

∂ z
(4.14)

∂ p

∂ r
=

1

r

(
∂(p r)

∂ r
− p

)
. (4.15)
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The formulas are equivalent, the right hand side can be reduced to the left hand side form, we need
it in this special form for further derivations. Now, the original system (4.11) with w = (u, v) can be
rewritten as

ρ
du

d t
= −1

r

(
∂ (p r)

∂ r
− p

)
(4.16)

ρ
d v

d t
= −1

r

∂ (p r)

∂ z
. (4.17)

After multiplying the equations by r and integrating over the nodal region Vn (the same as the Cartesian
nodal region from Figure 3.3), we get the cylindrical nodal forces on the right hand side of both equations.
Let us focus on the force in the r direction at first. By assuming a constant pressure value in each
subzone, it can be written as

Fpr
n + Fdpr

n = −
∫

Vn

∂ (p r)

∂ r
dr dz +

∫

Vn

p dr dz = −
∫

Vn

∂ (p r)

∂ r
dr dz +

4∑

l=1

∫

V l
n

p dr dz , (4.18)

and using the Green formula, one can reduce both integrals to the boundary integrals to the form

Fpr
n + Fdpr

n = −
∫

∂Vn

p r dz +

4∑

l=1

pn
c(n,l)

∫

∂V l
n

r dz , (4.19)

where the second integral was decomposed to the corresponding integrals over all subzones adjacent to
the node n, and the subzonal pressure was moved in front of the integral. Both boundary integrals can
be written as a sum of edge integrals, and the edge pressure is defined as the average of the subzonal
pressures in both adjacent subzones (as in the Cartesian case). The formula is then

Fpr
n + Fdpr

n =

−
4∑

l=1

(
−
pl

c(n,l) + pl+1
c(n,l)

2

∫

s
c(n,l)
l

r dz +
pl

c(n,l) + pl−1
c(n,l)

2

∫

s
c(n,l)
l−1

r dz

)

+

4∑

l=1

pn
c(n,l)

(
−
∫

s
c(n,l)
l

r dz +

∫

s
c(n,l)
l−1

r dz −
∫

a
c(n,l)−
l

r dz +

∫

a
c(n,l)+
l

r dz

)
. (4.20)

After substituting the formula (3.24) for the subzonal pressure, and after evaluating the integrals

I (sc
l ) =

∫

sc
l

r dz =
(
zc − ze(c,l)

) re(c,l) + rc

2
(4.21)

I
(
ac±

l

)
=

∫

ac±
l

r dz =
(
ze(c±,l) − zn(c,l)

) re(c±,l) + rn(c,l)

2
, (4.22)

one can write the force as

Fpr
n + Fdpr

n =

−
4∑

l=1

(
−
(
pc(n,l) +

δpl
c(n,l) + δpl+1

c(n,l)

2

)
I(s

c(n,l)
l ) +

(
pc(n,l) +

δpl
c(n,l) + δpl−1

c(n,l)

2

)
I(s

c(n,l)
l−1 )

)

+

4∑

l=1

(
pc(n,l) + δpl

c(n,l)

) (
−I(sc(n,l)

l ) + I(s
c(n,l)
l−1 ) − I(a

c(n,l)−
l ) + I(a

c(n,l)+
l )

)
. (4.23)
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By rearranging all the terms, we obtain the force in the form

Fpr
n + Fdpr

n =

4∑

l=1

pc(n,l)

(
I(a

c(n,l)+
l ) − I(a

c(n,l)−
l )

)

+

4∑

l=1

δpc(n,l)

(
I(a

c(n,l)+
l ) − I(a

c(n,l)−
l )

)

+
1

2

4∑

l=1

I(s
c(n,l)
l )

(
δpl+1

c(n,l) − δpl
c(n,l)

)
+

1

2

4∑

l=1

I(s
c(n,l)
l−1 )

(
δpl

c(n,l) − δpl−1
c(n,l)

)
,

(4.24)

which corresponds exactly to the Cartesian formula (3.28). Obviously, the first term of the formula
corresponds to the zonal pressure force in the cylindrical coordinates.
The nodal force in z direction is computed similarly. From (4.17), one can express the force in the form

Fpz
n + Fdpz

n = −
∫

Vn

∂(p r)

∂z
dr dz , (4.25)

and after applying the Green formula, one can rewrite it as a boundary integral

Fpz
n + Fdpz

n =

∫

∂Vn

p r dr . (4.26)

The sign change arises from the minus sign in the Green formula for the second coordinate. As in the
previous case, we decompose the boundary integral to the sum of edge integrals, and define the value of
pressure at the edge to the average of the pressures in the adjacent subzones, and rewrite the formula
in the form

Fpz
n + Fdpz

n =

4∑

l=1

(
−
pl

c(n,l) + pl+1
c(n,l)

2

∫

s
c(n,l)
l

r dr +
pl

c(n,l) + pl−1
c(n,l)

2

∫

s
c(n,l)
l−1

r dr

)
. (4.27)

Again, we can rewrite the subzonal pressures as variations of the zonal pressures, and use the following
symbols

J (sc
l ) = −

∫

sc
l

r dr = −
(
rc − re(c,l)

) re(c,l) + rc

2
(4.28)

J
(
ac±

l

)
= −

∫

ac±
l

r dr = −
(
re(c±,l) − rn(c,l)

) re(c±,l) + rn(c,l)

2
(4.29)

for the edge integrals, which allows us to rewrite the force to the form

Fpz
n + Fdpz

n =

4∑

l=1

((
pc(n,l) +

δpl
c(n,l) + δpl+1

c(n,l)

2

)
J
(
s
c(n,l)
l

)
−
(
pc(n,l) +

δpl
c(n,l) + δpl−1

c(n,l)

2

)
J
(
s
c(n,l)
l−1

))
.

(4.30)

For further changes, we need the assumption of the closed subzone l of cell c(n, l), which implies the
following equation

0 =

∫

∂V l
c(n,l)

r dr = −
(
−J

(
a

c(n,l)−
l

)
+ J

(
a

c(n,l)+
l

)
− J

(
s
c(n,l)
l

)
+ J

(
s
c(n,l)
l−1

))
, (4.31)

or
J
(
a

c(n,l)+
l

)
− J

(
a

c(n,l)−
l

)
= J

(
s
c(n,l)
l

)
− J

(
s
c(n,l)
l−1

)
. (4.32)
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This equality allows us to express the final z force (after some regrouping of terms) as

Fpz
n + Fdpz

n = +
4∑

l=1

pc(n,l)

(
J(a

c(n,l)+
l ) − J(a

c(n,l)−
l )

)

+
4∑

l=1

δpc(n,l)

(
J(a

c(n,l)+
l ) − J(a

c(n,l)−
l )

)

+
1

2

4∑

l=1

J(s
c(n,l)
l )

(
δpl+1

c(n,l) − δpl
c(n,l)

)
+

1

2

4∑

l=1

J(s
c(n,l)
l−1 )

(
δpl

c(n,l) − δpl−1
c(n,l)

)
,

(4.33)

which is the same formula as the one for the r force (4.24), with Js instead of Is.
The cylindrical forces are computed using exactly the same formulas, as the Cartesian forces (3.28). The
only difference is in the evaluation of the I and J integrals. When we compare the Cartesian (3.17),
(3.21) and cylindrical (4.21), (4.28) I, J integrals, there is the additional r factor equal to the average of
the r coordinates of the edge vertices in the cylindrical case. The rest of the cylindrical Lagrangian step
can remain unchanged, the r factor in the cylindrical integrals and volumes causes that the CV method
approximates the cylindrical equations.
There is still the question of the cylindrical viscosity force unresolved. Our approach, inspired by [67, 85]
is based on the evaluation of the viscosity forces using exactly the same Cartesian formulas, as described
in section 3.1.4. Then, we add the r factor to these final forces

Fql
c = rl

c Fqcart l
c , (4.34)

where the center of the subzone rl
c is computed using formula (4.9) applied to the subzone. This

modification is sufficient for the fully working CV algorithm in cylindrical coordinates.
The CV cylindrical method is used in our cylindrical ALE code, and conservatively cooperates with the
rest of the ALE algorithm.

4.2 Mesh Smoothing Techniques

The mesh smoothing is considered from a purely geometrical point of view. In the cylindrical geometry,
we use the same smoothing techniques, as described in section 3.2 for Cartesian geometry, there is almost
no change needed. During the smoothing process, the Cartesian cell volumes and cell centers are used, so
that smoothing the same mesh in both geometries provides the same final mesh. The only point, where
the mesh smoothing in cylindrical geometry is different from the Cartesian one, is the r = 0 boundary
condition. In cylindrical geometry, the corresponding boundary nodes are allowed to move only along
the z axis, they cannot move in r direction. The rest of the smoothing methods remains unchanged.

4.3 Conservative Remapping Algorithm

For conservative cooperation of the remapping stage with the Lagrangian solver, we have to use the same
cylindrical geometry, as described in section 4.1.2. Let us go through all three parts of the remapping
method (reconstruction, integration, and repair), and point to the changes of the algorithm compared
with the original Cartesian method.

4.3.1 Piecewise Linear Reconstruction

There is no need to change the reconstruction process (3.92) by minimization the error functional com-
bined with the Barth-Jespersen limiter (3.96), (3.95), this method does not include any integration.
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4.3.2 Numerical Integration – Exact

The derivation of the exact integration process is straightforward. As in Cartesian geometry, we intersect
the new cell c̃ with all original cells c′ in its neighborhood. We denote the intersection by the symbol
P c̃′

c . Analogically to the formula (3.98), we compute the mass of this intersection region as

GP c̃′
c

= gc

∫

P c̃′
c

1 r dr dz +

(
∂g

∂r

)

c

(∫

P c̃′
c

r r dr dz − rc

∫

P c̃′
c

1 r dr dz

)

+

(
∂g

∂z

)

c

(∫

P c̃′
c

z r dr dz − zc

∫

P c̃′
c

1 r dr dz

)
,

(4.35)

where the integrals of r, r2, and r z are reduced by the Green theorem to the boundary integrals, and
evaluated from the coordinates of the region vertices, as shown in section 4.1.2. For completeness, we
present here the final formulas for the required integrals over a general polygon P (cell, subzone, or as
in this case, cell intersections) in the cylindrical geometry

∫

P
r dr dz =

1

6

∑

e∈∂P

(z2 − z1)
(
r21 + r22 + r1 r2

)
(4.36)

∫

P
r2 dr dz =

1

12

∑

e∈∂P

(z2 − z1)
(
r21 + r22

)
(r1 + r2) (4.37)

∫

P
z r dr dz =

1

24

∑

e∈∂P

(z2 − z1)
(
r21 (3 z1 + z2) + r22 (3 z2 + z1) + 2 r1 r2 (z1 + z2)

)
, (4.38)

where the vertices of the edge e = [e1, e2] have coordinates e1 = (r1, z1) and e2 = (r2, z2). This is the
only difference from the Cartesian geometry, the rest of the method remains unchanged, and all required
numerical properties are satisfied.

4.3.3 Numerical Integration – Swept

As in the exact integration process, the swept region integration method follows the Cartesian algorithm
presented in section 3.3.4. For each edge e of cell c, we construct swept region used for mass exchange
between the cell and the corresponding neighbor. As in the Cartesian case, the swept mass δGe is
obtained by integration of the reconstructed function from cell c∗, in which more of the swept region lies
(3.112), which is given by the sign of the swept region volume. This formula can be written in cylindrical
coordinates in the form

δGe =

∫

δe

gc∗(r, z) r dr dz

=

(
gc∗ −

(
∂g

∂r

)

c∗
rc∗ −

(
∂g

∂z

)

c∗
zc∗

) ∫

δe

1 r dr dz

+

(
∂g

∂r

)

c∗

∫

δe

r r dr dz +

(
∂g

∂z

)

c∗

∫

δe

z r dr dz ,

(4.39)

where all the needed cylindrical integrals are evaluated in the previous subsection by formulas (4.36),
(4.37), and (4.38). The rest of the swept region integration routine remains unchanged, as well as all
properties of this method. And analogically as in the Cartesian case, the cylindrical remapping method
is an approximate integration process which may cause the local-bounds to be violated. Thus, the
additional conservative repair stage must be performed to correct it.
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4.3.4 Repair

There is absolutely no need to change anything in the repair process presented in section 3.3.5 in cylin-
drical coordinates. During this stage, we are not performing any integration, we are just conservatively
moving masses among cells in some neighborhood. We just have to note that, of course, for recompu-
tation of masses to densities (a vice versa) in cylindrical coordinates, the cylindrical cell volumes (4.7)
must be used.
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Chapter 5

Properties of Numerical ALE Method

In this short chapter, we comment major properties of the described ALE algorithm and demonstrate
them on a set of selected well known fluid dynamics tests. Both Cartesian and cylindrical geometries
are discussed in this section. We also point here to possible violations of the required properties, which
may appear in some situations.

5.1 Conservativity

The condition of conservativity is naturally satisfied by the presented ALE algorithm. We discuss this
property separately for the Lagrangian solver and for the remapping process.
The Lagrangian solver naturally satisfies the conservation of mass, masses in all the computational cells
remain unchanged during the Lagrangian computation. Concerning the conservation of momentum and
energy, their conservation strongly depend on the fluid movement on the boundary of the computational
domain. If the computational domain does not change during the simulation, and no shock waves,
or other types of discontinuities appear on the boundary, the Lagrangian solver is conservative. For
more details on the conservation issues of the Lagrangian method, see [18]. On the other hand, if
the computational domain changes, the forces (and thus momentum and energy) are applied to the
deformation of the boundary, which modifies the total momentum (energy), and they cannot be preserved
any more. Other possibility, how the conservation conditions can be violated, is adding some outer force
to the total nodal forces, for example the gravitation force in the Rayleigh-Taylor instability problem
[24, 25]. Due to this outer force, the velocities are increased, which naturally affects the total momentum
and energy in the domain. Let us conclude that for zero outer force, static computational domain, and no
discontinuous waves on the boundary, the Lagrangian step is conservative for all conservative quantities,
and it is always conservative for mass.
Concerning the remapping process, it is applied to each conservative quantity consecutively. We have
already discussed in section 3.3.6, that the remapping process is conservative for all conservative quanti-
ties. This statement is correct, if the computational domain does not change during the mesh smoothing
process. For simple computational domains, such as square, the boundary nodes during smoothing only
move along the boundary, the computational domain does not change its shape or volume, and the
remapping method is exactly conservative. This is caused due to the fact, that masses are interchanged
between neighboring cells via the swept masses fluxes and the available masses in the repair stage, but
no mass is created or removed. Unfortunately, it is not clear how to perform mesh smoothing on a
general boundary, thus it may happen, that for the curved boundary, the smoothed mesh has different
volume than the original one. Of course, if the volume of the domain is different, the mass is different
too. The example of such situation is shown in Figure 5.1. It shows the Noh problem in 2D – one of the
classical fluid dynamical problems, which is a rare case, when its analytical solution is known. The initial
conditions are following. The fluid of density ρ = 1 and zero pressure (p = 10−6 to avoid numerical
problems) is moving with the velocity |w| = 1 towards the origin. The circular shock wave is created, and
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Figure 5.1: The Noh problem computed with purely Lagrangian method (a), and the simulation by
complete ALE method (b) in the Cartesian coordinates. The density of fluid, and the computational
mesh are shown.

spreads with the velocity 1/3 out of the origin. Inside the circular shock region, the fluid is at rest, and
has the density ρ = 16. Outside of the circular region, the fluid is still moving with the initial velocity
and has density ρ = 1 + t/

√
x2 + y2. In Figure 5.1, the solution computed by the pure Lagrangian, and

complete ALE methods at time t = 2.0 is shown. Computational mesh with 100 × 100 cells, and bulk
artificial viscosity (3.36) was used for the simulations. The solution is comparable with the Eulerian
simulations presented in [49]. For the purely Lagrangian method, the total mass is exactly conservative,
and the total energy is different by 0.17% (due to movement of the boundary). For the complete ALE
method, where mesh smoothing/quantity remapping is applied after every 10 Lagrangian steps (about
500 timesteps are needed till time t = 2), the mass conservativity is violated by 0.25% (due to curvature
of the boundary), and the total energy by 0.42% (due to the combination of both effects). The error of
the total momentum is close to the round off error in both cases thanks to the symmetry. As one can
see, the cumulation of the error during the complete simulation due to the remapping non-conservativity
on the boundary is lower than 0.5% for all quantities for this particular example, and can be considered
to be small enough.
In the cylindrical coordinates, the situation with conservativity of the ALE algorithm and possible
problems is completely the same, and does not require further description.

5.2 Linearity Preservation, Order of Accuracy

The linearity preservation condition is satisfied in the Cartesian coordinates in the Lagrangian step, if
the initial density values are set in the centers of the computational cells. We demonstrate this on a
linear density problem, where the fluid density in the computational cells is initialized as a value of the
following linear function

ρ(x, y) = x+ 2 y (5.1)

in the cell centers and fluid pressure is set to p = 1. The initial mesh of 100 × 100 cells is a randomly
distorted square mesh in the computational domain Ω = 〈1, 2〉2 moving with velocity w = (1, 2). In
Figure 5.2 (a), the purely Lagrangian simulation till time t = 1 is shown. The mesh is exactly the same
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Figure 5.2: Linear density problem: (a) – solution by purely Lagrangian method; (b) – remapped from
the original randomly distorted mesh over a series of consequently smoothing meshes; (c) – solution by
the complete ALE algorithm.

as the initial one, it just moved with the specified velocity to the new location. The numerical error is
zero up to the round off error.
The remapping process is linearity preserving in the case, that the initial density values are set in the
centers of the cells subzones, and cell density is computed from the subzonal quantities. The situation
after 300 remap steps is shown in Figure 5.2 (b). The final computational mesh is almost regular, and
the numerical error is zero up to the round off error.
The simulation by the complete ALE method is presented in Figure 5.2 (c), where the mesh smooth-
ing/quantity remapping step was performed after each Lagrangian step. In this case, the linearity
preserving condition is not satisfied. On the other hand, the linearity preservation condition is not re-
quired by the complete ALE algorithm, only the second order of accuracy is desired. For the presented
linear density problem, the numerical error converges with the second order of accuracy for refining
meshes.
In the cylindrical geometry, one can just consider the linearity preservation property in z direction.
During the movement in the r direction in the Lagrangian step, the function profile in the r direction is
not preserved due to the geometry.

5.3 Numerical Tests

In the previous sections 5.1, 5.2, we have presented two numerical examples of fluid dynamical sim-
ulations, the Noh problem and the linear density problem. Let us note, that both problems can be
computed by purely Lagrangian method, the complete ALE results are presented here for demonstration
of its properties. Let us return to the Noh problem and present the corresponding cylindrical results.
Then, we present one more classical test here, the Rayleigh-Taylor instability.
Figure 5.1 presents the Noh problem computed by the purely Lagrangian method (a), and the complete
ALE algorithm (b) in the Cartesian geometry. The ALE algorithm does not affect the Lagrangian grid
nor the solution, the density profiles are similar, and no significant diffusion appears. The Noh problem
is difficult for Lagrangian-type methods – considerable density gap appears in the central region. This
gap is smaller in the case of ALE computation, it is partially corrected by the Eulerian mass flux between
cells. The numerical errors of the computations are similar, L1 = 15.2% (Lmax = 79%) for the pure
Lagrangian and L1 = 14.7% (Lmax = 79%) for the simulation by the complete ALE method. The Noh
problem simulation by our ALE method is described also in [51].
In the cylindrical coordinates, the 2D Noh problem can be simulated as a simple 1D problem in r
direction. In Figure 5.3, one can compare plots of density computed by both methods in r direction in
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Figure 5.3: The cylindrical Noh problem computed by purely Lagrangian method (a), and the simulation
by complete ALE method (b). The density of fluid in the computational cell centers is shown.

time t = 1. Minor dissipativity in the shock region, and the region around the central gap, can be seen,
but in general, the mesh smoothing process did not affect the solution significantly. Also, the speed of
the shock wave propagation is correct, which is often violated by the incorrectly constructed numerical
methods.
The last numerical example which we present here, is the Rayleigh-Taylor instability (RTI) simulation
in the Cartesian geometry. The initial conditions consist of two fluids in rest lying on each other, the
heavier one with density ρ = 2 above a lightweight one with ρ = 1. The pressure is hydrostatic, and
the fluid interface is disturbed a little by a sine like profile to start the instability evolution. The initial
density on a 17×100 cells computational mesh is shown in Figure 5.4 (a). This problem requires adding
of the gravitation force in the form

Fgy l
c = −cg ml

c (5.2)

in the vertical direction y to each total corner force of subzone l of cell c. Here, cg denotes the gravitation
constant cg = 0.1. The gravitation and hydrodynamical pressure forces should keep the fluid interface in
rest if it would be horizontally flat. Due to the interface perturbation, the equilibrium is violated, and
the instability starts to evolve. The heavier upper fluid starts to stream down to the lighter one, and on
the other hand, the lighter one starts to move up.
We performed several Rayleigh-Taylor instability (RTI) tests on a computational mesh with 17 × 100
cells, the results in time t = 7.0 are presented in Figure 5.4 (b), (c), and (d). The first test in Figure 5.4
(b) is obtained by the application of the purely Lagrangian method with a high merit factor fm = 1.0.
For more details on the merit factor, see section 3.1.3. The high merit factor causes full influence of the
subzonal pressure force, which prevents the mesh cells to perform rotational motions. This is usually
correct, but in the RTI problem, the cells close to the fluids interface must move this way to evolve the
instability. Thus, in this case, the strong subzonal pressure force does not allow the instability to be
created. On the other hand, if the merit factor is low fM = 0.1 as in Figure 5.4 (c), the cells are allowed
to deform more. Because we use purely Lagrangian method, no mixing of the fluids happens, and the
rotated cells are very long and narrow. The instability does not evolve again, because the fluids interface
follows the edges of these long cells. In the last plot in Figure 5.4 (d), the application of the complete
ALE algorithm with the low merit factor and mesh smoothing/quantity remapping process after every
10 Lagrangian steps is shown. Some diffusion is added along the fluids interface, which represents their
mixing. Due to the smoothing processes, all computational cells have reasonable shapes now, and the
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Figure 5.4: Density distribution of the Rayleigh-Taylor instability problem: (a) – initial data; (b) –
Lagrangian simulation with high merit factor fM = 1.0; (c) – Lagrangian simulation with low merit
factor fM = 0.1 (d) – ALE simulation with low merit factor fM = 0.1 and smoothing/rezoning stage
after each 10 Lagrangian steps. All (b), (c), (d) simulations at time t = 7.0.

instability starts to evolve into the mushroom shape. The simulation by the complete ALE method can
continue without any problems till time t = 8.5, which is usually the final time of the RTI simulations.
We used the shorter time, because the low merit Lagrangian simulation (c) fails shortly after t = 7.0.
For further details about the ALE simulations of the RTI problem, see [24, 25].
In the case of the Noh problem, we have shown that the ALE method does not affect the positive
properties of the Lagrangian mesh motion, both methods produce similar solutions not degraded by
the used mesh smoothing techniques. On the other hand, in the case of the Rayleigh-Taylor instability
problem, the Lagrangian method in our case was not able to produce reasonable results, which ALE
method produces. This main advantage of the ALE approach is even more visible for the high velocity
impact problems simulations, which are presented in chapter 7, where the purely Lagrangian approach
fails due to severe mesh distortions, and no reasonable results are obtained without the complete ALE
technique.
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Chapter 6

Physical Aspects of ALE Simulations

In this chapter, we focus on several physical aspects of our ALE laser plasma simulation. In the first
section 6.1, we describe the Quotidian equation of state used for the laser plasma simulations, which rea-
sonably approximates plasma behavior in a broad range of plasma parameters. In the second section 6.2,
we describe the method for solving the parabolic part of the energy equation representing the thermal
conductivity in the laser plasma. Then, in section 6.3, we describe the process of the absorption of a
laser beam in plasma at the critical density. Finally, in section 6.4, we describe the boundary conditions,
which must be used to hold the cold Aluminum in a steady state, and to allow the expansion of melted
and evaporated Aluminum. All these components are necessary for acceptable laser plasma simulations.
The complete Lagrangian equations, including the thermal conductivity parabolic term, and the laser
interaction source term, have the following form,

d ρ

d t
+ ρ∇ ·w = 0

dz

dt
= w (6.1)

ρ
dw

d t
+ ∇ p = 0 (6.2)

ρ
d ǫ

d t
+ p∇ ·w = ∇ · (κ∇T ) −∇ · I , (6.3)

where κ is the thermal conductivity coefficient, T is the plasma temperature, and I is a vector of the
laser intensity. In our model, plasma is specified as a mixture of the electron and ion gases. Due to the
principle of quasineutrality, the total charge density is zero, and thus the following equation

ne = Z ni (6.4)

must be satisfied, where ne is the electron and ni ion density, and Z is plasma mean ion charge. One-
temperature model is employed, in which the electron and ion temperatures are the same, and only one
common plasma temperature T is used. The two-temperature model with separate electron and ion
temperatures is going to be included in the future.

6.1 Equation of State

Equation of state is a very important part of all fluid and plasma simulation codes. It is necessary for
the computation of the actual fluid pressure and temperature from the actual fluid density and internal
energy, and vice versa.
In the fluid dynamics, the ideal gas equation of state (IG EOS) is commonly used for this purpose. Let
us describe the IG EOS for completeness. The fluid pressure is computed from the actual density and
specific internal energy as

p = (γ − 1) ρ ǫ , (6.5)
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where γ is the gas constant equal to the ratio of its specific heats. The sound speed is computed as

v∗ =
√
γ (γ − 1) ǫ (6.6)

from the specific internal energy, and the temperature formula is

T =
A

Z + 1

p

cp/T ρ
, (6.7)

where A denotes the material atomic mass, Z is the material mean ion charge, and

cp/T =
k

mu
(6.8)

is the constant for the recomputation of the pressure to the temperature. Its value (after multiplication
by the conversion factor 11604 to transform the temperature in Kelvins to electronvolts) is presented
in Table 6.1, together with the values of the Boltzmann constant k and the atomic mass unit mu in

constant description constant value

Boltzmann constant k = 1.3807 · 10−16 erg/K
atomic mass unit mu = 1.6605 · 10−24 g
electron mass me = 9.1094 · 10−28 g
electron charge e = 4.8032 · 10−10 statcoul
light speed c = 3.0 · 1010 cm/sec
electronvolt/Kelvin conversion factor 1 eV = 11604K
pressure/temperature conversion factor cp/T = 0.9648 · 1012 erg/eV/g

Table 6.1: Values of the selected physical constants needed in this thesis in the CGS unit system.

the CGS unit system. The presented formulas are used for the recomputation of the state quantities
between each other.
For the laser plasma simulations, the IG EOS does not provide realistic formulas for the relations among
the state quantities. It can be used in hot, low density plasma of the expanding corona, but for the cold
dense plasma close to the ablation surface and in the disc target with the spreading shock wave, the IG
EOS is not applicable. We use the Quotidian equation of state (QEOS) introduced in [75]. It consists
of three main parts:

1. The electron ionization-equilibrium equation of state based on a the Thomas-Fermi statistical cell
model with the scaling property for the atomic number and the atomic weight.

2. Analytical ion equation of state combining the Debye, Gruneisen, Lindemann, and fluid-scaling
laws.

3. Empirical term introducing the correction for chemical bonding, derived from physical properties
of a given material.

This equation of state is valid in a broad range of laser plasma parameters, and its suitability, reasonable
efficiency, accuracy, and consistency for such kind of simulations, was shown already in [31]. This EOS
assumes the local thermodynamical equilibrium of electrons. The quantum shell effects, and the phase
transitions are neglected. This EOS handles both the pure elements and compound materials. As the
input parameters, it requires the material atomic weight, atomic number of every element, number of
atoms of each element in the compound, solid state density, and the bulk modulus at solid state density
describing how the total pressure changes with the changing plasma density.
Both mentioned equations of state are important. For fluid simulations, but also to first plasma tests, the
IG EOS is used. This EOS is much simpler and faster, which makes it and ideal EOS for testing purposes.
The final plasma simulations are then performed with the complex and slower QEOS, providing realistic
results close to real plasma behavior.
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6.2 Heat Conductivity

The importance of heat conductivity is different for each particular problem simulated. For some prob-
lems, such as the impact of the high-speed flyer to the massive target, the hydrodynamical effects are
much stronger than the heat conductivity term, and the solutions of the same problem with and without
the heat conductivity are close to each other. On the other hand, when the interaction of the laser
beam with the target material is simulated, the solution without the thermal conductivity is clearly
unrealistic, and the spreading shock wave is slower than the shock wave from the simulation including
the thermal conductivity process. Moreover, we need a mechanism for propagating the energy from the
critical surface inside the target. There are two such mechanisms possible – radiation transport and the
electron heat conductivity. For the materials with low atomic number (such as Aluminum), the second
mechanism is dominant, and we employ electron heat conductivity only.
Thermal conductivity effects are mathematically described by the parabolic part of the energy equation
of the system (6.1),

ρ
d ǫ

d t
= ∇ · (κ∇T ) . (6.9)

This particular equation is solved separately by splitting from the hyperbolic part of the system. Gen-
erally, the specific internal energy depends on the the plasma temperature and density, and thus

d ǫ

d t
=

∂ǫ

∂T

∂T

∂t
+
∂ǫ

∂ρ

∂ρ

∂t
. (6.10)

The plasma density changes only during the hyperbolic part of the splitting process, it is constant in
the parabolic step, so the second term is equal to zero and can be omitted. Thus, the parabolic energy
equation (6.9) can be transformed into the temperature equation

ρ
∂ǫ

∂T

∂T

∂t
= ∇ · (κ∇T ) , (6.11)

or finally to the form

Tt =
1

ρ ǫT
div(κ gradT ) . (6.12)

Here, the temperature derivative of the specific internal energy ǫT = ∂ǫ/∂T can be computed analytically
for the IG EOS, or numerically for the QEOS formulation.
For the evaluation of the heat conductivity coefficient κ, the classical Spitzer-Harm [89] formula

κ = 20

(
2

π

)3/2 k7/2

√
me e4

δee
T 5/2

Z ln Λ
(6.13)

corrected by the electron-electron collision term

δee = 0.095
Z + 0.24

1 + 0.24Z
, (6.14)

where Z is the plasma mean ion charge and the values of the Boltzmann constant k, electron mass unit
me, and the electron charge e are presented in Table 6.1. All quantities are supposed to be in the CGS
units, except the plasma temperature T which is in electronvolts eV. Here, ln Λ denotes the Coulomb
logarithm defined in [26] as

ln Λ = 2.306 ln(max(10,min(λ1, λ2))) (6.15)

λ1 = 1.5526 · 1010 T 3/2

Z
√
ne

(6.16)

λ2 = 8.07 · 1010 T√
ne

(6.17)

ne = Z ni =
Z

A

ρ

mu
, (6.18)
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where A is the atomic mass, ne and ni are densities of electrons and ions, and value of the atomic mass
unit mu is presented in Table 6.1. For more details about the heat conductivity coefficient, see [30]. Let
us note, that also Rozmus-Offenberger heat conductivity coefficient [82] can used, but in practical test,
we see only minor changes from the presented Spitzer-Harm formulation.
Due to the non-linear dependence of the heat conductivity coefficient on temperature, one can expect
non-linear effects such as heat waves. The numerical method for solving the parabolic equation (6.11)
have to be able to deal with them. The discretization of the heat conductivity equation (6.12) is treated
by the mimetic method [86] using support operators [84]. The integral properties of the differential
operators div and grad have to be satisfied also for their discrete approximations, such that the discrete
operators mimic the properties of the continuous ones. We define the generalized gradient G

Q = GT = −κ grad T , (6.19)

and extended divergence D

DQ =

{
divQ on V

−(Q,n) on ∂V
(6.20)

The mimetic operators have the same integral properties as the continuous ones, particularly the extended
gradient is adjoint with the extended divergence, G = D∗.
Having both discrete operators D and G, a fully implicit scheme in time

(T n+1 − T n)

∆t
= aDGT n+1 (6.21)

is used to approximate (6.12), where the coefficient a = 1/(ρ eT ). The matrix of the global system

(I − ∆t aDG)T n+1 = T n , (6.22)

as well as the matrix of the global system for the heat flux Q (6.19), remains symmetric and positive
definite so the fast converging conjugate gradient method can be used to solve the implicit scheme (6.21).
The described method is exact for piecewise linear solutions, otherwise it is second order accurate in
space. It works well also on bad quality meshes appearing in Lagrangian simulations, and also for
discontinuous diffusion coefficients κ.
The formulation allows to solve the global system for the heat flux Q (6.19), and simply add the heat
flux limiter to the numerical scheme, reducing nonphysically large heat transfer in the material. For
more details on the heat conductivity processes, see [54], [65].

6.3 Interaction with a Laser Beam

For employing the interaction of the laser beam with the material, we use the simplest model available
– the laser beam penetrates the material till the critical density, which can in CGS units be written as

ρc = ni
cAmu =

ne
c

Z
Amu =

1

4π

me ω
2

Z e2
Amu =

1

4π

me (2π f)2

Z e2
Amu

=
1

4π

me (2π c
λ)2

Z e2
Amu =

πmemu c
2

e2
A

Z λ2
,

(6.23)

which can be written after substituting for all constants from Table 6.1 as

ρc = 1.85 · 10−11 A

Z λ2
= 1.85 · 10−3 A

Z λ2
µ

, (6.24)

where f = ω/(2π) is the laser frequency, c is the speed of light, A is the atomic mass, Z is the plasma
mean ion charge, and λµ is the wavelength of the laser beam in µm. Here, at the critical density isoline,
the laser beam is completely absorbed.
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In the ALE code, laser beam incident normally from vacuum is implemented. Its direction in our code is
from above, along the y (Cartesian) or z (cylindrical) axis. On the upper boundary, the incoming laser
intensity vector has the form

I = (0,−Iy(t, x)) , (6.25)

where the y intensity Iy(t, x) has Gaussian profile both in time and x coordinate. Generally, the laser
beam profile can be arbitrary, we use the Gaussian profile in our simulations, corresponding to the ideal
laser beam. In real laser systems, the intensity shape often includes inhomogeneities, such as speckles
with much higher intensity than in the surrounding regions. In the case of the PALS laser system,
experiments of which we simulate in chapter 7, the laser beam profile is reasonably close to our Gaussian
profile.
On each computational mesh edge, both x and y components of the laser intensity are projected to the
normal of the edge. Because the isoline at critical density must move smoothly during the simulation, a
special treatment must be taken to get values of laser intensity divergence at each cell. The nodal density
is interpolated as a weighted (by the subzonal volumes) average of the neighboring subzonal densities.
If we would use all four subzonal densities for this interpolation, we could obtain too high (supercritical)
density for nodes close to the critical isoline, even if the node lies behind this isoline and the density
should be subcritical. To correct this problem, we use only two neighboring subzonal densities closer to
the laser source (for the laser beam incident from the upper direction, we use the upper two subzones).
Now, if the densities in both these subzones are subcritical, the nodal density is then also subcritical,
and the laser beam penetrates till this node, which is correct.
Now, we have density in each node interpolated from the neighboring subzones, and one can proceed to
the evaluation of the laser intensities on each edge e of the particular cell c. If the density is supercritical
in both nodes of the edge e, we set the edge intensity to zero Ie = 0. If one density is subcritical and
the second one is supercritical, the edge intersects the critical isoline. We suppose linear density profile
along the edge and localize the position of the critical density ρc, and set the subcritical edge length
Ls(e) to the length of the segment with subcritical density. In the last case, when both densities are
subcritical, we set the subcritical edge Ls(e) to the actual length of the edge.
The divergence of the laser intensity in cell c is zero, if all four nodal densities are either subcritical or
supercritical. If the values are mixed (some sub- and supercritical), we set the cell divergence to the
value of the integral of the divergence over cell c divided by its volume, and after applying the Green
formula, to the integral over the cell boundary ∂c. It is evaluated as the sum (over all cell edges) of
the edge intensities Ie projected to the direction of the edge outer normal, multiplied by the subcritical
edge length Ls(e), and divided by the cell volume. This divergence of laser intensity is included in the
internal energy equation (with laser absorption term on the right hand side)

ρ
d ǫ

d t
+ p∇ ·w = −Ca ∇ · I , (6.26)

which transfers the laser energy to the internal energy of plasma. The laser absorption coefficient Ca is
empirically estimated [64] to be equal to Ca = 0.5 for the first, and Ca = 0.75 for the third harmonic
laser frequency. At the end, let us note, that the laser intensity divergence (and thus the right hand
side of (6.26), causing the laser beam absorption) is non-zero only in the cells intersected by the critical
density isoline.

6.4 Boundary Conditions

Implementation of the boundary conditions is an essential problem in all computational fluid dynamics
and plasma physics codes. To describe this problematics, we suppose the simulation of the impact of
the evaporated, ablatively accelerated Aluminum disc to the massive Aluminum target, as described in
chapter 7. Naturally, purely free boundary condition cannot be applied, the solid material of the solid
massive target would start to expand to the surrounding vacuum. On the other hand, we have to allow
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the evaporated material to form the expanding corona freely. Let us describe the boundary conditions
(BC) used in our code for the laser plasma simulations. We go through the boundary conditions for the
plasma pressure, plasma velocity, BC for the computational mesh during the mesh smoothing process,
and finally BC for the subzonal conservative quantities during the remapping stage.
The boundary conditions show us the main advantage of the staggered discretization. We just need one
layer of zero-volume ghost cells around the whole computational domain, in which we set the pressure
according to the particular BC. Then, from the pressure BC, we compute the nodal velocities during
the Lagrangian step and modify them according to the velocity BC. The example of the situation on
the boundary is shown in Figure 6.1. The ghost cells are shaded in gray and have non-zero volumes

ng cg

c

n

Figure 6.1: Domain boundary (thick line), a particular internal boundary cell c and the corresponding
ghost cell cg, the boundary node n and the ghost node ng are shown. All zero-volume ghost cells are
shaded in gray (due to visibility, they are depicted with non-zero volumes).

in the Figure 6.1, which is just for the visualization purposes. In fact, the fictitious ghost nodes ng

have the same coordinates as the real boundary nodes n, and the cells have zero volumes. In the
cell centered Lagrangian methods (one of them is reviewed in [18]), the implementation of the BC is
much more complicated, and for example the pressure boundary condition quite easy in the staggered
discretization, is difficult to be implemented. Let us also note, that the BC calculation process is crucial
for the simulations to correspond to the experimental results.

6.4.1 Pressure Boundary Conditions

The pressure boundary conditions determine the outer pressure, which will be used for the computation
of the nodal forces, and thus new nodal velocities during the Lagrangian stage. It is a mechanism for
repairing the incorrectnesses in the used equations of state, which do not give zero pressure in the solid
target at the initial temperature. We use the following approach to compute the pressure in the boundary
zero-volume ghost cells. To the particular ghost cell cg, we assign the temperature from the adjacent
internal cell c, which is a boundary cell. If this temperature Tcg is lower than the melting temperature
Tmelt of the material (Tcg < Tmelt = 0.085 eV for Aluminum), we set the external ghost pressure to the
adjacent internal one

pcg = pc . (6.27)

Thus, the pressure on boundary is constant, there is no pressure gradient across the boundary, and the
nodes are not forced to move here. On the other hand, if the boundary temperature is bigger than
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the boiling temperature T boil of the material (Tcg > T boil = 0.25 eV for Aluminum), we set the ghost
pressure to the atmospheric pressure

pcg = patm = 101325Pa = 1013250 dyne/cm2 , (6.28)

or to a very low value
pcg = pvac = 1dyne/cm2 (6.29)

for vacuum 10−4 torr, according to the particular experiment. All our plasma simulations in section 7
reproduce experiments performed in vacuum, so the second value (6.29) is used. This BC allows the
plasma to expand to the outer space. In the last case, when the material is liquid (0.085 eV ≤ Tcg ≤
0.25 eV for Aluminum), we linearly interpolate the pressure value as a function of the actual temperature,

pcg = pvac +
Tcg − T boil

Tmelt − T boil
(pc − pvac) . (6.30)

This linear approximation causes the boundary condition to behave smoothly through the liquid plasma
region, and no jumps appear. For completeness, let us note, that the described pressure BC is used for
the irradiated/impacted domain boundary only. For all other boundary segments, solid boundary

pcg = pc (6.31)

is used, which does not allow the plasma to move outside the initial domain by a different process, than
the impact corona. This is allowed by the fact, that the computational domain is always taken large
enough, such that the generated shock wave does not reach other boundary segments, except on the z
axis where solid and reflecting BC are the same.

6.4.2 Velocity Boundary Conditions

The velocity boundary conditions are applied whenever the nodal velocities are changed, mainly after
computing the new nodal velocities during the Lagrangian step. The velocity BC sets the nodal velocities
in the boundary nodes, i.e. nodes between the internal boundary cells and the ghost cells described in
the previous section.
For the described disc impact problem, we suppose solid wall around the whole computational domain,
excluding the upper boundary segment, where the accelerated disc impacts the massive target. For more
details about the impact problem initial conditions, see chapter 7. The solid wall boundary conditions
are implemented by setting the boundary nodal velocity in the normal direction to zero. The velocities
computation takes care of the nodal movement along the boundary line, but this BC does not allow the
nodes to move perpendicularly to the boundary. On the upper boundary, we again set the boundary
condition according to the temperature in the internal cell c, which the particular node n belongs to. If
the temperature is bigger than the melting temperature of the material (0.085 eV for Aluminum), the
material is allowed to move, the values in the boundary nodes are computed during the Lagrangian stage
from the pressures in the ghost cells set during the pressure BC process described in the previous section.
If the temperature is smaller, the material is still solid, and we overwrite the computed velocities by the
zero normal velocity. This process successfully works for a wide range of laser plasma simulations, and
produces reasonable behavior of all quantities close to the boundary.

6.4.3 Smoothing Mesh Boundary Conditions

During the mesh smoothing stage, there is no unique approach what to do on the boundary. Our
approach, how to deal with the boundary during the smoothing stage, is its smoothing as there would be
no boundary. In the first step, we extrapolate the external nodes of the zero-volume ghost cells, such that
we extend the internal edge e connected to the boundary through the node n, and move the fictitious
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Figure 6.2: Domain boundary (thick line), a particular internal boundary cell c and the corresponding
extended ghost cell cg, the boundary node n and the ghost node ng projected by extension of the internal
edge e connected to boundary, are shown. All extended ghost cells are shaded in gray.

node ng to the same distance from the boundary, as the node on the opposite side of the edge e. The
final situation is shown in Figure 6.2. Now, the smoothing process moving the nodes can be applied to
the mesh, including the boundary nodes n. It uses positions of the extrapolated nodes ng, which are not
moved by the smoothing process. The extrapolated ghost nodes ng cause, that the situation out of the
domain is similar to the situation inside, and the smoothing process does not move the boundary nodes
too much perpendicularly to the boundary shape. However, they can move along the boundary, and
the mesh is smoothed also in the boundary regions, the boundary shape remains more or less similar,
no major roughness of the boundary is removed nor created. Finally, as the last step, the ghost nodes
positions ng are set to the positions of the smoothed nodes n to return the zero-volume ghost cells back.
The described process preserves the notion of the boundary shape, and cooperates well with all types of
mesh smoothing techniques described in section 3.2.

6.4.4 Boundary Conditions for Remapping

In the remapping process, the boundary values are important only for the computation of the local
extrema gmin

c , gmax
c in the boundary cells c, which are necessary for the reconstructions stage, and also

for the repair redistribution stage. The mass movement through the boundary is clearly not allowed (the
method would violate its conservativity), thus there is no problem with the boundary in the integration
stage. The only issue about the boundary in the remapping process is the computation of the extremes.
Let us focus on the reconstruction stage, the situation during the repair stage is similar. The local
extrema have to be calculated from the function mean values in a good neighborhood of cell c, which
according to [90] means, that the whole cell c (including all its vertices) must lie within the convex hull
of the neighborhood cell centers. If some of the cell vertices lies outside of this hull, it may happen, that
the computed local extrema are more restrictive than necessary. The limitation process is then applied,
and linearity preservation condition is violated. For example in the Figure 6.1, this obviously happens
for a global linear function g(x, y) = y, when we omit the ghost cells from the neighborhood. The node
with the highest y coordinate has the highest function value, but the local maximum is computed from
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the cell on right from cell c, which is smaller than the nodal value. Thus, the local maximum is lower
than the value in the top node, the limiter is applied, and the linearity preservation is violated. In the
case, that we include the gray shaded ghost cells to the neighborhood, the local maximum is reached in
one of these ghost cells, no limiting is required, and no problems with the linearity preservation condition
appear.
We still have to define, how to calculate the mean value of the function g in the center of the ghost
cell cg, from the mean values in the centers of the internal cells. We only require this ghost value to
satisfy the global linearity preservation condition. Due to this fact, a simple linear extrapolation from
the internal cells is satisfactory, the defined ghost mean value is exact for the global linear function and
sufficient for the non-linear function. The described process successfully works in our fluid simulations,
but also in the complicated laser plasma simulations, where correct BC play a crucial role to find a
realistic solution.
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Chapter 7

Numerical Simulations of Laser Plasma
Experiments

We have implemented all described numerical methods into a complete ALE code, which can be used
for the fluid and laser plasma hydrodynamical simulations. In this chapter, we present several numerical
simulations of the laser plasma experiments performed at the PALS (Prague Asterix Laser System) laser
facility [44]. Results of these experiments were published in [14, 13, 80, 45, 39]. In the first paper, the
experiments of the interaction of the intense laser beam with a massive target are described. In the
rest of the papers, laser interaction with small disc flyer are performed. The setup of this double target
experiment is shown in Figure 7.1. A small Aluminum disc flyer is irradiated by a laser beam of intensity

r

d

L
impv

MASSIVE TARGET

DISC FLYER

BEAM
LASER

Figure 7.1: Experimental setup – laser beam irradiates a disc flyer of radius r and width d in distance
L from the massive target, disc flyer is ablatively accelerated to the impact velocity vimp and strikes the
massive target.

I. The outer part of the disc is evaporated, it expands, and its density is decreased. The rest of the
disc is ablatively accelerated up to the velocity vimp, flies over the distance L, and strikes the massive
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Aluminum target. By the impact, the target is heated, melted, and evaporated, and a crater is formed.
The evaporated material expands in the form of corona out of the massive target.
This process is modeled in our simulations in two steps. In the first step, the interaction of the laser beam
with the disc, causing its expansion and acceleration, is simulated. This simulation provides the density,
temperature, and velocity distribution in the flyer disc in time of the impact. Then, this distributions are
conservatively interpolated to the initial mesh of the second part of the simulation – the impact process.
The flying disc strikes the massive target, a shock wave is formed moving from the impact region into
the target, causing its heating, melting, and evaporation. Low density corona is formed, moving in high
speed out of the impact region.
The experimental data include energy of laser pulse, pulse duration, diameter of the laser spot on target,
and estimate of pulse temporal shape type and of focal intensity profile. In section 7.1, we derive effective
laser intensity for 1D and 2D planar and cylindrical simulations from experimental data. Comparison
of the derived intensities is also presented. In section 7.2, the simulations of the interaction of the
laser beam with a massive Aluminum target are presented. In the following two sections 7.3, and 7.4,
we describe the simulations of the double target experiments, which we perform in two phases. The
simulations results are compared with the experimental data. We focus on one particular simulation
and show its status in different phases of the simulation. Finally, in section 7.5 we summarize, how the
absorbed laser energy is distributed into kinetic and internal energy, which is important for the relevance
of the simulations.

7.1 Derivation of Maximum Laser Intensity from Experimental Data

In this section, we derive the formulas for the maximal laser beam intensity, which is used during the
laser absorption process (6.25). The laser beam intensity I(t) profile in time is shown in Figure 7.2. The

t_0−t_FWHM/2 t_0 t_0+t_FWHM/2
0

Imax/2
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time
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r 
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   I(t)

Figure 7.2: Laser beam intensity I(t) Gaussian profile in time. Both important quantities are denoted
– maximal laser beam intensity Imax and full-width at half-maximum pulse duration tFWHM.

standard experimental data for pulse duration is thelength of time interval inside which the intensity
is above one-half of the maximum intensity Imax. This is called Full-Width at Half-Maximum pulse
duration tFWHM, and pulse duration means tFWHM throughout this thesis.
It is assumed that the temporal profile of the laser pulse has shape near to Gaussian [44]. We also
assume Gaussian spatial profile of the focused laser beam [44]. This is certainly an approximation,
however, more details are not known as the exact profile of intense focused beam is difficult to measure.
In Figure 7.3, we present the pulse profile in a particular time t shown in the whole disc region in 1D (a),
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Figure 7.3: Gaussian profile of the laser beam intensity I in space, friezed at the particular time t = t0.
In 1D (a), the laser intensity is constant and equal to Imax in the whole disc region of diameter rd. In 2D
Cartesian geometry (b), the pulse profile depends on x coordinate only, so the maximal intensity Imax

is reached on the line in y direction in the center of the laser spot on target defined as a square with
edge length 2 rf in both directions, where rf is the radius laser (focal) spot on target. In 2D cylindrical
geometry (c), the intensity pulse profile in the laser spot on target depends on the distance from the
focus center, where the maximal intensity value Imax is reached.

and in the laser spot on target in 2D Cartesian (b) and cylindrical (c) geometries. The maximal laser
intensity Imax is reached in the whole disc in 1D, on one line in 2D Cartesian case, and in the center
in 2D cylindrical case. The total energy of the laser beam (integral of the laser beam intensity profile)
must remain the same, so the maximal intensity depends on the geometry used – it is lowest in 1D case
and highest in the 2D cylindrical case.
In this section, we derive the formula for the Imax parameter evaluation in 1D, and in 2D Cartesian
and cylindrical coordinates. Finally, we compare all three formulas and evaluate the maximal intensity
values used for the particular laser plasma simulations.

7.1.1 Maximal Laser Intensity in 1D

The derivation of the formula for the maximal laser intensity Imax in 1D is shown here in more details.
In the next two sections, similar formulas are derived for 2D Cartesian and cylindrical geometry by
analogous process, where the details are omitted.
In 1D, the laser beam intensity depends on time only, there is no spatial dependence. The time profile
is shown in Figure 7.2, and it is described by

I(t) = Imax e
−
“

t−t0
τ

”2

, (7.1)

where the pulse position t0 can be set to zero without the loss of generality. The total pulse energy in
the disc region is equal to the integral of the intensity profile both in time and space. In 1D, the circular
space integration is used (following the cylindrical shape of the laser beam),

Ed =

∞∫

−∞

rd∫

0

2 π∫

0

r I(t) dϕdr dt = Imax τ
√
π π r2d , (7.2)

where the symbol rd denotes the disc radius. The parameter τ has to be determined from the condition
I
(
tFWHM/2

)
= Imax/2 defining tFWHM and giving τ = tFWHM/

(
2
√

ln(2)
)
.
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We also need to estimate the ratio of how much laser energy strikes upon the disc. Let us suppose the
Gaussian intensity profile in both space and time

I(r, t) = Imax e
−( t

τ )
2

e
−
“

r
r0

”2

. (7.3)

The total laser pulse energy can be computed as

EL =

∞∫

−∞

∞∫

0

2 π∫

0

r I(r, t) dϕdr dt = Imax tFWHM

√
π π r20 , (7.4)

and the energy striking upon the laser spot circle of radius rf as

Ef =

∞∫

−∞

rf∫

0

2 π∫

0

r I(r, t) dϕdr dt = Imax tFWHM

√
π π r20


1 − e

 
−

r2
f

r2
0

!
 . (7.5)

The laser spot on target (focal spot) is defined as a circle including 80% of the laser beam energy,
0.8EL = Ef . After substituting the formulas for both energies to the equation, one can express the
parameter r0 = rf/

√
ln(5). The coefficient of the energy included in the disc can be written as

Cd =
Ed

EL
= 1 − 5

 
−

r2
d

r2
f

!

. (7.6)

If the laser spot radius is the same as the disc radius rf = rd, the coefficient Cd has the value 0.8. For
the particular experimental values of rf = 125µm, rd = 150µm from [45], the coefficient Cd is equal to
about 0.9. The final formula for the maximal laser intensity is then

Imax = Ca Cd
2
√

ln(2)√
π

EL

tFWHM π r2d
. (7.7)

We have added the absorption coefficient Ca for Aluminum, which is estimated from [64] to be Ca = 0.5
for the first harmonic and Ca = 0.75 for the third harmonic frequency.

7.1.2 Maximal Laser Intensity in 2D Cartesian Geometry

In 2D Cartesian coordinates, the laser pulse profile depends on time and x coordinate, and it does not
depend on y coordinate

I(x, y, t) = Imax e
−( t

τ )
2

e
−
“

x
x0

”2

, (7.8)

where τ and x0 parameters have to be defined again, similarly as in 1D. After the integration of the
intensity formula, we get the energy inside the laser spot on target

Ef =

∞∫

−∞

rf∫

−rf

Y∫

−Y

I(x, y, t) dy dx dt = 2 Imax τ Y π x0 erf

(
rf
x0

)
, (7.9)

where erf(x) =
∫ x
0 e

−ξ2
dξ is the error function. After evaluating of parameters τ = tFWHM/

(
2
√

ln(2)
)

and x0 = rf/xf (where xf ≈ 0.906 is the root of equation 5 erf(xf ) = 4), and setting the Y limit to
Y = rf to get the square laser spot on target, we get the final formula

Imax = Ca xf

√
ln(2)

EL

tFWHM π r2f
(7.10)

for the maximal laser beam intensity. As in 1D case, we added the absorption coefficient Ca equal either
to 0.5 of 0.75, depending on the particular laser beam frequency.

73



7.1.3 Maximal Laser Intensity in 2D Cylindrical Geometry

In 2D cylindrical geometry, the laser beam intensity pulse has the following profile

I(r, ϕ, t) = Imax e
−( t

τ )
2

e
−
“

r
r0

”2

. (7.11)

The pulse does not depend on the angle ϕ, it only depends on time and the distance from the focus
center. By integrating the intensity, we compute the energy in the laser spot on target

Ef =

∞∫

−∞

rf∫

0

2 π∫

0

r I(r, ϕ, t) dϕdr dt = Imax τ
√
π π r20
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f
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 . (7.12)

As in the previous geometries, we have to calculate the τ = tFWHM/
(
2
√

ln(2)
)

and r0 = rf/
√

ln(5)
parameters, and after their substitution to the previous formula, we get the final formula

Imax = Ca
2 ln(5)

√
ln(2)√

π

EL

tFWHM π r2f
(7.13)

for the laser beam maximal intensity in 2D cylindrical coordinates. Again, we have added the Ca

coefficient of absorption depending on the particular harmonic of the laser system used.

7.1.4 Comparison of Maximal Laser Intensity Formulas

In this section, we compare the formulas for the maximal laser beam intensity Imax evaluated in all three
cases – in 1D (7.7), in 2D Cartesian geometry (7.10), and in 2D cylindrical geometry (7.13).
The 2D Cartesian (7.10) and cylindrical (7.13) formulas are very similar to each other and include the
same quantities, thus one can directly study their ratio to compare them. The following equation

Icyl
max

ICart
max

= 2.004 (7.14)

says, that the cylindrical maximal intensity is about twice bigger, than the Cartesian one – universally,
under all conditions. The 1D formula (7.7) includes the additional coefficient Cd of the total energy inside
the disc region, depending on the ratio of the disc radius rd and laser spot radius rf . If we suppose their
equality rd = rf , then the coefficient Cd is equal to 0.8, and the ratio of the cylindrical and 1D formulas
is

Icyl
max

I1D
max

= 2.012 . (7.15)

In the case of rf = 125µm and rd = 150µm from [45], the ratio is equal to Icyl
max/I1D

max = 2.571. These
ratios confirm our demand of the lowest 1D and highest 2D cylindrical laser beam intensity. Let us present
values of the maximal laser intensities corresponding to the specific values of laser beam energies, radius
of laser spot on target (focal spot), and pulse duration of the particular experiments. In the following
sections, we use the presented values for our laser irradiation simulations.
In [45], the laser beam of tFWHM = 400ps pulse duration and rf = 125µm laser spot radius operating in
the first and third harmonics (wavelengths λ1 = 1.315µm and λ3 = 0.438µm) irradiates the Aluminum
disc of radius rd = 150µm. The laser beam has the total energy EL = 120 J, EL = 240 J, or EL =
390 J, depending on the particular experiment. In [45], [80], several experiments with slightly modified
parameters are described. The laser beam operates with 130 J energy in the pulse. In Table 7.1, we
present maximal laser intensities in all three geometries, which we use for the particular simulations.
Finally in [14], several experiments with laser irradiated massive target are described. The laser beam
operates with the energy either 100 J or 600 J, depending on the experiment. Both first and third
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first harmonic: λ1 = 1.315µm third harmonic: λ3 = 0.438µm

EL I1D
max ICart

max Icyl
max

120 J 0.1797 1015 0.2305 1015 0.4620 1015

240 J 0.3594 1015 0.4611 1015 0.9240 1015

390 J 0.5841 1015 0.7493 1015 1.5016 1015

130 J 0.1947 1015 0.2498 1015 0.5005 1015

EL I1D
max ICart

max Icyl
max

120 J 0.2696 1015 0.3458 1015 0.6930 1015

240 J 0.5391 1015 0.6916 1015 1.3861 1015

390 J 0.8761 1015 1.1239 1015 2.2524 1015

130 J 0.2920 1015 0.3746 1015 0.7508 1015

Table 7.1: Maximal laser intensities (in W/cm2) in 1D, and in 2D Cartesian and cylindrical geometry for
120 J, 130 J, 240 J, and 390 J laser beam operating in the first and third harmonics. The pulse duration
is 400 ps, laser spot radius 125µm, and disc flyer radius 150µm.

No. laser mode rf EL Ie
max Icyl

max/Ca ICart
max Icyl

max

1 first harmonic 35 100 0.65 1016 0.982 1016 0.245 1016 0.491 1016

2 first harmonic 100 100 0.80 1015 0.120 1016 0.300 1015 0.602 1015

3 first harmonic 300 100 0.88 1014 0.134 1015 0.333 1014 0.668 1014

4 first harmonic 600 100 0.22 1014 0.334 1014 0.834 1013 0.167 1014

5 first harmonic 600 600 0.13 1015 0.200 1015 0.500 1014 0.100 1015

6 third harmonic 35 100 0.65 1016 0.982 1016 0.368 1016 0.737 1016

7 third harmonic 100 100 0.80 1015 0.120 1016 0.450 1015 0.902 1015

8 third harmonic 300 100 0.88 1014 0.134 1015 0.500 1014 0.100 1015

9 third harmonic 600 100 0.22 1014 0.334 1014 0.125 1014 0.251 1014

Table 7.2: Maximal laser intensities (in W/cm2) in 2D Cartesian and cylindrical geometry for 100 J and
600 J laser beam operating in the first (λ1 = 1.315µm) and third (λ3 = 0.438µm) harmonic. The pulse
duration is 400 ps, laser spot radius varies from 35µm to 600µm. Enumeration of experiments from [14]
is used. Comparison with the experimental intensities Ie

max and the cylindrical intensity without the
absorption factor Ca, I

cyl
max/Ca, is presented. Laser energies EL are in Joules, laser spot radius rf in µm.

harmonic frequencies are used, and the radius of laser spot on target varies from 35µm to 600µm. The
article also includes the measured maximal laser beam intensities, which we include into Table 7.2. The
value of the cylindrical intensity without the absorption coefficient have been also included into the
Table 7.2. This computed maximal intensity is much bigger than the experimental data. This is caused
by the fact, that in [14] it was assumed, that the pulse has constant intensity value Ie

max in the whole
laser spot on target and pulse duration time. The pulse energy in the laser spot on target is equal to
80% of the total laser beam energy for all computed values, and 100% in the case of the experimental
value. It can be derived that the ratio of the experimental and computed intensity values is constant
Icyl
max/(Ca I

e
max) ≈ 1.5. In the simulations, we of course use the values including the Ca coefficient to take

the partial reflection of the laser beam into account.

7.2 Massive Target Irradiation by Laser Beam

In this section, we present several simulations of a massive target irradiation by an intense laser beam with
the following parameters – pulse duration (full-width at half-maximum (FWHM) time) tFWHM = 400ps,
laser beam energy is either EL = 100 J or EL = 600 J, and the laser system is operating either in the
first harmonic (λ1 = 1.315µm) or in the third harmonic (λ3 = 0.438µm), depending on the particular
experiment. Nine sets of parameters corresponding to parameters performed on the PALS iodine laser
facility are described in [14], these parameters are presented in Table 7.2. The radius of laser spot on
target varies from 35µm to 600µm. The laser beam melts and evaporates the target material (Aluminum
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is used as the target), shock wave is moving from the irradiated region inside the target. In [14], the
experimental crater width and depth for all experiments is shown. Here, we compare our results from
the ALE simulations, with the experimental results.
For the simulations, we use the ALE algorithm described in the previous sections, including the inter-
action of the laser beam with the material and Spitzer-Harm formulation of the thermal conductivity
process. The mesh smoothing/remapping process is not performed regularly, it is used only if “some-
thing wrong” happens – negative volume subzone appears, or cell density is too low, or similar problem
appears.
We present here the simulation of problem 2 (according to Table 7.2 and [14]), starting 400 ps before the
intensity maximum till time 70 ns after the laser pulse. In Figure 7.4 (a), (b), density colormap in the
whole computational domain is shown. The computational mesh is projected to the negative r halfplane
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Figure 7.4: Computational mesh and density colormap (in g/cm3) for laser interaction with massive
Aluminum target (problem 2, basic laser frequency) in time 70 ns after the laser pulse. Views to the
whole computational domain (a), (b) and details of the crater region (c), (d) are presented, obtained by
the Cartesian (a), (c) and cylindrical (b), (d) simulations by complete ALE method.

for better insight. After the laser pulse, shock wave is created moving inside the Aluminum material.
One can see it as a high density circular structure in the lower part of the Figure 7.4 (a), (b). In the
region, where the shock wave did not come yet, the density is equal to the density of solid Aluminum
ρ = 2.7 g/cm3. Low density and high temperature corona of evaporated Aluminum is streaming from
the region of irradiation (upper part in Figure 7.4 (a), (b)). The corona structure is enormous, when
compared with the original computational domain. This is the reason, why Eulerian computational
method is not suitable here. The Lagrangian method naturally treats the moving corona boundary.
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Figure 7.5: Computational mesh and temperature colormap (in eV) for laser interaction with massive
Aluminum target (problem 2, basic laser frequency) in time 70 ns after the laser pulse. Views to the
whole computational domain (a), (b) and details of the crater region (c), (d) are presented, obtained
by the Cartesian (a), (c) and cylindrical (b), (d) simulations by complete ALE method. Solid, liquid,
and gas phases are separated by the temperature isolines of melting Tm

Al = 0.085 eV and evaporation
T v

Al = 0.25 eV of Aluminum, different material phases are shown in different colormaps.

Zoom to the crater region is shown in Figure 7.4 (c), (d), where the shock wave is visible both in density
and in the computational mesh. In the Cartesian geometry, the shock wave is moving faster, and is
stronger (the density peak is higher), than in the cylindrical geometry.
In Figure 7.5 (a), (b), temperature colormap of the same problem is shown. Isolines in the temperature
of Aluminum melting Tm

Al = 933K = 0.085 eV and boiling T v
Al = 2792K = 0.25 eV separate solid, liquid,

and gas phases of the material. For better insight, Aluminum phases are depicted in different colormaps.
In the region below the shock wave, the temperature is equal the room temperature T r = 0.03 eV ≈
300K, the material is not heated yet. The temperature inside the low density corona is much hotter
than the evaporation temperature of Aluminum. In Figure 7.5 (c), (d), zoom to the crater region is
shown again. By the crater, we mean in this context the interface between the liquid and gas material
phases. The evaporated gas escapes in the form of corona away, the melted material is cooled down after
some time, becomes solid again, and forms the crater shape. In the experiment described in [14], the
crater of problem 2 is 340µm deep and has radius 280µm. From the gas/liquid isoline, we estimate our
simulated crater depth to 520µm in Cartesian and 440µm in cylindrical coordinates, and its radius to
340µm in both geometries. As one can see, the cylindrical simulation approximates the real experiment
better, than the Cartesian one.
On the other hand, both simulated craters are bigger (deeper) than the experimental craters. This
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Figure 7.6: Computational mesh and specific internal energy increase colormap (in erg/g) for laser
interaction with massive Aluminum target (problem 2, basic laser frequency) in time 70 ns after the
laser pulse. Views to the whole computational domain (a), (b) and details of the crater region (c),
(d) are presented, obtained by the Cartesian (a), (c) and cylindrical (b), (d) simulations by complete
ALE method. Solid, liquid, and gas phases are separated by the specific energy isolines of melting
ǫm = 9.72 109 erg/g and evaporation ǫv = 1.35 1011 erg/g of Aluminum, different material phases are
shown in different colormaps.

is probably caused by the fact, that the quotidian equation of state described in section 6.1 does not
explicitly include the transition heats of phase changes. Therefore, it is better to draw the specific
internal energy increase, and compute the melting and evaporating energies by including these transition
heats. Such specific internal energy increase is shown in Figure 7.6 (a), (b). The specific energy increase
needed for the melting of the material ǫm is equal to the specific energy increase needed for raising
its temperature from the room temperature to the boiling point

(
Tm

Al − T r
)
cAl plus the specific latent

transition heat of melting of Aluminum Lm
Al = 3.97 · 105 J/kg, where the specific heat of Aluminum is

cAl = 900 J/kg/K. The final value is ǫm = 9.72 ·105 J/kg = 9.72 ·109 erg/g. By adding the specific energy
increase needed for raising the temperature to the boiling (vaporization) temperature

(
T v

Al − Tm
Al

)
cAl

and specific latent transition heat of vaporization Lv
Al = 1.09 · 107 J/kg, we get the value of the specific

energy increase needed for evaporation of Aluminum ǫv = 1.35 · 107 J/kg = 1.35 · 1011 erg/g. Isolines
in these specific energies ǫm and ǫv separate Aluminum phases, and again, different colormaps are used
for different material phases. As in the Figure 7.5 displaying temperature, there is two orders higher
energy in the low density corona than the energy needed for Aluminum melting. Zoom to the crater
region is shown in Figure 7.6 (c), (d). The energy increase behind the cylindrical shock wave is zero,
the material was not heated yet. The estimated crater depth is 320µm in the Cartesian and 350µm in
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the cylindrical case, its radius is 290µm in the Cartesian and 300µm in the cylindrical case. As one can
see, in this simulation, the crater size in energy increase is much closer to the experimental values, than
the previous crater region size, deduced from temperature. As the experimental geometry is cylindrical,
cylindrical simulations indeed agree with experiments much better than for planar geometry. In the rest
of this section, we only use cylindrical values of crater depth and radius.
For completeness, in Table 7.3 we present the crater sizes in all 9 problems from [14]. For each problem,

Problem Nr. experiment temperature energy
Hc Rc Hc Rc Hc Rc

1 400 330 380 320 290 290
2 340 280 440 340 350 300
3 480 400 380 550 150 450
4 160 630 160 750 50 1100
5 600 800 600 850 200 700
6 500 480 470 400 360 360
7 600 580 510 370 420 330
8 700 600 450 600 220 450
9 280 700 240 800 50 1200

Table 7.3: Crater depthHc and radius Rc (in µm) for each problem according to Table 7.2. Experimental
values and values from cylindrical ALE simulations (temperature and specific internal energy increase)
are presented.

we present experimental crater depth Hc and radius Rc, and the computed crater sizes estimated from
the distributions of temperature and specific internal energy increase in cylindrical coordinates. As
one can see, the crater size values from numerical simulations are in most cases a little smaller than
the experimental ones, which is probably caused by the fact, that also a piece of the liquid material is
thrown off in the real experiment. Generally, the simulated values (especially from temperature, and
for smaller laser intensities also from specific internal energy increase) correspond to the experimental
values reasonably.

7.3 Ablative Flyer Acceleration by Laser Beam

The first simulated stage of the experiment is the interaction of the laser beam with disc flyer, see
Figure 7.1. The laser pulse irradiates a small Aluminum disc flyer, the surface of the disc is evaporated
and the rest of the disc is accelerated up to a very high velocity. The intense laser pulses have different
energies EL = 120 J, 130 J, 240 J, or 390 J, the pulse duration is tFWHM = 400ps. Laser wavelength is
λ1 = 1.315µm for the basic laser frequency and λ3 = 0.438µm for the third harmonic frequency. The
disc radius is rd = 150µm, its thickness is either d = 6µm or d = 11µm, depending on the particular
experiment. The simulation lasts till the moment, when the accelerated part of the disc reaches the
massive target, or in other words, till it flies over the whole distance L = 200µm.
Two approaches are used for the simulations of the flyer irradiation, preliminary 1D Lagrangian simu-
lations, and simulations by full ALE 2D method. Both approaches are demonstrated on the example of
11µm thin Aluminum disc irradiated by 240 J laser pulse in third harmonic.

7.3.1 Purely Lagrangian Simulation in 1D

In [41, 53], several preliminary simulations have been done in 1D to estimate the flyer density, temper-
ature, and velocity. For such 1D simulations, purely Lagrangian approach is sufficient. Maximum laser
intensity Imax is estimated from the formula (7.7).
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Figure 7.7: 1D Lagrangian simulation of 11µm disc irradiation by 240 J laser beam on third harmonic
frequency. Density (a), temperature (b), and velocity (c) profile in time 1.70 ns in the disc region is
shown. Impacting disc between the red and green lines, blue line shows the average value.

For the 1D Lagrangian simulations, we used the code implemented by [41]. Here, we present the simula-
tion of the experiment with 240 J laser beam operating on the third harmonic frequency λ1 = 0.438µm
with the radius of laser spot on target rf = 125µm, irradiating d = 11µm thin Aluminum disc flyer. In
Figure 7.7, we present the profiles of density, temperature, and velocity in time 1.70 ns, which is time
needed by the disc to fly over the whole distance L = 200µm and reach the massive Aluminum target,
shown by the green line marking its right boundary. The end of the flying disc is shown as the red line
in the Figure 7.7, and is defined as the position, where the density profile decreases below 10% of the
maximum density. Each average value (average weighted by the cell mass) is shown as the blue line
in the Figure 7.7. In the particular example, the impacting disc is 22.4µm wide, and has the average
density ρdisc = 0.833 g/cm3 , which corresponds to 66% of the initial disc mass in the impacting disc
region. The average impacting disc temperature is 5.9 eV, and average impacting velocity 172 km/s.
In the following Table 7.4, we present similar results for each experiment from [45]. Comparison of the

Problem timp [ns] ddisc [µm] ρdisc [g/cm3] mdisc

mdisc
init

T imp [eV] vimp [km/s] ve [km/s]

6µm, 130 J, 1st 2.3 14 0.79 66% 3.2 120 60
6µm, 130 J, 3rd 1.5 10 0.88 54% 4.5 201 150

11µm, 120 J, 1st 3.9 32 0.66 71% 2.1 62 40
11µm, 120 J, 3rd 2.6 25 0.77 63% 2.8 99 ?
11µm, 240 J, 1st 2.4 26 0.77 68% 4.1 110 54
11µm, 240 J, 3rd 1.7 23 0.83 63% 5.9 172 ?
11µm, 390 J, 1st 1.8 14 1.18 57% 6.6 164 ?
11µm, 390 J, 3rd 1.3 16 0.99 52% 9.5 253 ?

Table 7.4: Results of 1D Lagrangian simulation of flyer irradiation. For each problem, the following
quantities are presented: time of impact timp, impacting disc width ddisc, impacting disc density ρdisc,
mass ratio in the impacting discmdisc/mdisc

init , average impacting disc temperature T imp, average impacting
disc velocity vimp, and the experimental impacting velocity ve measured in [45]. Symbol “?” means that
the experimental impact velocity is not available.

simulated impact velocity vimp and the experimental impact velocity ve measured in [45] is included.
The impact velocities from the simulations are much higher than the experimental ones. Laser energy
is transfered only to longitudinal motion of the fluid in the direction of the laser beam, the fluid is not
allowed to move in other direction. In reality, a part of the laser energy is transformed into the plasma
motion in the direction perpendicular to the laser beam, which limits the resulting momentum of the
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flyer and its impact speed. For 2D simulations of the presented problems, see the next section.
The values from Table 7.4 are used as the initial data for the second part of the simulation. Although,
they come from rough 1D simulation, they provide the first estimate of the “homogeneous” initial values.
The simulations of the disc impact problem using these initial data are presented in section 7.4.1.

7.3.2 2D Simulation by Complete ALE Method

In the previous section, we presented the 1D Lagrangian simulations of the irradiation of a thin Aluminum
disc by an intense laser beam. In this section, we present the simulations of the same problems by our
2D ALE code. As in the section 7.2, the simulations are performed in mostly Lagrangian mode – no
regular mesh smoothing/remapping step is performed, it is used only in the situation, that negative
volume appears in some cell or subcell of the computational mesh. Heat conductivity is an important
process in this part of the simulation, and has to be included as it seriously influences shock wave speed.
Several 2D acceleration simulations have been presented in [65], [52].
As in the previous section, we present here figures of 11µm disc irradiated by 240 J laser beam operated
on the third harmonic frequency, with the radius of laser spot on target rf = 125µm. In Figure 7.8, the
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Figure 7.8: Initial density (solid Aluminum density ρ = 2.7 g/cm3) and initial mesh of the 11µm wide
disc with radius 150µm. The disc (a) is placed in the height 200µm above the massive Aluminum target
(green line). Zoom (b) to the central region is presented.

initial density (constant solid mass density 2.7 g/cm3 in the whole disc) and the initial computational
mesh projected to the left halfplane is shown. The initial mesh is quadrilateral, but not equidistant.
The mesh cells are smaller in the upper part and close to the r = 0 axis, where the laser beam (incident
from up) interacts with the matter. Each cell length geometrically depend on the cell index such as

∆xi =
rd

∆ni
x − 1

∆i
x (∆x − 1) , (7.16)

where the factor ∆x is the parameter, set in our flyer simulations as ∆x = 1.02. Similarly the cell heights
geometrically change in y direction, where the factor is more severe ∆y = 0.95.
After the laser beam irradiates the flyer, a shock wave is formed inside the disc, and hot, low density
corona is created moving against the incident laser beam.
In Figure 7.9, the situation just before the impact is shown in both Cartesian and cylindrical coordi-
nates. The figures (a) and (b) show the complete computational domain evolved from the initial disc
in Figure 7.8. To be specific, the computational domain in cylindrical geometry increased more than
104times. The thin disc is rapidly heated and evaporated, and due to the momentum conservation, it
starts the downwards motion. Most of the disc mass has the form of high density arch accelerated up
to a very high velocity, moving in the direction of the laser beam. The arch shape is formed due to
a higher laser beam intensity in the central region accelerating the disc more than the lower intensity
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Figure 7.9: Density (in g/cm3) and computational mesh of 2D ALE simulation of problem with 11µm
wide disc of radius 150µm irradiated by 240 J laser beam operating on the third harmonic frequency in
time of impact to the massive target in Cartesian (a), (c) and cylindrical (b), (d) coordinates. View to
the whole computational domain (a), (b) and zoom to the critical region (c), (d) are shown. Green line
represents the interface of the solid target, red line is the isoline of zero vertical velocity v.

close to the disc edge. Zoom to this high density region is shown in parts (c) and (d) of Figure 7.9. On
the other hand, the disc has lower density in the central region than close to the disc edge, which can
be interpreted as almost burning a hole in the disc. When we compare the Cartesian and cylindrical
simulations, this effect is stronger in the cylindrical geometry. This is naturally caused by the higher
laser beam central peak intensity in the cylindrical geometry.
When comparing the Cartesian and cylindrical simulations, the higher maximum of the laser beam
intensity also causes faster acceleration of the disc and earlier disc impact (1.30 ns in cylindrical geometry
instead of 1.60 ns in Cartesian coordinates). Faster disc movement and lower disc density in the central
region, are general properties of the cylindrical flyer simulations, compared with the Cartesian case.
For comparison of 1D Lagrangian disc flyer simulation with the presented 2D ALE case, we present
the average cylindrical values in the region of the high density. This region is specified by a rectangle
including most of the disc mass. For this particular simulation, it is estimated as the (r, z) rectangle
of size 〈0, 180〉µm × 〈0, 170〉µm. The overview of the average impacting disc quantities is presented in
Table 7.5. The disc rectangle includes 50% – 80% of the initial disc mass, depending on the time until
the impact. Generally, for fast discs (and short flying times), the corona does not evolve so strongly, the
disc remains more compact, and higher mass percentage is included in the disc region.
When compared with the presented 1D average values from Table 7.4, much higher average density in
the 1D simulations can be observed. This is, of course, caused by much larger region affecting the impact
in the 2D case, so the maximal density is more important parameter for the impact, than the average
density. Generally, the maximal disc density is higher in 2D simulations (and the same with the disc
temperature). What is most important for our simulations, the vertical impact velocities are lower than
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Problem timp [ns] Vfin

V disc
init

ρdisc

ρdisc
max

[g/cm3] mdisc

mdisc
init

T imp [eV] vimp [km/s] ve [km/s]

6µm, 130 J, 1st 2.2 6.5e5 0.07/0.55 56% 7.7 88 60
6µm, 130 J, 3rd 1.1 9.8e3 0.07/3.19 71% 43.9 153 150

11µm, 120 J, 1st 3.4 1.8e6 0.11/0.80 68% 3.4 46 40
11µm, 120 J, 3rd 1.8 7.3e4 0.09/1.28 79% 9.8 82 ?
11µm, 240 J, 1st 2.4 7.6e5 0.13/0.88 66% 6.5 76 54
11µm, 240 J, 3rd 1.3 1.9e4 0.13/1.89 73% 23.9 134 ?
11µm, 390 J, 1st 2.0 4.7e5 0.13/0.90 65% 10.5 104 ?
11µm, 390 J, 3rd 1.1 1.8e4 0.14/2.59 67% 53.9 187 ?

Table 7.5: Average values (mass-weighted) in the disc region in cylindrical coordinates. Following
quantities are presented for each problem: time of impact timp, ratio of final computational domain to
the initial computational domain (disc) Vfin/V

disc
init , average and maximal densities ρdisc and ρdisc

max of the
impacting disc, ratio of the impacting disc mass to the total disc mass mdisc/mdisc

init , average impacting
disc temperature T imp, and the average vertical velocity vimp of the impacting disc, compared with the
experimental impacting velocity ve measured in [45]. Symbol “?” means that the experimental impact
velocity is not available.

the 1D ones, and more realistically correspond to the measured experimental velocities also presented in
the Table 7.5. The average velocities are computed as the mass-weighted average

vimp =

∑
n∈disc

mn vn

∑
n∈disc

mn
(7.17)

of the nodal vertical velocities in the disc region. In fact, it corresponds to the computation from the
average disc momentum in direction z in cylindrical coordinates.
The more reasonable impact speed arises from the better 2D approximation, than in the 1D case. For
the particular simulation of 11µm disc irradiated by a 240 J laser beam in third harmonic, the kinetic
energy of the impacting disc (now, by impacting disc, we understand everything moving in the direction
of the laser beam) in 1D case is 21.9 J. When this value is compared with the 2D kinetic energy of
the impacting disc 23.6 J, they are rather close to each other. In 1D, this total kinetic energy results
from the disc movement towards the massive target in laser direction. In 2D, the disc velocity in the z
axis direction (towards the target) gives only 16.5 J kinetic energy and the remaining 7.1 J results from
the movement in r direction. Thus, lower kinetic energy of the disc in z direction corresponds to the
lower impact speed in 2D. For completeness, let us note, that most of the kinetic energy of motion in
z direction is situated in the region of massive disc (left from line r = 180µm), concretely 15.2 J. On
the other hand, most of the impacting disc kinetic energy in r direction lies in the region of low density
corona right from line r = 180µm, only 0.6 J is situated in the massive part of the target. The slower
2D impacting disc is caused by the lower kinetic energy in the direction of the laser beam, and better
approximates real experiment behavior.

7.4 Disc Flyer Impact Simulations

The second stage of the simulations is the impact of the evaporated and accelerated part of the disc
flyer on the massive Aluminum target. After the impact, a shock wave is formed moving from the area
of the impact to the target interior. This shock wave causes heating, melting, and evaporation of the
target material. The evaporated material streams out in a form of a low density corona, and a crater is
formed. The size and shape of the crater formation is the main parameter of our investigation.
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In [45], several experiments of small disc flyers to the massive target are described. We perform simula-
tions for parameters of these experiments using our ALE approach, and compare the crates obtained in
our simulations with the experimental ones.
At first, in section 7.4.1, we present the impact simulations using an easy approximation of the initial
data from the 1D data described in section 7.3.1. In the next section 7.4.2, simulations starting from
the complete 2D initial data resulting from the process described in section 7.3.2 are presented. Both
Cartesian and cylindrical simulations of the same 11µm disc irradiated by 240 J laser pulse in third
harmonic are shown, and the differences between them are pointed out.

7.4.1 Impact Simulations Started from 1D Uniform Initial Data

Here, the initial data are taken from 1D simulations described in section 7.3.1. This simple approach
was used for our preliminary simulations presented in [55], [54], [53], [56].
The density distribution on the initial mesh for the laser beam of third harmonic frequency of iodine laser
of energy 240 J, and d = 11µm disc width is shown in Figure 7.10. In the disc region, the uniform density,
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Figure 7.10: Initial data from the originally d = 11µm disc accelerated by EL = 240 J laser beam on
third harmonic frequency to the impact velocity vimp = 172 km/s. In the impacting disc region, the
constant density ρ = 0.774 g/cm3 , constant temperature T = 5.9 eV, and the constant impact velocity
vimp = 172 km/s are obtained as the mass-weighted average values from the 1D simulation presented in
Table 7.4.

velocity, and temperature distributions equal to the mass-weighted average values coming from the
appropriate 1D simulation from Table 7.4 are used. The initial mesh is almost equidistant quadrilateral
mesh in and out of the disc region, and smoothly connected in the region of the disc edge, as shown in
the Figure 7.10.
After starting the simulation, the cells on the interface of the disc and the massive target are compressed
to higher densities, and their temperature is increased. The disc sinks into the target, and in the region
on the disc edge, the material is pushed out of the target, and creates a small rim. In Figure 7.11,
comparison of the purely Lagrangian simulations and simulations by complete ALE method in time
t = 0.3 ns, in both Cartesian and cylindrical geometries, is shown. The purely Lagrangian simulation
is not able to handle the computational mesh shear movement in the critical region around the disc
edge, and the computational mesh starts to degenerate here. On the other hand, the simulation by
complete ALE method has no troubles with distorted mesh, the mesh smoothing/quantity remapping
process resolves all problems with severe mesh movement. Short time after the displayed snapshot, the
purely Lagrangian simulations produce negative cell volumes and consequently negative cell densities,
and cause the failure of the method as its assumptions are violated.
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Figure 7.11: Comparison of purely Lagrangian simulations (a), (c) and simulations by complete ALE
(b), (d) method (density colormap) of the uniform disc impact problem in both Cartesian (a), (b) and
cylindrical (c), (d) geometries in time t = 0.3 ns. Initial data are shown in Figure 7.10.

In Figure 7.12, the temperature colormaps in time 80 ns after the impact, in both coordinate systems
are shown. In temperatures Tm

Al = 0.085 eV (melting of Aluminum) and T v
Al = 0.25 eV (evaporation of

Aluminum), isolines separating single phases of the material are contoured. The top pink colormap is
used in the area of the evaporated material, the reflected gas is moving up in a form of huge corona.
The central colored colormap shows the melted liquid part of the material, and the bottom gray shade
colormap shows material remaining in solid state. The downwards propagating shock wave is positioned
at the solid-liquid interface. The evolved crater shape can be seen. By the crater, we mean the interface
between the gas and the liquid state, because the gas flows away, but the liquid Aluminum becomes
solid again after temperature decrease. At later times crater does not propagate further down into the
massive target, while the shock wave continues to move inside.
In Figure 7.13, similar picture is shown. This time, the increase of the specific internal energy is
shown instead of the material temperature, which should correspond better to the real material behavior
(compared with temperature), because the melting and evaporation isolines in ǫm = 9.72 · 109 erg/g and
ǫv = 1.35 · 1011 erg/g include the specific heats of melting and evaporation.
For the particular presented simulation, the experimental crater size is unknown. In Table 7.6, we
present the comparison of the crater sizes obtained from the Cartesian and cylindrical simulations (in
both temperature and specific energy increase), with the experimental values. The crates deduced from
temperature are generally bigger, than the ones deduced from energy increase, which is caused by the
absence of the specific heats in the EOS. As for the crater sizes deduced from energy, the cylindrical ones
are closer to the experimental values than the Cartesian ones. In fact, the Cartesian simulation models
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Figure 7.12: Computational mesh and temperature colormap (in eV) for uniform disc impact problem
(11µm wide disc of radius 150µm irradiated by 240 J laser beam operating in the third harmonic) in
time 80 ns after the impact. Views to the whole computational domain (a), (b) and details of the crater
region (c), (d) are presented, obtained by the Cartesian (a), (c) and cylindrical (b), (d) simulations
by complete ALE method. Solid, liquid, and gas phases are separated by the temperature isolines of
melting Tm

Al = 0.085 eV and evaporation T v
Al = 0.25 eV of Aluminum, different material phases are shown

in different colormaps.

the creation of an infinitely long crater. The cylindrical simulation follows the cylindrical properties of
the experiment, and the crater size is reasonably close to the experimental values.

7.4.2 Impact Simulations Started from 2D Interpolated Initial Data

In this section we show the results of the 11µm disc accelerated by 240 J laser beam operating on the
third harmonic frequency, impacting the massive Aluminum target. The initial data for this simulation
were obtained from the 2D ALE simulation of ablative acceleration described in section 7.3.2. Several
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Figure 7.13: Computational mesh and specific internal energy increase colormap (in erg/g) for uniform
disc impact problem (11µm wide disc of radius 150µm irradiated by 240 J laser beam operating in the
third harmonic) in time 80 ns after the impact. Views to the whole computational domain (a), (b) and
details of the crater region (c), (d) are presented, obtained by the Cartesian (a), (c) and cylindrical (b), (d)
simulations by complete ALE method. Solid, liquid, and gas phases are separated by the specific energy
isolines of melting ǫm = 9.72 109 erg/g and evaporation ǫv = 1.35 1011 erg/g of Aluminum, different
material phases are shown in different colormaps.

simulations of such impact problems are presented in [65], [52].
The initial mesh (shown in Figure 7.14) is similar to the mesh used for simple average impact simulations
from section 7.3.2. The disc is much thicker now than in the simulations started from average initial
data, to cover the part of the ablative accelerated flyer with the most of the disc mass. The mesh is
almost equidistant in the part of the mesh out of the disc and below the disc, and is smoothly connected
in the region of the disc edge. The initial mesh in both Cartesian and cylindrical geometry is shown in
Figure 7.14. The initial size of the impacting disc is estimated by hand to include the whole disc arch
(described in section 7.3.2) and a small neighborhood. For the particular example of 11µm disc irradiated
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Problem experiment temperature energy
Hc Rc Hc Rc Hc Rc

6µm, 130 J, 1st, Cart. ? ? 850 470 480 410
6µm, 130 J, 1st, cyl. 300 300 580 380 370 350
6µm, 130 J, 3rd, Cart. ? ? 1000 850 800 510
6µm, 130 J, 3rd, cyl. 550 500 800 530 590 420

11µm, 120 J, 1st, Cart. ? ? 560 370 220 340
11µm, 120 J, 1st, cyl. 280 300 480 350 240 320
11µm, 120 J, 3rd, Cart. ? ? 750 420 370 380
11µm, 120 J, 3rd, cyl. ? ? 570 380 360 350

11µm, 240 J, 1st, Cart. ? ? 850 580 550 400
11µm, 240 J, 1st, cyl. 320 320 660 400 480 370
11µm, 240 J, 3rd, Cart. ? ? 1400 950 920 560
11µm, 240 J, 3rd, cyl. ? ? 880 550 660 450

11µm, 390 J, 1st, Cart. ? ? > 1400 700 650 470
11µm, 390 J, 1st, cyl. 380 400 740 460 520 400
11µm, 390 J, 3rd, Cart. ? ? > 1400 1000 1100 650
11µm, 390 J, 3rd, cyl. ? ? > 1400 900 1000 550

Table 7.6: Comparison of crater depths Hc and diameters Rc (in µm) according to temperature and
specific internal energy increase in Cartesian and cylindrical simulations determined from the uniform
1D initial disc data. Symbol “?” denotes unknown experimental crater size.
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Figure 7.14: Initial density profile of the impact simulation of 11µm wide disc of radius 150µm irradiated
by 240 J laser beam operating in the third harmonic. Both Cartesian (a) and cylindrical (b) initial data
interpolated from disc acceleration simulation in Figure 7.9, are presented.

by 240 J laser pulse on the third harmonic frequency, the initial disc (r, z) size is 〈0, 180〉µm×〈0, 170〉µm,
with the right edge beveled in a 30µm belt of the mesh.
Initial density profile is shown in Figure 7.14. In the disc region, the initial density, temperature,
and velocities are conservatively interpolated from the disc flyer simulation, and in the massive target
region, it is set to the solid Aluminum density ρ = 2.7 g/cm3. Solid target is in the rest, and has room
temperature.
The impact simulation is similar to the previous simulation presented section 7.4.1. The circular shock
wave in time 80 ns after the impact is visible in material density profile shown in Figure 7.15. The shock
wave is moving inside the massive target, and causes heating of the material, its melting and evaporation.
Material temperature colormap in the same time is shown in Figure 7.16, and the increase of the specific
internal energy in Figure 7.17. In both figures, the situations in the whole computational domain, and
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Figure 7.15: Computational mesh and density colormap (in g/cm3) for the disc impact problem interpo-
lated from the disc acceleration simulation by complete ALE method (11µm wide disc of radius 150µm
irradiated by 240 J laser beam operating in the third harmonic) in time 70 ns after the impact. Views to
the whole computational domain (a), (b) and details of the crater region (c), (d) are presented, obtained
by the Cartesian (a), (c) and cylindrical (b), (d) simulations by complete ALE method.

zooms to the crater region, are presented. The Cartesian figures are shown for completeness only. As in
the previous sections, the temperature and internal energy increase isolines of melting and evaporation
of Aluminum are contoured, separating different phases of the material. For better insight, each material
phase is shaded in different colormap – pink gas, colored liquid, and gray solid. Again, by the crater, we
mean the interface between the gas and liquid materials – the evaporated gas escapes away in the form
of hot corona, and the liquid material becomes solid again, due to the cooling down the material after
some time.
In the following Table 7.7, the crater sizes of all the examples, both in temperature and specific internal
energy increase, are summarized. Both Cartesian and cylindrical data are included, although the Carte-
sian simulations do not correspond to the experimental geometry. For comparison, experimental data
are included.
The values of the crater depths and radials determined from the simulations starting from interpolated
2D impact data are closer to the experimental values than the values obtained by the simulations started
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Figure 7.16: Computational mesh and temperature colormap (in eV) for the disc impact problem in-
terpolated from the disc acceleration simulation by complete ALE method (11µm wide disc of radius
150µm irradiated by 240 J laser beam operating in the third harmonic) in time 80 ns after the impact.
Views to the whole computational domain (a), (b) and details of the crater region (c), (d) are pre-
sented, obtained by the Cartesian (a), (c) and cylindrical (b), (d) simulations by complete ALE method.
Solid, liquid, and gas phases are separated by the temperature isolines of melting Tm

Al = 0.085 eV and
evaporation T v

Al = 0.25 eV of Aluminum, different material phases are shown in different colormaps.

from 1D average initial data. We also have to note here that for low intensity laser beam (120 J and
130 J), the craters deduced from temperature are better approximation of the experimental craters than
the ones deduced from energy increase. In the case of high energy laser beams (240 J and 390 J),
the situation is opposite, craters deduced from energy increase represent better approximation of the
experimental behavior.
The errors of crater volumes (according to the volumes of the experimental craters) of cylindrical simula-
tions, estimated from temperature and energy increase, are compared in Table 7.8. The craters volumes
have been computed as the volumes of ellipsoid with the axes H, R, and R. All crater volumes have been
relatively compared with the experimental crater volumes, computed the same way. For low intensity
lasers, the errors of volumes of craters deduced from temperature are between 9% and 25%. In the
case of high density lasers, the errors of volumes of craters deduced from the specific energy increase
are between 12% and 15%. Generally, the 2D cylindrical simulations provide better results than the
Cartesian ones, and reasonably approximate the experimental craters.

90



−1.5 −1 −0.5 0 0.5 1 1.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

x 10
4

X [µm]

Y
 [µ

m
]

 

 

0

solid

1.e10

liquid

1.e11

gas

1.e13

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

x 10
4

R [µm]

Z
 [µ

m
]

 

 

0

solid

1.e10

liquid

1.e11

gas

1.e13

(a) (b)

−1000 −500 0 500 1000
−1200

−1000

−800

−600

−400

−200

0

200

X [µm]

Y
 [µ

m
]

 

 

0

solid

1.e10

liquid

1.e11

gas

1.e13

−1000 −500 0 500 1000
−1200

−1000

−800

−600

−400

−200

0

200

R [µm]

Z
 [µ

m
]

 

 

0

solid

1.e10

liquid

1.e11

gas

1.e13

(c) (d)

Figure 7.17: Computational mesh and specific internal energy increase colormap (in erg/g) for the disc
impact problem interpolated from the disc acceleration simulation by complete ALE method (11µm
wide disc of radius 150µm irradiated by 240 J laser beam operating in the third harmonic) in time 80 ns
after the impact. Views to the whole computational domain (a), (b) and details of the crater region (c),
(d) are presented, obtained by the Cartesian (a), (c) and cylindrical (b), (d) simulations by complete
ALE method. Solid, liquid, and gas phases are separated by the specific energy isolines of melting
ǫm = 9.72 109 erg/g and evaporation ǫv = 1.35 1011 erg/g of Aluminum, different material phases are
shown in different colormaps.

7.5 Energy Balance in the Simulations

In this section, we discuss the energy balance of the whole simulation. This is an important issue
proving the relevance of the computed data – the total disc energy must correspond to the absorbed
laser beam energy. The energy of the impacting disc should correspond to the energy of the part of the
accelerated disc in the region including most of the disc mass. This energy should remain unchanged
during the whole impact simulation. We focus here on the advanced simulations – 2D ALE disc flyer
acceleration (described in section 7.3.2) and the 2D ALE impact simulation from the 2D ALE initial data
(described in section 7.4.2), and omit the preliminary 1D Lagrangian acceleration simulations (described
in section 7.3.1) and the impact simulations coming from constant uniform initial data (described in
section 7.4.1). We also focus here on the cylindrical simulations only, because they are physically
relevant when compared with the Cartesian ones, which in fact assume an infinitely long disc/crater. As
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Problem experiment temperature energy
Hc Rc Hc Rc Hc Rc

6µm, 130 J, 1st, Cart. ? ? 320 290 140 260
6µm, 130 J, 1st, cyl. 300 300 350 290 210 260
6µm, 130 J, 3rd, Cart. ? ? 560 410 330 380
6µm, 130 J, 3rd, cyl. 550 500 470 470 320 420

11µm, 120 J, 1st, Cart. ? ? 260 270 120 240
11µm, 120 J, 1st, cyl. 280 300 270 280 200 260
11µm, 120 J, 3rd, Cart. ? ? 490 390 290 350
11µm, 120 J, 3rd, cyl. ? ? 410 370 330 350

11µm, 240 J, 1st, Cart. ? ? 500 340 240 310
11µm, 240 J, 1st, cyl. 320 320 460 330 300 310
11µm, 240 J, 3rd, Cart. ? ? 760 530 410 410
11µm, 240 J, 3rd, cyl. ? ? 560 450 400 410

11µm, 390 J, 1st, Cart. ? ? 670 420 370 370
11µm, 390 J, 1st, cyl. 380 400 530 370 450 340
11µm, 390 J, 3rd, Cart. ? ? > 1400 > 1400 > 1400 1100
11µm, 390 J, 3rd, cyl. ? ? 680 540 560 450

Table 7.7: Comparison of crater depth Hc and radius Rc (in µm) according to temperature and specific
internal energy increase in Cartesian and cylindrical simulations determined from interpolated disc initial
data. Symbol “?” denotes unknown experimental crater size.

Problem 1D average 2D interpolation
temp ener temp ener

6µm, 130 J, 1st, cyl. 210% 68% 9% 48%
6µm, 130 J, 3rd, cyl. 63% 24% 25% 59%

11µm, 120 J, 1st, cyl. 85% 3% 16% 46%

11µm, 240 J, 1st, cyl. 222% 101% 53% 12%

11µm, 390 J, 1st, cyl. 158% 37% 19% 14%

Table 7.8: Comparison of crater volume deviations of simulated crater sizes (relative to experimental
crater volume) obtained by cylindrical simulations determined from 1D average and 2D interpolated
initial data, estimated from temperature and energy increase.

shown in the previous sections, the cylindrical simulations provide results closer to the physical results,
than the Cartesian ones.
The total energy in the whole computational domain is defined as

ET = EI + EK =
∑

∀c

mc (ǫc − ǫ0) +
∑

∀c

4∑

l=1

1

2
ml

c

(
u2

n(c,l) + v2
n(c,l)

)
, (7.18)

where ǫ0 is the specific internal energy in the initial cold massive target. In fact, the first part does not
represent the total internal energy, but the internal energy increase. The ǫ quantity is a potential – it
can be shifted by arbitrary constant value (in the case of QEOS, it is shifted to the level about −1014).
At the beginning of the disc flyer acceleration, the uniform disc has constant initial temperature (and
thus constant specific internal energy) and zero velocity, and so the total initial energy of the simulation
is 0. After the simulation starts, the laser pulse starts irradiating the flyer disc, heats it, and forces it to
move, and thus both energy components are increasing, and the laser pulse energy is transfered to the
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Problem EA [J] ET [J] EI [J] EK [J] EK ↓ [J]

6µm, 130 J, 1st cyl. 58.6 61 (104%) 4.5 (7.6%) 56 (96%) 5.5 (9.4%)
6µm, 130 J, 3rd cyl. 87.9 90 (103%) 14.8 (16.8%) 75 (86%) 15.1 (17.2%)

11µm, 120 J, 1st cyl. 54.1 56 (104%) 2.9 (5.3%) 54 (99%) 2.7 (5.0%)
11µm, 120 J, 3rd cyl. 81.1 85 (104%) 8.0 (9.9%) 77 (94%) 8.2 (10.2%)

11µm, 240 J, 1st cyl. 108.2 114 (105%) 6.6 (6.1%) 107 (99%) 11.8 (10.9%)
11µm, 240 J, 3rd cyl. 162.3 170 (105%) 18.5 (11.4%) 151 (93%) 23.6 (14.5%)

11µm, 390 J, 1st cyl. 175.8 181 (103%) 12.2 (6.9%) 169 (96%) 21.4 (12.2%)
11µm, 390 J, 3rd cyl. 263.7 277 (105%) 34.6 (13.1%) 242 (92%) 46.2 (17.5%)

Table 7.9: Energy balance of each problem in time of the disc impact in the whole computational domain.
Following energies are summarized: EA – absorbed laser beam energy, ET – total domain energy, EI –
internal energy in computational domain, EK – kinetic energy in computational domain, and EK ↓ –
kinetic in the part of the domain, where the material moves downwards (towards the massive target).
Percentages of the energies according to the absorbed laser energy EA are presented.

kinetic and internal energy of the disc material. At the time of the impact (when the accelerated disc
reaches the massive target), the energy of the laser pulse in the disc region (about Cd = 0.9 for 125µm
radius of laser spot on target and 150µm disc radius) is already absorbed into the kinetic and internal
energy of the material. To be precise, only its Ca ratio is absorbed (Ca = 0.5 for first and Ca = 0.75 for
third harmonic frequency) due to reflection of part of the laser beam.
In Table 7.9, the comparison of the absorbed laser beam energy EA with the total energy of the whole
domain ET = EI + EK is summarized. In all tables, we present the energies also as the percentage of the
exact absorbed energy EA. The total domain energy ET reasonably approximates the exact absorbed
energy EA = Ca CdE

L, the maximal difference is about 5%. Thus, the laser absorption process is
modeled reasonably. Moreover, most of the disc energy has the form of the kinetic energy, and only
about 10% of the energy is the internal energy. The hydroefficiency (portion of downwards-moving
kinetic energy) is 5 − 12% for first and 10 − 18% for third harmonic frequency. This is caused by the
fact, that the huge, fast upwards moving corona includes most of the kinetic energy, because the kinetic
energy depends on the second power of the fluid velocity. Thus, for our impact simulations, this energy
deposited in the corona kinetic energy is lost for impact, we are only interested in the kinetic energy of
the part of the disc moving downwards EK ↓, which is the kinetic energy in the region bellow the red
line in Figure 7.9.
However, we are interested in the energy of the region including most of the disc mass. As described in
the previous sections, this region is estimated by hand to cover the complete arch of higher density, plus
some neighborhood. In the next Table 7.10, we summarize the total, internal, and the kinetic energy in
the disc region in the original flyer acceleration computational mesh. The energy of this region important
for the impact is only a small part of the total domain energy. This is caused by huge corona, which
is moving fast and very hot, so both the internal and kinetic energies of corona are bigger, than the
energies of the more dense disc region. For third harmonic, the flying disc is faster, reaches the massive
target earlier, and includes more of the total domain energy, than for the first harmonic. This effect is
visible in both energy components – in the high density disc region, there is about 3 − 5% of kinetic
and 6 − 7% of internal energies for the first harmonic. For the third harmonic, there is about 7 − 15%
of kinetic and 15− 25% of internal energies, when compared with the total domain kinetic and internal
energies. This is caused by the faster movement of the disc in the third harmonic, less time is needed
for the acceleration, and the high energy (fast and hot) corona does not have enough time to evolve as
much, as in the first harmonic case.
We have to note here, that the previous Table 7.10 includes energies computed from the values in the
original flyer acceleration disc. In the next Table 7.11, energies of the initial data of the impact problem,
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Problem EA [J] ET [J] EI [J] EK [J]

6µm, 130 J, 1st cyl. 58.6 2.9 (4.9%) 0.3 (0.5%) 2.6 (4.4%)
6µm, 130 J, 3st cyl. 87.9 15.6 (17.7%) 3.6 (4.1%) 12.0 (13.6%)

11µm, 120 J, 1st cyl. 54.1 1.8 (3.3%) 0.2 (0.3%) 1.6 (2.9%)
11µm, 120 J, 3st cyl. 81.1 7.9 (9.7%) 1.1 (1.4%) 6.8 (8.3%)

11µm, 240 J, 1st cyl. 108.2 4.7 (4.4%) 0.4 (0.4%) 4.3 (4.0%)
11µm, 240 J, 3st cyl. 162.3 18.9 (11.7%) 3.1 (1.9%) 15.8 (9.7%)

11µm, 390 J, 1st cyl. 175.8 9.0 (5.1%) 0.9 (0.5%) 8.2 (4.6%)
11µm, 390 J, 3st cyl. 263.7 34.6 (13.1%) 6.8 (2.6%) 27.8 (10.5%)

Table 7.10: Energy balance of each problem in time of the disc impact in the approximate domain
(selected part with most of the mass) of the impacting disc. Following energies are summarized: EA –
absorbed laser beam energy, ET – total disc energy, EI – internal disc energy, and EK – kinetic disc
energy. Percentages of the energies according to the absorbed laser energy EA are presented.

Problem EA [J] ET [J] EI [J] EK [J]

6µm, 130 J, 1st cyl. 58.6 3.2 (5.4%) 0.3 (0.5%) 2.9 (4.9%)
6µm, 130 J, 3st cyl. 87.9 22.5 (25.6%) 9.8 (11.1%) 12.8 (14.5%)

11µm, 120 J, 1st cyl. 54.1 1.9 (3.5%) 0.2 (0.4%) 1.7 (3.1%)
11µm, 120 J, 3st cyl. 81.1 9.4 (11.5%) 2.3 (2.8%) 7.1 (8.7%)

11µm, 240 J, 1st cyl. 108.2 5.0 (4.6%) 0.5 (0.5%) 4.4 (4.1%)
11µm, 240 J, 3st cyl. 162.3 23.1 (14.3%) 6.3 (3.9%) 16.9 (10.4%)

11µm, 390 J, 1st cyl. 175.8 8.9 (5.1%) 1.1 (0.6%) 7.8 (4.4%)
11µm, 390 J, 3st cyl. 263.7 47.0 (17.8%) 17.3 (6.6%) 29.7 (11.3%)

Table 7.11: Initial impact energy balance of each problem in the impacting disc. Following energies are
summarized: EA – absorbed laser beam energy, ET – total disc energy, EI – internal disc energy, and
EK – kinetic disc energy. Percentages of the energies according to the absorbed laser energy EA are
presented.

obtained by the interpolation of the flyer acceleration data to the initial impact mesh, are summarized.
When the energies in both Tables 7.10, 7.11 are compared, a reasonably good agreement in the kinetic
energy is achieved, the deviation is lower than 0.5% when compared with the total absorbed energy. For
the internal energy, the deviation is lower than 2% with only one exception – the 6µm thick disc, and
130 J laser beam in the third harmonic, where the internal energy error is almost 10%. This is caused
by different impacting disc regions used – in the first Table 7.10, we used rectangles, and in the second
Table 7.11, the right edge of the impacting disc was beveled to smooth the computational domain. The
deviation is caused by the interpolation process in the beveled part of the impacting disc, which is in
fact, in the disc flyer acceleration simulation stage out of the computational domain (see Figure 7.9). As
the high temperature region along the boundary is close to the beveled part, the data are interpolated
to the beveled part of the disc with higher temperature, than appropriate. In the other simulations,
the temperature close to the boundary is not so high, so this source of deviation is not so strong. The
kinetic energy is more important for the crater evolution than the internal one, so the deviation is still
acceptable.
In the last Table 7.12, we summarize the energy balance in the final moment of the crater evolution
simulations. The total domain energy reasonably corresponds to the total initial energy introduced in
Table 7.11. We also present the relative total energy deviation ∆ET according to the total initial impact
energy from Table 7.11. The numerical error of the energy conservation is less than 10%, which is caused
by mesh smoothing/quantity remapping process on the domain boundary. Generally, the volumes of the
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Problem EA [J] ET [J] EI [J] EK [J] EK ↓ [J] ∆ET

6µm, 130 J, 1st cyl. 58.6 2.9 (4.9%) 1.3 (2.2%) 1.6 (2.7%) 0.1 (0.2%) 9.6%
6µm, 130 J, 3st cyl. 87.9 24.8 (28.2%) 6.2 (7.0%) 18.6 (21.2%) 0.6 (0.7%) 10.0%

11µm, 120 J, 1st cyl. 54.1 1.8 (3.3%) 0.9 (1.7%) 0.8 (1.7%) 0.1 (0.2%) 5.1%
11µm, 120 J, 3st cyl. 81.1 9.0 (11.1%) 3.3 (4.1%) 5.7 (7.1%) 0.4 (0.5%) 3.6%

11µm, 240 J, 1st cyl. 108.2 4.8 (4.4%) 2.1 (2.0%) 2.7 (2.5%) 0.3 (0.3%) 3.2%
11µm, 240 J, 3st cyl. 162.3 22.9 (14.1%) 7.5 (4.6%) 15.4 (9.5%) 1.0 (0.6%) 1.0%

11µm, 390 J, 1st cyl. 175.8 8.6 (4.9%) 3.4 (2.0%) 5.2 (2.9%) 0.5 (0.3%) 3.2%
11µm, 390 J, 3st cyl. 263.7 49.6 (18.8%) 14.2 (5.4%) 35.4 (13.4%) 2.1 (0.8%) 5.5%

Table 7.12: Final impact energy balance of each problem in the whole computational domain. Following
energies are summarized: EA – absorbed laser beam energy, ET – total domain energy, EI – internal
domain energy, EK – kinetic domain energy, EK ↓ – kinetic energy in the part of the domain, where
the material moves downwards (inside the massive target), and ∆ET – relative deviation of total energy
according to the total initial impact energies from Table 7.11. Percentages of the energies according to
the absorbed laser energy EA are presented.

Lagrangian and smoothed meshes are not exactly the same, so the energy conservation can be a little
bit violated. By composing the effects of all the remappings, the mentioned error is created.
In this section, we have discussed the energy balance of the whole disc flyer acceleration/disc high-speed
impact simulations. The behavior corresponds reasonably to the expected process, and shows the ability
of the code to perform relevant laser plasma simulations.
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Chapter 8

Conclusion

In this thesis, we have described the complete arbitrary Lagrangian-Eulerian (ALE) method for fluid
dynamics and laser plasma simulations on 2D logically orthogonal computational meshes, in Cartesian
and cylindrical geometries. We have demonstrated its properties for selected problems of laser-plasma
interactions.
Our ALE method uses the staggered Lagrangian step [18], several mesh smoothing techniques, and the
conservative remapping process [72]. We have focused in details on the remapping algorithm and intro-
duced several its improvements [58]. The complete ALE algorithm was generalized into the cylindrical
geometry, allowing to perform simulations of naturally cylindrical laser-plasma processes.
The ALE method has been implemented, and several techniques for treating the laser plasma behavior
– QEOS equation of state [75], thermal conductivity, simple laser absorption model, or dynamically
changing boundary conditions – have been added to it. These techniques allow the presented method to
be used for advanced laser-plasma simulations. We have demonstrated its properties on a set of laser-
flyer-target simulations based on real experiments, and compared the simulations with the experimental
results. Their correspondence and the energy balance analysis show the ability of the code to provide
realistic simulations for problems, where neither the Eulerian nor Lagrangian approaches are suitable.
The main contribution and new ideas of the thesis lie in the following topics

• Conservative interpolation methods in Cartesian and cylindrical geometry.

• Complete remapping (for all state quantities) in cylindrical geometry.

• Implementation of 2D ALE method into code for logically-orthogonal meshes in Cartesian and
cylindrical geometry.

• Simulations of disc flyer acceleration by an intense laser beam, and its impact to the massive target.

The conservative interpolation method is based on piecewise-linear reconstruction, approximate swept
region integration, and repair stage enforcing local-bound preservation. We have also introduced the
generalization of the remapping algorithm to general 3D meshes, and 2D meshes with changing connec-
tivity. To recompute all state quantities in both geometries, we have generalized the algorithm from [70]
to the cylindrical geometry. The presented complete ALE method (in both geometries) was implemented
into a computer code in Fortran. Its memory and computational time demands are reasonable on current
machines. Finally, we performed several simulations of laser-target and laser-flyer-target experiments,
and present the obtained results. The simulations follow the real experiments performed on PALS laser
system, the simulated and experimental craters are comparable.
This thesis does not entirely expound the topic, there are many points, which could be modified or
improved to produce more realistic results. Although, our code provides reasonable and realistic simu-
lations, close to the experimental behavior.
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The methods described in this thesis give powerful tools to those who need to perform laser plasma
simulations, for which the classically used Eulerian or Lagrangian methods have troubles. It can be
used for such problems, as high velocity impact simulations, and it has been shown to produce realistic
results. The field of laser plasma physics is a dynamically evolving topic influencing many aspects of
the human being, and the demands of implementing new methods into our code can be expected in the
future.

97



List of Selected Important Publications

For completeness, we add the list of selected important journal and conference proceedings articles of the
thesis author. Most of them are directly connected to the thesis topic, and include parts of the presented
results. Only few of them include previous work of the author, they have just a marginal relation to
the topic. Besides the presented list of publications, the author published several technical reports,
short reports in university and group collections, and abstracts in the conference books of abstracts.
The author also presented the topic on many local meetings and international conferences, and keeps in
touch with the scientific community.

Journal articles:
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1. R. Liska, and M. Kuchař́ık: Arbitrary Lagrangian Eulerian method for compressible plasma simula-
tions, Proceedings of EQUADIFF 11, International conference on differential equations, Comenius
University, 2005. 10 pages. Submitted.
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Laws in 3D). Master’s thesis, Czech Technical University, 2001/2002.
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